fs/ecryptfs: Add printf format/argument verification and fix fallout
[deliverable/linux.git] / fs / ecryptfs / keystore.c
1 /**
2 * eCryptfs: Linux filesystem encryption layer
3 * In-kernel key management code. Includes functions to parse and
4 * write authentication token-related packets with the underlying
5 * file.
6 *
7 * Copyright (C) 2004-2006 International Business Machines Corp.
8 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * Trevor S. Highland <trevor.highland@gmail.com>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25 * 02111-1307, USA.
26 */
27
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include <linux/slab.h>
36 #include "ecryptfs_kernel.h"
37
38 /**
39 * request_key returned an error instead of a valid key address;
40 * determine the type of error, make appropriate log entries, and
41 * return an error code.
42 */
43 static int process_request_key_err(long err_code)
44 {
45 int rc = 0;
46
47 switch (err_code) {
48 case -ENOKEY:
49 ecryptfs_printk(KERN_WARNING, "No key\n");
50 rc = -ENOENT;
51 break;
52 case -EKEYEXPIRED:
53 ecryptfs_printk(KERN_WARNING, "Key expired\n");
54 rc = -ETIME;
55 break;
56 case -EKEYREVOKED:
57 ecryptfs_printk(KERN_WARNING, "Key revoked\n");
58 rc = -EINVAL;
59 break;
60 default:
61 ecryptfs_printk(KERN_WARNING, "Unknown error code: "
62 "[0x%.16lx]\n", err_code);
63 rc = -EINVAL;
64 }
65 return rc;
66 }
67
68 /**
69 * ecryptfs_parse_packet_length
70 * @data: Pointer to memory containing length at offset
71 * @size: This function writes the decoded size to this memory
72 * address; zero on error
73 * @length_size: The number of bytes occupied by the encoded length
74 *
75 * Returns zero on success; non-zero on error
76 */
77 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
78 size_t *length_size)
79 {
80 int rc = 0;
81
82 (*length_size) = 0;
83 (*size) = 0;
84 if (data[0] < 192) {
85 /* One-byte length */
86 (*size) = (unsigned char)data[0];
87 (*length_size) = 1;
88 } else if (data[0] < 224) {
89 /* Two-byte length */
90 (*size) = (((unsigned char)(data[0]) - 192) * 256);
91 (*size) += ((unsigned char)(data[1]) + 192);
92 (*length_size) = 2;
93 } else if (data[0] == 255) {
94 /* Five-byte length; we're not supposed to see this */
95 ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
96 "supported\n");
97 rc = -EINVAL;
98 goto out;
99 } else {
100 ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
101 rc = -EINVAL;
102 goto out;
103 }
104 out:
105 return rc;
106 }
107
108 /**
109 * ecryptfs_write_packet_length
110 * @dest: The byte array target into which to write the length. Must
111 * have at least 5 bytes allocated.
112 * @size: The length to write.
113 * @packet_size_length: The number of bytes used to encode the packet
114 * length is written to this address.
115 *
116 * Returns zero on success; non-zero on error.
117 */
118 int ecryptfs_write_packet_length(char *dest, size_t size,
119 size_t *packet_size_length)
120 {
121 int rc = 0;
122
123 if (size < 192) {
124 dest[0] = size;
125 (*packet_size_length) = 1;
126 } else if (size < 65536) {
127 dest[0] = (((size - 192) / 256) + 192);
128 dest[1] = ((size - 192) % 256);
129 (*packet_size_length) = 2;
130 } else {
131 rc = -EINVAL;
132 ecryptfs_printk(KERN_WARNING,
133 "Unsupported packet size: [%d]\n", size);
134 }
135 return rc;
136 }
137
138 static int
139 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
140 char **packet, size_t *packet_len)
141 {
142 size_t i = 0;
143 size_t data_len;
144 size_t packet_size_len;
145 char *message;
146 int rc;
147
148 /*
149 * ***** TAG 64 Packet Format *****
150 * | Content Type | 1 byte |
151 * | Key Identifier Size | 1 or 2 bytes |
152 * | Key Identifier | arbitrary |
153 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
154 * | Encrypted File Encryption Key | arbitrary |
155 */
156 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
157 + session_key->encrypted_key_size);
158 *packet = kmalloc(data_len, GFP_KERNEL);
159 message = *packet;
160 if (!message) {
161 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
162 rc = -ENOMEM;
163 goto out;
164 }
165 message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
166 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
167 &packet_size_len);
168 if (rc) {
169 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
170 "header; cannot generate packet length\n");
171 goto out;
172 }
173 i += packet_size_len;
174 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
175 i += ECRYPTFS_SIG_SIZE_HEX;
176 rc = ecryptfs_write_packet_length(&message[i],
177 session_key->encrypted_key_size,
178 &packet_size_len);
179 if (rc) {
180 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
181 "header; cannot generate packet length\n");
182 goto out;
183 }
184 i += packet_size_len;
185 memcpy(&message[i], session_key->encrypted_key,
186 session_key->encrypted_key_size);
187 i += session_key->encrypted_key_size;
188 *packet_len = i;
189 out:
190 return rc;
191 }
192
193 static int
194 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
195 struct ecryptfs_message *msg)
196 {
197 size_t i = 0;
198 char *data;
199 size_t data_len;
200 size_t m_size;
201 size_t message_len;
202 u16 checksum = 0;
203 u16 expected_checksum = 0;
204 int rc;
205
206 /*
207 * ***** TAG 65 Packet Format *****
208 * | Content Type | 1 byte |
209 * | Status Indicator | 1 byte |
210 * | File Encryption Key Size | 1 or 2 bytes |
211 * | File Encryption Key | arbitrary |
212 */
213 message_len = msg->data_len;
214 data = msg->data;
215 if (message_len < 4) {
216 rc = -EIO;
217 goto out;
218 }
219 if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
220 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
221 rc = -EIO;
222 goto out;
223 }
224 if (data[i++]) {
225 ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
226 "[%d]\n", data[i-1]);
227 rc = -EIO;
228 goto out;
229 }
230 rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
231 if (rc) {
232 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
233 "rc = [%d]\n", rc);
234 goto out;
235 }
236 i += data_len;
237 if (message_len < (i + m_size)) {
238 ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
239 "is shorter than expected\n");
240 rc = -EIO;
241 goto out;
242 }
243 if (m_size < 3) {
244 ecryptfs_printk(KERN_ERR,
245 "The decrypted key is not long enough to "
246 "include a cipher code and checksum\n");
247 rc = -EIO;
248 goto out;
249 }
250 *cipher_code = data[i++];
251 /* The decrypted key includes 1 byte cipher code and 2 byte checksum */
252 session_key->decrypted_key_size = m_size - 3;
253 if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
254 ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
255 "the maximum key size [%d]\n",
256 session_key->decrypted_key_size,
257 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
258 rc = -EIO;
259 goto out;
260 }
261 memcpy(session_key->decrypted_key, &data[i],
262 session_key->decrypted_key_size);
263 i += session_key->decrypted_key_size;
264 expected_checksum += (unsigned char)(data[i++]) << 8;
265 expected_checksum += (unsigned char)(data[i++]);
266 for (i = 0; i < session_key->decrypted_key_size; i++)
267 checksum += session_key->decrypted_key[i];
268 if (expected_checksum != checksum) {
269 ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
270 "encryption key; expected [%x]; calculated "
271 "[%x]\n", expected_checksum, checksum);
272 rc = -EIO;
273 }
274 out:
275 return rc;
276 }
277
278
279 static int
280 write_tag_66_packet(char *signature, u8 cipher_code,
281 struct ecryptfs_crypt_stat *crypt_stat, char **packet,
282 size_t *packet_len)
283 {
284 size_t i = 0;
285 size_t j;
286 size_t data_len;
287 size_t checksum = 0;
288 size_t packet_size_len;
289 char *message;
290 int rc;
291
292 /*
293 * ***** TAG 66 Packet Format *****
294 * | Content Type | 1 byte |
295 * | Key Identifier Size | 1 or 2 bytes |
296 * | Key Identifier | arbitrary |
297 * | File Encryption Key Size | 1 or 2 bytes |
298 * | File Encryption Key | arbitrary |
299 */
300 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
301 *packet = kmalloc(data_len, GFP_KERNEL);
302 message = *packet;
303 if (!message) {
304 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
305 rc = -ENOMEM;
306 goto out;
307 }
308 message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
309 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
310 &packet_size_len);
311 if (rc) {
312 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
313 "header; cannot generate packet length\n");
314 goto out;
315 }
316 i += packet_size_len;
317 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
318 i += ECRYPTFS_SIG_SIZE_HEX;
319 /* The encrypted key includes 1 byte cipher code and 2 byte checksum */
320 rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
321 &packet_size_len);
322 if (rc) {
323 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
324 "header; cannot generate packet length\n");
325 goto out;
326 }
327 i += packet_size_len;
328 message[i++] = cipher_code;
329 memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
330 i += crypt_stat->key_size;
331 for (j = 0; j < crypt_stat->key_size; j++)
332 checksum += crypt_stat->key[j];
333 message[i++] = (checksum / 256) % 256;
334 message[i++] = (checksum % 256);
335 *packet_len = i;
336 out:
337 return rc;
338 }
339
340 static int
341 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
342 struct ecryptfs_message *msg)
343 {
344 size_t i = 0;
345 char *data;
346 size_t data_len;
347 size_t message_len;
348 int rc;
349
350 /*
351 * ***** TAG 65 Packet Format *****
352 * | Content Type | 1 byte |
353 * | Status Indicator | 1 byte |
354 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
355 * | Encrypted File Encryption Key | arbitrary |
356 */
357 message_len = msg->data_len;
358 data = msg->data;
359 /* verify that everything through the encrypted FEK size is present */
360 if (message_len < 4) {
361 rc = -EIO;
362 printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
363 "message length is [%d]\n", __func__, message_len, 4);
364 goto out;
365 }
366 if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
367 rc = -EIO;
368 printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
369 __func__);
370 goto out;
371 }
372 if (data[i++]) {
373 rc = -EIO;
374 printk(KERN_ERR "%s: Status indicator has non zero "
375 "value [%d]\n", __func__, data[i-1]);
376
377 goto out;
378 }
379 rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
380 &data_len);
381 if (rc) {
382 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
383 "rc = [%d]\n", rc);
384 goto out;
385 }
386 i += data_len;
387 if (message_len < (i + key_rec->enc_key_size)) {
388 rc = -EIO;
389 printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
390 __func__, message_len, (i + key_rec->enc_key_size));
391 goto out;
392 }
393 if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
394 rc = -EIO;
395 printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
396 "the maximum key size [%d]\n", __func__,
397 key_rec->enc_key_size,
398 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
399 goto out;
400 }
401 memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
402 out:
403 return rc;
404 }
405
406 static int
407 ecryptfs_find_global_auth_tok_for_sig(
408 struct ecryptfs_global_auth_tok **global_auth_tok,
409 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
410 {
411 struct ecryptfs_global_auth_tok *walker;
412 int rc = 0;
413
414 (*global_auth_tok) = NULL;
415 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
416 list_for_each_entry(walker,
417 &mount_crypt_stat->global_auth_tok_list,
418 mount_crypt_stat_list) {
419 if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX) == 0) {
420 rc = key_validate(walker->global_auth_tok_key);
421 if (!rc)
422 (*global_auth_tok) = walker;
423 goto out;
424 }
425 }
426 rc = -EINVAL;
427 out:
428 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
429 return rc;
430 }
431
432 /**
433 * ecryptfs_find_auth_tok_for_sig
434 * @auth_tok: Set to the matching auth_tok; NULL if not found
435 * @crypt_stat: inode crypt_stat crypto context
436 * @sig: Sig of auth_tok to find
437 *
438 * For now, this function simply looks at the registered auth_tok's
439 * linked off the mount_crypt_stat, so all the auth_toks that can be
440 * used must be registered at mount time. This function could
441 * potentially try a lot harder to find auth_tok's (e.g., by calling
442 * out to ecryptfsd to dynamically retrieve an auth_tok object) so
443 * that static registration of auth_tok's will no longer be necessary.
444 *
445 * Returns zero on no error; non-zero on error
446 */
447 static int
448 ecryptfs_find_auth_tok_for_sig(
449 struct key **auth_tok_key,
450 struct ecryptfs_auth_tok **auth_tok,
451 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
452 char *sig)
453 {
454 struct ecryptfs_global_auth_tok *global_auth_tok;
455 int rc = 0;
456
457 (*auth_tok_key) = NULL;
458 (*auth_tok) = NULL;
459 if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
460 mount_crypt_stat, sig)) {
461
462 /* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
463 * mount_crypt_stat structure, we prevent to use auth toks that
464 * are not inserted through the ecryptfs_add_global_auth_tok
465 * function.
466 */
467 if (mount_crypt_stat->flags
468 & ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
469 return -EINVAL;
470
471 rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
472 sig);
473 } else
474 (*auth_tok) = global_auth_tok->global_auth_tok;
475 return rc;
476 }
477
478 /**
479 * write_tag_70_packet can gobble a lot of stack space. We stuff most
480 * of the function's parameters in a kmalloc'd struct to help reduce
481 * eCryptfs' overall stack usage.
482 */
483 struct ecryptfs_write_tag_70_packet_silly_stack {
484 u8 cipher_code;
485 size_t max_packet_size;
486 size_t packet_size_len;
487 size_t block_aligned_filename_size;
488 size_t block_size;
489 size_t i;
490 size_t j;
491 size_t num_rand_bytes;
492 struct mutex *tfm_mutex;
493 char *block_aligned_filename;
494 struct ecryptfs_auth_tok *auth_tok;
495 struct scatterlist src_sg;
496 struct scatterlist dst_sg;
497 struct blkcipher_desc desc;
498 char iv[ECRYPTFS_MAX_IV_BYTES];
499 char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
500 char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
501 struct hash_desc hash_desc;
502 struct scatterlist hash_sg;
503 };
504
505 /**
506 * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
507 * @filename: NULL-terminated filename string
508 *
509 * This is the simplest mechanism for achieving filename encryption in
510 * eCryptfs. It encrypts the given filename with the mount-wide
511 * filename encryption key (FNEK) and stores it in a packet to @dest,
512 * which the callee will encode and write directly into the dentry
513 * name.
514 */
515 int
516 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
517 size_t *packet_size,
518 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
519 char *filename, size_t filename_size)
520 {
521 struct ecryptfs_write_tag_70_packet_silly_stack *s;
522 struct key *auth_tok_key = NULL;
523 int rc = 0;
524
525 s = kmalloc(sizeof(*s), GFP_KERNEL);
526 if (!s) {
527 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
528 "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
529 rc = -ENOMEM;
530 goto out;
531 }
532 s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
533 (*packet_size) = 0;
534 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
535 &s->desc.tfm,
536 &s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
537 if (unlikely(rc)) {
538 printk(KERN_ERR "Internal error whilst attempting to get "
539 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
540 mount_crypt_stat->global_default_fn_cipher_name, rc);
541 goto out;
542 }
543 mutex_lock(s->tfm_mutex);
544 s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
545 /* Plus one for the \0 separator between the random prefix
546 * and the plaintext filename */
547 s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
548 s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
549 if ((s->block_aligned_filename_size % s->block_size) != 0) {
550 s->num_rand_bytes += (s->block_size
551 - (s->block_aligned_filename_size
552 % s->block_size));
553 s->block_aligned_filename_size = (s->num_rand_bytes
554 + filename_size);
555 }
556 /* Octet 0: Tag 70 identifier
557 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
558 * and block-aligned encrypted filename size)
559 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
560 * Octet N2-N3: Cipher identifier (1 octet)
561 * Octets N3-N4: Block-aligned encrypted filename
562 * - Consists of a minimum number of random characters, a \0
563 * separator, and then the filename */
564 s->max_packet_size = (1 /* Tag 70 identifier */
565 + 3 /* Max Tag 70 packet size */
566 + ECRYPTFS_SIG_SIZE /* FNEK sig */
567 + 1 /* Cipher identifier */
568 + s->block_aligned_filename_size);
569 if (dest == NULL) {
570 (*packet_size) = s->max_packet_size;
571 goto out_unlock;
572 }
573 if (s->max_packet_size > (*remaining_bytes)) {
574 printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
575 "[%zd] available\n", __func__, s->max_packet_size,
576 (*remaining_bytes));
577 rc = -EINVAL;
578 goto out_unlock;
579 }
580 s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
581 GFP_KERNEL);
582 if (!s->block_aligned_filename) {
583 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
584 "kzalloc [%zd] bytes\n", __func__,
585 s->block_aligned_filename_size);
586 rc = -ENOMEM;
587 goto out_unlock;
588 }
589 s->i = 0;
590 dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
591 rc = ecryptfs_write_packet_length(&dest[s->i],
592 (ECRYPTFS_SIG_SIZE
593 + 1 /* Cipher code */
594 + s->block_aligned_filename_size),
595 &s->packet_size_len);
596 if (rc) {
597 printk(KERN_ERR "%s: Error generating tag 70 packet "
598 "header; cannot generate packet length; rc = [%d]\n",
599 __func__, rc);
600 goto out_free_unlock;
601 }
602 s->i += s->packet_size_len;
603 ecryptfs_from_hex(&dest[s->i],
604 mount_crypt_stat->global_default_fnek_sig,
605 ECRYPTFS_SIG_SIZE);
606 s->i += ECRYPTFS_SIG_SIZE;
607 s->cipher_code = ecryptfs_code_for_cipher_string(
608 mount_crypt_stat->global_default_fn_cipher_name,
609 mount_crypt_stat->global_default_fn_cipher_key_bytes);
610 if (s->cipher_code == 0) {
611 printk(KERN_WARNING "%s: Unable to generate code for "
612 "cipher [%s] with key bytes [%zd]\n", __func__,
613 mount_crypt_stat->global_default_fn_cipher_name,
614 mount_crypt_stat->global_default_fn_cipher_key_bytes);
615 rc = -EINVAL;
616 goto out_free_unlock;
617 }
618 dest[s->i++] = s->cipher_code;
619 rc = ecryptfs_find_auth_tok_for_sig(
620 &auth_tok_key,
621 &s->auth_tok, mount_crypt_stat,
622 mount_crypt_stat->global_default_fnek_sig);
623 if (rc) {
624 printk(KERN_ERR "%s: Error attempting to find auth tok for "
625 "fnek sig [%s]; rc = [%d]\n", __func__,
626 mount_crypt_stat->global_default_fnek_sig, rc);
627 goto out_free_unlock;
628 }
629 /* TODO: Support other key modules than passphrase for
630 * filename encryption */
631 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
632 rc = -EOPNOTSUPP;
633 printk(KERN_INFO "%s: Filename encryption only supports "
634 "password tokens\n", __func__);
635 goto out_free_unlock;
636 }
637 sg_init_one(
638 &s->hash_sg,
639 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
640 s->auth_tok->token.password.session_key_encryption_key_bytes);
641 s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
642 s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
643 CRYPTO_ALG_ASYNC);
644 if (IS_ERR(s->hash_desc.tfm)) {
645 rc = PTR_ERR(s->hash_desc.tfm);
646 printk(KERN_ERR "%s: Error attempting to "
647 "allocate hash crypto context; rc = [%d]\n",
648 __func__, rc);
649 goto out_free_unlock;
650 }
651 rc = crypto_hash_init(&s->hash_desc);
652 if (rc) {
653 printk(KERN_ERR
654 "%s: Error initializing crypto hash; rc = [%d]\n",
655 __func__, rc);
656 goto out_release_free_unlock;
657 }
658 rc = crypto_hash_update(
659 &s->hash_desc, &s->hash_sg,
660 s->auth_tok->token.password.session_key_encryption_key_bytes);
661 if (rc) {
662 printk(KERN_ERR
663 "%s: Error updating crypto hash; rc = [%d]\n",
664 __func__, rc);
665 goto out_release_free_unlock;
666 }
667 rc = crypto_hash_final(&s->hash_desc, s->hash);
668 if (rc) {
669 printk(KERN_ERR
670 "%s: Error finalizing crypto hash; rc = [%d]\n",
671 __func__, rc);
672 goto out_release_free_unlock;
673 }
674 for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
675 s->block_aligned_filename[s->j] =
676 s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
677 if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
678 == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
679 sg_init_one(&s->hash_sg, (u8 *)s->hash,
680 ECRYPTFS_TAG_70_DIGEST_SIZE);
681 rc = crypto_hash_init(&s->hash_desc);
682 if (rc) {
683 printk(KERN_ERR
684 "%s: Error initializing crypto hash; "
685 "rc = [%d]\n", __func__, rc);
686 goto out_release_free_unlock;
687 }
688 rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
689 ECRYPTFS_TAG_70_DIGEST_SIZE);
690 if (rc) {
691 printk(KERN_ERR
692 "%s: Error updating crypto hash; "
693 "rc = [%d]\n", __func__, rc);
694 goto out_release_free_unlock;
695 }
696 rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
697 if (rc) {
698 printk(KERN_ERR
699 "%s: Error finalizing crypto hash; "
700 "rc = [%d]\n", __func__, rc);
701 goto out_release_free_unlock;
702 }
703 memcpy(s->hash, s->tmp_hash,
704 ECRYPTFS_TAG_70_DIGEST_SIZE);
705 }
706 if (s->block_aligned_filename[s->j] == '\0')
707 s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
708 }
709 memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
710 filename_size);
711 rc = virt_to_scatterlist(s->block_aligned_filename,
712 s->block_aligned_filename_size, &s->src_sg, 1);
713 if (rc != 1) {
714 printk(KERN_ERR "%s: Internal error whilst attempting to "
715 "convert filename memory to scatterlist; "
716 "expected rc = 1; got rc = [%d]. "
717 "block_aligned_filename_size = [%zd]\n", __func__, rc,
718 s->block_aligned_filename_size);
719 goto out_release_free_unlock;
720 }
721 rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
722 &s->dst_sg, 1);
723 if (rc != 1) {
724 printk(KERN_ERR "%s: Internal error whilst attempting to "
725 "convert encrypted filename memory to scatterlist; "
726 "expected rc = 1; got rc = [%d]. "
727 "block_aligned_filename_size = [%zd]\n", __func__, rc,
728 s->block_aligned_filename_size);
729 goto out_release_free_unlock;
730 }
731 /* The characters in the first block effectively do the job
732 * of the IV here, so we just use 0's for the IV. Note the
733 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
734 * >= ECRYPTFS_MAX_IV_BYTES. */
735 memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
736 s->desc.info = s->iv;
737 rc = crypto_blkcipher_setkey(
738 s->desc.tfm,
739 s->auth_tok->token.password.session_key_encryption_key,
740 mount_crypt_stat->global_default_fn_cipher_key_bytes);
741 if (rc < 0) {
742 printk(KERN_ERR "%s: Error setting key for crypto context; "
743 "rc = [%d]. s->auth_tok->token.password.session_key_"
744 "encryption_key = [0x%p]; mount_crypt_stat->"
745 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
746 rc,
747 s->auth_tok->token.password.session_key_encryption_key,
748 mount_crypt_stat->global_default_fn_cipher_key_bytes);
749 goto out_release_free_unlock;
750 }
751 rc = crypto_blkcipher_encrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
752 s->block_aligned_filename_size);
753 if (rc) {
754 printk(KERN_ERR "%s: Error attempting to encrypt filename; "
755 "rc = [%d]\n", __func__, rc);
756 goto out_release_free_unlock;
757 }
758 s->i += s->block_aligned_filename_size;
759 (*packet_size) = s->i;
760 (*remaining_bytes) -= (*packet_size);
761 out_release_free_unlock:
762 crypto_free_hash(s->hash_desc.tfm);
763 out_free_unlock:
764 kzfree(s->block_aligned_filename);
765 out_unlock:
766 mutex_unlock(s->tfm_mutex);
767 out:
768 if (auth_tok_key)
769 key_put(auth_tok_key);
770 kfree(s);
771 return rc;
772 }
773
774 struct ecryptfs_parse_tag_70_packet_silly_stack {
775 u8 cipher_code;
776 size_t max_packet_size;
777 size_t packet_size_len;
778 size_t parsed_tag_70_packet_size;
779 size_t block_aligned_filename_size;
780 size_t block_size;
781 size_t i;
782 struct mutex *tfm_mutex;
783 char *decrypted_filename;
784 struct ecryptfs_auth_tok *auth_tok;
785 struct scatterlist src_sg;
786 struct scatterlist dst_sg;
787 struct blkcipher_desc desc;
788 char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
789 char iv[ECRYPTFS_MAX_IV_BYTES];
790 char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
791 };
792
793 /**
794 * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
795 * @filename: This function kmalloc's the memory for the filename
796 * @filename_size: This function sets this to the amount of memory
797 * kmalloc'd for the filename
798 * @packet_size: This function sets this to the the number of octets
799 * in the packet parsed
800 * @mount_crypt_stat: The mount-wide cryptographic context
801 * @data: The memory location containing the start of the tag 70
802 * packet
803 * @max_packet_size: The maximum legal size of the packet to be parsed
804 * from @data
805 *
806 * Returns zero on success; non-zero otherwise
807 */
808 int
809 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
810 size_t *packet_size,
811 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
812 char *data, size_t max_packet_size)
813 {
814 struct ecryptfs_parse_tag_70_packet_silly_stack *s;
815 struct key *auth_tok_key = NULL;
816 int rc = 0;
817
818 (*packet_size) = 0;
819 (*filename_size) = 0;
820 (*filename) = NULL;
821 s = kmalloc(sizeof(*s), GFP_KERNEL);
822 if (!s) {
823 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
824 "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
825 rc = -ENOMEM;
826 goto out;
827 }
828 s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
829 if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
830 printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
831 "at least [%d]\n", __func__, max_packet_size,
832 (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
833 rc = -EINVAL;
834 goto out;
835 }
836 /* Octet 0: Tag 70 identifier
837 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
838 * and block-aligned encrypted filename size)
839 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
840 * Octet N2-N3: Cipher identifier (1 octet)
841 * Octets N3-N4: Block-aligned encrypted filename
842 * - Consists of a minimum number of random numbers, a \0
843 * separator, and then the filename */
844 if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
845 printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
846 "tag [0x%.2x]\n", __func__,
847 data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
848 rc = -EINVAL;
849 goto out;
850 }
851 rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
852 &s->parsed_tag_70_packet_size,
853 &s->packet_size_len);
854 if (rc) {
855 printk(KERN_WARNING "%s: Error parsing packet length; "
856 "rc = [%d]\n", __func__, rc);
857 goto out;
858 }
859 s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
860 - ECRYPTFS_SIG_SIZE - 1);
861 if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
862 > max_packet_size) {
863 printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
864 "size is [%zd]\n", __func__, max_packet_size,
865 (1 + s->packet_size_len + 1
866 + s->block_aligned_filename_size));
867 rc = -EINVAL;
868 goto out;
869 }
870 (*packet_size) += s->packet_size_len;
871 ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
872 ECRYPTFS_SIG_SIZE);
873 s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
874 (*packet_size) += ECRYPTFS_SIG_SIZE;
875 s->cipher_code = data[(*packet_size)++];
876 rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
877 if (rc) {
878 printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
879 __func__, s->cipher_code);
880 goto out;
881 }
882 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
883 &s->tfm_mutex,
884 s->cipher_string);
885 if (unlikely(rc)) {
886 printk(KERN_ERR "Internal error whilst attempting to get "
887 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
888 s->cipher_string, rc);
889 goto out;
890 }
891 mutex_lock(s->tfm_mutex);
892 rc = virt_to_scatterlist(&data[(*packet_size)],
893 s->block_aligned_filename_size, &s->src_sg, 1);
894 if (rc != 1) {
895 printk(KERN_ERR "%s: Internal error whilst attempting to "
896 "convert encrypted filename memory to scatterlist; "
897 "expected rc = 1; got rc = [%d]. "
898 "block_aligned_filename_size = [%zd]\n", __func__, rc,
899 s->block_aligned_filename_size);
900 goto out_unlock;
901 }
902 (*packet_size) += s->block_aligned_filename_size;
903 s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
904 GFP_KERNEL);
905 if (!s->decrypted_filename) {
906 printk(KERN_ERR "%s: Out of memory whilst attempting to "
907 "kmalloc [%zd] bytes\n", __func__,
908 s->block_aligned_filename_size);
909 rc = -ENOMEM;
910 goto out_unlock;
911 }
912 rc = virt_to_scatterlist(s->decrypted_filename,
913 s->block_aligned_filename_size, &s->dst_sg, 1);
914 if (rc != 1) {
915 printk(KERN_ERR "%s: Internal error whilst attempting to "
916 "convert decrypted filename memory to scatterlist; "
917 "expected rc = 1; got rc = [%d]. "
918 "block_aligned_filename_size = [%zd]\n", __func__, rc,
919 s->block_aligned_filename_size);
920 goto out_free_unlock;
921 }
922 /* The characters in the first block effectively do the job of
923 * the IV here, so we just use 0's for the IV. Note the
924 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
925 * >= ECRYPTFS_MAX_IV_BYTES. */
926 memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
927 s->desc.info = s->iv;
928 rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
929 &s->auth_tok, mount_crypt_stat,
930 s->fnek_sig_hex);
931 if (rc) {
932 printk(KERN_ERR "%s: Error attempting to find auth tok for "
933 "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
934 rc);
935 goto out_free_unlock;
936 }
937 /* TODO: Support other key modules than passphrase for
938 * filename encryption */
939 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
940 rc = -EOPNOTSUPP;
941 printk(KERN_INFO "%s: Filename encryption only supports "
942 "password tokens\n", __func__);
943 goto out_free_unlock;
944 }
945 rc = crypto_blkcipher_setkey(
946 s->desc.tfm,
947 s->auth_tok->token.password.session_key_encryption_key,
948 mount_crypt_stat->global_default_fn_cipher_key_bytes);
949 if (rc < 0) {
950 printk(KERN_ERR "%s: Error setting key for crypto context; "
951 "rc = [%d]. s->auth_tok->token.password.session_key_"
952 "encryption_key = [0x%p]; mount_crypt_stat->"
953 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
954 rc,
955 s->auth_tok->token.password.session_key_encryption_key,
956 mount_crypt_stat->global_default_fn_cipher_key_bytes);
957 goto out_free_unlock;
958 }
959 rc = crypto_blkcipher_decrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
960 s->block_aligned_filename_size);
961 if (rc) {
962 printk(KERN_ERR "%s: Error attempting to decrypt filename; "
963 "rc = [%d]\n", __func__, rc);
964 goto out_free_unlock;
965 }
966 s->i = 0;
967 while (s->decrypted_filename[s->i] != '\0'
968 && s->i < s->block_aligned_filename_size)
969 s->i++;
970 if (s->i == s->block_aligned_filename_size) {
971 printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
972 "find valid separator between random characters and "
973 "the filename\n", __func__);
974 rc = -EINVAL;
975 goto out_free_unlock;
976 }
977 s->i++;
978 (*filename_size) = (s->block_aligned_filename_size - s->i);
979 if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
980 printk(KERN_WARNING "%s: Filename size is [%zd], which is "
981 "invalid\n", __func__, (*filename_size));
982 rc = -EINVAL;
983 goto out_free_unlock;
984 }
985 (*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
986 if (!(*filename)) {
987 printk(KERN_ERR "%s: Out of memory whilst attempting to "
988 "kmalloc [%zd] bytes\n", __func__,
989 ((*filename_size) + 1));
990 rc = -ENOMEM;
991 goto out_free_unlock;
992 }
993 memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
994 (*filename)[(*filename_size)] = '\0';
995 out_free_unlock:
996 kfree(s->decrypted_filename);
997 out_unlock:
998 mutex_unlock(s->tfm_mutex);
999 out:
1000 if (rc) {
1001 (*packet_size) = 0;
1002 (*filename_size) = 0;
1003 (*filename) = NULL;
1004 }
1005 if (auth_tok_key)
1006 key_put(auth_tok_key);
1007 kfree(s);
1008 return rc;
1009 }
1010
1011 static int
1012 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1013 {
1014 int rc = 0;
1015
1016 (*sig) = NULL;
1017 switch (auth_tok->token_type) {
1018 case ECRYPTFS_PASSWORD:
1019 (*sig) = auth_tok->token.password.signature;
1020 break;
1021 case ECRYPTFS_PRIVATE_KEY:
1022 (*sig) = auth_tok->token.private_key.signature;
1023 break;
1024 default:
1025 printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1026 auth_tok->token_type);
1027 rc = -EINVAL;
1028 }
1029 return rc;
1030 }
1031
1032 /**
1033 * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1034 * @auth_tok: The key authentication token used to decrypt the session key
1035 * @crypt_stat: The cryptographic context
1036 *
1037 * Returns zero on success; non-zero error otherwise.
1038 */
1039 static int
1040 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1041 struct ecryptfs_crypt_stat *crypt_stat)
1042 {
1043 u8 cipher_code = 0;
1044 struct ecryptfs_msg_ctx *msg_ctx;
1045 struct ecryptfs_message *msg = NULL;
1046 char *auth_tok_sig;
1047 char *payload;
1048 size_t payload_len;
1049 int rc;
1050
1051 rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1052 if (rc) {
1053 printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1054 auth_tok->token_type);
1055 goto out;
1056 }
1057 rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1058 &payload, &payload_len);
1059 if (rc) {
1060 ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1061 goto out;
1062 }
1063 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1064 if (rc) {
1065 ecryptfs_printk(KERN_ERR, "Error sending message to "
1066 "ecryptfsd\n");
1067 goto out;
1068 }
1069 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1070 if (rc) {
1071 ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1072 "from the user space daemon\n");
1073 rc = -EIO;
1074 goto out;
1075 }
1076 rc = parse_tag_65_packet(&(auth_tok->session_key),
1077 &cipher_code, msg);
1078 if (rc) {
1079 printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1080 rc);
1081 goto out;
1082 }
1083 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1084 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1085 auth_tok->session_key.decrypted_key_size);
1086 crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1087 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1088 if (rc) {
1089 ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1090 cipher_code)
1091 goto out;
1092 }
1093 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1094 if (ecryptfs_verbosity > 0) {
1095 ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1096 ecryptfs_dump_hex(crypt_stat->key,
1097 crypt_stat->key_size);
1098 }
1099 out:
1100 if (msg)
1101 kfree(msg);
1102 return rc;
1103 }
1104
1105 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1106 {
1107 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1108 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1109
1110 list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1111 auth_tok_list_head, list) {
1112 list_del(&auth_tok_list_item->list);
1113 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1114 auth_tok_list_item);
1115 }
1116 }
1117
1118 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1119
1120 /**
1121 * parse_tag_1_packet
1122 * @crypt_stat: The cryptographic context to modify based on packet contents
1123 * @data: The raw bytes of the packet.
1124 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1125 * a new authentication token will be placed at the
1126 * end of this list for this packet.
1127 * @new_auth_tok: Pointer to a pointer to memory that this function
1128 * allocates; sets the memory address of the pointer to
1129 * NULL on error. This object is added to the
1130 * auth_tok_list.
1131 * @packet_size: This function writes the size of the parsed packet
1132 * into this memory location; zero on error.
1133 * @max_packet_size: The maximum allowable packet size
1134 *
1135 * Returns zero on success; non-zero on error.
1136 */
1137 static int
1138 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1139 unsigned char *data, struct list_head *auth_tok_list,
1140 struct ecryptfs_auth_tok **new_auth_tok,
1141 size_t *packet_size, size_t max_packet_size)
1142 {
1143 size_t body_size;
1144 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1145 size_t length_size;
1146 int rc = 0;
1147
1148 (*packet_size) = 0;
1149 (*new_auth_tok) = NULL;
1150 /**
1151 * This format is inspired by OpenPGP; see RFC 2440
1152 * packet tag 1
1153 *
1154 * Tag 1 identifier (1 byte)
1155 * Max Tag 1 packet size (max 3 bytes)
1156 * Version (1 byte)
1157 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1158 * Cipher identifier (1 byte)
1159 * Encrypted key size (arbitrary)
1160 *
1161 * 12 bytes minimum packet size
1162 */
1163 if (unlikely(max_packet_size < 12)) {
1164 printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1165 rc = -EINVAL;
1166 goto out;
1167 }
1168 if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1169 printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1170 ECRYPTFS_TAG_1_PACKET_TYPE);
1171 rc = -EINVAL;
1172 goto out;
1173 }
1174 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1175 * at end of function upon failure */
1176 auth_tok_list_item =
1177 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1178 GFP_KERNEL);
1179 if (!auth_tok_list_item) {
1180 printk(KERN_ERR "Unable to allocate memory\n");
1181 rc = -ENOMEM;
1182 goto out;
1183 }
1184 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1185 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1186 &length_size);
1187 if (rc) {
1188 printk(KERN_WARNING "Error parsing packet length; "
1189 "rc = [%d]\n", rc);
1190 goto out_free;
1191 }
1192 if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1193 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1194 rc = -EINVAL;
1195 goto out_free;
1196 }
1197 (*packet_size) += length_size;
1198 if (unlikely((*packet_size) + body_size > max_packet_size)) {
1199 printk(KERN_WARNING "Packet size exceeds max\n");
1200 rc = -EINVAL;
1201 goto out_free;
1202 }
1203 if (unlikely(data[(*packet_size)++] != 0x03)) {
1204 printk(KERN_WARNING "Unknown version number [%d]\n",
1205 data[(*packet_size) - 1]);
1206 rc = -EINVAL;
1207 goto out_free;
1208 }
1209 ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1210 &data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1211 *packet_size += ECRYPTFS_SIG_SIZE;
1212 /* This byte is skipped because the kernel does not need to
1213 * know which public key encryption algorithm was used */
1214 (*packet_size)++;
1215 (*new_auth_tok)->session_key.encrypted_key_size =
1216 body_size - (ECRYPTFS_SIG_SIZE + 2);
1217 if ((*new_auth_tok)->session_key.encrypted_key_size
1218 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1219 printk(KERN_WARNING "Tag 1 packet contains key larger "
1220 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1221 rc = -EINVAL;
1222 goto out;
1223 }
1224 memcpy((*new_auth_tok)->session_key.encrypted_key,
1225 &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1226 (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1227 (*new_auth_tok)->session_key.flags &=
1228 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1229 (*new_auth_tok)->session_key.flags |=
1230 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1231 (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1232 (*new_auth_tok)->flags = 0;
1233 (*new_auth_tok)->session_key.flags &=
1234 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1235 (*new_auth_tok)->session_key.flags &=
1236 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1237 list_add(&auth_tok_list_item->list, auth_tok_list);
1238 goto out;
1239 out_free:
1240 (*new_auth_tok) = NULL;
1241 memset(auth_tok_list_item, 0,
1242 sizeof(struct ecryptfs_auth_tok_list_item));
1243 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1244 auth_tok_list_item);
1245 out:
1246 if (rc)
1247 (*packet_size) = 0;
1248 return rc;
1249 }
1250
1251 /**
1252 * parse_tag_3_packet
1253 * @crypt_stat: The cryptographic context to modify based on packet
1254 * contents.
1255 * @data: The raw bytes of the packet.
1256 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1257 * a new authentication token will be placed at the end
1258 * of this list for this packet.
1259 * @new_auth_tok: Pointer to a pointer to memory that this function
1260 * allocates; sets the memory address of the pointer to
1261 * NULL on error. This object is added to the
1262 * auth_tok_list.
1263 * @packet_size: This function writes the size of the parsed packet
1264 * into this memory location; zero on error.
1265 * @max_packet_size: maximum number of bytes to parse
1266 *
1267 * Returns zero on success; non-zero on error.
1268 */
1269 static int
1270 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1271 unsigned char *data, struct list_head *auth_tok_list,
1272 struct ecryptfs_auth_tok **new_auth_tok,
1273 size_t *packet_size, size_t max_packet_size)
1274 {
1275 size_t body_size;
1276 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1277 size_t length_size;
1278 int rc = 0;
1279
1280 (*packet_size) = 0;
1281 (*new_auth_tok) = NULL;
1282 /**
1283 *This format is inspired by OpenPGP; see RFC 2440
1284 * packet tag 3
1285 *
1286 * Tag 3 identifier (1 byte)
1287 * Max Tag 3 packet size (max 3 bytes)
1288 * Version (1 byte)
1289 * Cipher code (1 byte)
1290 * S2K specifier (1 byte)
1291 * Hash identifier (1 byte)
1292 * Salt (ECRYPTFS_SALT_SIZE)
1293 * Hash iterations (1 byte)
1294 * Encrypted key (arbitrary)
1295 *
1296 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1297 */
1298 if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1299 printk(KERN_ERR "Max packet size too large\n");
1300 rc = -EINVAL;
1301 goto out;
1302 }
1303 if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1304 printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1305 ECRYPTFS_TAG_3_PACKET_TYPE);
1306 rc = -EINVAL;
1307 goto out;
1308 }
1309 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1310 * at end of function upon failure */
1311 auth_tok_list_item =
1312 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1313 if (!auth_tok_list_item) {
1314 printk(KERN_ERR "Unable to allocate memory\n");
1315 rc = -ENOMEM;
1316 goto out;
1317 }
1318 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1319 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1320 &length_size);
1321 if (rc) {
1322 printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1323 rc);
1324 goto out_free;
1325 }
1326 if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1327 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1328 rc = -EINVAL;
1329 goto out_free;
1330 }
1331 (*packet_size) += length_size;
1332 if (unlikely((*packet_size) + body_size > max_packet_size)) {
1333 printk(KERN_ERR "Packet size exceeds max\n");
1334 rc = -EINVAL;
1335 goto out_free;
1336 }
1337 (*new_auth_tok)->session_key.encrypted_key_size =
1338 (body_size - (ECRYPTFS_SALT_SIZE + 5));
1339 if ((*new_auth_tok)->session_key.encrypted_key_size
1340 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1341 printk(KERN_WARNING "Tag 3 packet contains key larger "
1342 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1343 rc = -EINVAL;
1344 goto out_free;
1345 }
1346 if (unlikely(data[(*packet_size)++] != 0x04)) {
1347 printk(KERN_WARNING "Unknown version number [%d]\n",
1348 data[(*packet_size) - 1]);
1349 rc = -EINVAL;
1350 goto out_free;
1351 }
1352 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1353 (u16)data[(*packet_size)]);
1354 if (rc)
1355 goto out_free;
1356 /* A little extra work to differentiate among the AES key
1357 * sizes; see RFC2440 */
1358 switch(data[(*packet_size)++]) {
1359 case RFC2440_CIPHER_AES_192:
1360 crypt_stat->key_size = 24;
1361 break;
1362 default:
1363 crypt_stat->key_size =
1364 (*new_auth_tok)->session_key.encrypted_key_size;
1365 }
1366 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1367 if (rc)
1368 goto out_free;
1369 if (unlikely(data[(*packet_size)++] != 0x03)) {
1370 printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1371 rc = -ENOSYS;
1372 goto out_free;
1373 }
1374 /* TODO: finish the hash mapping */
1375 switch (data[(*packet_size)++]) {
1376 case 0x01: /* See RFC2440 for these numbers and their mappings */
1377 /* Choose MD5 */
1378 memcpy((*new_auth_tok)->token.password.salt,
1379 &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1380 (*packet_size) += ECRYPTFS_SALT_SIZE;
1381 /* This conversion was taken straight from RFC2440 */
1382 (*new_auth_tok)->token.password.hash_iterations =
1383 ((u32) 16 + (data[(*packet_size)] & 15))
1384 << ((data[(*packet_size)] >> 4) + 6);
1385 (*packet_size)++;
1386 /* Friendly reminder:
1387 * (*new_auth_tok)->session_key.encrypted_key_size =
1388 * (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1389 memcpy((*new_auth_tok)->session_key.encrypted_key,
1390 &data[(*packet_size)],
1391 (*new_auth_tok)->session_key.encrypted_key_size);
1392 (*packet_size) +=
1393 (*new_auth_tok)->session_key.encrypted_key_size;
1394 (*new_auth_tok)->session_key.flags &=
1395 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1396 (*new_auth_tok)->session_key.flags |=
1397 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1398 (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1399 break;
1400 default:
1401 ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1402 "[%d]\n", data[(*packet_size) - 1]);
1403 rc = -ENOSYS;
1404 goto out_free;
1405 }
1406 (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1407 /* TODO: Parametarize; we might actually want userspace to
1408 * decrypt the session key. */
1409 (*new_auth_tok)->session_key.flags &=
1410 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1411 (*new_auth_tok)->session_key.flags &=
1412 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1413 list_add(&auth_tok_list_item->list, auth_tok_list);
1414 goto out;
1415 out_free:
1416 (*new_auth_tok) = NULL;
1417 memset(auth_tok_list_item, 0,
1418 sizeof(struct ecryptfs_auth_tok_list_item));
1419 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1420 auth_tok_list_item);
1421 out:
1422 if (rc)
1423 (*packet_size) = 0;
1424 return rc;
1425 }
1426
1427 /**
1428 * parse_tag_11_packet
1429 * @data: The raw bytes of the packet
1430 * @contents: This function writes the data contents of the literal
1431 * packet into this memory location
1432 * @max_contents_bytes: The maximum number of bytes that this function
1433 * is allowed to write into contents
1434 * @tag_11_contents_size: This function writes the size of the parsed
1435 * contents into this memory location; zero on
1436 * error
1437 * @packet_size: This function writes the size of the parsed packet
1438 * into this memory location; zero on error
1439 * @max_packet_size: maximum number of bytes to parse
1440 *
1441 * Returns zero on success; non-zero on error.
1442 */
1443 static int
1444 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1445 size_t max_contents_bytes, size_t *tag_11_contents_size,
1446 size_t *packet_size, size_t max_packet_size)
1447 {
1448 size_t body_size;
1449 size_t length_size;
1450 int rc = 0;
1451
1452 (*packet_size) = 0;
1453 (*tag_11_contents_size) = 0;
1454 /* This format is inspired by OpenPGP; see RFC 2440
1455 * packet tag 11
1456 *
1457 * Tag 11 identifier (1 byte)
1458 * Max Tag 11 packet size (max 3 bytes)
1459 * Binary format specifier (1 byte)
1460 * Filename length (1 byte)
1461 * Filename ("_CONSOLE") (8 bytes)
1462 * Modification date (4 bytes)
1463 * Literal data (arbitrary)
1464 *
1465 * We need at least 16 bytes of data for the packet to even be
1466 * valid.
1467 */
1468 if (max_packet_size < 16) {
1469 printk(KERN_ERR "Maximum packet size too small\n");
1470 rc = -EINVAL;
1471 goto out;
1472 }
1473 if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1474 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1475 rc = -EINVAL;
1476 goto out;
1477 }
1478 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1479 &length_size);
1480 if (rc) {
1481 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1482 goto out;
1483 }
1484 if (body_size < 14) {
1485 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1486 rc = -EINVAL;
1487 goto out;
1488 }
1489 (*packet_size) += length_size;
1490 (*tag_11_contents_size) = (body_size - 14);
1491 if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1492 printk(KERN_ERR "Packet size exceeds max\n");
1493 rc = -EINVAL;
1494 goto out;
1495 }
1496 if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1497 printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1498 "expected size\n");
1499 rc = -EINVAL;
1500 goto out;
1501 }
1502 if (data[(*packet_size)++] != 0x62) {
1503 printk(KERN_WARNING "Unrecognizable packet\n");
1504 rc = -EINVAL;
1505 goto out;
1506 }
1507 if (data[(*packet_size)++] != 0x08) {
1508 printk(KERN_WARNING "Unrecognizable packet\n");
1509 rc = -EINVAL;
1510 goto out;
1511 }
1512 (*packet_size) += 12; /* Ignore filename and modification date */
1513 memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1514 (*packet_size) += (*tag_11_contents_size);
1515 out:
1516 if (rc) {
1517 (*packet_size) = 0;
1518 (*tag_11_contents_size) = 0;
1519 }
1520 return rc;
1521 }
1522
1523 /**
1524 * ecryptfs_verify_version
1525 * @version: The version number to confirm
1526 *
1527 * Returns zero on good version; non-zero otherwise
1528 */
1529 static int ecryptfs_verify_version(u16 version)
1530 {
1531 int rc = 0;
1532 unsigned char major;
1533 unsigned char minor;
1534
1535 major = ((version >> 8) & 0xFF);
1536 minor = (version & 0xFF);
1537 if (major != ECRYPTFS_VERSION_MAJOR) {
1538 ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
1539 "Expected [%d]; got [%d]\n",
1540 ECRYPTFS_VERSION_MAJOR, major);
1541 rc = -EINVAL;
1542 goto out;
1543 }
1544 if (minor != ECRYPTFS_VERSION_MINOR) {
1545 ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
1546 "Expected [%d]; got [%d]\n",
1547 ECRYPTFS_VERSION_MINOR, minor);
1548 rc = -EINVAL;
1549 goto out;
1550 }
1551 out:
1552 return rc;
1553 }
1554
1555 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1556 struct ecryptfs_auth_tok **auth_tok,
1557 char *sig)
1558 {
1559 int rc = 0;
1560
1561 (*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1562 if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1563 printk(KERN_ERR "Could not find key with description: [%s]\n",
1564 sig);
1565 rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1566 goto out;
1567 }
1568 (*auth_tok) = ecryptfs_get_key_payload_data(*auth_tok_key);
1569 if (ecryptfs_verify_version((*auth_tok)->version)) {
1570 printk(KERN_ERR
1571 "Data structure version mismatch. "
1572 "Userspace tools must match eCryptfs "
1573 "kernel module with major version [%d] "
1574 "and minor version [%d]\n",
1575 ECRYPTFS_VERSION_MAJOR,
1576 ECRYPTFS_VERSION_MINOR);
1577 rc = -EINVAL;
1578 goto out_release_key;
1579 }
1580 if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
1581 && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
1582 printk(KERN_ERR "Invalid auth_tok structure "
1583 "returned from key query\n");
1584 rc = -EINVAL;
1585 goto out_release_key;
1586 }
1587 out_release_key:
1588 if (rc) {
1589 key_put(*auth_tok_key);
1590 (*auth_tok_key) = NULL;
1591 }
1592 out:
1593 return rc;
1594 }
1595
1596 /**
1597 * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1598 * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1599 * @crypt_stat: The cryptographic context
1600 *
1601 * Returns zero on success; non-zero error otherwise
1602 */
1603 static int
1604 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1605 struct ecryptfs_crypt_stat *crypt_stat)
1606 {
1607 struct scatterlist dst_sg[2];
1608 struct scatterlist src_sg[2];
1609 struct mutex *tfm_mutex;
1610 struct blkcipher_desc desc = {
1611 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
1612 };
1613 int rc = 0;
1614
1615 if (unlikely(ecryptfs_verbosity > 0)) {
1616 ecryptfs_printk(
1617 KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1618 auth_tok->token.password.session_key_encryption_key_bytes);
1619 ecryptfs_dump_hex(
1620 auth_tok->token.password.session_key_encryption_key,
1621 auth_tok->token.password.session_key_encryption_key_bytes);
1622 }
1623 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1624 crypt_stat->cipher);
1625 if (unlikely(rc)) {
1626 printk(KERN_ERR "Internal error whilst attempting to get "
1627 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1628 crypt_stat->cipher, rc);
1629 goto out;
1630 }
1631 rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1632 auth_tok->session_key.encrypted_key_size,
1633 src_sg, 2);
1634 if (rc < 1 || rc > 2) {
1635 printk(KERN_ERR "Internal error whilst attempting to convert "
1636 "auth_tok->session_key.encrypted_key to scatterlist; "
1637 "expected rc = 1; got rc = [%d]. "
1638 "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1639 auth_tok->session_key.encrypted_key_size);
1640 goto out;
1641 }
1642 auth_tok->session_key.decrypted_key_size =
1643 auth_tok->session_key.encrypted_key_size;
1644 rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1645 auth_tok->session_key.decrypted_key_size,
1646 dst_sg, 2);
1647 if (rc < 1 || rc > 2) {
1648 printk(KERN_ERR "Internal error whilst attempting to convert "
1649 "auth_tok->session_key.decrypted_key to scatterlist; "
1650 "expected rc = 1; got rc = [%d]\n", rc);
1651 goto out;
1652 }
1653 mutex_lock(tfm_mutex);
1654 rc = crypto_blkcipher_setkey(
1655 desc.tfm, auth_tok->token.password.session_key_encryption_key,
1656 crypt_stat->key_size);
1657 if (unlikely(rc < 0)) {
1658 mutex_unlock(tfm_mutex);
1659 printk(KERN_ERR "Error setting key for crypto context\n");
1660 rc = -EINVAL;
1661 goto out;
1662 }
1663 rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1664 auth_tok->session_key.encrypted_key_size);
1665 mutex_unlock(tfm_mutex);
1666 if (unlikely(rc)) {
1667 printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1668 goto out;
1669 }
1670 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1671 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1672 auth_tok->session_key.decrypted_key_size);
1673 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1674 if (unlikely(ecryptfs_verbosity > 0)) {
1675 ecryptfs_printk(KERN_DEBUG, "FEK of size [%d]:\n",
1676 crypt_stat->key_size);
1677 ecryptfs_dump_hex(crypt_stat->key,
1678 crypt_stat->key_size);
1679 }
1680 out:
1681 return rc;
1682 }
1683
1684 /**
1685 * ecryptfs_parse_packet_set
1686 * @crypt_stat: The cryptographic context
1687 * @src: Virtual address of region of memory containing the packets
1688 * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1689 *
1690 * Get crypt_stat to have the file's session key if the requisite key
1691 * is available to decrypt the session key.
1692 *
1693 * Returns Zero if a valid authentication token was retrieved and
1694 * processed; negative value for file not encrypted or for error
1695 * conditions.
1696 */
1697 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1698 unsigned char *src,
1699 struct dentry *ecryptfs_dentry)
1700 {
1701 size_t i = 0;
1702 size_t found_auth_tok;
1703 size_t next_packet_is_auth_tok_packet;
1704 struct list_head auth_tok_list;
1705 struct ecryptfs_auth_tok *matching_auth_tok;
1706 struct ecryptfs_auth_tok *candidate_auth_tok;
1707 char *candidate_auth_tok_sig;
1708 size_t packet_size;
1709 struct ecryptfs_auth_tok *new_auth_tok;
1710 unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1711 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1712 size_t tag_11_contents_size;
1713 size_t tag_11_packet_size;
1714 struct key *auth_tok_key = NULL;
1715 int rc = 0;
1716
1717 INIT_LIST_HEAD(&auth_tok_list);
1718 /* Parse the header to find as many packets as we can; these will be
1719 * added the our &auth_tok_list */
1720 next_packet_is_auth_tok_packet = 1;
1721 while (next_packet_is_auth_tok_packet) {
1722 size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1723
1724 switch (src[i]) {
1725 case ECRYPTFS_TAG_3_PACKET_TYPE:
1726 rc = parse_tag_3_packet(crypt_stat,
1727 (unsigned char *)&src[i],
1728 &auth_tok_list, &new_auth_tok,
1729 &packet_size, max_packet_size);
1730 if (rc) {
1731 ecryptfs_printk(KERN_ERR, "Error parsing "
1732 "tag 3 packet\n");
1733 rc = -EIO;
1734 goto out_wipe_list;
1735 }
1736 i += packet_size;
1737 rc = parse_tag_11_packet((unsigned char *)&src[i],
1738 sig_tmp_space,
1739 ECRYPTFS_SIG_SIZE,
1740 &tag_11_contents_size,
1741 &tag_11_packet_size,
1742 max_packet_size);
1743 if (rc) {
1744 ecryptfs_printk(KERN_ERR, "No valid "
1745 "(ecryptfs-specific) literal "
1746 "packet containing "
1747 "authentication token "
1748 "signature found after "
1749 "tag 3 packet\n");
1750 rc = -EIO;
1751 goto out_wipe_list;
1752 }
1753 i += tag_11_packet_size;
1754 if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1755 ecryptfs_printk(KERN_ERR, "Expected "
1756 "signature of size [%d]; "
1757 "read size [%d]\n",
1758 ECRYPTFS_SIG_SIZE,
1759 tag_11_contents_size);
1760 rc = -EIO;
1761 goto out_wipe_list;
1762 }
1763 ecryptfs_to_hex(new_auth_tok->token.password.signature,
1764 sig_tmp_space, tag_11_contents_size);
1765 new_auth_tok->token.password.signature[
1766 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1767 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1768 break;
1769 case ECRYPTFS_TAG_1_PACKET_TYPE:
1770 rc = parse_tag_1_packet(crypt_stat,
1771 (unsigned char *)&src[i],
1772 &auth_tok_list, &new_auth_tok,
1773 &packet_size, max_packet_size);
1774 if (rc) {
1775 ecryptfs_printk(KERN_ERR, "Error parsing "
1776 "tag 1 packet\n");
1777 rc = -EIO;
1778 goto out_wipe_list;
1779 }
1780 i += packet_size;
1781 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1782 break;
1783 case ECRYPTFS_TAG_11_PACKET_TYPE:
1784 ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1785 "(Tag 11 not allowed by itself)\n");
1786 rc = -EIO;
1787 goto out_wipe_list;
1788 break;
1789 default:
1790 ecryptfs_printk(KERN_DEBUG, "No packet at offset "
1791 "[%d] of the file header; hex value of "
1792 "character is [0x%.2x]\n", i, src[i]);
1793 next_packet_is_auth_tok_packet = 0;
1794 }
1795 }
1796 if (list_empty(&auth_tok_list)) {
1797 printk(KERN_ERR "The lower file appears to be a non-encrypted "
1798 "eCryptfs file; this is not supported in this version "
1799 "of the eCryptfs kernel module\n");
1800 rc = -EINVAL;
1801 goto out;
1802 }
1803 /* auth_tok_list contains the set of authentication tokens
1804 * parsed from the metadata. We need to find a matching
1805 * authentication token that has the secret component(s)
1806 * necessary to decrypt the EFEK in the auth_tok parsed from
1807 * the metadata. There may be several potential matches, but
1808 * just one will be sufficient to decrypt to get the FEK. */
1809 find_next_matching_auth_tok:
1810 found_auth_tok = 0;
1811 if (auth_tok_key) {
1812 key_put(auth_tok_key);
1813 auth_tok_key = NULL;
1814 }
1815 list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1816 candidate_auth_tok = &auth_tok_list_item->auth_tok;
1817 if (unlikely(ecryptfs_verbosity > 0)) {
1818 ecryptfs_printk(KERN_DEBUG,
1819 "Considering cadidate auth tok:\n");
1820 ecryptfs_dump_auth_tok(candidate_auth_tok);
1821 }
1822 rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1823 candidate_auth_tok);
1824 if (rc) {
1825 printk(KERN_ERR
1826 "Unrecognized candidate auth tok type: [%d]\n",
1827 candidate_auth_tok->token_type);
1828 rc = -EINVAL;
1829 goto out_wipe_list;
1830 }
1831 rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1832 &matching_auth_tok,
1833 crypt_stat->mount_crypt_stat,
1834 candidate_auth_tok_sig);
1835 if (!rc) {
1836 found_auth_tok = 1;
1837 goto found_matching_auth_tok;
1838 }
1839 }
1840 if (!found_auth_tok) {
1841 ecryptfs_printk(KERN_ERR, "Could not find a usable "
1842 "authentication token\n");
1843 rc = -EIO;
1844 goto out_wipe_list;
1845 }
1846 found_matching_auth_tok:
1847 if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1848 memcpy(&(candidate_auth_tok->token.private_key),
1849 &(matching_auth_tok->token.private_key),
1850 sizeof(struct ecryptfs_private_key));
1851 rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1852 crypt_stat);
1853 } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1854 memcpy(&(candidate_auth_tok->token.password),
1855 &(matching_auth_tok->token.password),
1856 sizeof(struct ecryptfs_password));
1857 rc = decrypt_passphrase_encrypted_session_key(
1858 candidate_auth_tok, crypt_stat);
1859 }
1860 if (rc) {
1861 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1862
1863 ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1864 "session key for authentication token with sig "
1865 "[%.*s]; rc = [%d]. Removing auth tok "
1866 "candidate from the list and searching for "
1867 "the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1868 candidate_auth_tok_sig, rc);
1869 list_for_each_entry_safe(auth_tok_list_item,
1870 auth_tok_list_item_tmp,
1871 &auth_tok_list, list) {
1872 if (candidate_auth_tok
1873 == &auth_tok_list_item->auth_tok) {
1874 list_del(&auth_tok_list_item->list);
1875 kmem_cache_free(
1876 ecryptfs_auth_tok_list_item_cache,
1877 auth_tok_list_item);
1878 goto find_next_matching_auth_tok;
1879 }
1880 }
1881 BUG();
1882 }
1883 rc = ecryptfs_compute_root_iv(crypt_stat);
1884 if (rc) {
1885 ecryptfs_printk(KERN_ERR, "Error computing "
1886 "the root IV\n");
1887 goto out_wipe_list;
1888 }
1889 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1890 if (rc) {
1891 ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1892 "context for cipher [%s]; rc = [%d]\n",
1893 crypt_stat->cipher, rc);
1894 }
1895 out_wipe_list:
1896 wipe_auth_tok_list(&auth_tok_list);
1897 out:
1898 if (auth_tok_key)
1899 key_put(auth_tok_key);
1900 return rc;
1901 }
1902
1903 static int
1904 pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
1905 struct ecryptfs_crypt_stat *crypt_stat,
1906 struct ecryptfs_key_record *key_rec)
1907 {
1908 struct ecryptfs_msg_ctx *msg_ctx = NULL;
1909 char *payload = NULL;
1910 size_t payload_len;
1911 struct ecryptfs_message *msg;
1912 int rc;
1913
1914 rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1915 ecryptfs_code_for_cipher_string(
1916 crypt_stat->cipher,
1917 crypt_stat->key_size),
1918 crypt_stat, &payload, &payload_len);
1919 if (rc) {
1920 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1921 goto out;
1922 }
1923 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1924 if (rc) {
1925 ecryptfs_printk(KERN_ERR, "Error sending message to "
1926 "ecryptfsd\n");
1927 goto out;
1928 }
1929 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1930 if (rc) {
1931 ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1932 "from the user space daemon\n");
1933 rc = -EIO;
1934 goto out;
1935 }
1936 rc = parse_tag_67_packet(key_rec, msg);
1937 if (rc)
1938 ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1939 kfree(msg);
1940 out:
1941 kfree(payload);
1942 return rc;
1943 }
1944 /**
1945 * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1946 * @dest: Buffer into which to write the packet
1947 * @remaining_bytes: Maximum number of bytes that can be writtn
1948 * @auth_tok: The authentication token used for generating the tag 1 packet
1949 * @crypt_stat: The cryptographic context
1950 * @key_rec: The key record struct for the tag 1 packet
1951 * @packet_size: This function will write the number of bytes that end
1952 * up constituting the packet; set to zero on error
1953 *
1954 * Returns zero on success; non-zero on error.
1955 */
1956 static int
1957 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1958 struct ecryptfs_auth_tok *auth_tok,
1959 struct ecryptfs_crypt_stat *crypt_stat,
1960 struct ecryptfs_key_record *key_rec, size_t *packet_size)
1961 {
1962 size_t i;
1963 size_t encrypted_session_key_valid = 0;
1964 size_t packet_size_length;
1965 size_t max_packet_size;
1966 int rc = 0;
1967
1968 (*packet_size) = 0;
1969 ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1970 ECRYPTFS_SIG_SIZE);
1971 encrypted_session_key_valid = 0;
1972 for (i = 0; i < crypt_stat->key_size; i++)
1973 encrypted_session_key_valid |=
1974 auth_tok->session_key.encrypted_key[i];
1975 if (encrypted_session_key_valid) {
1976 memcpy(key_rec->enc_key,
1977 auth_tok->session_key.encrypted_key,
1978 auth_tok->session_key.encrypted_key_size);
1979 goto encrypted_session_key_set;
1980 }
1981 if (auth_tok->session_key.encrypted_key_size == 0)
1982 auth_tok->session_key.encrypted_key_size =
1983 auth_tok->token.private_key.key_size;
1984 rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
1985 if (rc) {
1986 printk(KERN_ERR "Failed to encrypt session key via a key "
1987 "module; rc = [%d]\n", rc);
1988 goto out;
1989 }
1990 if (ecryptfs_verbosity > 0) {
1991 ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
1992 ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
1993 }
1994 encrypted_session_key_set:
1995 /* This format is inspired by OpenPGP; see RFC 2440
1996 * packet tag 1 */
1997 max_packet_size = (1 /* Tag 1 identifier */
1998 + 3 /* Max Tag 1 packet size */
1999 + 1 /* Version */
2000 + ECRYPTFS_SIG_SIZE /* Key identifier */
2001 + 1 /* Cipher identifier */
2002 + key_rec->enc_key_size); /* Encrypted key size */
2003 if (max_packet_size > (*remaining_bytes)) {
2004 printk(KERN_ERR "Packet length larger than maximum allowable; "
2005 "need up to [%td] bytes, but there are only [%td] "
2006 "available\n", max_packet_size, (*remaining_bytes));
2007 rc = -EINVAL;
2008 goto out;
2009 }
2010 dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2011 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2012 (max_packet_size - 4),
2013 &packet_size_length);
2014 if (rc) {
2015 ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2016 "header; cannot generate packet length\n");
2017 goto out;
2018 }
2019 (*packet_size) += packet_size_length;
2020 dest[(*packet_size)++] = 0x03; /* version 3 */
2021 memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2022 (*packet_size) += ECRYPTFS_SIG_SIZE;
2023 dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2024 memcpy(&dest[(*packet_size)], key_rec->enc_key,
2025 key_rec->enc_key_size);
2026 (*packet_size) += key_rec->enc_key_size;
2027 out:
2028 if (rc)
2029 (*packet_size) = 0;
2030 else
2031 (*remaining_bytes) -= (*packet_size);
2032 return rc;
2033 }
2034
2035 /**
2036 * write_tag_11_packet
2037 * @dest: Target into which Tag 11 packet is to be written
2038 * @remaining_bytes: Maximum packet length
2039 * @contents: Byte array of contents to copy in
2040 * @contents_length: Number of bytes in contents
2041 * @packet_length: Length of the Tag 11 packet written; zero on error
2042 *
2043 * Returns zero on success; non-zero on error.
2044 */
2045 static int
2046 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2047 size_t contents_length, size_t *packet_length)
2048 {
2049 size_t packet_size_length;
2050 size_t max_packet_size;
2051 int rc = 0;
2052
2053 (*packet_length) = 0;
2054 /* This format is inspired by OpenPGP; see RFC 2440
2055 * packet tag 11 */
2056 max_packet_size = (1 /* Tag 11 identifier */
2057 + 3 /* Max Tag 11 packet size */
2058 + 1 /* Binary format specifier */
2059 + 1 /* Filename length */
2060 + 8 /* Filename ("_CONSOLE") */
2061 + 4 /* Modification date */
2062 + contents_length); /* Literal data */
2063 if (max_packet_size > (*remaining_bytes)) {
2064 printk(KERN_ERR "Packet length larger than maximum allowable; "
2065 "need up to [%td] bytes, but there are only [%td] "
2066 "available\n", max_packet_size, (*remaining_bytes));
2067 rc = -EINVAL;
2068 goto out;
2069 }
2070 dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2071 rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2072 (max_packet_size - 4),
2073 &packet_size_length);
2074 if (rc) {
2075 printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2076 "generate packet length. rc = [%d]\n", rc);
2077 goto out;
2078 }
2079 (*packet_length) += packet_size_length;
2080 dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2081 dest[(*packet_length)++] = 8;
2082 memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2083 (*packet_length) += 8;
2084 memset(&dest[(*packet_length)], 0x00, 4);
2085 (*packet_length) += 4;
2086 memcpy(&dest[(*packet_length)], contents, contents_length);
2087 (*packet_length) += contents_length;
2088 out:
2089 if (rc)
2090 (*packet_length) = 0;
2091 else
2092 (*remaining_bytes) -= (*packet_length);
2093 return rc;
2094 }
2095
2096 /**
2097 * write_tag_3_packet
2098 * @dest: Buffer into which to write the packet
2099 * @remaining_bytes: Maximum number of bytes that can be written
2100 * @auth_tok: Authentication token
2101 * @crypt_stat: The cryptographic context
2102 * @key_rec: encrypted key
2103 * @packet_size: This function will write the number of bytes that end
2104 * up constituting the packet; set to zero on error
2105 *
2106 * Returns zero on success; non-zero on error.
2107 */
2108 static int
2109 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2110 struct ecryptfs_auth_tok *auth_tok,
2111 struct ecryptfs_crypt_stat *crypt_stat,
2112 struct ecryptfs_key_record *key_rec, size_t *packet_size)
2113 {
2114 size_t i;
2115 size_t encrypted_session_key_valid = 0;
2116 char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2117 struct scatterlist dst_sg[2];
2118 struct scatterlist src_sg[2];
2119 struct mutex *tfm_mutex = NULL;
2120 u8 cipher_code;
2121 size_t packet_size_length;
2122 size_t max_packet_size;
2123 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2124 crypt_stat->mount_crypt_stat;
2125 struct blkcipher_desc desc = {
2126 .tfm = NULL,
2127 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
2128 };
2129 int rc = 0;
2130
2131 (*packet_size) = 0;
2132 ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2133 ECRYPTFS_SIG_SIZE);
2134 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2135 crypt_stat->cipher);
2136 if (unlikely(rc)) {
2137 printk(KERN_ERR "Internal error whilst attempting to get "
2138 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2139 crypt_stat->cipher, rc);
2140 goto out;
2141 }
2142 if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2143 struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2144
2145 printk(KERN_WARNING "No key size specified at mount; "
2146 "defaulting to [%d]\n", alg->max_keysize);
2147 mount_crypt_stat->global_default_cipher_key_size =
2148 alg->max_keysize;
2149 }
2150 if (crypt_stat->key_size == 0)
2151 crypt_stat->key_size =
2152 mount_crypt_stat->global_default_cipher_key_size;
2153 if (auth_tok->session_key.encrypted_key_size == 0)
2154 auth_tok->session_key.encrypted_key_size =
2155 crypt_stat->key_size;
2156 if (crypt_stat->key_size == 24
2157 && strcmp("aes", crypt_stat->cipher) == 0) {
2158 memset((crypt_stat->key + 24), 0, 8);
2159 auth_tok->session_key.encrypted_key_size = 32;
2160 } else
2161 auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2162 key_rec->enc_key_size =
2163 auth_tok->session_key.encrypted_key_size;
2164 encrypted_session_key_valid = 0;
2165 for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2166 encrypted_session_key_valid |=
2167 auth_tok->session_key.encrypted_key[i];
2168 if (encrypted_session_key_valid) {
2169 ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2170 "using auth_tok->session_key.encrypted_key, "
2171 "where key_rec->enc_key_size = [%d]\n",
2172 key_rec->enc_key_size);
2173 memcpy(key_rec->enc_key,
2174 auth_tok->session_key.encrypted_key,
2175 key_rec->enc_key_size);
2176 goto encrypted_session_key_set;
2177 }
2178 if (auth_tok->token.password.flags &
2179 ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2180 ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2181 "session key encryption key of size [%d]\n",
2182 auth_tok->token.password.
2183 session_key_encryption_key_bytes);
2184 memcpy(session_key_encryption_key,
2185 auth_tok->token.password.session_key_encryption_key,
2186 crypt_stat->key_size);
2187 ecryptfs_printk(KERN_DEBUG,
2188 "Cached session key " "encryption key: \n");
2189 if (ecryptfs_verbosity > 0)
2190 ecryptfs_dump_hex(session_key_encryption_key, 16);
2191 }
2192 if (unlikely(ecryptfs_verbosity > 0)) {
2193 ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2194 ecryptfs_dump_hex(session_key_encryption_key, 16);
2195 }
2196 rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2197 src_sg, 2);
2198 if (rc < 1 || rc > 2) {
2199 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2200 "for crypt_stat session key; expected rc = 1; "
2201 "got rc = [%d]. key_rec->enc_key_size = [%d]\n",
2202 rc, key_rec->enc_key_size);
2203 rc = -ENOMEM;
2204 goto out;
2205 }
2206 rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2207 dst_sg, 2);
2208 if (rc < 1 || rc > 2) {
2209 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2210 "for crypt_stat encrypted session key; "
2211 "expected rc = 1; got rc = [%d]. "
2212 "key_rec->enc_key_size = [%d]\n", rc,
2213 key_rec->enc_key_size);
2214 rc = -ENOMEM;
2215 goto out;
2216 }
2217 mutex_lock(tfm_mutex);
2218 rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2219 crypt_stat->key_size);
2220 if (rc < 0) {
2221 mutex_unlock(tfm_mutex);
2222 ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2223 "context; rc = [%d]\n", rc);
2224 goto out;
2225 }
2226 rc = 0;
2227 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n",
2228 crypt_stat->key_size);
2229 rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2230 (*key_rec).enc_key_size);
2231 mutex_unlock(tfm_mutex);
2232 if (rc) {
2233 printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2234 goto out;
2235 }
2236 ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2237 if (ecryptfs_verbosity > 0) {
2238 ecryptfs_printk(KERN_DEBUG, "EFEK of size [%d]:\n",
2239 key_rec->enc_key_size);
2240 ecryptfs_dump_hex(key_rec->enc_key,
2241 key_rec->enc_key_size);
2242 }
2243 encrypted_session_key_set:
2244 /* This format is inspired by OpenPGP; see RFC 2440
2245 * packet tag 3 */
2246 max_packet_size = (1 /* Tag 3 identifier */
2247 + 3 /* Max Tag 3 packet size */
2248 + 1 /* Version */
2249 + 1 /* Cipher code */
2250 + 1 /* S2K specifier */
2251 + 1 /* Hash identifier */
2252 + ECRYPTFS_SALT_SIZE /* Salt */
2253 + 1 /* Hash iterations */
2254 + key_rec->enc_key_size); /* Encrypted key size */
2255 if (max_packet_size > (*remaining_bytes)) {
2256 printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2257 "there are only [%td] available\n", max_packet_size,
2258 (*remaining_bytes));
2259 rc = -EINVAL;
2260 goto out;
2261 }
2262 dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2263 /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2264 * to get the number of octets in the actual Tag 3 packet */
2265 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2266 (max_packet_size - 4),
2267 &packet_size_length);
2268 if (rc) {
2269 printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2270 "generate packet length. rc = [%d]\n", rc);
2271 goto out;
2272 }
2273 (*packet_size) += packet_size_length;
2274 dest[(*packet_size)++] = 0x04; /* version 4 */
2275 /* TODO: Break from RFC2440 so that arbitrary ciphers can be
2276 * specified with strings */
2277 cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2278 crypt_stat->key_size);
2279 if (cipher_code == 0) {
2280 ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2281 "cipher [%s]\n", crypt_stat->cipher);
2282 rc = -EINVAL;
2283 goto out;
2284 }
2285 dest[(*packet_size)++] = cipher_code;
2286 dest[(*packet_size)++] = 0x03; /* S2K */
2287 dest[(*packet_size)++] = 0x01; /* MD5 (TODO: parameterize) */
2288 memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2289 ECRYPTFS_SALT_SIZE);
2290 (*packet_size) += ECRYPTFS_SALT_SIZE; /* salt */
2291 dest[(*packet_size)++] = 0x60; /* hash iterations (65536) */
2292 memcpy(&dest[(*packet_size)], key_rec->enc_key,
2293 key_rec->enc_key_size);
2294 (*packet_size) += key_rec->enc_key_size;
2295 out:
2296 if (rc)
2297 (*packet_size) = 0;
2298 else
2299 (*remaining_bytes) -= (*packet_size);
2300 return rc;
2301 }
2302
2303 struct kmem_cache *ecryptfs_key_record_cache;
2304
2305 /**
2306 * ecryptfs_generate_key_packet_set
2307 * @dest_base: Virtual address from which to write the key record set
2308 * @crypt_stat: The cryptographic context from which the
2309 * authentication tokens will be retrieved
2310 * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2311 * for the global parameters
2312 * @len: The amount written
2313 * @max: The maximum amount of data allowed to be written
2314 *
2315 * Generates a key packet set and writes it to the virtual address
2316 * passed in.
2317 *
2318 * Returns zero on success; non-zero on error.
2319 */
2320 int
2321 ecryptfs_generate_key_packet_set(char *dest_base,
2322 struct ecryptfs_crypt_stat *crypt_stat,
2323 struct dentry *ecryptfs_dentry, size_t *len,
2324 size_t max)
2325 {
2326 struct ecryptfs_auth_tok *auth_tok;
2327 struct ecryptfs_global_auth_tok *global_auth_tok;
2328 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2329 &ecryptfs_superblock_to_private(
2330 ecryptfs_dentry->d_sb)->mount_crypt_stat;
2331 size_t written;
2332 struct ecryptfs_key_record *key_rec;
2333 struct ecryptfs_key_sig *key_sig;
2334 int rc = 0;
2335
2336 (*len) = 0;
2337 mutex_lock(&crypt_stat->keysig_list_mutex);
2338 key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2339 if (!key_rec) {
2340 rc = -ENOMEM;
2341 goto out;
2342 }
2343 list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2344 crypt_stat_list) {
2345 memset(key_rec, 0, sizeof(*key_rec));
2346 rc = ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
2347 mount_crypt_stat,
2348 key_sig->keysig);
2349 if (rc) {
2350 printk(KERN_ERR "Error attempting to get the global "
2351 "auth_tok; rc = [%d]\n", rc);
2352 goto out_free;
2353 }
2354 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID) {
2355 printk(KERN_WARNING
2356 "Skipping invalid auth tok with sig = [%s]\n",
2357 global_auth_tok->sig);
2358 continue;
2359 }
2360 auth_tok = global_auth_tok->global_auth_tok;
2361 if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2362 rc = write_tag_3_packet((dest_base + (*len)),
2363 &max, auth_tok,
2364 crypt_stat, key_rec,
2365 &written);
2366 if (rc) {
2367 ecryptfs_printk(KERN_WARNING, "Error "
2368 "writing tag 3 packet\n");
2369 goto out_free;
2370 }
2371 (*len) += written;
2372 /* Write auth tok signature packet */
2373 rc = write_tag_11_packet((dest_base + (*len)), &max,
2374 key_rec->sig,
2375 ECRYPTFS_SIG_SIZE, &written);
2376 if (rc) {
2377 ecryptfs_printk(KERN_ERR, "Error writing "
2378 "auth tok signature packet\n");
2379 goto out_free;
2380 }
2381 (*len) += written;
2382 } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2383 rc = write_tag_1_packet(dest_base + (*len),
2384 &max, auth_tok,
2385 crypt_stat, key_rec, &written);
2386 if (rc) {
2387 ecryptfs_printk(KERN_WARNING, "Error "
2388 "writing tag 1 packet\n");
2389 goto out_free;
2390 }
2391 (*len) += written;
2392 } else {
2393 ecryptfs_printk(KERN_WARNING, "Unsupported "
2394 "authentication token type\n");
2395 rc = -EINVAL;
2396 goto out_free;
2397 }
2398 }
2399 if (likely(max > 0)) {
2400 dest_base[(*len)] = 0x00;
2401 } else {
2402 ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2403 rc = -EIO;
2404 }
2405 out_free:
2406 kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2407 out:
2408 if (rc)
2409 (*len) = 0;
2410 mutex_unlock(&crypt_stat->keysig_list_mutex);
2411 return rc;
2412 }
2413
2414 struct kmem_cache *ecryptfs_key_sig_cache;
2415
2416 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2417 {
2418 struct ecryptfs_key_sig *new_key_sig;
2419
2420 new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2421 if (!new_key_sig) {
2422 printk(KERN_ERR
2423 "Error allocating from ecryptfs_key_sig_cache\n");
2424 return -ENOMEM;
2425 }
2426 memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2427 /* Caller must hold keysig_list_mutex */
2428 list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2429
2430 return 0;
2431 }
2432
2433 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2434
2435 int
2436 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2437 char *sig, u32 global_auth_tok_flags)
2438 {
2439 struct ecryptfs_global_auth_tok *new_auth_tok;
2440 int rc = 0;
2441
2442 new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2443 GFP_KERNEL);
2444 if (!new_auth_tok) {
2445 rc = -ENOMEM;
2446 printk(KERN_ERR "Error allocating from "
2447 "ecryptfs_global_auth_tok_cache\n");
2448 goto out;
2449 }
2450 memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2451 new_auth_tok->flags = global_auth_tok_flags;
2452 new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2453 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2454 list_add(&new_auth_tok->mount_crypt_stat_list,
2455 &mount_crypt_stat->global_auth_tok_list);
2456 mount_crypt_stat->num_global_auth_toks++;
2457 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2458 out:
2459 return rc;
2460 }
2461
This page took 0.085429 seconds and 5 git commands to generate.