3a61f056acf631d3c2b0329a60001d6218294aeb
[deliverable/linux.git] / fs / ecryptfs / keystore.c
1 /**
2 * eCryptfs: Linux filesystem encryption layer
3 * In-kernel key management code. Includes functions to parse and
4 * write authentication token-related packets with the underlying
5 * file.
6 *
7 * Copyright (C) 2004-2006 International Business Machines Corp.
8 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * Trevor S. Highland <trevor.highland@gmail.com>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25 * 02111-1307, USA.
26 */
27
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include "ecryptfs_kernel.h"
36
37 /**
38 * request_key returned an error instead of a valid key address;
39 * determine the type of error, make appropriate log entries, and
40 * return an error code.
41 */
42 static int process_request_key_err(long err_code)
43 {
44 int rc = 0;
45
46 switch (err_code) {
47 case -ENOKEY:
48 ecryptfs_printk(KERN_WARNING, "No key\n");
49 rc = -ENOENT;
50 break;
51 case -EKEYEXPIRED:
52 ecryptfs_printk(KERN_WARNING, "Key expired\n");
53 rc = -ETIME;
54 break;
55 case -EKEYREVOKED:
56 ecryptfs_printk(KERN_WARNING, "Key revoked\n");
57 rc = -EINVAL;
58 break;
59 default:
60 ecryptfs_printk(KERN_WARNING, "Unknown error code: "
61 "[0x%.16x]\n", err_code);
62 rc = -EINVAL;
63 }
64 return rc;
65 }
66
67 /**
68 * ecryptfs_parse_packet_length
69 * @data: Pointer to memory containing length at offset
70 * @size: This function writes the decoded size to this memory
71 * address; zero on error
72 * @length_size: The number of bytes occupied by the encoded length
73 *
74 * Returns zero on success; non-zero on error
75 */
76 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
77 size_t *length_size)
78 {
79 int rc = 0;
80
81 (*length_size) = 0;
82 (*size) = 0;
83 if (data[0] < 192) {
84 /* One-byte length */
85 (*size) = (unsigned char)data[0];
86 (*length_size) = 1;
87 } else if (data[0] < 224) {
88 /* Two-byte length */
89 (*size) = (((unsigned char)(data[0]) - 192) * 256);
90 (*size) += ((unsigned char)(data[1]) + 192);
91 (*length_size) = 2;
92 } else if (data[0] == 255) {
93 /* Five-byte length; we're not supposed to see this */
94 ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
95 "supported\n");
96 rc = -EINVAL;
97 goto out;
98 } else {
99 ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
100 rc = -EINVAL;
101 goto out;
102 }
103 out:
104 return rc;
105 }
106
107 /**
108 * ecryptfs_write_packet_length
109 * @dest: The byte array target into which to write the length. Must
110 * have at least 5 bytes allocated.
111 * @size: The length to write.
112 * @packet_size_length: The number of bytes used to encode the packet
113 * length is written to this address.
114 *
115 * Returns zero on success; non-zero on error.
116 */
117 int ecryptfs_write_packet_length(char *dest, size_t size,
118 size_t *packet_size_length)
119 {
120 int rc = 0;
121
122 if (size < 192) {
123 dest[0] = size;
124 (*packet_size_length) = 1;
125 } else if (size < 65536) {
126 dest[0] = (((size - 192) / 256) + 192);
127 dest[1] = ((size - 192) % 256);
128 (*packet_size_length) = 2;
129 } else {
130 rc = -EINVAL;
131 ecryptfs_printk(KERN_WARNING,
132 "Unsupported packet size: [%d]\n", size);
133 }
134 return rc;
135 }
136
137 static int
138 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
139 char **packet, size_t *packet_len)
140 {
141 size_t i = 0;
142 size_t data_len;
143 size_t packet_size_len;
144 char *message;
145 int rc;
146
147 /*
148 * ***** TAG 64 Packet Format *****
149 * | Content Type | 1 byte |
150 * | Key Identifier Size | 1 or 2 bytes |
151 * | Key Identifier | arbitrary |
152 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
153 * | Encrypted File Encryption Key | arbitrary |
154 */
155 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
156 + session_key->encrypted_key_size);
157 *packet = kmalloc(data_len, GFP_KERNEL);
158 message = *packet;
159 if (!message) {
160 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
161 rc = -ENOMEM;
162 goto out;
163 }
164 message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
165 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
166 &packet_size_len);
167 if (rc) {
168 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
169 "header; cannot generate packet length\n");
170 goto out;
171 }
172 i += packet_size_len;
173 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
174 i += ECRYPTFS_SIG_SIZE_HEX;
175 rc = ecryptfs_write_packet_length(&message[i],
176 session_key->encrypted_key_size,
177 &packet_size_len);
178 if (rc) {
179 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
180 "header; cannot generate packet length\n");
181 goto out;
182 }
183 i += packet_size_len;
184 memcpy(&message[i], session_key->encrypted_key,
185 session_key->encrypted_key_size);
186 i += session_key->encrypted_key_size;
187 *packet_len = i;
188 out:
189 return rc;
190 }
191
192 static int
193 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
194 struct ecryptfs_message *msg)
195 {
196 size_t i = 0;
197 char *data;
198 size_t data_len;
199 size_t m_size;
200 size_t message_len;
201 u16 checksum = 0;
202 u16 expected_checksum = 0;
203 int rc;
204
205 /*
206 * ***** TAG 65 Packet Format *****
207 * | Content Type | 1 byte |
208 * | Status Indicator | 1 byte |
209 * | File Encryption Key Size | 1 or 2 bytes |
210 * | File Encryption Key | arbitrary |
211 */
212 message_len = msg->data_len;
213 data = msg->data;
214 if (message_len < 4) {
215 rc = -EIO;
216 goto out;
217 }
218 if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
219 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
220 rc = -EIO;
221 goto out;
222 }
223 if (data[i++]) {
224 ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
225 "[%d]\n", data[i-1]);
226 rc = -EIO;
227 goto out;
228 }
229 rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
230 if (rc) {
231 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
232 "rc = [%d]\n", rc);
233 goto out;
234 }
235 i += data_len;
236 if (message_len < (i + m_size)) {
237 ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
238 "is shorter than expected\n");
239 rc = -EIO;
240 goto out;
241 }
242 if (m_size < 3) {
243 ecryptfs_printk(KERN_ERR,
244 "The decrypted key is not long enough to "
245 "include a cipher code and checksum\n");
246 rc = -EIO;
247 goto out;
248 }
249 *cipher_code = data[i++];
250 /* The decrypted key includes 1 byte cipher code and 2 byte checksum */
251 session_key->decrypted_key_size = m_size - 3;
252 if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
253 ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
254 "the maximum key size [%d]\n",
255 session_key->decrypted_key_size,
256 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
257 rc = -EIO;
258 goto out;
259 }
260 memcpy(session_key->decrypted_key, &data[i],
261 session_key->decrypted_key_size);
262 i += session_key->decrypted_key_size;
263 expected_checksum += (unsigned char)(data[i++]) << 8;
264 expected_checksum += (unsigned char)(data[i++]);
265 for (i = 0; i < session_key->decrypted_key_size; i++)
266 checksum += session_key->decrypted_key[i];
267 if (expected_checksum != checksum) {
268 ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
269 "encryption key; expected [%x]; calculated "
270 "[%x]\n", expected_checksum, checksum);
271 rc = -EIO;
272 }
273 out:
274 return rc;
275 }
276
277
278 static int
279 write_tag_66_packet(char *signature, u8 cipher_code,
280 struct ecryptfs_crypt_stat *crypt_stat, char **packet,
281 size_t *packet_len)
282 {
283 size_t i = 0;
284 size_t j;
285 size_t data_len;
286 size_t checksum = 0;
287 size_t packet_size_len;
288 char *message;
289 int rc;
290
291 /*
292 * ***** TAG 66 Packet Format *****
293 * | Content Type | 1 byte |
294 * | Key Identifier Size | 1 or 2 bytes |
295 * | Key Identifier | arbitrary |
296 * | File Encryption Key Size | 1 or 2 bytes |
297 * | File Encryption Key | arbitrary |
298 */
299 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
300 *packet = kmalloc(data_len, GFP_KERNEL);
301 message = *packet;
302 if (!message) {
303 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
304 rc = -ENOMEM;
305 goto out;
306 }
307 message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
308 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
309 &packet_size_len);
310 if (rc) {
311 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
312 "header; cannot generate packet length\n");
313 goto out;
314 }
315 i += packet_size_len;
316 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
317 i += ECRYPTFS_SIG_SIZE_HEX;
318 /* The encrypted key includes 1 byte cipher code and 2 byte checksum */
319 rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
320 &packet_size_len);
321 if (rc) {
322 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
323 "header; cannot generate packet length\n");
324 goto out;
325 }
326 i += packet_size_len;
327 message[i++] = cipher_code;
328 memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
329 i += crypt_stat->key_size;
330 for (j = 0; j < crypt_stat->key_size; j++)
331 checksum += crypt_stat->key[j];
332 message[i++] = (checksum / 256) % 256;
333 message[i++] = (checksum % 256);
334 *packet_len = i;
335 out:
336 return rc;
337 }
338
339 static int
340 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
341 struct ecryptfs_message *msg)
342 {
343 size_t i = 0;
344 char *data;
345 size_t data_len;
346 size_t message_len;
347 int rc;
348
349 /*
350 * ***** TAG 65 Packet Format *****
351 * | Content Type | 1 byte |
352 * | Status Indicator | 1 byte |
353 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
354 * | Encrypted File Encryption Key | arbitrary |
355 */
356 message_len = msg->data_len;
357 data = msg->data;
358 /* verify that everything through the encrypted FEK size is present */
359 if (message_len < 4) {
360 rc = -EIO;
361 printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
362 "message length is [%d]\n", __func__, message_len, 4);
363 goto out;
364 }
365 if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
366 rc = -EIO;
367 printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
368 __func__);
369 goto out;
370 }
371 if (data[i++]) {
372 rc = -EIO;
373 printk(KERN_ERR "%s: Status indicator has non zero "
374 "value [%d]\n", __func__, data[i-1]);
375
376 goto out;
377 }
378 rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
379 &data_len);
380 if (rc) {
381 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
382 "rc = [%d]\n", rc);
383 goto out;
384 }
385 i += data_len;
386 if (message_len < (i + key_rec->enc_key_size)) {
387 rc = -EIO;
388 printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
389 __func__, message_len, (i + key_rec->enc_key_size));
390 goto out;
391 }
392 if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
393 rc = -EIO;
394 printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
395 "the maximum key size [%d]\n", __func__,
396 key_rec->enc_key_size,
397 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
398 goto out;
399 }
400 memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
401 out:
402 return rc;
403 }
404
405 static int
406 ecryptfs_find_global_auth_tok_for_sig(
407 struct ecryptfs_global_auth_tok **global_auth_tok,
408 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
409 {
410 struct ecryptfs_global_auth_tok *walker;
411 int rc = 0;
412
413 (*global_auth_tok) = NULL;
414 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
415 list_for_each_entry(walker,
416 &mount_crypt_stat->global_auth_tok_list,
417 mount_crypt_stat_list) {
418 if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX) == 0) {
419 (*global_auth_tok) = walker;
420 goto out;
421 }
422 }
423 rc = -EINVAL;
424 out:
425 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
426 return rc;
427 }
428
429 /**
430 * ecryptfs_find_auth_tok_for_sig
431 * @auth_tok: Set to the matching auth_tok; NULL if not found
432 * @crypt_stat: inode crypt_stat crypto context
433 * @sig: Sig of auth_tok to find
434 *
435 * For now, this function simply looks at the registered auth_tok's
436 * linked off the mount_crypt_stat, so all the auth_toks that can be
437 * used must be registered at mount time. This function could
438 * potentially try a lot harder to find auth_tok's (e.g., by calling
439 * out to ecryptfsd to dynamically retrieve an auth_tok object) so
440 * that static registration of auth_tok's will no longer be necessary.
441 *
442 * Returns zero on no error; non-zero on error
443 */
444 static int
445 ecryptfs_find_auth_tok_for_sig(
446 struct ecryptfs_auth_tok **auth_tok,
447 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
448 char *sig)
449 {
450 struct ecryptfs_global_auth_tok *global_auth_tok;
451 int rc = 0;
452
453 (*auth_tok) = NULL;
454 if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
455 mount_crypt_stat, sig)) {
456 struct key *auth_tok_key;
457
458 rc = ecryptfs_keyring_auth_tok_for_sig(&auth_tok_key, auth_tok,
459 sig);
460 } else
461 (*auth_tok) = global_auth_tok->global_auth_tok;
462 return rc;
463 }
464
465 /**
466 * write_tag_70_packet can gobble a lot of stack space. We stuff most
467 * of the function's parameters in a kmalloc'd struct to help reduce
468 * eCryptfs' overall stack usage.
469 */
470 struct ecryptfs_write_tag_70_packet_silly_stack {
471 u8 cipher_code;
472 size_t max_packet_size;
473 size_t packet_size_len;
474 size_t block_aligned_filename_size;
475 size_t block_size;
476 size_t i;
477 size_t j;
478 size_t num_rand_bytes;
479 struct mutex *tfm_mutex;
480 char *block_aligned_filename;
481 struct ecryptfs_auth_tok *auth_tok;
482 struct scatterlist src_sg;
483 struct scatterlist dst_sg;
484 struct blkcipher_desc desc;
485 char iv[ECRYPTFS_MAX_IV_BYTES];
486 char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
487 char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
488 struct hash_desc hash_desc;
489 struct scatterlist hash_sg;
490 };
491
492 /**
493 * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
494 * @filename: NULL-terminated filename string
495 *
496 * This is the simplest mechanism for achieving filename encryption in
497 * eCryptfs. It encrypts the given filename with the mount-wide
498 * filename encryption key (FNEK) and stores it in a packet to @dest,
499 * which the callee will encode and write directly into the dentry
500 * name.
501 */
502 int
503 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
504 size_t *packet_size,
505 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
506 char *filename, size_t filename_size)
507 {
508 struct ecryptfs_write_tag_70_packet_silly_stack *s;
509 int rc = 0;
510
511 s = kmalloc(sizeof(*s), GFP_KERNEL);
512 if (!s) {
513 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
514 "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
515 goto out;
516 }
517 s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
518 (*packet_size) = 0;
519 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
520 &s->desc.tfm,
521 &s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
522 if (unlikely(rc)) {
523 printk(KERN_ERR "Internal error whilst attempting to get "
524 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
525 mount_crypt_stat->global_default_fn_cipher_name, rc);
526 goto out;
527 }
528 mutex_lock(s->tfm_mutex);
529 s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
530 /* Plus one for the \0 separator between the random prefix
531 * and the plaintext filename */
532 s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
533 s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
534 if ((s->block_aligned_filename_size % s->block_size) != 0) {
535 s->num_rand_bytes += (s->block_size
536 - (s->block_aligned_filename_size
537 % s->block_size));
538 s->block_aligned_filename_size = (s->num_rand_bytes
539 + filename_size);
540 }
541 /* Octet 0: Tag 70 identifier
542 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
543 * and block-aligned encrypted filename size)
544 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
545 * Octet N2-N3: Cipher identifier (1 octet)
546 * Octets N3-N4: Block-aligned encrypted filename
547 * - Consists of a minimum number of random characters, a \0
548 * separator, and then the filename */
549 s->max_packet_size = (1 /* Tag 70 identifier */
550 + 3 /* Max Tag 70 packet size */
551 + ECRYPTFS_SIG_SIZE /* FNEK sig */
552 + 1 /* Cipher identifier */
553 + s->block_aligned_filename_size);
554 if (dest == NULL) {
555 (*packet_size) = s->max_packet_size;
556 goto out_unlock;
557 }
558 if (s->max_packet_size > (*remaining_bytes)) {
559 printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
560 "[%zd] available\n", __func__, s->max_packet_size,
561 (*remaining_bytes));
562 rc = -EINVAL;
563 goto out_unlock;
564 }
565 s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
566 GFP_KERNEL);
567 if (!s->block_aligned_filename) {
568 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
569 "kzalloc [%zd] bytes\n", __func__,
570 s->block_aligned_filename_size);
571 rc = -ENOMEM;
572 goto out_unlock;
573 }
574 s->i = 0;
575 dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
576 rc = ecryptfs_write_packet_length(&dest[s->i],
577 (ECRYPTFS_SIG_SIZE
578 + 1 /* Cipher code */
579 + s->block_aligned_filename_size),
580 &s->packet_size_len);
581 if (rc) {
582 printk(KERN_ERR "%s: Error generating tag 70 packet "
583 "header; cannot generate packet length; rc = [%d]\n",
584 __func__, rc);
585 goto out_free_unlock;
586 }
587 s->i += s->packet_size_len;
588 ecryptfs_from_hex(&dest[s->i],
589 mount_crypt_stat->global_default_fnek_sig,
590 ECRYPTFS_SIG_SIZE);
591 s->i += ECRYPTFS_SIG_SIZE;
592 s->cipher_code = ecryptfs_code_for_cipher_string(
593 mount_crypt_stat->global_default_fn_cipher_name,
594 mount_crypt_stat->global_default_fn_cipher_key_bytes);
595 if (s->cipher_code == 0) {
596 printk(KERN_WARNING "%s: Unable to generate code for "
597 "cipher [%s] with key bytes [%zd]\n", __func__,
598 mount_crypt_stat->global_default_fn_cipher_name,
599 mount_crypt_stat->global_default_fn_cipher_key_bytes);
600 rc = -EINVAL;
601 goto out_free_unlock;
602 }
603 dest[s->i++] = s->cipher_code;
604 rc = ecryptfs_find_auth_tok_for_sig(
605 &s->auth_tok, mount_crypt_stat,
606 mount_crypt_stat->global_default_fnek_sig);
607 if (rc) {
608 printk(KERN_ERR "%s: Error attempting to find auth tok for "
609 "fnek sig [%s]; rc = [%d]\n", __func__,
610 mount_crypt_stat->global_default_fnek_sig, rc);
611 goto out_free_unlock;
612 }
613 /* TODO: Support other key modules than passphrase for
614 * filename encryption */
615 BUG_ON(s->auth_tok->token_type != ECRYPTFS_PASSWORD);
616 sg_init_one(
617 &s->hash_sg,
618 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
619 s->auth_tok->token.password.session_key_encryption_key_bytes);
620 s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
621 s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
622 CRYPTO_ALG_ASYNC);
623 if (IS_ERR(s->hash_desc.tfm)) {
624 rc = PTR_ERR(s->hash_desc.tfm);
625 printk(KERN_ERR "%s: Error attempting to "
626 "allocate hash crypto context; rc = [%d]\n",
627 __func__, rc);
628 goto out_free_unlock;
629 }
630 rc = crypto_hash_init(&s->hash_desc);
631 if (rc) {
632 printk(KERN_ERR
633 "%s: Error initializing crypto hash; rc = [%d]\n",
634 __func__, rc);
635 goto out_release_free_unlock;
636 }
637 rc = crypto_hash_update(
638 &s->hash_desc, &s->hash_sg,
639 s->auth_tok->token.password.session_key_encryption_key_bytes);
640 if (rc) {
641 printk(KERN_ERR
642 "%s: Error updating crypto hash; rc = [%d]\n",
643 __func__, rc);
644 goto out_release_free_unlock;
645 }
646 rc = crypto_hash_final(&s->hash_desc, s->hash);
647 if (rc) {
648 printk(KERN_ERR
649 "%s: Error finalizing crypto hash; rc = [%d]\n",
650 __func__, rc);
651 goto out_release_free_unlock;
652 }
653 for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
654 s->block_aligned_filename[s->j] =
655 s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
656 if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
657 == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
658 sg_init_one(&s->hash_sg, (u8 *)s->hash,
659 ECRYPTFS_TAG_70_DIGEST_SIZE);
660 rc = crypto_hash_init(&s->hash_desc);
661 if (rc) {
662 printk(KERN_ERR
663 "%s: Error initializing crypto hash; "
664 "rc = [%d]\n", __func__, rc);
665 goto out_release_free_unlock;
666 }
667 rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
668 ECRYPTFS_TAG_70_DIGEST_SIZE);
669 if (rc) {
670 printk(KERN_ERR
671 "%s: Error updating crypto hash; "
672 "rc = [%d]\n", __func__, rc);
673 goto out_release_free_unlock;
674 }
675 rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
676 if (rc) {
677 printk(KERN_ERR
678 "%s: Error finalizing crypto hash; "
679 "rc = [%d]\n", __func__, rc);
680 goto out_release_free_unlock;
681 }
682 memcpy(s->hash, s->tmp_hash,
683 ECRYPTFS_TAG_70_DIGEST_SIZE);
684 }
685 if (s->block_aligned_filename[s->j] == '\0')
686 s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
687 }
688 memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
689 filename_size);
690 rc = virt_to_scatterlist(s->block_aligned_filename,
691 s->block_aligned_filename_size, &s->src_sg, 1);
692 if (rc != 1) {
693 printk(KERN_ERR "%s: Internal error whilst attempting to "
694 "convert filename memory to scatterlist; "
695 "expected rc = 1; got rc = [%d]. "
696 "block_aligned_filename_size = [%zd]\n", __func__, rc,
697 s->block_aligned_filename_size);
698 goto out_release_free_unlock;
699 }
700 rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
701 &s->dst_sg, 1);
702 if (rc != 1) {
703 printk(KERN_ERR "%s: Internal error whilst attempting to "
704 "convert encrypted filename memory to scatterlist; "
705 "expected rc = 1; got rc = [%d]. "
706 "block_aligned_filename_size = [%zd]\n", __func__, rc,
707 s->block_aligned_filename_size);
708 goto out_release_free_unlock;
709 }
710 /* The characters in the first block effectively do the job
711 * of the IV here, so we just use 0's for the IV. Note the
712 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
713 * >= ECRYPTFS_MAX_IV_BYTES. */
714 memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
715 s->desc.info = s->iv;
716 rc = crypto_blkcipher_setkey(
717 s->desc.tfm,
718 s->auth_tok->token.password.session_key_encryption_key,
719 mount_crypt_stat->global_default_fn_cipher_key_bytes);
720 if (rc < 0) {
721 printk(KERN_ERR "%s: Error setting key for crypto context; "
722 "rc = [%d]. s->auth_tok->token.password.session_key_"
723 "encryption_key = [0x%p]; mount_crypt_stat->"
724 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
725 rc,
726 s->auth_tok->token.password.session_key_encryption_key,
727 mount_crypt_stat->global_default_fn_cipher_key_bytes);
728 goto out_release_free_unlock;
729 }
730 rc = crypto_blkcipher_encrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
731 s->block_aligned_filename_size);
732 if (rc) {
733 printk(KERN_ERR "%s: Error attempting to encrypt filename; "
734 "rc = [%d]\n", __func__, rc);
735 goto out_release_free_unlock;
736 }
737 s->i += s->block_aligned_filename_size;
738 (*packet_size) = s->i;
739 (*remaining_bytes) -= (*packet_size);
740 out_release_free_unlock:
741 crypto_free_hash(s->hash_desc.tfm);
742 out_free_unlock:
743 kzfree(s->block_aligned_filename);
744 out_unlock:
745 mutex_unlock(s->tfm_mutex);
746 out:
747 kfree(s);
748 return rc;
749 }
750
751 struct ecryptfs_parse_tag_70_packet_silly_stack {
752 u8 cipher_code;
753 size_t max_packet_size;
754 size_t packet_size_len;
755 size_t parsed_tag_70_packet_size;
756 size_t block_aligned_filename_size;
757 size_t block_size;
758 size_t i;
759 struct mutex *tfm_mutex;
760 char *decrypted_filename;
761 struct ecryptfs_auth_tok *auth_tok;
762 struct scatterlist src_sg;
763 struct scatterlist dst_sg;
764 struct blkcipher_desc desc;
765 char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
766 char iv[ECRYPTFS_MAX_IV_BYTES];
767 char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
768 };
769
770 /**
771 * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
772 * @filename: This function kmalloc's the memory for the filename
773 * @filename_size: This function sets this to the amount of memory
774 * kmalloc'd for the filename
775 * @packet_size: This function sets this to the the number of octets
776 * in the packet parsed
777 * @mount_crypt_stat: The mount-wide cryptographic context
778 * @data: The memory location containing the start of the tag 70
779 * packet
780 * @max_packet_size: The maximum legal size of the packet to be parsed
781 * from @data
782 *
783 * Returns zero on success; non-zero otherwise
784 */
785 int
786 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
787 size_t *packet_size,
788 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
789 char *data, size_t max_packet_size)
790 {
791 struct ecryptfs_parse_tag_70_packet_silly_stack *s;
792 int rc = 0;
793
794 (*packet_size) = 0;
795 (*filename_size) = 0;
796 (*filename) = NULL;
797 s = kmalloc(sizeof(*s), GFP_KERNEL);
798 if (!s) {
799 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
800 "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
801 goto out;
802 }
803 s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
804 if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
805 printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
806 "at least [%d]\n", __func__, max_packet_size,
807 (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
808 rc = -EINVAL;
809 goto out;
810 }
811 /* Octet 0: Tag 70 identifier
812 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
813 * and block-aligned encrypted filename size)
814 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
815 * Octet N2-N3: Cipher identifier (1 octet)
816 * Octets N3-N4: Block-aligned encrypted filename
817 * - Consists of a minimum number of random numbers, a \0
818 * separator, and then the filename */
819 if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
820 printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
821 "tag [0x%.2x]\n", __func__,
822 data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
823 rc = -EINVAL;
824 goto out;
825 }
826 rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
827 &s->parsed_tag_70_packet_size,
828 &s->packet_size_len);
829 if (rc) {
830 printk(KERN_WARNING "%s: Error parsing packet length; "
831 "rc = [%d]\n", __func__, rc);
832 goto out;
833 }
834 s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
835 - ECRYPTFS_SIG_SIZE - 1);
836 if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
837 > max_packet_size) {
838 printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
839 "size is [%zd]\n", __func__, max_packet_size,
840 (1 + s->packet_size_len + 1
841 + s->block_aligned_filename_size));
842 rc = -EINVAL;
843 goto out;
844 }
845 (*packet_size) += s->packet_size_len;
846 ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
847 ECRYPTFS_SIG_SIZE);
848 s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
849 (*packet_size) += ECRYPTFS_SIG_SIZE;
850 s->cipher_code = data[(*packet_size)++];
851 rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
852 if (rc) {
853 printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
854 __func__, s->cipher_code);
855 goto out;
856 }
857 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
858 &s->tfm_mutex,
859 s->cipher_string);
860 if (unlikely(rc)) {
861 printk(KERN_ERR "Internal error whilst attempting to get "
862 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
863 s->cipher_string, rc);
864 goto out;
865 }
866 mutex_lock(s->tfm_mutex);
867 rc = virt_to_scatterlist(&data[(*packet_size)],
868 s->block_aligned_filename_size, &s->src_sg, 1);
869 if (rc != 1) {
870 printk(KERN_ERR "%s: Internal error whilst attempting to "
871 "convert encrypted filename memory to scatterlist; "
872 "expected rc = 1; got rc = [%d]. "
873 "block_aligned_filename_size = [%zd]\n", __func__, rc,
874 s->block_aligned_filename_size);
875 goto out_unlock;
876 }
877 (*packet_size) += s->block_aligned_filename_size;
878 s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
879 GFP_KERNEL);
880 if (!s->decrypted_filename) {
881 printk(KERN_ERR "%s: Out of memory whilst attempting to "
882 "kmalloc [%zd] bytes\n", __func__,
883 s->block_aligned_filename_size);
884 rc = -ENOMEM;
885 goto out_unlock;
886 }
887 rc = virt_to_scatterlist(s->decrypted_filename,
888 s->block_aligned_filename_size, &s->dst_sg, 1);
889 if (rc != 1) {
890 printk(KERN_ERR "%s: Internal error whilst attempting to "
891 "convert decrypted filename memory to scatterlist; "
892 "expected rc = 1; got rc = [%d]. "
893 "block_aligned_filename_size = [%zd]\n", __func__, rc,
894 s->block_aligned_filename_size);
895 goto out_free_unlock;
896 }
897 /* The characters in the first block effectively do the job of
898 * the IV here, so we just use 0's for the IV. Note the
899 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
900 * >= ECRYPTFS_MAX_IV_BYTES. */
901 memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
902 s->desc.info = s->iv;
903 rc = ecryptfs_find_auth_tok_for_sig(&s->auth_tok, mount_crypt_stat,
904 s->fnek_sig_hex);
905 if (rc) {
906 printk(KERN_ERR "%s: Error attempting to find auth tok for "
907 "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
908 rc);
909 goto out_free_unlock;
910 }
911 /* TODO: Support other key modules than passphrase for
912 * filename encryption */
913 BUG_ON(s->auth_tok->token_type != ECRYPTFS_PASSWORD);
914 rc = crypto_blkcipher_setkey(
915 s->desc.tfm,
916 s->auth_tok->token.password.session_key_encryption_key,
917 mount_crypt_stat->global_default_fn_cipher_key_bytes);
918 if (rc < 0) {
919 printk(KERN_ERR "%s: Error setting key for crypto context; "
920 "rc = [%d]. s->auth_tok->token.password.session_key_"
921 "encryption_key = [0x%p]; mount_crypt_stat->"
922 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
923 rc,
924 s->auth_tok->token.password.session_key_encryption_key,
925 mount_crypt_stat->global_default_fn_cipher_key_bytes);
926 goto out_free_unlock;
927 }
928 rc = crypto_blkcipher_decrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
929 s->block_aligned_filename_size);
930 if (rc) {
931 printk(KERN_ERR "%s: Error attempting to decrypt filename; "
932 "rc = [%d]\n", __func__, rc);
933 goto out_free_unlock;
934 }
935 s->i = 0;
936 while (s->decrypted_filename[s->i] != '\0'
937 && s->i < s->block_aligned_filename_size)
938 s->i++;
939 if (s->i == s->block_aligned_filename_size) {
940 printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
941 "find valid separator between random characters and "
942 "the filename\n", __func__);
943 rc = -EINVAL;
944 goto out_free_unlock;
945 }
946 s->i++;
947 (*filename_size) = (s->block_aligned_filename_size - s->i);
948 if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
949 printk(KERN_WARNING "%s: Filename size is [%zd], which is "
950 "invalid\n", __func__, (*filename_size));
951 rc = -EINVAL;
952 goto out_free_unlock;
953 }
954 (*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
955 if (!(*filename)) {
956 printk(KERN_ERR "%s: Out of memory whilst attempting to "
957 "kmalloc [%zd] bytes\n", __func__,
958 ((*filename_size) + 1));
959 rc = -ENOMEM;
960 goto out_free_unlock;
961 }
962 memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
963 (*filename)[(*filename_size)] = '\0';
964 out_free_unlock:
965 kfree(s->decrypted_filename);
966 out_unlock:
967 mutex_unlock(s->tfm_mutex);
968 out:
969 if (rc) {
970 (*packet_size) = 0;
971 (*filename_size) = 0;
972 (*filename) = NULL;
973 }
974 kfree(s);
975 return rc;
976 }
977
978 static int
979 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
980 {
981 int rc = 0;
982
983 (*sig) = NULL;
984 switch (auth_tok->token_type) {
985 case ECRYPTFS_PASSWORD:
986 (*sig) = auth_tok->token.password.signature;
987 break;
988 case ECRYPTFS_PRIVATE_KEY:
989 (*sig) = auth_tok->token.private_key.signature;
990 break;
991 default:
992 printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
993 auth_tok->token_type);
994 rc = -EINVAL;
995 }
996 return rc;
997 }
998
999 /**
1000 * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1001 * @auth_tok: The key authentication token used to decrypt the session key
1002 * @crypt_stat: The cryptographic context
1003 *
1004 * Returns zero on success; non-zero error otherwise.
1005 */
1006 static int
1007 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1008 struct ecryptfs_crypt_stat *crypt_stat)
1009 {
1010 u8 cipher_code = 0;
1011 struct ecryptfs_msg_ctx *msg_ctx;
1012 struct ecryptfs_message *msg = NULL;
1013 char *auth_tok_sig;
1014 char *payload;
1015 size_t payload_len;
1016 int rc;
1017
1018 rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1019 if (rc) {
1020 printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1021 auth_tok->token_type);
1022 goto out;
1023 }
1024 rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1025 &payload, &payload_len);
1026 if (rc) {
1027 ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1028 goto out;
1029 }
1030 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1031 if (rc) {
1032 ecryptfs_printk(KERN_ERR, "Error sending message to "
1033 "ecryptfsd\n");
1034 goto out;
1035 }
1036 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1037 if (rc) {
1038 ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1039 "from the user space daemon\n");
1040 rc = -EIO;
1041 goto out;
1042 }
1043 rc = parse_tag_65_packet(&(auth_tok->session_key),
1044 &cipher_code, msg);
1045 if (rc) {
1046 printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1047 rc);
1048 goto out;
1049 }
1050 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1051 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1052 auth_tok->session_key.decrypted_key_size);
1053 crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1054 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1055 if (rc) {
1056 ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1057 cipher_code)
1058 goto out;
1059 }
1060 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1061 if (ecryptfs_verbosity > 0) {
1062 ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1063 ecryptfs_dump_hex(crypt_stat->key,
1064 crypt_stat->key_size);
1065 }
1066 out:
1067 if (msg)
1068 kfree(msg);
1069 return rc;
1070 }
1071
1072 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1073 {
1074 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1075 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1076
1077 list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1078 auth_tok_list_head, list) {
1079 list_del(&auth_tok_list_item->list);
1080 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1081 auth_tok_list_item);
1082 }
1083 }
1084
1085 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1086
1087 /**
1088 * parse_tag_1_packet
1089 * @crypt_stat: The cryptographic context to modify based on packet contents
1090 * @data: The raw bytes of the packet.
1091 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1092 * a new authentication token will be placed at the
1093 * end of this list for this packet.
1094 * @new_auth_tok: Pointer to a pointer to memory that this function
1095 * allocates; sets the memory address of the pointer to
1096 * NULL on error. This object is added to the
1097 * auth_tok_list.
1098 * @packet_size: This function writes the size of the parsed packet
1099 * into this memory location; zero on error.
1100 * @max_packet_size: The maximum allowable packet size
1101 *
1102 * Returns zero on success; non-zero on error.
1103 */
1104 static int
1105 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1106 unsigned char *data, struct list_head *auth_tok_list,
1107 struct ecryptfs_auth_tok **new_auth_tok,
1108 size_t *packet_size, size_t max_packet_size)
1109 {
1110 size_t body_size;
1111 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1112 size_t length_size;
1113 int rc = 0;
1114
1115 (*packet_size) = 0;
1116 (*new_auth_tok) = NULL;
1117 /**
1118 * This format is inspired by OpenPGP; see RFC 2440
1119 * packet tag 1
1120 *
1121 * Tag 1 identifier (1 byte)
1122 * Max Tag 1 packet size (max 3 bytes)
1123 * Version (1 byte)
1124 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1125 * Cipher identifier (1 byte)
1126 * Encrypted key size (arbitrary)
1127 *
1128 * 12 bytes minimum packet size
1129 */
1130 if (unlikely(max_packet_size < 12)) {
1131 printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1132 rc = -EINVAL;
1133 goto out;
1134 }
1135 if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1136 printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1137 ECRYPTFS_TAG_1_PACKET_TYPE);
1138 rc = -EINVAL;
1139 goto out;
1140 }
1141 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1142 * at end of function upon failure */
1143 auth_tok_list_item =
1144 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1145 GFP_KERNEL);
1146 if (!auth_tok_list_item) {
1147 printk(KERN_ERR "Unable to allocate memory\n");
1148 rc = -ENOMEM;
1149 goto out;
1150 }
1151 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1152 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1153 &length_size);
1154 if (rc) {
1155 printk(KERN_WARNING "Error parsing packet length; "
1156 "rc = [%d]\n", rc);
1157 goto out_free;
1158 }
1159 if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1160 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1161 rc = -EINVAL;
1162 goto out_free;
1163 }
1164 (*packet_size) += length_size;
1165 if (unlikely((*packet_size) + body_size > max_packet_size)) {
1166 printk(KERN_WARNING "Packet size exceeds max\n");
1167 rc = -EINVAL;
1168 goto out_free;
1169 }
1170 if (unlikely(data[(*packet_size)++] != 0x03)) {
1171 printk(KERN_WARNING "Unknown version number [%d]\n",
1172 data[(*packet_size) - 1]);
1173 rc = -EINVAL;
1174 goto out_free;
1175 }
1176 ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1177 &data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1178 *packet_size += ECRYPTFS_SIG_SIZE;
1179 /* This byte is skipped because the kernel does not need to
1180 * know which public key encryption algorithm was used */
1181 (*packet_size)++;
1182 (*new_auth_tok)->session_key.encrypted_key_size =
1183 body_size - (ECRYPTFS_SIG_SIZE + 2);
1184 if ((*new_auth_tok)->session_key.encrypted_key_size
1185 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1186 printk(KERN_WARNING "Tag 1 packet contains key larger "
1187 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1188 rc = -EINVAL;
1189 goto out;
1190 }
1191 memcpy((*new_auth_tok)->session_key.encrypted_key,
1192 &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1193 (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1194 (*new_auth_tok)->session_key.flags &=
1195 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1196 (*new_auth_tok)->session_key.flags |=
1197 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1198 (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1199 (*new_auth_tok)->flags = 0;
1200 (*new_auth_tok)->session_key.flags &=
1201 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1202 (*new_auth_tok)->session_key.flags &=
1203 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1204 list_add(&auth_tok_list_item->list, auth_tok_list);
1205 goto out;
1206 out_free:
1207 (*new_auth_tok) = NULL;
1208 memset(auth_tok_list_item, 0,
1209 sizeof(struct ecryptfs_auth_tok_list_item));
1210 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1211 auth_tok_list_item);
1212 out:
1213 if (rc)
1214 (*packet_size) = 0;
1215 return rc;
1216 }
1217
1218 /**
1219 * parse_tag_3_packet
1220 * @crypt_stat: The cryptographic context to modify based on packet
1221 * contents.
1222 * @data: The raw bytes of the packet.
1223 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1224 * a new authentication token will be placed at the end
1225 * of this list for this packet.
1226 * @new_auth_tok: Pointer to a pointer to memory that this function
1227 * allocates; sets the memory address of the pointer to
1228 * NULL on error. This object is added to the
1229 * auth_tok_list.
1230 * @packet_size: This function writes the size of the parsed packet
1231 * into this memory location; zero on error.
1232 * @max_packet_size: maximum number of bytes to parse
1233 *
1234 * Returns zero on success; non-zero on error.
1235 */
1236 static int
1237 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1238 unsigned char *data, struct list_head *auth_tok_list,
1239 struct ecryptfs_auth_tok **new_auth_tok,
1240 size_t *packet_size, size_t max_packet_size)
1241 {
1242 size_t body_size;
1243 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1244 size_t length_size;
1245 int rc = 0;
1246
1247 (*packet_size) = 0;
1248 (*new_auth_tok) = NULL;
1249 /**
1250 *This format is inspired by OpenPGP; see RFC 2440
1251 * packet tag 3
1252 *
1253 * Tag 3 identifier (1 byte)
1254 * Max Tag 3 packet size (max 3 bytes)
1255 * Version (1 byte)
1256 * Cipher code (1 byte)
1257 * S2K specifier (1 byte)
1258 * Hash identifier (1 byte)
1259 * Salt (ECRYPTFS_SALT_SIZE)
1260 * Hash iterations (1 byte)
1261 * Encrypted key (arbitrary)
1262 *
1263 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1264 */
1265 if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1266 printk(KERN_ERR "Max packet size too large\n");
1267 rc = -EINVAL;
1268 goto out;
1269 }
1270 if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1271 printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1272 ECRYPTFS_TAG_3_PACKET_TYPE);
1273 rc = -EINVAL;
1274 goto out;
1275 }
1276 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1277 * at end of function upon failure */
1278 auth_tok_list_item =
1279 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1280 if (!auth_tok_list_item) {
1281 printk(KERN_ERR "Unable to allocate memory\n");
1282 rc = -ENOMEM;
1283 goto out;
1284 }
1285 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1286 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1287 &length_size);
1288 if (rc) {
1289 printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1290 rc);
1291 goto out_free;
1292 }
1293 if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1294 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1295 rc = -EINVAL;
1296 goto out_free;
1297 }
1298 (*packet_size) += length_size;
1299 if (unlikely((*packet_size) + body_size > max_packet_size)) {
1300 printk(KERN_ERR "Packet size exceeds max\n");
1301 rc = -EINVAL;
1302 goto out_free;
1303 }
1304 (*new_auth_tok)->session_key.encrypted_key_size =
1305 (body_size - (ECRYPTFS_SALT_SIZE + 5));
1306 if ((*new_auth_tok)->session_key.encrypted_key_size
1307 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1308 printk(KERN_WARNING "Tag 3 packet contains key larger "
1309 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1310 rc = -EINVAL;
1311 goto out_free;
1312 }
1313 if (unlikely(data[(*packet_size)++] != 0x04)) {
1314 printk(KERN_WARNING "Unknown version number [%d]\n",
1315 data[(*packet_size) - 1]);
1316 rc = -EINVAL;
1317 goto out_free;
1318 }
1319 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1320 (u16)data[(*packet_size)]);
1321 if (rc)
1322 goto out_free;
1323 /* A little extra work to differentiate among the AES key
1324 * sizes; see RFC2440 */
1325 switch(data[(*packet_size)++]) {
1326 case RFC2440_CIPHER_AES_192:
1327 crypt_stat->key_size = 24;
1328 break;
1329 default:
1330 crypt_stat->key_size =
1331 (*new_auth_tok)->session_key.encrypted_key_size;
1332 }
1333 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1334 if (rc)
1335 goto out_free;
1336 if (unlikely(data[(*packet_size)++] != 0x03)) {
1337 printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1338 rc = -ENOSYS;
1339 goto out_free;
1340 }
1341 /* TODO: finish the hash mapping */
1342 switch (data[(*packet_size)++]) {
1343 case 0x01: /* See RFC2440 for these numbers and their mappings */
1344 /* Choose MD5 */
1345 memcpy((*new_auth_tok)->token.password.salt,
1346 &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1347 (*packet_size) += ECRYPTFS_SALT_SIZE;
1348 /* This conversion was taken straight from RFC2440 */
1349 (*new_auth_tok)->token.password.hash_iterations =
1350 ((u32) 16 + (data[(*packet_size)] & 15))
1351 << ((data[(*packet_size)] >> 4) + 6);
1352 (*packet_size)++;
1353 /* Friendly reminder:
1354 * (*new_auth_tok)->session_key.encrypted_key_size =
1355 * (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1356 memcpy((*new_auth_tok)->session_key.encrypted_key,
1357 &data[(*packet_size)],
1358 (*new_auth_tok)->session_key.encrypted_key_size);
1359 (*packet_size) +=
1360 (*new_auth_tok)->session_key.encrypted_key_size;
1361 (*new_auth_tok)->session_key.flags &=
1362 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1363 (*new_auth_tok)->session_key.flags |=
1364 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1365 (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1366 break;
1367 default:
1368 ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1369 "[%d]\n", data[(*packet_size) - 1]);
1370 rc = -ENOSYS;
1371 goto out_free;
1372 }
1373 (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1374 /* TODO: Parametarize; we might actually want userspace to
1375 * decrypt the session key. */
1376 (*new_auth_tok)->session_key.flags &=
1377 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1378 (*new_auth_tok)->session_key.flags &=
1379 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1380 list_add(&auth_tok_list_item->list, auth_tok_list);
1381 goto out;
1382 out_free:
1383 (*new_auth_tok) = NULL;
1384 memset(auth_tok_list_item, 0,
1385 sizeof(struct ecryptfs_auth_tok_list_item));
1386 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1387 auth_tok_list_item);
1388 out:
1389 if (rc)
1390 (*packet_size) = 0;
1391 return rc;
1392 }
1393
1394 /**
1395 * parse_tag_11_packet
1396 * @data: The raw bytes of the packet
1397 * @contents: This function writes the data contents of the literal
1398 * packet into this memory location
1399 * @max_contents_bytes: The maximum number of bytes that this function
1400 * is allowed to write into contents
1401 * @tag_11_contents_size: This function writes the size of the parsed
1402 * contents into this memory location; zero on
1403 * error
1404 * @packet_size: This function writes the size of the parsed packet
1405 * into this memory location; zero on error
1406 * @max_packet_size: maximum number of bytes to parse
1407 *
1408 * Returns zero on success; non-zero on error.
1409 */
1410 static int
1411 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1412 size_t max_contents_bytes, size_t *tag_11_contents_size,
1413 size_t *packet_size, size_t max_packet_size)
1414 {
1415 size_t body_size;
1416 size_t length_size;
1417 int rc = 0;
1418
1419 (*packet_size) = 0;
1420 (*tag_11_contents_size) = 0;
1421 /* This format is inspired by OpenPGP; see RFC 2440
1422 * packet tag 11
1423 *
1424 * Tag 11 identifier (1 byte)
1425 * Max Tag 11 packet size (max 3 bytes)
1426 * Binary format specifier (1 byte)
1427 * Filename length (1 byte)
1428 * Filename ("_CONSOLE") (8 bytes)
1429 * Modification date (4 bytes)
1430 * Literal data (arbitrary)
1431 *
1432 * We need at least 16 bytes of data for the packet to even be
1433 * valid.
1434 */
1435 if (max_packet_size < 16) {
1436 printk(KERN_ERR "Maximum packet size too small\n");
1437 rc = -EINVAL;
1438 goto out;
1439 }
1440 if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1441 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1442 rc = -EINVAL;
1443 goto out;
1444 }
1445 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1446 &length_size);
1447 if (rc) {
1448 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1449 goto out;
1450 }
1451 if (body_size < 14) {
1452 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1453 rc = -EINVAL;
1454 goto out;
1455 }
1456 (*packet_size) += length_size;
1457 (*tag_11_contents_size) = (body_size - 14);
1458 if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1459 printk(KERN_ERR "Packet size exceeds max\n");
1460 rc = -EINVAL;
1461 goto out;
1462 }
1463 if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1464 printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1465 "expected size\n");
1466 rc = -EINVAL;
1467 goto out;
1468 }
1469 if (data[(*packet_size)++] != 0x62) {
1470 printk(KERN_WARNING "Unrecognizable packet\n");
1471 rc = -EINVAL;
1472 goto out;
1473 }
1474 if (data[(*packet_size)++] != 0x08) {
1475 printk(KERN_WARNING "Unrecognizable packet\n");
1476 rc = -EINVAL;
1477 goto out;
1478 }
1479 (*packet_size) += 12; /* Ignore filename and modification date */
1480 memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1481 (*packet_size) += (*tag_11_contents_size);
1482 out:
1483 if (rc) {
1484 (*packet_size) = 0;
1485 (*tag_11_contents_size) = 0;
1486 }
1487 return rc;
1488 }
1489
1490 /**
1491 * ecryptfs_verify_version
1492 * @version: The version number to confirm
1493 *
1494 * Returns zero on good version; non-zero otherwise
1495 */
1496 static int ecryptfs_verify_version(u16 version)
1497 {
1498 int rc = 0;
1499 unsigned char major;
1500 unsigned char minor;
1501
1502 major = ((version >> 8) & 0xFF);
1503 minor = (version & 0xFF);
1504 if (major != ECRYPTFS_VERSION_MAJOR) {
1505 ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
1506 "Expected [%d]; got [%d]\n",
1507 ECRYPTFS_VERSION_MAJOR, major);
1508 rc = -EINVAL;
1509 goto out;
1510 }
1511 if (minor != ECRYPTFS_VERSION_MINOR) {
1512 ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
1513 "Expected [%d]; got [%d]\n",
1514 ECRYPTFS_VERSION_MINOR, minor);
1515 rc = -EINVAL;
1516 goto out;
1517 }
1518 out:
1519 return rc;
1520 }
1521
1522 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1523 struct ecryptfs_auth_tok **auth_tok,
1524 char *sig)
1525 {
1526 int rc = 0;
1527
1528 (*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1529 if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1530 printk(KERN_ERR "Could not find key with description: [%s]\n",
1531 sig);
1532 rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1533 goto out;
1534 }
1535 (*auth_tok) = ecryptfs_get_key_payload_data(*auth_tok_key);
1536 if (ecryptfs_verify_version((*auth_tok)->version)) {
1537 printk(KERN_ERR
1538 "Data structure version mismatch. "
1539 "Userspace tools must match eCryptfs "
1540 "kernel module with major version [%d] "
1541 "and minor version [%d]\n",
1542 ECRYPTFS_VERSION_MAJOR,
1543 ECRYPTFS_VERSION_MINOR);
1544 rc = -EINVAL;
1545 goto out;
1546 }
1547 if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
1548 && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
1549 printk(KERN_ERR "Invalid auth_tok structure "
1550 "returned from key query\n");
1551 rc = -EINVAL;
1552 goto out;
1553 }
1554 out:
1555 return rc;
1556 }
1557
1558 /**
1559 * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1560 * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1561 * @crypt_stat: The cryptographic context
1562 *
1563 * Returns zero on success; non-zero error otherwise
1564 */
1565 static int
1566 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1567 struct ecryptfs_crypt_stat *crypt_stat)
1568 {
1569 struct scatterlist dst_sg[2];
1570 struct scatterlist src_sg[2];
1571 struct mutex *tfm_mutex;
1572 struct blkcipher_desc desc = {
1573 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
1574 };
1575 int rc = 0;
1576
1577 if (unlikely(ecryptfs_verbosity > 0)) {
1578 ecryptfs_printk(
1579 KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1580 auth_tok->token.password.session_key_encryption_key_bytes);
1581 ecryptfs_dump_hex(
1582 auth_tok->token.password.session_key_encryption_key,
1583 auth_tok->token.password.session_key_encryption_key_bytes);
1584 }
1585 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1586 crypt_stat->cipher);
1587 if (unlikely(rc)) {
1588 printk(KERN_ERR "Internal error whilst attempting to get "
1589 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1590 crypt_stat->cipher, rc);
1591 goto out;
1592 }
1593 rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1594 auth_tok->session_key.encrypted_key_size,
1595 src_sg, 2);
1596 if (rc < 1 || rc > 2) {
1597 printk(KERN_ERR "Internal error whilst attempting to convert "
1598 "auth_tok->session_key.encrypted_key to scatterlist; "
1599 "expected rc = 1; got rc = [%d]. "
1600 "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1601 auth_tok->session_key.encrypted_key_size);
1602 goto out;
1603 }
1604 auth_tok->session_key.decrypted_key_size =
1605 auth_tok->session_key.encrypted_key_size;
1606 rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1607 auth_tok->session_key.decrypted_key_size,
1608 dst_sg, 2);
1609 if (rc < 1 || rc > 2) {
1610 printk(KERN_ERR "Internal error whilst attempting to convert "
1611 "auth_tok->session_key.decrypted_key to scatterlist; "
1612 "expected rc = 1; got rc = [%d]\n", rc);
1613 goto out;
1614 }
1615 mutex_lock(tfm_mutex);
1616 rc = crypto_blkcipher_setkey(
1617 desc.tfm, auth_tok->token.password.session_key_encryption_key,
1618 crypt_stat->key_size);
1619 if (unlikely(rc < 0)) {
1620 mutex_unlock(tfm_mutex);
1621 printk(KERN_ERR "Error setting key for crypto context\n");
1622 rc = -EINVAL;
1623 goto out;
1624 }
1625 rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1626 auth_tok->session_key.encrypted_key_size);
1627 mutex_unlock(tfm_mutex);
1628 if (unlikely(rc)) {
1629 printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1630 goto out;
1631 }
1632 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1633 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1634 auth_tok->session_key.decrypted_key_size);
1635 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1636 if (unlikely(ecryptfs_verbosity > 0)) {
1637 ecryptfs_printk(KERN_DEBUG, "FEK of size [%d]:\n",
1638 crypt_stat->key_size);
1639 ecryptfs_dump_hex(crypt_stat->key,
1640 crypt_stat->key_size);
1641 }
1642 out:
1643 return rc;
1644 }
1645
1646 /**
1647 * ecryptfs_parse_packet_set
1648 * @crypt_stat: The cryptographic context
1649 * @src: Virtual address of region of memory containing the packets
1650 * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1651 *
1652 * Get crypt_stat to have the file's session key if the requisite key
1653 * is available to decrypt the session key.
1654 *
1655 * Returns Zero if a valid authentication token was retrieved and
1656 * processed; negative value for file not encrypted or for error
1657 * conditions.
1658 */
1659 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1660 unsigned char *src,
1661 struct dentry *ecryptfs_dentry)
1662 {
1663 size_t i = 0;
1664 size_t found_auth_tok;
1665 size_t next_packet_is_auth_tok_packet;
1666 struct list_head auth_tok_list;
1667 struct ecryptfs_auth_tok *matching_auth_tok;
1668 struct ecryptfs_auth_tok *candidate_auth_tok;
1669 char *candidate_auth_tok_sig;
1670 size_t packet_size;
1671 struct ecryptfs_auth_tok *new_auth_tok;
1672 unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1673 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1674 size_t tag_11_contents_size;
1675 size_t tag_11_packet_size;
1676 int rc = 0;
1677
1678 INIT_LIST_HEAD(&auth_tok_list);
1679 /* Parse the header to find as many packets as we can; these will be
1680 * added the our &auth_tok_list */
1681 next_packet_is_auth_tok_packet = 1;
1682 while (next_packet_is_auth_tok_packet) {
1683 size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1684
1685 switch (src[i]) {
1686 case ECRYPTFS_TAG_3_PACKET_TYPE:
1687 rc = parse_tag_3_packet(crypt_stat,
1688 (unsigned char *)&src[i],
1689 &auth_tok_list, &new_auth_tok,
1690 &packet_size, max_packet_size);
1691 if (rc) {
1692 ecryptfs_printk(KERN_ERR, "Error parsing "
1693 "tag 3 packet\n");
1694 rc = -EIO;
1695 goto out_wipe_list;
1696 }
1697 i += packet_size;
1698 rc = parse_tag_11_packet((unsigned char *)&src[i],
1699 sig_tmp_space,
1700 ECRYPTFS_SIG_SIZE,
1701 &tag_11_contents_size,
1702 &tag_11_packet_size,
1703 max_packet_size);
1704 if (rc) {
1705 ecryptfs_printk(KERN_ERR, "No valid "
1706 "(ecryptfs-specific) literal "
1707 "packet containing "
1708 "authentication token "
1709 "signature found after "
1710 "tag 3 packet\n");
1711 rc = -EIO;
1712 goto out_wipe_list;
1713 }
1714 i += tag_11_packet_size;
1715 if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1716 ecryptfs_printk(KERN_ERR, "Expected "
1717 "signature of size [%d]; "
1718 "read size [%d]\n",
1719 ECRYPTFS_SIG_SIZE,
1720 tag_11_contents_size);
1721 rc = -EIO;
1722 goto out_wipe_list;
1723 }
1724 ecryptfs_to_hex(new_auth_tok->token.password.signature,
1725 sig_tmp_space, tag_11_contents_size);
1726 new_auth_tok->token.password.signature[
1727 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1728 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1729 break;
1730 case ECRYPTFS_TAG_1_PACKET_TYPE:
1731 rc = parse_tag_1_packet(crypt_stat,
1732 (unsigned char *)&src[i],
1733 &auth_tok_list, &new_auth_tok,
1734 &packet_size, max_packet_size);
1735 if (rc) {
1736 ecryptfs_printk(KERN_ERR, "Error parsing "
1737 "tag 1 packet\n");
1738 rc = -EIO;
1739 goto out_wipe_list;
1740 }
1741 i += packet_size;
1742 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1743 break;
1744 case ECRYPTFS_TAG_11_PACKET_TYPE:
1745 ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1746 "(Tag 11 not allowed by itself)\n");
1747 rc = -EIO;
1748 goto out_wipe_list;
1749 break;
1750 default:
1751 ecryptfs_printk(KERN_DEBUG, "No packet at offset "
1752 "[%d] of the file header; hex value of "
1753 "character is [0x%.2x]\n", i, src[i]);
1754 next_packet_is_auth_tok_packet = 0;
1755 }
1756 }
1757 if (list_empty(&auth_tok_list)) {
1758 printk(KERN_ERR "The lower file appears to be a non-encrypted "
1759 "eCryptfs file; this is not supported in this version "
1760 "of the eCryptfs kernel module\n");
1761 rc = -EINVAL;
1762 goto out;
1763 }
1764 /* auth_tok_list contains the set of authentication tokens
1765 * parsed from the metadata. We need to find a matching
1766 * authentication token that has the secret component(s)
1767 * necessary to decrypt the EFEK in the auth_tok parsed from
1768 * the metadata. There may be several potential matches, but
1769 * just one will be sufficient to decrypt to get the FEK. */
1770 find_next_matching_auth_tok:
1771 found_auth_tok = 0;
1772 list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1773 candidate_auth_tok = &auth_tok_list_item->auth_tok;
1774 if (unlikely(ecryptfs_verbosity > 0)) {
1775 ecryptfs_printk(KERN_DEBUG,
1776 "Considering cadidate auth tok:\n");
1777 ecryptfs_dump_auth_tok(candidate_auth_tok);
1778 }
1779 rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1780 candidate_auth_tok);
1781 if (rc) {
1782 printk(KERN_ERR
1783 "Unrecognized candidate auth tok type: [%d]\n",
1784 candidate_auth_tok->token_type);
1785 rc = -EINVAL;
1786 goto out_wipe_list;
1787 }
1788 ecryptfs_find_auth_tok_for_sig(&matching_auth_tok,
1789 crypt_stat->mount_crypt_stat,
1790 candidate_auth_tok_sig);
1791 if (matching_auth_tok) {
1792 found_auth_tok = 1;
1793 goto found_matching_auth_tok;
1794 }
1795 }
1796 if (!found_auth_tok) {
1797 ecryptfs_printk(KERN_ERR, "Could not find a usable "
1798 "authentication token\n");
1799 rc = -EIO;
1800 goto out_wipe_list;
1801 }
1802 found_matching_auth_tok:
1803 if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1804 memcpy(&(candidate_auth_tok->token.private_key),
1805 &(matching_auth_tok->token.private_key),
1806 sizeof(struct ecryptfs_private_key));
1807 rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1808 crypt_stat);
1809 } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1810 memcpy(&(candidate_auth_tok->token.password),
1811 &(matching_auth_tok->token.password),
1812 sizeof(struct ecryptfs_password));
1813 rc = decrypt_passphrase_encrypted_session_key(
1814 candidate_auth_tok, crypt_stat);
1815 }
1816 if (rc) {
1817 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1818
1819 ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1820 "session key for authentication token with sig "
1821 "[%.*s]; rc = [%d]. Removing auth tok "
1822 "candidate from the list and searching for "
1823 "the next match.\n", candidate_auth_tok_sig,
1824 ECRYPTFS_SIG_SIZE_HEX, rc);
1825 list_for_each_entry_safe(auth_tok_list_item,
1826 auth_tok_list_item_tmp,
1827 &auth_tok_list, list) {
1828 if (candidate_auth_tok
1829 == &auth_tok_list_item->auth_tok) {
1830 list_del(&auth_tok_list_item->list);
1831 kmem_cache_free(
1832 ecryptfs_auth_tok_list_item_cache,
1833 auth_tok_list_item);
1834 goto find_next_matching_auth_tok;
1835 }
1836 }
1837 BUG();
1838 }
1839 rc = ecryptfs_compute_root_iv(crypt_stat);
1840 if (rc) {
1841 ecryptfs_printk(KERN_ERR, "Error computing "
1842 "the root IV\n");
1843 goto out_wipe_list;
1844 }
1845 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1846 if (rc) {
1847 ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1848 "context for cipher [%s]; rc = [%d]\n",
1849 crypt_stat->cipher, rc);
1850 }
1851 out_wipe_list:
1852 wipe_auth_tok_list(&auth_tok_list);
1853 out:
1854 return rc;
1855 }
1856
1857 static int
1858 pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
1859 struct ecryptfs_crypt_stat *crypt_stat,
1860 struct ecryptfs_key_record *key_rec)
1861 {
1862 struct ecryptfs_msg_ctx *msg_ctx = NULL;
1863 char *payload = NULL;
1864 size_t payload_len;
1865 struct ecryptfs_message *msg;
1866 int rc;
1867
1868 rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1869 ecryptfs_code_for_cipher_string(
1870 crypt_stat->cipher,
1871 crypt_stat->key_size),
1872 crypt_stat, &payload, &payload_len);
1873 if (rc) {
1874 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1875 goto out;
1876 }
1877 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1878 if (rc) {
1879 ecryptfs_printk(KERN_ERR, "Error sending message to "
1880 "ecryptfsd\n");
1881 goto out;
1882 }
1883 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1884 if (rc) {
1885 ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1886 "from the user space daemon\n");
1887 rc = -EIO;
1888 goto out;
1889 }
1890 rc = parse_tag_67_packet(key_rec, msg);
1891 if (rc)
1892 ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1893 kfree(msg);
1894 out:
1895 kfree(payload);
1896 return rc;
1897 }
1898 /**
1899 * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1900 * @dest: Buffer into which to write the packet
1901 * @remaining_bytes: Maximum number of bytes that can be writtn
1902 * @auth_tok: The authentication token used for generating the tag 1 packet
1903 * @crypt_stat: The cryptographic context
1904 * @key_rec: The key record struct for the tag 1 packet
1905 * @packet_size: This function will write the number of bytes that end
1906 * up constituting the packet; set to zero on error
1907 *
1908 * Returns zero on success; non-zero on error.
1909 */
1910 static int
1911 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1912 struct ecryptfs_auth_tok *auth_tok,
1913 struct ecryptfs_crypt_stat *crypt_stat,
1914 struct ecryptfs_key_record *key_rec, size_t *packet_size)
1915 {
1916 size_t i;
1917 size_t encrypted_session_key_valid = 0;
1918 size_t packet_size_length;
1919 size_t max_packet_size;
1920 int rc = 0;
1921
1922 (*packet_size) = 0;
1923 ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1924 ECRYPTFS_SIG_SIZE);
1925 encrypted_session_key_valid = 0;
1926 for (i = 0; i < crypt_stat->key_size; i++)
1927 encrypted_session_key_valid |=
1928 auth_tok->session_key.encrypted_key[i];
1929 if (encrypted_session_key_valid) {
1930 memcpy(key_rec->enc_key,
1931 auth_tok->session_key.encrypted_key,
1932 auth_tok->session_key.encrypted_key_size);
1933 goto encrypted_session_key_set;
1934 }
1935 if (auth_tok->session_key.encrypted_key_size == 0)
1936 auth_tok->session_key.encrypted_key_size =
1937 auth_tok->token.private_key.key_size;
1938 rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
1939 if (rc) {
1940 printk(KERN_ERR "Failed to encrypt session key via a key "
1941 "module; rc = [%d]\n", rc);
1942 goto out;
1943 }
1944 if (ecryptfs_verbosity > 0) {
1945 ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
1946 ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
1947 }
1948 encrypted_session_key_set:
1949 /* This format is inspired by OpenPGP; see RFC 2440
1950 * packet tag 1 */
1951 max_packet_size = (1 /* Tag 1 identifier */
1952 + 3 /* Max Tag 1 packet size */
1953 + 1 /* Version */
1954 + ECRYPTFS_SIG_SIZE /* Key identifier */
1955 + 1 /* Cipher identifier */
1956 + key_rec->enc_key_size); /* Encrypted key size */
1957 if (max_packet_size > (*remaining_bytes)) {
1958 printk(KERN_ERR "Packet length larger than maximum allowable; "
1959 "need up to [%td] bytes, but there are only [%td] "
1960 "available\n", max_packet_size, (*remaining_bytes));
1961 rc = -EINVAL;
1962 goto out;
1963 }
1964 dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
1965 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
1966 (max_packet_size - 4),
1967 &packet_size_length);
1968 if (rc) {
1969 ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
1970 "header; cannot generate packet length\n");
1971 goto out;
1972 }
1973 (*packet_size) += packet_size_length;
1974 dest[(*packet_size)++] = 0x03; /* version 3 */
1975 memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
1976 (*packet_size) += ECRYPTFS_SIG_SIZE;
1977 dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
1978 memcpy(&dest[(*packet_size)], key_rec->enc_key,
1979 key_rec->enc_key_size);
1980 (*packet_size) += key_rec->enc_key_size;
1981 out:
1982 if (rc)
1983 (*packet_size) = 0;
1984 else
1985 (*remaining_bytes) -= (*packet_size);
1986 return rc;
1987 }
1988
1989 /**
1990 * write_tag_11_packet
1991 * @dest: Target into which Tag 11 packet is to be written
1992 * @remaining_bytes: Maximum packet length
1993 * @contents: Byte array of contents to copy in
1994 * @contents_length: Number of bytes in contents
1995 * @packet_length: Length of the Tag 11 packet written; zero on error
1996 *
1997 * Returns zero on success; non-zero on error.
1998 */
1999 static int
2000 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2001 size_t contents_length, size_t *packet_length)
2002 {
2003 size_t packet_size_length;
2004 size_t max_packet_size;
2005 int rc = 0;
2006
2007 (*packet_length) = 0;
2008 /* This format is inspired by OpenPGP; see RFC 2440
2009 * packet tag 11 */
2010 max_packet_size = (1 /* Tag 11 identifier */
2011 + 3 /* Max Tag 11 packet size */
2012 + 1 /* Binary format specifier */
2013 + 1 /* Filename length */
2014 + 8 /* Filename ("_CONSOLE") */
2015 + 4 /* Modification date */
2016 + contents_length); /* Literal data */
2017 if (max_packet_size > (*remaining_bytes)) {
2018 printk(KERN_ERR "Packet length larger than maximum allowable; "
2019 "need up to [%td] bytes, but there are only [%td] "
2020 "available\n", max_packet_size, (*remaining_bytes));
2021 rc = -EINVAL;
2022 goto out;
2023 }
2024 dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2025 rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2026 (max_packet_size - 4),
2027 &packet_size_length);
2028 if (rc) {
2029 printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2030 "generate packet length. rc = [%d]\n", rc);
2031 goto out;
2032 }
2033 (*packet_length) += packet_size_length;
2034 dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2035 dest[(*packet_length)++] = 8;
2036 memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2037 (*packet_length) += 8;
2038 memset(&dest[(*packet_length)], 0x00, 4);
2039 (*packet_length) += 4;
2040 memcpy(&dest[(*packet_length)], contents, contents_length);
2041 (*packet_length) += contents_length;
2042 out:
2043 if (rc)
2044 (*packet_length) = 0;
2045 else
2046 (*remaining_bytes) -= (*packet_length);
2047 return rc;
2048 }
2049
2050 /**
2051 * write_tag_3_packet
2052 * @dest: Buffer into which to write the packet
2053 * @remaining_bytes: Maximum number of bytes that can be written
2054 * @auth_tok: Authentication token
2055 * @crypt_stat: The cryptographic context
2056 * @key_rec: encrypted key
2057 * @packet_size: This function will write the number of bytes that end
2058 * up constituting the packet; set to zero on error
2059 *
2060 * Returns zero on success; non-zero on error.
2061 */
2062 static int
2063 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2064 struct ecryptfs_auth_tok *auth_tok,
2065 struct ecryptfs_crypt_stat *crypt_stat,
2066 struct ecryptfs_key_record *key_rec, size_t *packet_size)
2067 {
2068 size_t i;
2069 size_t encrypted_session_key_valid = 0;
2070 char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2071 struct scatterlist dst_sg[2];
2072 struct scatterlist src_sg[2];
2073 struct mutex *tfm_mutex = NULL;
2074 u8 cipher_code;
2075 size_t packet_size_length;
2076 size_t max_packet_size;
2077 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2078 crypt_stat->mount_crypt_stat;
2079 struct blkcipher_desc desc = {
2080 .tfm = NULL,
2081 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
2082 };
2083 int rc = 0;
2084
2085 (*packet_size) = 0;
2086 ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2087 ECRYPTFS_SIG_SIZE);
2088 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2089 crypt_stat->cipher);
2090 if (unlikely(rc)) {
2091 printk(KERN_ERR "Internal error whilst attempting to get "
2092 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2093 crypt_stat->cipher, rc);
2094 goto out;
2095 }
2096 if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2097 struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2098
2099 printk(KERN_WARNING "No key size specified at mount; "
2100 "defaulting to [%d]\n", alg->max_keysize);
2101 mount_crypt_stat->global_default_cipher_key_size =
2102 alg->max_keysize;
2103 }
2104 if (crypt_stat->key_size == 0)
2105 crypt_stat->key_size =
2106 mount_crypt_stat->global_default_cipher_key_size;
2107 if (auth_tok->session_key.encrypted_key_size == 0)
2108 auth_tok->session_key.encrypted_key_size =
2109 crypt_stat->key_size;
2110 if (crypt_stat->key_size == 24
2111 && strcmp("aes", crypt_stat->cipher) == 0) {
2112 memset((crypt_stat->key + 24), 0, 8);
2113 auth_tok->session_key.encrypted_key_size = 32;
2114 } else
2115 auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2116 key_rec->enc_key_size =
2117 auth_tok->session_key.encrypted_key_size;
2118 encrypted_session_key_valid = 0;
2119 for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2120 encrypted_session_key_valid |=
2121 auth_tok->session_key.encrypted_key[i];
2122 if (encrypted_session_key_valid) {
2123 ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2124 "using auth_tok->session_key.encrypted_key, "
2125 "where key_rec->enc_key_size = [%d]\n",
2126 key_rec->enc_key_size);
2127 memcpy(key_rec->enc_key,
2128 auth_tok->session_key.encrypted_key,
2129 key_rec->enc_key_size);
2130 goto encrypted_session_key_set;
2131 }
2132 if (auth_tok->token.password.flags &
2133 ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2134 ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2135 "session key encryption key of size [%d]\n",
2136 auth_tok->token.password.
2137 session_key_encryption_key_bytes);
2138 memcpy(session_key_encryption_key,
2139 auth_tok->token.password.session_key_encryption_key,
2140 crypt_stat->key_size);
2141 ecryptfs_printk(KERN_DEBUG,
2142 "Cached session key " "encryption key: \n");
2143 if (ecryptfs_verbosity > 0)
2144 ecryptfs_dump_hex(session_key_encryption_key, 16);
2145 }
2146 if (unlikely(ecryptfs_verbosity > 0)) {
2147 ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2148 ecryptfs_dump_hex(session_key_encryption_key, 16);
2149 }
2150 rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2151 src_sg, 2);
2152 if (rc < 1 || rc > 2) {
2153 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2154 "for crypt_stat session key; expected rc = 1; "
2155 "got rc = [%d]. key_rec->enc_key_size = [%d]\n",
2156 rc, key_rec->enc_key_size);
2157 rc = -ENOMEM;
2158 goto out;
2159 }
2160 rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2161 dst_sg, 2);
2162 if (rc < 1 || rc > 2) {
2163 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2164 "for crypt_stat encrypted session key; "
2165 "expected rc = 1; got rc = [%d]. "
2166 "key_rec->enc_key_size = [%d]\n", rc,
2167 key_rec->enc_key_size);
2168 rc = -ENOMEM;
2169 goto out;
2170 }
2171 mutex_lock(tfm_mutex);
2172 rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2173 crypt_stat->key_size);
2174 if (rc < 0) {
2175 mutex_unlock(tfm_mutex);
2176 ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2177 "context; rc = [%d]\n", rc);
2178 goto out;
2179 }
2180 rc = 0;
2181 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n",
2182 crypt_stat->key_size);
2183 rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2184 (*key_rec).enc_key_size);
2185 mutex_unlock(tfm_mutex);
2186 if (rc) {
2187 printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2188 goto out;
2189 }
2190 ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2191 if (ecryptfs_verbosity > 0) {
2192 ecryptfs_printk(KERN_DEBUG, "EFEK of size [%d]:\n",
2193 key_rec->enc_key_size);
2194 ecryptfs_dump_hex(key_rec->enc_key,
2195 key_rec->enc_key_size);
2196 }
2197 encrypted_session_key_set:
2198 /* This format is inspired by OpenPGP; see RFC 2440
2199 * packet tag 3 */
2200 max_packet_size = (1 /* Tag 3 identifier */
2201 + 3 /* Max Tag 3 packet size */
2202 + 1 /* Version */
2203 + 1 /* Cipher code */
2204 + 1 /* S2K specifier */
2205 + 1 /* Hash identifier */
2206 + ECRYPTFS_SALT_SIZE /* Salt */
2207 + 1 /* Hash iterations */
2208 + key_rec->enc_key_size); /* Encrypted key size */
2209 if (max_packet_size > (*remaining_bytes)) {
2210 printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2211 "there are only [%td] available\n", max_packet_size,
2212 (*remaining_bytes));
2213 rc = -EINVAL;
2214 goto out;
2215 }
2216 dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2217 /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2218 * to get the number of octets in the actual Tag 3 packet */
2219 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2220 (max_packet_size - 4),
2221 &packet_size_length);
2222 if (rc) {
2223 printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2224 "generate packet length. rc = [%d]\n", rc);
2225 goto out;
2226 }
2227 (*packet_size) += packet_size_length;
2228 dest[(*packet_size)++] = 0x04; /* version 4 */
2229 /* TODO: Break from RFC2440 so that arbitrary ciphers can be
2230 * specified with strings */
2231 cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2232 crypt_stat->key_size);
2233 if (cipher_code == 0) {
2234 ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2235 "cipher [%s]\n", crypt_stat->cipher);
2236 rc = -EINVAL;
2237 goto out;
2238 }
2239 dest[(*packet_size)++] = cipher_code;
2240 dest[(*packet_size)++] = 0x03; /* S2K */
2241 dest[(*packet_size)++] = 0x01; /* MD5 (TODO: parameterize) */
2242 memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2243 ECRYPTFS_SALT_SIZE);
2244 (*packet_size) += ECRYPTFS_SALT_SIZE; /* salt */
2245 dest[(*packet_size)++] = 0x60; /* hash iterations (65536) */
2246 memcpy(&dest[(*packet_size)], key_rec->enc_key,
2247 key_rec->enc_key_size);
2248 (*packet_size) += key_rec->enc_key_size;
2249 out:
2250 if (rc)
2251 (*packet_size) = 0;
2252 else
2253 (*remaining_bytes) -= (*packet_size);
2254 return rc;
2255 }
2256
2257 struct kmem_cache *ecryptfs_key_record_cache;
2258
2259 /**
2260 * ecryptfs_generate_key_packet_set
2261 * @dest_base: Virtual address from which to write the key record set
2262 * @crypt_stat: The cryptographic context from which the
2263 * authentication tokens will be retrieved
2264 * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2265 * for the global parameters
2266 * @len: The amount written
2267 * @max: The maximum amount of data allowed to be written
2268 *
2269 * Generates a key packet set and writes it to the virtual address
2270 * passed in.
2271 *
2272 * Returns zero on success; non-zero on error.
2273 */
2274 int
2275 ecryptfs_generate_key_packet_set(char *dest_base,
2276 struct ecryptfs_crypt_stat *crypt_stat,
2277 struct dentry *ecryptfs_dentry, size_t *len,
2278 size_t max)
2279 {
2280 struct ecryptfs_auth_tok *auth_tok;
2281 struct ecryptfs_global_auth_tok *global_auth_tok;
2282 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2283 &ecryptfs_superblock_to_private(
2284 ecryptfs_dentry->d_sb)->mount_crypt_stat;
2285 size_t written;
2286 struct ecryptfs_key_record *key_rec;
2287 struct ecryptfs_key_sig *key_sig;
2288 int rc = 0;
2289
2290 (*len) = 0;
2291 mutex_lock(&crypt_stat->keysig_list_mutex);
2292 key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2293 if (!key_rec) {
2294 rc = -ENOMEM;
2295 goto out;
2296 }
2297 list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2298 crypt_stat_list) {
2299 memset(key_rec, 0, sizeof(*key_rec));
2300 rc = ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
2301 mount_crypt_stat,
2302 key_sig->keysig);
2303 if (rc) {
2304 printk(KERN_ERR "Error attempting to get the global "
2305 "auth_tok; rc = [%d]\n", rc);
2306 goto out_free;
2307 }
2308 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID) {
2309 printk(KERN_WARNING
2310 "Skipping invalid auth tok with sig = [%s]\n",
2311 global_auth_tok->sig);
2312 continue;
2313 }
2314 auth_tok = global_auth_tok->global_auth_tok;
2315 if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2316 rc = write_tag_3_packet((dest_base + (*len)),
2317 &max, auth_tok,
2318 crypt_stat, key_rec,
2319 &written);
2320 if (rc) {
2321 ecryptfs_printk(KERN_WARNING, "Error "
2322 "writing tag 3 packet\n");
2323 goto out_free;
2324 }
2325 (*len) += written;
2326 /* Write auth tok signature packet */
2327 rc = write_tag_11_packet((dest_base + (*len)), &max,
2328 key_rec->sig,
2329 ECRYPTFS_SIG_SIZE, &written);
2330 if (rc) {
2331 ecryptfs_printk(KERN_ERR, "Error writing "
2332 "auth tok signature packet\n");
2333 goto out_free;
2334 }
2335 (*len) += written;
2336 } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2337 rc = write_tag_1_packet(dest_base + (*len),
2338 &max, auth_tok,
2339 crypt_stat, key_rec, &written);
2340 if (rc) {
2341 ecryptfs_printk(KERN_WARNING, "Error "
2342 "writing tag 1 packet\n");
2343 goto out_free;
2344 }
2345 (*len) += written;
2346 } else {
2347 ecryptfs_printk(KERN_WARNING, "Unsupported "
2348 "authentication token type\n");
2349 rc = -EINVAL;
2350 goto out_free;
2351 }
2352 }
2353 if (likely(max > 0)) {
2354 dest_base[(*len)] = 0x00;
2355 } else {
2356 ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2357 rc = -EIO;
2358 }
2359 out_free:
2360 kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2361 out:
2362 if (rc)
2363 (*len) = 0;
2364 mutex_unlock(&crypt_stat->keysig_list_mutex);
2365 return rc;
2366 }
2367
2368 struct kmem_cache *ecryptfs_key_sig_cache;
2369
2370 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2371 {
2372 struct ecryptfs_key_sig *new_key_sig;
2373
2374 new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2375 if (!new_key_sig) {
2376 printk(KERN_ERR
2377 "Error allocating from ecryptfs_key_sig_cache\n");
2378 return -ENOMEM;
2379 }
2380 memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2381 /* Caller must hold keysig_list_mutex */
2382 list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2383
2384 return 0;
2385 }
2386
2387 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2388
2389 int
2390 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2391 char *sig, u32 global_auth_tok_flags)
2392 {
2393 struct ecryptfs_global_auth_tok *new_auth_tok;
2394 int rc = 0;
2395
2396 new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2397 GFP_KERNEL);
2398 if (!new_auth_tok) {
2399 rc = -ENOMEM;
2400 printk(KERN_ERR "Error allocating from "
2401 "ecryptfs_global_auth_tok_cache\n");
2402 goto out;
2403 }
2404 memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2405 new_auth_tok->flags = global_auth_tok_flags;
2406 new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2407 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2408 list_add(&new_auth_tok->mount_crypt_stat_list,
2409 &mount_crypt_stat->global_auth_tok_list);
2410 mount_crypt_stat->num_global_auth_toks++;
2411 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2412 out:
2413 return rc;
2414 }
2415
This page took 0.07648 seconds and 4 git commands to generate.