eCryptfs: remove unnecessary BUG_ON
[deliverable/linux.git] / fs / ecryptfs / crypto.c
1 /**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include "ecryptfs_kernel.h"
37
38 static int
39 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
40 struct page *dst_page, int dst_offset,
41 struct page *src_page, int src_offset, int size,
42 unsigned char *iv);
43 static int
44 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
45 struct page *dst_page, int dst_offset,
46 struct page *src_page, int src_offset, int size,
47 unsigned char *iv);
48
49 /**
50 * ecryptfs_to_hex
51 * @dst: Buffer to take hex character representation of contents of
52 * src; must be at least of size (src_size * 2)
53 * @src: Buffer to be converted to a hex string respresentation
54 * @src_size: number of bytes to convert
55 */
56 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
57 {
58 int x;
59
60 for (x = 0; x < src_size; x++)
61 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
62 }
63
64 /**
65 * ecryptfs_from_hex
66 * @dst: Buffer to take the bytes from src hex; must be at least of
67 * size (src_size / 2)
68 * @src: Buffer to be converted from a hex string respresentation to raw value
69 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
70 */
71 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
72 {
73 int x;
74 char tmp[3] = { 0, };
75
76 for (x = 0; x < dst_size; x++) {
77 tmp[0] = src[x * 2];
78 tmp[1] = src[x * 2 + 1];
79 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
80 }
81 }
82
83 /**
84 * ecryptfs_calculate_md5 - calculates the md5 of @src
85 * @dst: Pointer to 16 bytes of allocated memory
86 * @crypt_stat: Pointer to crypt_stat struct for the current inode
87 * @src: Data to be md5'd
88 * @len: Length of @src
89 *
90 * Uses the allocated crypto context that crypt_stat references to
91 * generate the MD5 sum of the contents of src.
92 */
93 static int ecryptfs_calculate_md5(char *dst,
94 struct ecryptfs_crypt_stat *crypt_stat,
95 char *src, int len)
96 {
97 struct scatterlist sg;
98 struct hash_desc desc = {
99 .tfm = crypt_stat->hash_tfm,
100 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
101 };
102 int rc = 0;
103
104 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
105 sg_init_one(&sg, (u8 *)src, len);
106 if (!desc.tfm) {
107 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
108 CRYPTO_ALG_ASYNC);
109 if (IS_ERR(desc.tfm)) {
110 rc = PTR_ERR(desc.tfm);
111 ecryptfs_printk(KERN_ERR, "Error attempting to "
112 "allocate crypto context; rc = [%d]\n",
113 rc);
114 goto out;
115 }
116 crypt_stat->hash_tfm = desc.tfm;
117 }
118 crypto_hash_init(&desc);
119 crypto_hash_update(&desc, &sg, len);
120 crypto_hash_final(&desc, dst);
121 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
122 out:
123 return rc;
124 }
125
126 int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
127 char *cipher_name,
128 char *chaining_modifier)
129 {
130 int cipher_name_len = strlen(cipher_name);
131 int chaining_modifier_len = strlen(chaining_modifier);
132 int algified_name_len;
133 int rc;
134
135 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
136 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
137 if (!(*algified_name)) {
138 rc = -ENOMEM;
139 goto out;
140 }
141 snprintf((*algified_name), algified_name_len, "%s(%s)",
142 chaining_modifier, cipher_name);
143 rc = 0;
144 out:
145 return rc;
146 }
147
148 /**
149 * ecryptfs_derive_iv
150 * @iv: destination for the derived iv vale
151 * @crypt_stat: Pointer to crypt_stat struct for the current inode
152 * @offset: Offset of the page whose's iv we are to derive
153 *
154 * Generate the initialization vector from the given root IV and page
155 * offset.
156 *
157 * Returns zero on success; non-zero on error.
158 */
159 static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
160 pgoff_t offset)
161 {
162 int rc = 0;
163 char dst[MD5_DIGEST_SIZE];
164 char src[ECRYPTFS_MAX_IV_BYTES + 16];
165
166 if (unlikely(ecryptfs_verbosity > 0)) {
167 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
168 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
169 }
170 /* TODO: It is probably secure to just cast the least
171 * significant bits of the root IV into an unsigned long and
172 * add the offset to that rather than go through all this
173 * hashing business. -Halcrow */
174 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
175 memset((src + crypt_stat->iv_bytes), 0, 16);
176 snprintf((src + crypt_stat->iv_bytes), 16, "%ld", offset);
177 if (unlikely(ecryptfs_verbosity > 0)) {
178 ecryptfs_printk(KERN_DEBUG, "source:\n");
179 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
180 }
181 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
182 (crypt_stat->iv_bytes + 16));
183 if (rc) {
184 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
185 "MD5 while generating IV for a page\n");
186 goto out;
187 }
188 memcpy(iv, dst, crypt_stat->iv_bytes);
189 if (unlikely(ecryptfs_verbosity > 0)) {
190 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
191 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
192 }
193 out:
194 return rc;
195 }
196
197 /**
198 * ecryptfs_init_crypt_stat
199 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
200 *
201 * Initialize the crypt_stat structure.
202 */
203 void
204 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
205 {
206 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
207 INIT_LIST_HEAD(&crypt_stat->keysig_list);
208 mutex_init(&crypt_stat->keysig_list_mutex);
209 mutex_init(&crypt_stat->cs_mutex);
210 mutex_init(&crypt_stat->cs_tfm_mutex);
211 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
212 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
213 }
214
215 /**
216 * ecryptfs_destruct_crypt_stat
217 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
218 *
219 * Releases all memory associated with a crypt_stat struct.
220 */
221 void ecryptfs_destruct_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
222 {
223 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
224
225 if (crypt_stat->tfm)
226 crypto_free_blkcipher(crypt_stat->tfm);
227 if (crypt_stat->hash_tfm)
228 crypto_free_hash(crypt_stat->hash_tfm);
229 mutex_lock(&crypt_stat->keysig_list_mutex);
230 list_for_each_entry_safe(key_sig, key_sig_tmp,
231 &crypt_stat->keysig_list, crypt_stat_list) {
232 list_del(&key_sig->crypt_stat_list);
233 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
234 }
235 mutex_unlock(&crypt_stat->keysig_list_mutex);
236 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
237 }
238
239 void ecryptfs_destruct_mount_crypt_stat(
240 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
241 {
242 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
243
244 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
245 return;
246 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
247 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
248 &mount_crypt_stat->global_auth_tok_list,
249 mount_crypt_stat_list) {
250 list_del(&auth_tok->mount_crypt_stat_list);
251 mount_crypt_stat->num_global_auth_toks--;
252 if (auth_tok->global_auth_tok_key
253 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
254 key_put(auth_tok->global_auth_tok_key);
255 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
256 }
257 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
258 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
259 }
260
261 /**
262 * virt_to_scatterlist
263 * @addr: Virtual address
264 * @size: Size of data; should be an even multiple of the block size
265 * @sg: Pointer to scatterlist array; set to NULL to obtain only
266 * the number of scatterlist structs required in array
267 * @sg_size: Max array size
268 *
269 * Fills in a scatterlist array with page references for a passed
270 * virtual address.
271 *
272 * Returns the number of scatterlist structs in array used
273 */
274 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
275 int sg_size)
276 {
277 int i = 0;
278 struct page *pg;
279 int offset;
280 int remainder_of_page;
281
282 while (size > 0 && i < sg_size) {
283 pg = virt_to_page(addr);
284 offset = offset_in_page(addr);
285 if (sg) {
286 sg[i].page = pg;
287 sg[i].offset = offset;
288 }
289 remainder_of_page = PAGE_CACHE_SIZE - offset;
290 if (size >= remainder_of_page) {
291 if (sg)
292 sg[i].length = remainder_of_page;
293 addr += remainder_of_page;
294 size -= remainder_of_page;
295 } else {
296 if (sg)
297 sg[i].length = size;
298 addr += size;
299 size = 0;
300 }
301 i++;
302 }
303 if (size > 0)
304 return -ENOMEM;
305 return i;
306 }
307
308 /**
309 * encrypt_scatterlist
310 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
311 * @dest_sg: Destination of encrypted data
312 * @src_sg: Data to be encrypted
313 * @size: Length of data to be encrypted
314 * @iv: iv to use during encryption
315 *
316 * Returns the number of bytes encrypted; negative value on error
317 */
318 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
319 struct scatterlist *dest_sg,
320 struct scatterlist *src_sg, int size,
321 unsigned char *iv)
322 {
323 struct blkcipher_desc desc = {
324 .tfm = crypt_stat->tfm,
325 .info = iv,
326 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
327 };
328 int rc = 0;
329
330 BUG_ON(!crypt_stat || !crypt_stat->tfm
331 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
332 if (unlikely(ecryptfs_verbosity > 0)) {
333 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
334 crypt_stat->key_size);
335 ecryptfs_dump_hex(crypt_stat->key,
336 crypt_stat->key_size);
337 }
338 /* Consider doing this once, when the file is opened */
339 mutex_lock(&crypt_stat->cs_tfm_mutex);
340 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
341 crypt_stat->key_size);
342 if (rc) {
343 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
344 rc);
345 mutex_unlock(&crypt_stat->cs_tfm_mutex);
346 rc = -EINVAL;
347 goto out;
348 }
349 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
350 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
351 mutex_unlock(&crypt_stat->cs_tfm_mutex);
352 out:
353 return rc;
354 }
355
356 static void
357 ecryptfs_extent_to_lwr_pg_idx_and_offset(unsigned long *lower_page_idx,
358 int *byte_offset,
359 struct ecryptfs_crypt_stat *crypt_stat,
360 unsigned long extent_num)
361 {
362 unsigned long lower_extent_num;
363 int extents_occupied_by_headers_at_front;
364 int bytes_occupied_by_headers_at_front;
365 int extent_offset;
366 int extents_per_page;
367
368 bytes_occupied_by_headers_at_front =
369 ( crypt_stat->header_extent_size
370 * crypt_stat->num_header_extents_at_front );
371 extents_occupied_by_headers_at_front =
372 ( bytes_occupied_by_headers_at_front
373 / crypt_stat->extent_size );
374 lower_extent_num = extents_occupied_by_headers_at_front + extent_num;
375 extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
376 (*lower_page_idx) = lower_extent_num / extents_per_page;
377 extent_offset = lower_extent_num % extents_per_page;
378 (*byte_offset) = extent_offset * crypt_stat->extent_size;
379 ecryptfs_printk(KERN_DEBUG, " * crypt_stat->header_extent_size = "
380 "[%d]\n", crypt_stat->header_extent_size);
381 ecryptfs_printk(KERN_DEBUG, " * crypt_stat->"
382 "num_header_extents_at_front = [%d]\n",
383 crypt_stat->num_header_extents_at_front);
384 ecryptfs_printk(KERN_DEBUG, " * extents_occupied_by_headers_at_"
385 "front = [%d]\n", extents_occupied_by_headers_at_front);
386 ecryptfs_printk(KERN_DEBUG, " * lower_extent_num = [0x%.16x]\n",
387 lower_extent_num);
388 ecryptfs_printk(KERN_DEBUG, " * extents_per_page = [%d]\n",
389 extents_per_page);
390 ecryptfs_printk(KERN_DEBUG, " * (*lower_page_idx) = [0x%.16x]\n",
391 (*lower_page_idx));
392 ecryptfs_printk(KERN_DEBUG, " * extent_offset = [%d]\n",
393 extent_offset);
394 ecryptfs_printk(KERN_DEBUG, " * (*byte_offset) = [%d]\n",
395 (*byte_offset));
396 }
397
398 static int ecryptfs_write_out_page(struct ecryptfs_page_crypt_context *ctx,
399 struct page *lower_page,
400 struct inode *lower_inode,
401 int byte_offset_in_page, int bytes_to_write)
402 {
403 int rc = 0;
404
405 if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
406 rc = ecryptfs_commit_lower_page(lower_page, lower_inode,
407 ctx->param.lower_file,
408 byte_offset_in_page,
409 bytes_to_write);
410 if (rc) {
411 ecryptfs_printk(KERN_ERR, "Error calling lower "
412 "commit; rc = [%d]\n", rc);
413 goto out;
414 }
415 } else {
416 rc = ecryptfs_writepage_and_release_lower_page(lower_page,
417 lower_inode,
418 ctx->param.wbc);
419 if (rc) {
420 ecryptfs_printk(KERN_ERR, "Error calling lower "
421 "writepage(); rc = [%d]\n", rc);
422 goto out;
423 }
424 }
425 out:
426 return rc;
427 }
428
429 static int ecryptfs_read_in_page(struct ecryptfs_page_crypt_context *ctx,
430 struct page **lower_page,
431 struct inode *lower_inode,
432 unsigned long lower_page_idx,
433 int byte_offset_in_page)
434 {
435 int rc = 0;
436
437 if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) {
438 /* TODO: Limit this to only the data extents that are
439 * needed */
440 rc = ecryptfs_get_lower_page(lower_page, lower_inode,
441 ctx->param.lower_file,
442 lower_page_idx,
443 byte_offset_in_page,
444 (PAGE_CACHE_SIZE
445 - byte_offset_in_page));
446 if (rc) {
447 ecryptfs_printk(
448 KERN_ERR, "Error attempting to grab, map, "
449 "and prepare_write lower page with index "
450 "[0x%.16x]; rc = [%d]\n", lower_page_idx, rc);
451 goto out;
452 }
453 } else {
454 *lower_page = grab_cache_page(lower_inode->i_mapping,
455 lower_page_idx);
456 if (!(*lower_page)) {
457 rc = -EINVAL;
458 ecryptfs_printk(
459 KERN_ERR, "Error attempting to grab and map "
460 "lower page with index [0x%.16x]; rc = [%d]\n",
461 lower_page_idx, rc);
462 goto out;
463 }
464 }
465 out:
466 return rc;
467 }
468
469 /**
470 * ecryptfs_encrypt_page
471 * @ctx: The context of the page
472 *
473 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
474 * that eCryptfs pages may straddle the lower pages -- for instance,
475 * if the file was created on a machine with an 8K page size
476 * (resulting in an 8K header), and then the file is copied onto a
477 * host with a 32K page size, then when reading page 0 of the eCryptfs
478 * file, 24K of page 0 of the lower file will be read and decrypted,
479 * and then 8K of page 1 of the lower file will be read and decrypted.
480 *
481 * The actual operations performed on each page depends on the
482 * contents of the ecryptfs_page_crypt_context struct.
483 *
484 * Returns zero on success; negative on error
485 */
486 int ecryptfs_encrypt_page(struct ecryptfs_page_crypt_context *ctx)
487 {
488 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
489 unsigned long base_extent;
490 unsigned long extent_offset = 0;
491 unsigned long lower_page_idx = 0;
492 unsigned long prior_lower_page_idx = 0;
493 struct page *lower_page;
494 struct inode *lower_inode;
495 struct ecryptfs_inode_info *inode_info;
496 struct ecryptfs_crypt_stat *crypt_stat;
497 int rc = 0;
498 int lower_byte_offset = 0;
499 int orig_byte_offset = 0;
500 int num_extents_per_page;
501 #define ECRYPTFS_PAGE_STATE_UNREAD 0
502 #define ECRYPTFS_PAGE_STATE_READ 1
503 #define ECRYPTFS_PAGE_STATE_MODIFIED 2
504 #define ECRYPTFS_PAGE_STATE_WRITTEN 3
505 int page_state;
506
507 lower_inode = ecryptfs_inode_to_lower(ctx->page->mapping->host);
508 inode_info = ecryptfs_inode_to_private(ctx->page->mapping->host);
509 crypt_stat = &inode_info->crypt_stat;
510 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
511 rc = ecryptfs_copy_page_to_lower(ctx->page, lower_inode,
512 ctx->param.lower_file);
513 if (rc)
514 ecryptfs_printk(KERN_ERR, "Error attempting to copy "
515 "page at index [0x%.16x]\n",
516 ctx->page->index);
517 goto out;
518 }
519 num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
520 base_extent = (ctx->page->index * num_extents_per_page);
521 page_state = ECRYPTFS_PAGE_STATE_UNREAD;
522 while (extent_offset < num_extents_per_page) {
523 ecryptfs_extent_to_lwr_pg_idx_and_offset(
524 &lower_page_idx, &lower_byte_offset, crypt_stat,
525 (base_extent + extent_offset));
526 if (prior_lower_page_idx != lower_page_idx
527 && page_state == ECRYPTFS_PAGE_STATE_MODIFIED) {
528 rc = ecryptfs_write_out_page(ctx, lower_page,
529 lower_inode,
530 orig_byte_offset,
531 (PAGE_CACHE_SIZE
532 - orig_byte_offset));
533 if (rc) {
534 ecryptfs_printk(KERN_ERR, "Error attempting "
535 "to write out page; rc = [%d]"
536 "\n", rc);
537 goto out;
538 }
539 page_state = ECRYPTFS_PAGE_STATE_WRITTEN;
540 }
541 if (page_state == ECRYPTFS_PAGE_STATE_UNREAD
542 || page_state == ECRYPTFS_PAGE_STATE_WRITTEN) {
543 rc = ecryptfs_read_in_page(ctx, &lower_page,
544 lower_inode, lower_page_idx,
545 lower_byte_offset);
546 if (rc) {
547 ecryptfs_printk(KERN_ERR, "Error attempting "
548 "to read in lower page with "
549 "index [0x%.16x]; rc = [%d]\n",
550 lower_page_idx, rc);
551 goto out;
552 }
553 orig_byte_offset = lower_byte_offset;
554 prior_lower_page_idx = lower_page_idx;
555 page_state = ECRYPTFS_PAGE_STATE_READ;
556 }
557 BUG_ON(!(page_state == ECRYPTFS_PAGE_STATE_MODIFIED
558 || page_state == ECRYPTFS_PAGE_STATE_READ));
559 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
560 (base_extent + extent_offset));
561 if (rc) {
562 ecryptfs_printk(KERN_ERR, "Error attempting to "
563 "derive IV for extent [0x%.16x]; "
564 "rc = [%d]\n",
565 (base_extent + extent_offset), rc);
566 goto out;
567 }
568 if (unlikely(ecryptfs_verbosity > 0)) {
569 ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
570 "with iv:\n");
571 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
572 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
573 "encryption:\n");
574 ecryptfs_dump_hex((char *)
575 (page_address(ctx->page)
576 + (extent_offset
577 * crypt_stat->extent_size)), 8);
578 }
579 rc = ecryptfs_encrypt_page_offset(
580 crypt_stat, lower_page, lower_byte_offset, ctx->page,
581 (extent_offset * crypt_stat->extent_size),
582 crypt_stat->extent_size, extent_iv);
583 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
584 "rc = [%d]\n",
585 (base_extent + extent_offset), rc);
586 if (unlikely(ecryptfs_verbosity > 0)) {
587 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
588 "encryption:\n");
589 ecryptfs_dump_hex((char *)(page_address(lower_page)
590 + lower_byte_offset), 8);
591 }
592 page_state = ECRYPTFS_PAGE_STATE_MODIFIED;
593 extent_offset++;
594 }
595 BUG_ON(orig_byte_offset != 0);
596 rc = ecryptfs_write_out_page(ctx, lower_page, lower_inode, 0,
597 (lower_byte_offset
598 + crypt_stat->extent_size));
599 if (rc) {
600 ecryptfs_printk(KERN_ERR, "Error attempting to write out "
601 "page; rc = [%d]\n", rc);
602 goto out;
603 }
604 out:
605 return rc;
606 }
607
608 /**
609 * ecryptfs_decrypt_page
610 * @file: The ecryptfs file
611 * @page: The page in ecryptfs to decrypt
612 *
613 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
614 * that eCryptfs pages may straddle the lower pages -- for instance,
615 * if the file was created on a machine with an 8K page size
616 * (resulting in an 8K header), and then the file is copied onto a
617 * host with a 32K page size, then when reading page 0 of the eCryptfs
618 * file, 24K of page 0 of the lower file will be read and decrypted,
619 * and then 8K of page 1 of the lower file will be read and decrypted.
620 *
621 * Returns zero on success; negative on error
622 */
623 int ecryptfs_decrypt_page(struct file *file, struct page *page)
624 {
625 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
626 unsigned long base_extent;
627 unsigned long extent_offset = 0;
628 unsigned long lower_page_idx = 0;
629 unsigned long prior_lower_page_idx = 0;
630 struct page *lower_page;
631 char *lower_page_virt = NULL;
632 struct inode *lower_inode;
633 struct ecryptfs_crypt_stat *crypt_stat;
634 int rc = 0;
635 int byte_offset;
636 int num_extents_per_page;
637 int page_state;
638
639 crypt_stat = &(ecryptfs_inode_to_private(
640 page->mapping->host)->crypt_stat);
641 lower_inode = ecryptfs_inode_to_lower(page->mapping->host);
642 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
643 rc = ecryptfs_do_readpage(file, page, page->index);
644 if (rc)
645 ecryptfs_printk(KERN_ERR, "Error attempting to copy "
646 "page at index [0x%.16x]\n",
647 page->index);
648 goto out;
649 }
650 num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size;
651 base_extent = (page->index * num_extents_per_page);
652 lower_page_virt = kmem_cache_alloc(ecryptfs_lower_page_cache,
653 GFP_KERNEL);
654 if (!lower_page_virt) {
655 rc = -ENOMEM;
656 ecryptfs_printk(KERN_ERR, "Error getting page for encrypted "
657 "lower page(s)\n");
658 goto out;
659 }
660 lower_page = virt_to_page(lower_page_virt);
661 page_state = ECRYPTFS_PAGE_STATE_UNREAD;
662 while (extent_offset < num_extents_per_page) {
663 ecryptfs_extent_to_lwr_pg_idx_and_offset(
664 &lower_page_idx, &byte_offset, crypt_stat,
665 (base_extent + extent_offset));
666 if (prior_lower_page_idx != lower_page_idx
667 || page_state == ECRYPTFS_PAGE_STATE_UNREAD) {
668 rc = ecryptfs_do_readpage(file, lower_page,
669 lower_page_idx);
670 if (rc) {
671 ecryptfs_printk(KERN_ERR, "Error reading "
672 "lower encrypted page; rc = "
673 "[%d]\n", rc);
674 goto out;
675 }
676 prior_lower_page_idx = lower_page_idx;
677 page_state = ECRYPTFS_PAGE_STATE_READ;
678 }
679 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
680 (base_extent + extent_offset));
681 if (rc) {
682 ecryptfs_printk(KERN_ERR, "Error attempting to "
683 "derive IV for extent [0x%.16x]; rc = "
684 "[%d]\n",
685 (base_extent + extent_offset), rc);
686 goto out;
687 }
688 if (unlikely(ecryptfs_verbosity > 0)) {
689 ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
690 "with iv:\n");
691 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
692 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
693 "decryption:\n");
694 ecryptfs_dump_hex((lower_page_virt + byte_offset), 8);
695 }
696 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
697 (extent_offset
698 * crypt_stat->extent_size),
699 lower_page, byte_offset,
700 crypt_stat->extent_size,
701 extent_iv);
702 if (rc != crypt_stat->extent_size) {
703 ecryptfs_printk(KERN_ERR, "Error attempting to "
704 "decrypt extent [0x%.16x]\n",
705 (base_extent + extent_offset));
706 goto out;
707 }
708 rc = 0;
709 if (unlikely(ecryptfs_verbosity > 0)) {
710 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
711 "decryption:\n");
712 ecryptfs_dump_hex((char *)(page_address(page)
713 + byte_offset), 8);
714 }
715 extent_offset++;
716 }
717 out:
718 if (lower_page_virt)
719 kmem_cache_free(ecryptfs_lower_page_cache, lower_page_virt);
720 return rc;
721 }
722
723 /**
724 * decrypt_scatterlist
725 *
726 * Returns the number of bytes decrypted; negative value on error
727 */
728 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
729 struct scatterlist *dest_sg,
730 struct scatterlist *src_sg, int size,
731 unsigned char *iv)
732 {
733 struct blkcipher_desc desc = {
734 .tfm = crypt_stat->tfm,
735 .info = iv,
736 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
737 };
738 int rc = 0;
739
740 /* Consider doing this once, when the file is opened */
741 mutex_lock(&crypt_stat->cs_tfm_mutex);
742 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
743 crypt_stat->key_size);
744 if (rc) {
745 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
746 rc);
747 mutex_unlock(&crypt_stat->cs_tfm_mutex);
748 rc = -EINVAL;
749 goto out;
750 }
751 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
752 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
753 mutex_unlock(&crypt_stat->cs_tfm_mutex);
754 if (rc) {
755 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
756 rc);
757 goto out;
758 }
759 rc = size;
760 out:
761 return rc;
762 }
763
764 /**
765 * ecryptfs_encrypt_page_offset
766 *
767 * Returns the number of bytes encrypted
768 */
769 static int
770 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
771 struct page *dst_page, int dst_offset,
772 struct page *src_page, int src_offset, int size,
773 unsigned char *iv)
774 {
775 struct scatterlist src_sg, dst_sg;
776
777 src_sg.page = src_page;
778 src_sg.offset = src_offset;
779 src_sg.length = size;
780 dst_sg.page = dst_page;
781 dst_sg.offset = dst_offset;
782 dst_sg.length = size;
783 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
784 }
785
786 /**
787 * ecryptfs_decrypt_page_offset
788 *
789 * Returns the number of bytes decrypted
790 */
791 static int
792 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
793 struct page *dst_page, int dst_offset,
794 struct page *src_page, int src_offset, int size,
795 unsigned char *iv)
796 {
797 struct scatterlist src_sg, dst_sg;
798
799 src_sg.page = src_page;
800 src_sg.offset = src_offset;
801 src_sg.length = size;
802 dst_sg.page = dst_page;
803 dst_sg.offset = dst_offset;
804 dst_sg.length = size;
805 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
806 }
807
808 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
809
810 /**
811 * ecryptfs_init_crypt_ctx
812 * @crypt_stat: Uninitilized crypt stats structure
813 *
814 * Initialize the crypto context.
815 *
816 * TODO: Performance: Keep a cache of initialized cipher contexts;
817 * only init if needed
818 */
819 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
820 {
821 char *full_alg_name;
822 int rc = -EINVAL;
823
824 if (!crypt_stat->cipher) {
825 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
826 goto out;
827 }
828 ecryptfs_printk(KERN_DEBUG,
829 "Initializing cipher [%s]; strlen = [%d]; "
830 "key_size_bits = [%d]\n",
831 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
832 crypt_stat->key_size << 3);
833 if (crypt_stat->tfm) {
834 rc = 0;
835 goto out;
836 }
837 mutex_lock(&crypt_stat->cs_tfm_mutex);
838 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
839 crypt_stat->cipher, "cbc");
840 if (rc)
841 goto out;
842 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
843 CRYPTO_ALG_ASYNC);
844 kfree(full_alg_name);
845 if (IS_ERR(crypt_stat->tfm)) {
846 rc = PTR_ERR(crypt_stat->tfm);
847 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
848 "Error initializing cipher [%s]\n",
849 crypt_stat->cipher);
850 mutex_unlock(&crypt_stat->cs_tfm_mutex);
851 goto out;
852 }
853 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
854 mutex_unlock(&crypt_stat->cs_tfm_mutex);
855 rc = 0;
856 out:
857 return rc;
858 }
859
860 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
861 {
862 int extent_size_tmp;
863
864 crypt_stat->extent_mask = 0xFFFFFFFF;
865 crypt_stat->extent_shift = 0;
866 if (crypt_stat->extent_size == 0)
867 return;
868 extent_size_tmp = crypt_stat->extent_size;
869 while ((extent_size_tmp & 0x01) == 0) {
870 extent_size_tmp >>= 1;
871 crypt_stat->extent_mask <<= 1;
872 crypt_stat->extent_shift++;
873 }
874 }
875
876 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
877 {
878 /* Default values; may be overwritten as we are parsing the
879 * packets. */
880 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
881 set_extent_mask_and_shift(crypt_stat);
882 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
883 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) {
884 crypt_stat->header_extent_size =
885 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
886 } else
887 crypt_stat->header_extent_size = PAGE_CACHE_SIZE;
888 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
889 crypt_stat->num_header_extents_at_front = 0;
890 else
891 crypt_stat->num_header_extents_at_front = 1;
892 }
893
894 /**
895 * ecryptfs_compute_root_iv
896 * @crypt_stats
897 *
898 * On error, sets the root IV to all 0's.
899 */
900 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
901 {
902 int rc = 0;
903 char dst[MD5_DIGEST_SIZE];
904
905 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
906 BUG_ON(crypt_stat->iv_bytes <= 0);
907 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
908 rc = -EINVAL;
909 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
910 "cannot generate root IV\n");
911 goto out;
912 }
913 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
914 crypt_stat->key_size);
915 if (rc) {
916 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
917 "MD5 while generating root IV\n");
918 goto out;
919 }
920 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
921 out:
922 if (rc) {
923 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
924 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
925 }
926 return rc;
927 }
928
929 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
930 {
931 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
932 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
933 ecryptfs_compute_root_iv(crypt_stat);
934 if (unlikely(ecryptfs_verbosity > 0)) {
935 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
936 ecryptfs_dump_hex(crypt_stat->key,
937 crypt_stat->key_size);
938 }
939 }
940
941 /**
942 * ecryptfs_copy_mount_wide_flags_to_inode_flags
943 *
944 * This function propagates the mount-wide flags to individual inode
945 * flags.
946 */
947 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
948 struct ecryptfs_crypt_stat *crypt_stat,
949 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
950 {
951 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
952 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
953 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
954 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
955 }
956
957 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
958 struct ecryptfs_crypt_stat *crypt_stat,
959 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
960 {
961 struct ecryptfs_global_auth_tok *global_auth_tok;
962 int rc = 0;
963
964 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
965 list_for_each_entry(global_auth_tok,
966 &mount_crypt_stat->global_auth_tok_list,
967 mount_crypt_stat_list) {
968 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
969 if (rc) {
970 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
971 mutex_unlock(
972 &mount_crypt_stat->global_auth_tok_list_mutex);
973 goto out;
974 }
975 }
976 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
977 out:
978 return rc;
979 }
980
981 /**
982 * ecryptfs_set_default_crypt_stat_vals
983 * @crypt_stat
984 *
985 * Default values in the event that policy does not override them.
986 */
987 static void ecryptfs_set_default_crypt_stat_vals(
988 struct ecryptfs_crypt_stat *crypt_stat,
989 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
990 {
991 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
992 mount_crypt_stat);
993 ecryptfs_set_default_sizes(crypt_stat);
994 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
995 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
996 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
997 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
998 crypt_stat->mount_crypt_stat = mount_crypt_stat;
999 }
1000
1001 /**
1002 * ecryptfs_new_file_context
1003 * @ecryptfs_dentry
1004 *
1005 * If the crypto context for the file has not yet been established,
1006 * this is where we do that. Establishing a new crypto context
1007 * involves the following decisions:
1008 * - What cipher to use?
1009 * - What set of authentication tokens to use?
1010 * Here we just worry about getting enough information into the
1011 * authentication tokens so that we know that they are available.
1012 * We associate the available authentication tokens with the new file
1013 * via the set of signatures in the crypt_stat struct. Later, when
1014 * the headers are actually written out, we may again defer to
1015 * userspace to perform the encryption of the session key; for the
1016 * foreseeable future, this will be the case with public key packets.
1017 *
1018 * Returns zero on success; non-zero otherwise
1019 */
1020 /* Associate an authentication token(s) with the file */
1021 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
1022 {
1023 struct ecryptfs_crypt_stat *crypt_stat =
1024 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1025 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1026 &ecryptfs_superblock_to_private(
1027 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1028 int cipher_name_len;
1029 int rc = 0;
1030
1031 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
1032 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1033 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1034 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1035 mount_crypt_stat);
1036 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1037 mount_crypt_stat);
1038 if (rc) {
1039 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1040 "to the inode key sigs; rc = [%d]\n", rc);
1041 goto out;
1042 }
1043 cipher_name_len =
1044 strlen(mount_crypt_stat->global_default_cipher_name);
1045 memcpy(crypt_stat->cipher,
1046 mount_crypt_stat->global_default_cipher_name,
1047 cipher_name_len);
1048 crypt_stat->cipher[cipher_name_len] = '\0';
1049 crypt_stat->key_size =
1050 mount_crypt_stat->global_default_cipher_key_size;
1051 ecryptfs_generate_new_key(crypt_stat);
1052 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1053 if (rc)
1054 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1055 "context for cipher [%s]: rc = [%d]\n",
1056 crypt_stat->cipher, rc);
1057 out:
1058 return rc;
1059 }
1060
1061 /**
1062 * contains_ecryptfs_marker - check for the ecryptfs marker
1063 * @data: The data block in which to check
1064 *
1065 * Returns one if marker found; zero if not found
1066 */
1067 static int contains_ecryptfs_marker(char *data)
1068 {
1069 u32 m_1, m_2;
1070
1071 memcpy(&m_1, data, 4);
1072 m_1 = be32_to_cpu(m_1);
1073 memcpy(&m_2, (data + 4), 4);
1074 m_2 = be32_to_cpu(m_2);
1075 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1076 return 1;
1077 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1078 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1079 MAGIC_ECRYPTFS_MARKER);
1080 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1081 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1082 return 0;
1083 }
1084
1085 struct ecryptfs_flag_map_elem {
1086 u32 file_flag;
1087 u32 local_flag;
1088 };
1089
1090 /* Add support for additional flags by adding elements here. */
1091 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1092 {0x00000001, ECRYPTFS_ENABLE_HMAC},
1093 {0x00000002, ECRYPTFS_ENCRYPTED},
1094 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}
1095 };
1096
1097 /**
1098 * ecryptfs_process_flags
1099 * @crypt_stat
1100 * @page_virt: Source data to be parsed
1101 * @bytes_read: Updated with the number of bytes read
1102 *
1103 * Returns zero on success; non-zero if the flag set is invalid
1104 */
1105 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1106 char *page_virt, int *bytes_read)
1107 {
1108 int rc = 0;
1109 int i;
1110 u32 flags;
1111
1112 memcpy(&flags, page_virt, 4);
1113 flags = be32_to_cpu(flags);
1114 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1115 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1116 if (flags & ecryptfs_flag_map[i].file_flag) {
1117 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1118 } else
1119 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1120 /* Version is in top 8 bits of the 32-bit flag vector */
1121 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1122 (*bytes_read) = 4;
1123 return rc;
1124 }
1125
1126 /**
1127 * write_ecryptfs_marker
1128 * @page_virt: The pointer to in a page to begin writing the marker
1129 * @written: Number of bytes written
1130 *
1131 * Marker = 0x3c81b7f5
1132 */
1133 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1134 {
1135 u32 m_1, m_2;
1136
1137 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1138 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1139 m_1 = cpu_to_be32(m_1);
1140 memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1141 m_2 = cpu_to_be32(m_2);
1142 memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
1143 (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1144 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1145 }
1146
1147 static void
1148 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1149 size_t *written)
1150 {
1151 u32 flags = 0;
1152 int i;
1153
1154 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1155 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1156 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1157 flags |= ecryptfs_flag_map[i].file_flag;
1158 /* Version is in top 8 bits of the 32-bit flag vector */
1159 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1160 flags = cpu_to_be32(flags);
1161 memcpy(page_virt, &flags, 4);
1162 (*written) = 4;
1163 }
1164
1165 struct ecryptfs_cipher_code_str_map_elem {
1166 char cipher_str[16];
1167 u16 cipher_code;
1168 };
1169
1170 /* Add support for additional ciphers by adding elements here. The
1171 * cipher_code is whatever OpenPGP applicatoins use to identify the
1172 * ciphers. List in order of probability. */
1173 static struct ecryptfs_cipher_code_str_map_elem
1174 ecryptfs_cipher_code_str_map[] = {
1175 {"aes",RFC2440_CIPHER_AES_128 },
1176 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1177 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1178 {"cast5", RFC2440_CIPHER_CAST_5},
1179 {"twofish", RFC2440_CIPHER_TWOFISH},
1180 {"cast6", RFC2440_CIPHER_CAST_6},
1181 {"aes", RFC2440_CIPHER_AES_192},
1182 {"aes", RFC2440_CIPHER_AES_256}
1183 };
1184
1185 /**
1186 * ecryptfs_code_for_cipher_string
1187 * @str: The string representing the cipher name
1188 *
1189 * Returns zero on no match, or the cipher code on match
1190 */
1191 u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
1192 {
1193 int i;
1194 u16 code = 0;
1195 struct ecryptfs_cipher_code_str_map_elem *map =
1196 ecryptfs_cipher_code_str_map;
1197
1198 if (strcmp(crypt_stat->cipher, "aes") == 0) {
1199 switch (crypt_stat->key_size) {
1200 case 16:
1201 code = RFC2440_CIPHER_AES_128;
1202 break;
1203 case 24:
1204 code = RFC2440_CIPHER_AES_192;
1205 break;
1206 case 32:
1207 code = RFC2440_CIPHER_AES_256;
1208 }
1209 } else {
1210 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1211 if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
1212 code = map[i].cipher_code;
1213 break;
1214 }
1215 }
1216 return code;
1217 }
1218
1219 /**
1220 * ecryptfs_cipher_code_to_string
1221 * @str: Destination to write out the cipher name
1222 * @cipher_code: The code to convert to cipher name string
1223 *
1224 * Returns zero on success
1225 */
1226 int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code)
1227 {
1228 int rc = 0;
1229 int i;
1230
1231 str[0] = '\0';
1232 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1233 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1234 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1235 if (str[0] == '\0') {
1236 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1237 "[%d]\n", cipher_code);
1238 rc = -EINVAL;
1239 }
1240 return rc;
1241 }
1242
1243 /**
1244 * ecryptfs_read_header_region
1245 * @data
1246 * @dentry
1247 * @nd
1248 *
1249 * Returns zero on success; non-zero otherwise
1250 */
1251 static int ecryptfs_read_header_region(char *data, struct dentry *dentry,
1252 struct vfsmount *mnt)
1253 {
1254 struct file *lower_file;
1255 mm_segment_t oldfs;
1256 int rc;
1257
1258 if ((rc = ecryptfs_open_lower_file(&lower_file, dentry, mnt,
1259 O_RDONLY))) {
1260 printk(KERN_ERR
1261 "Error opening lower_file to read header region\n");
1262 goto out;
1263 }
1264 lower_file->f_pos = 0;
1265 oldfs = get_fs();
1266 set_fs(get_ds());
1267 rc = lower_file->f_op->read(lower_file, (char __user *)data,
1268 ECRYPTFS_DEFAULT_EXTENT_SIZE, &lower_file->f_pos);
1269 set_fs(oldfs);
1270 if ((rc = ecryptfs_close_lower_file(lower_file))) {
1271 printk(KERN_ERR "Error closing lower_file\n");
1272 goto out;
1273 }
1274 rc = 0;
1275 out:
1276 return rc;
1277 }
1278
1279 int ecryptfs_read_and_validate_header_region(char *data, struct dentry *dentry,
1280 struct vfsmount *mnt)
1281 {
1282 int rc;
1283
1284 rc = ecryptfs_read_header_region(data, dentry, mnt);
1285 if (rc)
1286 goto out;
1287 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES))
1288 rc = -EINVAL;
1289 out:
1290 return rc;
1291 }
1292
1293
1294 void
1295 ecryptfs_write_header_metadata(char *virt,
1296 struct ecryptfs_crypt_stat *crypt_stat,
1297 size_t *written)
1298 {
1299 u32 header_extent_size;
1300 u16 num_header_extents_at_front;
1301
1302 header_extent_size = (u32)crypt_stat->header_extent_size;
1303 num_header_extents_at_front =
1304 (u16)crypt_stat->num_header_extents_at_front;
1305 header_extent_size = cpu_to_be32(header_extent_size);
1306 memcpy(virt, &header_extent_size, 4);
1307 virt += 4;
1308 num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
1309 memcpy(virt, &num_header_extents_at_front, 2);
1310 (*written) = 6;
1311 }
1312
1313 struct kmem_cache *ecryptfs_header_cache_0;
1314 struct kmem_cache *ecryptfs_header_cache_1;
1315 struct kmem_cache *ecryptfs_header_cache_2;
1316
1317 /**
1318 * ecryptfs_write_headers_virt
1319 * @page_virt
1320 * @crypt_stat
1321 * @ecryptfs_dentry
1322 *
1323 * Format version: 1
1324 *
1325 * Header Extent:
1326 * Octets 0-7: Unencrypted file size (big-endian)
1327 * Octets 8-15: eCryptfs special marker
1328 * Octets 16-19: Flags
1329 * Octet 16: File format version number (between 0 and 255)
1330 * Octets 17-18: Reserved
1331 * Octet 19: Bit 1 (lsb): Reserved
1332 * Bit 2: Encrypted?
1333 * Bits 3-8: Reserved
1334 * Octets 20-23: Header extent size (big-endian)
1335 * Octets 24-25: Number of header extents at front of file
1336 * (big-endian)
1337 * Octet 26: Begin RFC 2440 authentication token packet set
1338 * Data Extent 0:
1339 * Lower data (CBC encrypted)
1340 * Data Extent 1:
1341 * Lower data (CBC encrypted)
1342 * ...
1343 *
1344 * Returns zero on success
1345 */
1346 static int ecryptfs_write_headers_virt(char *page_virt, size_t *size,
1347 struct ecryptfs_crypt_stat *crypt_stat,
1348 struct dentry *ecryptfs_dentry)
1349 {
1350 int rc;
1351 size_t written;
1352 size_t offset;
1353
1354 offset = ECRYPTFS_FILE_SIZE_BYTES;
1355 write_ecryptfs_marker((page_virt + offset), &written);
1356 offset += written;
1357 write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1358 offset += written;
1359 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1360 &written);
1361 offset += written;
1362 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1363 ecryptfs_dentry, &written,
1364 PAGE_CACHE_SIZE - offset);
1365 if (rc)
1366 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1367 "set; rc = [%d]\n", rc);
1368 if (size) {
1369 offset += written;
1370 *size = offset;
1371 }
1372 return rc;
1373 }
1374
1375 static int ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat,
1376 struct file *lower_file,
1377 char *page_virt)
1378 {
1379 mm_segment_t oldfs;
1380 int current_header_page;
1381 int header_pages;
1382 ssize_t size;
1383 int rc = 0;
1384
1385 lower_file->f_pos = 0;
1386 oldfs = get_fs();
1387 set_fs(get_ds());
1388 size = vfs_write(lower_file, (char __user *)page_virt, PAGE_CACHE_SIZE,
1389 &lower_file->f_pos);
1390 if (size < 0) {
1391 rc = (int)size;
1392 printk(KERN_ERR "Error attempting to write lower page; "
1393 "rc = [%d]\n", rc);
1394 set_fs(oldfs);
1395 goto out;
1396 }
1397 header_pages = ((crypt_stat->header_extent_size
1398 * crypt_stat->num_header_extents_at_front)
1399 / PAGE_CACHE_SIZE);
1400 memset(page_virt, 0, PAGE_CACHE_SIZE);
1401 current_header_page = 1;
1402 while (current_header_page < header_pages) {
1403 size = vfs_write(lower_file, (char __user *)page_virt,
1404 PAGE_CACHE_SIZE, &lower_file->f_pos);
1405 if (size < 0) {
1406 rc = (int)size;
1407 printk(KERN_ERR "Error attempting to write lower page; "
1408 "rc = [%d]\n", rc);
1409 set_fs(oldfs);
1410 goto out;
1411 }
1412 current_header_page++;
1413 }
1414 set_fs(oldfs);
1415 out:
1416 return rc;
1417 }
1418
1419 static int ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1420 struct ecryptfs_crypt_stat *crypt_stat,
1421 char *page_virt, size_t size)
1422 {
1423 int rc;
1424
1425 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1426 size, 0);
1427 return rc;
1428 }
1429
1430 /**
1431 * ecryptfs_write_metadata
1432 * @lower_file: The lower file struct, which was returned from dentry_open
1433 *
1434 * Write the file headers out. This will likely involve a userspace
1435 * callout, in which the session key is encrypted with one or more
1436 * public keys and/or the passphrase necessary to do the encryption is
1437 * retrieved via a prompt. Exactly what happens at this point should
1438 * be policy-dependent.
1439 *
1440 * Returns zero on success; non-zero on error
1441 */
1442 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1443 struct file *lower_file)
1444 {
1445 struct ecryptfs_crypt_stat *crypt_stat;
1446 char *page_virt;
1447 size_t size;
1448 int rc = 0;
1449
1450 crypt_stat = &ecryptfs_inode_to_private(
1451 ecryptfs_dentry->d_inode)->crypt_stat;
1452 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1453 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1454 ecryptfs_printk(KERN_DEBUG, "Key is "
1455 "invalid; bailing out\n");
1456 rc = -EINVAL;
1457 goto out;
1458 }
1459 } else {
1460 rc = -EINVAL;
1461 ecryptfs_printk(KERN_WARNING,
1462 "Called with crypt_stat->encrypted == 0\n");
1463 goto out;
1464 }
1465 /* Released in this function */
1466 page_virt = kmem_cache_zalloc(ecryptfs_header_cache_0, GFP_USER);
1467 if (!page_virt) {
1468 ecryptfs_printk(KERN_ERR, "Out of memory\n");
1469 rc = -ENOMEM;
1470 goto out;
1471 }
1472 rc = ecryptfs_write_headers_virt(page_virt, &size, crypt_stat,
1473 ecryptfs_dentry);
1474 if (unlikely(rc)) {
1475 ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n");
1476 memset(page_virt, 0, PAGE_CACHE_SIZE);
1477 goto out_free;
1478 }
1479 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1480 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry,
1481 crypt_stat, page_virt,
1482 size);
1483 else
1484 rc = ecryptfs_write_metadata_to_contents(crypt_stat, lower_file,
1485 page_virt);
1486 if (rc) {
1487 printk(KERN_ERR "Error writing metadata out to lower file; "
1488 "rc = [%d]\n", rc);
1489 goto out_free;
1490 }
1491 out_free:
1492 kmem_cache_free(ecryptfs_header_cache_0, page_virt);
1493 out:
1494 return rc;
1495 }
1496
1497 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1498 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1499 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1500 char *virt, int *bytes_read,
1501 int validate_header_size)
1502 {
1503 int rc = 0;
1504 u32 header_extent_size;
1505 u16 num_header_extents_at_front;
1506
1507 memcpy(&header_extent_size, virt, 4);
1508 header_extent_size = be32_to_cpu(header_extent_size);
1509 virt += 4;
1510 memcpy(&num_header_extents_at_front, virt, 2);
1511 num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
1512 crypt_stat->header_extent_size = (int)header_extent_size;
1513 crypt_stat->num_header_extents_at_front =
1514 (int)num_header_extents_at_front;
1515 (*bytes_read) = 6;
1516 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1517 && ((crypt_stat->header_extent_size
1518 * crypt_stat->num_header_extents_at_front)
1519 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1520 rc = -EINVAL;
1521 ecryptfs_printk(KERN_WARNING, "Invalid header extent size: "
1522 "[%d]\n", crypt_stat->header_extent_size);
1523 }
1524 return rc;
1525 }
1526
1527 /**
1528 * set_default_header_data
1529 *
1530 * For version 0 file format; this function is only for backwards
1531 * compatibility for files created with the prior versions of
1532 * eCryptfs.
1533 */
1534 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1535 {
1536 crypt_stat->header_extent_size = 4096;
1537 crypt_stat->num_header_extents_at_front = 1;
1538 }
1539
1540 /**
1541 * ecryptfs_read_headers_virt
1542 *
1543 * Read/parse the header data. The header format is detailed in the
1544 * comment block for the ecryptfs_write_headers_virt() function.
1545 *
1546 * Returns zero on success
1547 */
1548 static int ecryptfs_read_headers_virt(char *page_virt,
1549 struct ecryptfs_crypt_stat *crypt_stat,
1550 struct dentry *ecryptfs_dentry,
1551 int validate_header_size)
1552 {
1553 int rc = 0;
1554 int offset;
1555 int bytes_read;
1556
1557 ecryptfs_set_default_sizes(crypt_stat);
1558 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1559 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1560 offset = ECRYPTFS_FILE_SIZE_BYTES;
1561 rc = contains_ecryptfs_marker(page_virt + offset);
1562 if (rc == 0) {
1563 rc = -EINVAL;
1564 goto out;
1565 }
1566 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1567 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1568 &bytes_read);
1569 if (rc) {
1570 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1571 goto out;
1572 }
1573 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1574 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1575 "file version [%d] is supported by this "
1576 "version of eCryptfs\n",
1577 crypt_stat->file_version,
1578 ECRYPTFS_SUPPORTED_FILE_VERSION);
1579 rc = -EINVAL;
1580 goto out;
1581 }
1582 offset += bytes_read;
1583 if (crypt_stat->file_version >= 1) {
1584 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1585 &bytes_read, validate_header_size);
1586 if (rc) {
1587 ecryptfs_printk(KERN_WARNING, "Error reading header "
1588 "metadata; rc = [%d]\n", rc);
1589 }
1590 offset += bytes_read;
1591 } else
1592 set_default_header_data(crypt_stat);
1593 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1594 ecryptfs_dentry);
1595 out:
1596 return rc;
1597 }
1598
1599 /**
1600 * ecryptfs_read_xattr_region
1601 *
1602 * Attempts to read the crypto metadata from the extended attribute
1603 * region of the lower file.
1604 */
1605 int ecryptfs_read_xattr_region(char *page_virt, struct dentry *ecryptfs_dentry)
1606 {
1607 ssize_t size;
1608 int rc = 0;
1609
1610 size = ecryptfs_getxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME,
1611 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1612 if (size < 0) {
1613 printk(KERN_DEBUG "Error attempting to read the [%s] "
1614 "xattr from the lower file; return value = [%zd]\n",
1615 ECRYPTFS_XATTR_NAME, size);
1616 rc = -EINVAL;
1617 goto out;
1618 }
1619 out:
1620 return rc;
1621 }
1622
1623 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1624 struct dentry *ecryptfs_dentry)
1625 {
1626 int rc;
1627
1628 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry);
1629 if (rc)
1630 goto out;
1631 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
1632 printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1633 "the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1634 rc = -EINVAL;
1635 }
1636 out:
1637 return rc;
1638 }
1639
1640 /**
1641 * ecryptfs_read_metadata
1642 *
1643 * Common entry point for reading file metadata. From here, we could
1644 * retrieve the header information from the header region of the file,
1645 * the xattr region of the file, or some other repostory that is
1646 * stored separately from the file itself. The current implementation
1647 * supports retrieving the metadata information from the file contents
1648 * and from the xattr region.
1649 *
1650 * Returns zero if valid headers found and parsed; non-zero otherwise
1651 */
1652 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry,
1653 struct file *lower_file)
1654 {
1655 int rc = 0;
1656 char *page_virt = NULL;
1657 mm_segment_t oldfs;
1658 ssize_t bytes_read;
1659 struct ecryptfs_crypt_stat *crypt_stat =
1660 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1661 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1662 &ecryptfs_superblock_to_private(
1663 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1664
1665 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1666 mount_crypt_stat);
1667 /* Read the first page from the underlying file */
1668 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1669 if (!page_virt) {
1670 rc = -ENOMEM;
1671 ecryptfs_printk(KERN_ERR, "Unable to allocate page_virt\n");
1672 goto out;
1673 }
1674 lower_file->f_pos = 0;
1675 oldfs = get_fs();
1676 set_fs(get_ds());
1677 bytes_read = lower_file->f_op->read(lower_file,
1678 (char __user *)page_virt,
1679 ECRYPTFS_DEFAULT_EXTENT_SIZE,
1680 &lower_file->f_pos);
1681 set_fs(oldfs);
1682 if (bytes_read != ECRYPTFS_DEFAULT_EXTENT_SIZE) {
1683 rc = -EINVAL;
1684 goto out;
1685 }
1686 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1687 ecryptfs_dentry,
1688 ECRYPTFS_VALIDATE_HEADER_SIZE);
1689 if (rc) {
1690 rc = ecryptfs_read_xattr_region(page_virt,
1691 ecryptfs_dentry);
1692 if (rc) {
1693 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1694 "file header region or xattr region\n");
1695 rc = -EINVAL;
1696 goto out;
1697 }
1698 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1699 ecryptfs_dentry,
1700 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1701 if (rc) {
1702 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1703 "file xattr region either\n");
1704 rc = -EINVAL;
1705 }
1706 if (crypt_stat->mount_crypt_stat->flags
1707 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1708 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1709 } else {
1710 printk(KERN_WARNING "Attempt to access file with "
1711 "crypto metadata only in the extended attribute "
1712 "region, but eCryptfs was mounted without "
1713 "xattr support enabled. eCryptfs will not treat "
1714 "this like an encrypted file.\n");
1715 rc = -EINVAL;
1716 }
1717 }
1718 out:
1719 if (page_virt) {
1720 memset(page_virt, 0, PAGE_CACHE_SIZE);
1721 kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1722 }
1723 return rc;
1724 }
1725
1726 /**
1727 * ecryptfs_encode_filename - converts a plaintext file name to cipher text
1728 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1729 * @name: The plaintext name
1730 * @length: The length of the plaintext
1731 * @encoded_name: The encypted name
1732 *
1733 * Encrypts and encodes a filename into something that constitutes a
1734 * valid filename for a filesystem, with printable characters.
1735 *
1736 * We assume that we have a properly initialized crypto context,
1737 * pointed to by crypt_stat->tfm.
1738 *
1739 * TODO: Implement filename decoding and decryption here, in place of
1740 * memcpy. We are keeping the framework around for now to (1)
1741 * facilitate testing of the components needed to implement filename
1742 * encryption and (2) to provide a code base from which other
1743 * developers in the community can easily implement this feature.
1744 *
1745 * Returns the length of encoded filename; negative if error
1746 */
1747 int
1748 ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1749 const char *name, int length, char **encoded_name)
1750 {
1751 int error = 0;
1752
1753 (*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
1754 if (!(*encoded_name)) {
1755 error = -ENOMEM;
1756 goto out;
1757 }
1758 /* TODO: Filename encryption is a scheduled feature for a
1759 * future version of eCryptfs. This function is here only for
1760 * the purpose of providing a framework for other developers
1761 * to easily implement filename encryption. Hint: Replace this
1762 * memcpy() with a call to encrypt and encode the
1763 * filename, the set the length accordingly. */
1764 memcpy((void *)(*encoded_name), (void *)name, length);
1765 (*encoded_name)[length] = '\0';
1766 error = length + 1;
1767 out:
1768 return error;
1769 }
1770
1771 /**
1772 * ecryptfs_decode_filename - converts the cipher text name to plaintext
1773 * @crypt_stat: The crypt_stat struct associated with the file
1774 * @name: The filename in cipher text
1775 * @length: The length of the cipher text name
1776 * @decrypted_name: The plaintext name
1777 *
1778 * Decodes and decrypts the filename.
1779 *
1780 * We assume that we have a properly initialized crypto context,
1781 * pointed to by crypt_stat->tfm.
1782 *
1783 * TODO: Implement filename decoding and decryption here, in place of
1784 * memcpy. We are keeping the framework around for now to (1)
1785 * facilitate testing of the components needed to implement filename
1786 * encryption and (2) to provide a code base from which other
1787 * developers in the community can easily implement this feature.
1788 *
1789 * Returns the length of decoded filename; negative if error
1790 */
1791 int
1792 ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1793 const char *name, int length, char **decrypted_name)
1794 {
1795 int error = 0;
1796
1797 (*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
1798 if (!(*decrypted_name)) {
1799 error = -ENOMEM;
1800 goto out;
1801 }
1802 /* TODO: Filename encryption is a scheduled feature for a
1803 * future version of eCryptfs. This function is here only for
1804 * the purpose of providing a framework for other developers
1805 * to easily implement filename encryption. Hint: Replace this
1806 * memcpy() with a call to decode and decrypt the
1807 * filename, the set the length accordingly. */
1808 memcpy((void *)(*decrypted_name), (void *)name, length);
1809 (*decrypted_name)[length + 1] = '\0'; /* Only for convenience
1810 * in printing out the
1811 * string in debug
1812 * messages */
1813 error = length;
1814 out:
1815 return error;
1816 }
1817
1818 /**
1819 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1820 * @key_tfm: Crypto context for key material, set by this function
1821 * @cipher_name: Name of the cipher
1822 * @key_size: Size of the key in bytes
1823 *
1824 * Returns zero on success. Any crypto_tfm structs allocated here
1825 * should be released by other functions, such as on a superblock put
1826 * event, regardless of whether this function succeeds for fails.
1827 */
1828 int
1829 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1830 char *cipher_name, size_t *key_size)
1831 {
1832 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1833 char *full_alg_name;
1834 int rc;
1835
1836 *key_tfm = NULL;
1837 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1838 rc = -EINVAL;
1839 printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
1840 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1841 goto out;
1842 }
1843 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1844 "ecb");
1845 if (rc)
1846 goto out;
1847 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1848 kfree(full_alg_name);
1849 if (IS_ERR(*key_tfm)) {
1850 rc = PTR_ERR(*key_tfm);
1851 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1852 "[%s]; rc = [%d]\n", cipher_name, rc);
1853 goto out;
1854 }
1855 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1856 if (*key_size == 0) {
1857 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1858
1859 *key_size = alg->max_keysize;
1860 }
1861 get_random_bytes(dummy_key, *key_size);
1862 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1863 if (rc) {
1864 printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
1865 "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1866 rc = -EINVAL;
1867 goto out;
1868 }
1869 out:
1870 return rc;
1871 }
1872
1873 struct kmem_cache *ecryptfs_key_tfm_cache;
1874 struct list_head key_tfm_list;
1875 struct mutex key_tfm_list_mutex;
1876
1877 int ecryptfs_init_crypto(void)
1878 {
1879 mutex_init(&key_tfm_list_mutex);
1880 INIT_LIST_HEAD(&key_tfm_list);
1881 return 0;
1882 }
1883
1884 int ecryptfs_destruct_crypto(void)
1885 {
1886 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1887
1888 mutex_lock(&key_tfm_list_mutex);
1889 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1890 key_tfm_list) {
1891 list_del(&key_tfm->key_tfm_list);
1892 if (key_tfm->key_tfm)
1893 crypto_free_blkcipher(key_tfm->key_tfm);
1894 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1895 }
1896 mutex_unlock(&key_tfm_list_mutex);
1897 return 0;
1898 }
1899
1900 int
1901 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1902 size_t key_size)
1903 {
1904 struct ecryptfs_key_tfm *tmp_tfm;
1905 int rc = 0;
1906
1907 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1908 if (key_tfm != NULL)
1909 (*key_tfm) = tmp_tfm;
1910 if (!tmp_tfm) {
1911 rc = -ENOMEM;
1912 printk(KERN_ERR "Error attempting to allocate from "
1913 "ecryptfs_key_tfm_cache\n");
1914 goto out;
1915 }
1916 mutex_init(&tmp_tfm->key_tfm_mutex);
1917 strncpy(tmp_tfm->cipher_name, cipher_name,
1918 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1919 tmp_tfm->key_size = key_size;
1920 if ((rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1921 tmp_tfm->cipher_name,
1922 &tmp_tfm->key_size))) {
1923 printk(KERN_ERR "Error attempting to initialize key TFM "
1924 "cipher with name = [%s]; rc = [%d]\n",
1925 tmp_tfm->cipher_name, rc);
1926 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1927 if (key_tfm != NULL)
1928 (*key_tfm) = NULL;
1929 goto out;
1930 }
1931 mutex_lock(&key_tfm_list_mutex);
1932 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1933 mutex_unlock(&key_tfm_list_mutex);
1934 out:
1935 return rc;
1936 }
1937
1938 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1939 struct mutex **tfm_mutex,
1940 char *cipher_name)
1941 {
1942 struct ecryptfs_key_tfm *key_tfm;
1943 int rc = 0;
1944
1945 (*tfm) = NULL;
1946 (*tfm_mutex) = NULL;
1947 mutex_lock(&key_tfm_list_mutex);
1948 list_for_each_entry(key_tfm, &key_tfm_list, key_tfm_list) {
1949 if (strcmp(key_tfm->cipher_name, cipher_name) == 0) {
1950 (*tfm) = key_tfm->key_tfm;
1951 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1952 mutex_unlock(&key_tfm_list_mutex);
1953 goto out;
1954 }
1955 }
1956 mutex_unlock(&key_tfm_list_mutex);
1957 if ((rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0))) {
1958 printk(KERN_ERR "Error adding new key_tfm to list; rc = [%d]\n",
1959 rc);
1960 goto out;
1961 }
1962 (*tfm) = key_tfm->key_tfm;
1963 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1964 out:
1965 return rc;
1966 }
This page took 0.067673 seconds and 6 git commands to generate.