Merge branch 'smsc911x-armplatforms' of git://github.com/steveglen/linux-2.6
[deliverable/linux.git] / fs / ecryptfs / messaging.c
1 /**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 2004-2008 International Business Machines Corp.
5 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
6 * Tyler Hicks <tyhicks@ou.edu>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20 * 02111-1307, USA.
21 */
22 #include <linux/sched.h>
23 #include <linux/user_namespace.h>
24 #include <linux/nsproxy.h>
25 #include "ecryptfs_kernel.h"
26
27 static LIST_HEAD(ecryptfs_msg_ctx_free_list);
28 static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
29 static struct mutex ecryptfs_msg_ctx_lists_mux;
30
31 static struct hlist_head *ecryptfs_daemon_hash;
32 struct mutex ecryptfs_daemon_hash_mux;
33 static int ecryptfs_hash_buckets;
34 #define ecryptfs_uid_hash(uid) \
35 hash_long((unsigned long)uid, ecryptfs_hash_buckets)
36
37 static u32 ecryptfs_msg_counter;
38 static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
39
40 /**
41 * ecryptfs_acquire_free_msg_ctx
42 * @msg_ctx: The context that was acquired from the free list
43 *
44 * Acquires a context element from the free list and locks the mutex
45 * on the context. Sets the msg_ctx task to current. Returns zero on
46 * success; non-zero on error or upon failure to acquire a free
47 * context element. Must be called with ecryptfs_msg_ctx_lists_mux
48 * held.
49 */
50 static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
51 {
52 struct list_head *p;
53 int rc;
54
55 if (list_empty(&ecryptfs_msg_ctx_free_list)) {
56 printk(KERN_WARNING "%s: The eCryptfs free "
57 "context list is empty. It may be helpful to "
58 "specify the ecryptfs_message_buf_len "
59 "parameter to be greater than the current "
60 "value of [%d]\n", __func__, ecryptfs_message_buf_len);
61 rc = -ENOMEM;
62 goto out;
63 }
64 list_for_each(p, &ecryptfs_msg_ctx_free_list) {
65 *msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
66 if (mutex_trylock(&(*msg_ctx)->mux)) {
67 (*msg_ctx)->task = current;
68 rc = 0;
69 goto out;
70 }
71 }
72 rc = -ENOMEM;
73 out:
74 return rc;
75 }
76
77 /**
78 * ecryptfs_msg_ctx_free_to_alloc
79 * @msg_ctx: The context to move from the free list to the alloc list
80 *
81 * Must be called with ecryptfs_msg_ctx_lists_mux held.
82 */
83 static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
84 {
85 list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
86 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
87 msg_ctx->counter = ++ecryptfs_msg_counter;
88 }
89
90 /**
91 * ecryptfs_msg_ctx_alloc_to_free
92 * @msg_ctx: The context to move from the alloc list to the free list
93 *
94 * Must be called with ecryptfs_msg_ctx_lists_mux held.
95 */
96 void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
97 {
98 list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
99 if (msg_ctx->msg)
100 kfree(msg_ctx->msg);
101 msg_ctx->msg = NULL;
102 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
103 }
104
105 /**
106 * ecryptfs_find_daemon_by_euid
107 * @euid: The effective user id which maps to the desired daemon id
108 * @user_ns: The namespace in which @euid applies
109 * @daemon: If return value is zero, points to the desired daemon pointer
110 *
111 * Must be called with ecryptfs_daemon_hash_mux held.
112 *
113 * Search the hash list for the given user id.
114 *
115 * Returns zero if the user id exists in the list; non-zero otherwise.
116 */
117 int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon, uid_t euid,
118 struct user_namespace *user_ns)
119 {
120 struct hlist_node *elem;
121 int rc;
122
123 hlist_for_each_entry(*daemon, elem,
124 &ecryptfs_daemon_hash[ecryptfs_uid_hash(euid)],
125 euid_chain) {
126 if ((*daemon)->euid == euid && (*daemon)->user_ns == user_ns) {
127 rc = 0;
128 goto out;
129 }
130 }
131 rc = -EINVAL;
132 out:
133 return rc;
134 }
135
136 static int
137 ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type,
138 struct ecryptfs_msg_ctx **msg_ctx);
139
140 /**
141 * ecryptfs_send_raw_message
142 * @msg_type: Message type
143 * @daemon: Daemon struct for recipient of message
144 *
145 * A raw message is one that does not include an ecryptfs_message
146 * struct. It simply has a type.
147 *
148 * Must be called with ecryptfs_daemon_hash_mux held.
149 *
150 * Returns zero on success; non-zero otherwise
151 */
152 static int ecryptfs_send_raw_message(u8 msg_type,
153 struct ecryptfs_daemon *daemon)
154 {
155 struct ecryptfs_msg_ctx *msg_ctx;
156 int rc;
157
158 rc = ecryptfs_send_message_locked(NULL, 0, msg_type, &msg_ctx);
159 if (rc) {
160 printk(KERN_ERR "%s: Error whilst attempting to send "
161 "message to ecryptfsd; rc = [%d]\n", __func__, rc);
162 goto out;
163 }
164 /* Raw messages are logically context-free (e.g., no
165 * reply is expected), so we set the state of the
166 * ecryptfs_msg_ctx object to indicate that it should
167 * be freed as soon as the message is sent. */
168 mutex_lock(&msg_ctx->mux);
169 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_NO_REPLY;
170 mutex_unlock(&msg_ctx->mux);
171 out:
172 return rc;
173 }
174
175 /**
176 * ecryptfs_spawn_daemon - Create and initialize a new daemon struct
177 * @daemon: Pointer to set to newly allocated daemon struct
178 * @euid: Effective user id for the daemon
179 * @user_ns: The namespace in which @euid applies
180 * @pid: Process id for the daemon
181 *
182 * Must be called ceremoniously while in possession of
183 * ecryptfs_sacred_daemon_hash_mux
184 *
185 * Returns zero on success; non-zero otherwise
186 */
187 int
188 ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, uid_t euid,
189 struct user_namespace *user_ns, struct pid *pid)
190 {
191 int rc = 0;
192
193 (*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL);
194 if (!(*daemon)) {
195 rc = -ENOMEM;
196 printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of "
197 "GFP_KERNEL memory\n", __func__, sizeof(**daemon));
198 goto out;
199 }
200 (*daemon)->euid = euid;
201 (*daemon)->user_ns = get_user_ns(user_ns);
202 (*daemon)->pid = get_pid(pid);
203 (*daemon)->task = current;
204 mutex_init(&(*daemon)->mux);
205 INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue);
206 init_waitqueue_head(&(*daemon)->wait);
207 (*daemon)->num_queued_msg_ctx = 0;
208 hlist_add_head(&(*daemon)->euid_chain,
209 &ecryptfs_daemon_hash[ecryptfs_uid_hash(euid)]);
210 out:
211 return rc;
212 }
213
214 /**
215 * ecryptfs_process_helo
216 * @euid: The user ID owner of the message
217 * @user_ns: The namespace in which @euid applies
218 * @pid: The process ID for the userspace program that sent the
219 * message
220 *
221 * Adds the euid and pid values to the daemon euid hash. If an euid
222 * already has a daemon pid registered, the daemon will be
223 * unregistered before the new daemon is put into the hash list.
224 * Returns zero after adding a new daemon to the hash list;
225 * non-zero otherwise.
226 */
227 int ecryptfs_process_helo(uid_t euid, struct user_namespace *user_ns,
228 struct pid *pid)
229 {
230 struct ecryptfs_daemon *new_daemon;
231 struct ecryptfs_daemon *old_daemon;
232 int rc;
233
234 mutex_lock(&ecryptfs_daemon_hash_mux);
235 rc = ecryptfs_find_daemon_by_euid(&old_daemon, euid, user_ns);
236 if (rc != 0) {
237 printk(KERN_WARNING "Received request from user [%d] "
238 "to register daemon [0x%p]; unregistering daemon "
239 "[0x%p]\n", euid, pid, old_daemon->pid);
240 rc = ecryptfs_send_raw_message(ECRYPTFS_MSG_QUIT, old_daemon);
241 if (rc)
242 printk(KERN_WARNING "Failed to send QUIT "
243 "message to daemon [0x%p]; rc = [%d]\n",
244 old_daemon->pid, rc);
245 hlist_del(&old_daemon->euid_chain);
246 kfree(old_daemon);
247 }
248 rc = ecryptfs_spawn_daemon(&new_daemon, euid, user_ns, pid);
249 if (rc)
250 printk(KERN_ERR "%s: The gods are displeased with this attempt "
251 "to create a new daemon object for euid [%d]; pid "
252 "[0x%p]; rc = [%d]\n", __func__, euid, pid, rc);
253 mutex_unlock(&ecryptfs_daemon_hash_mux);
254 return rc;
255 }
256
257 /**
258 * ecryptfs_exorcise_daemon - Destroy the daemon struct
259 *
260 * Must be called ceremoniously while in possession of
261 * ecryptfs_daemon_hash_mux and the daemon's own mux.
262 */
263 int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon)
264 {
265 struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp;
266 int rc = 0;
267
268 mutex_lock(&daemon->mux);
269 if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ)
270 || (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) {
271 rc = -EBUSY;
272 printk(KERN_WARNING "%s: Attempt to destroy daemon with pid "
273 "[0x%p], but it is in the midst of a read or a poll\n",
274 __func__, daemon->pid);
275 mutex_unlock(&daemon->mux);
276 goto out;
277 }
278 list_for_each_entry_safe(msg_ctx, msg_ctx_tmp,
279 &daemon->msg_ctx_out_queue, daemon_out_list) {
280 list_del(&msg_ctx->daemon_out_list);
281 daemon->num_queued_msg_ctx--;
282 printk(KERN_WARNING "%s: Warning: dropping message that is in "
283 "the out queue of a dying daemon\n", __func__);
284 ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
285 }
286 hlist_del(&daemon->euid_chain);
287 if (daemon->task)
288 wake_up_process(daemon->task);
289 if (daemon->pid)
290 put_pid(daemon->pid);
291 if (daemon->user_ns)
292 put_user_ns(daemon->user_ns);
293 mutex_unlock(&daemon->mux);
294 kzfree(daemon);
295 out:
296 return rc;
297 }
298
299 /**
300 * ecryptfs_process_quit
301 * @euid: The user ID owner of the message
302 * @user_ns: The namespace in which @euid applies
303 * @pid: The process ID for the userspace program that sent the
304 * message
305 *
306 * Deletes the corresponding daemon for the given euid and pid, if
307 * it is the registered that is requesting the deletion. Returns zero
308 * after deleting the desired daemon; non-zero otherwise.
309 */
310 int ecryptfs_process_quit(uid_t euid, struct user_namespace *user_ns,
311 struct pid *pid)
312 {
313 struct ecryptfs_daemon *daemon;
314 int rc;
315
316 mutex_lock(&ecryptfs_daemon_hash_mux);
317 rc = ecryptfs_find_daemon_by_euid(&daemon, euid, user_ns);
318 if (rc || !daemon) {
319 rc = -EINVAL;
320 printk(KERN_ERR "Received request from user [%d] to "
321 "unregister unrecognized daemon [0x%p]\n", euid, pid);
322 goto out_unlock;
323 }
324 rc = ecryptfs_exorcise_daemon(daemon);
325 out_unlock:
326 mutex_unlock(&ecryptfs_daemon_hash_mux);
327 return rc;
328 }
329
330 /**
331 * ecryptfs_process_reponse
332 * @msg: The ecryptfs message received; the caller should sanity check
333 * msg->data_len and free the memory
334 * @pid: The process ID of the userspace application that sent the
335 * message
336 * @seq: The sequence number of the message; must match the sequence
337 * number for the existing message context waiting for this
338 * response
339 *
340 * Processes a response message after sending an operation request to
341 * userspace. Some other process is awaiting this response. Before
342 * sending out its first communications, the other process allocated a
343 * msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The
344 * response message contains this index so that we can copy over the
345 * response message into the msg_ctx that the process holds a
346 * reference to. The other process is going to wake up, check to see
347 * that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then
348 * proceed to read off and process the response message. Returns zero
349 * upon delivery to desired context element; non-zero upon delivery
350 * failure or error.
351 *
352 * Returns zero on success; non-zero otherwise
353 */
354 int ecryptfs_process_response(struct ecryptfs_message *msg, uid_t euid,
355 struct user_namespace *user_ns, struct pid *pid,
356 u32 seq)
357 {
358 struct ecryptfs_daemon *daemon;
359 struct ecryptfs_msg_ctx *msg_ctx;
360 size_t msg_size;
361 struct nsproxy *nsproxy;
362 struct user_namespace *tsk_user_ns;
363 uid_t ctx_euid;
364 int rc;
365
366 if (msg->index >= ecryptfs_message_buf_len) {
367 rc = -EINVAL;
368 printk(KERN_ERR "%s: Attempt to reference "
369 "context buffer at index [%d]; maximum "
370 "allowable is [%d]\n", __func__, msg->index,
371 (ecryptfs_message_buf_len - 1));
372 goto out;
373 }
374 msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
375 mutex_lock(&msg_ctx->mux);
376 mutex_lock(&ecryptfs_daemon_hash_mux);
377 rcu_read_lock();
378 nsproxy = task_nsproxy(msg_ctx->task);
379 if (nsproxy == NULL) {
380 rc = -EBADMSG;
381 printk(KERN_ERR "%s: Receiving process is a zombie. Dropping "
382 "message.\n", __func__);
383 rcu_read_unlock();
384 mutex_unlock(&ecryptfs_daemon_hash_mux);
385 goto wake_up;
386 }
387 tsk_user_ns = __task_cred(msg_ctx->task)->user->user_ns;
388 ctx_euid = task_euid(msg_ctx->task);
389 rc = ecryptfs_find_daemon_by_euid(&daemon, ctx_euid, tsk_user_ns);
390 rcu_read_unlock();
391 mutex_unlock(&ecryptfs_daemon_hash_mux);
392 if (rc) {
393 rc = -EBADMSG;
394 printk(KERN_WARNING "%s: User [%d] received a "
395 "message response from process [0x%p] but does "
396 "not have a registered daemon\n", __func__,
397 ctx_euid, pid);
398 goto wake_up;
399 }
400 if (ctx_euid != euid) {
401 rc = -EBADMSG;
402 printk(KERN_WARNING "%s: Received message from user "
403 "[%d]; expected message from user [%d]\n", __func__,
404 euid, ctx_euid);
405 goto unlock;
406 }
407 if (tsk_user_ns != user_ns) {
408 rc = -EBADMSG;
409 printk(KERN_WARNING "%s: Received message from user_ns "
410 "[0x%p]; expected message from user_ns [0x%p]\n",
411 __func__, user_ns, tsk_user_ns);
412 goto unlock;
413 }
414 if (daemon->pid != pid) {
415 rc = -EBADMSG;
416 printk(KERN_ERR "%s: User [%d] sent a message response "
417 "from an unrecognized process [0x%p]\n",
418 __func__, ctx_euid, pid);
419 goto unlock;
420 }
421 if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
422 rc = -EINVAL;
423 printk(KERN_WARNING "%s: Desired context element is not "
424 "pending a response\n", __func__);
425 goto unlock;
426 } else if (msg_ctx->counter != seq) {
427 rc = -EINVAL;
428 printk(KERN_WARNING "%s: Invalid message sequence; "
429 "expected [%d]; received [%d]\n", __func__,
430 msg_ctx->counter, seq);
431 goto unlock;
432 }
433 msg_size = (sizeof(*msg) + msg->data_len);
434 msg_ctx->msg = kmalloc(msg_size, GFP_KERNEL);
435 if (!msg_ctx->msg) {
436 rc = -ENOMEM;
437 printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of "
438 "GFP_KERNEL memory\n", __func__, msg_size);
439 goto unlock;
440 }
441 memcpy(msg_ctx->msg, msg, msg_size);
442 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
443 rc = 0;
444 wake_up:
445 wake_up_process(msg_ctx->task);
446 unlock:
447 mutex_unlock(&msg_ctx->mux);
448 out:
449 return rc;
450 }
451
452 /**
453 * ecryptfs_send_message_locked
454 * @data: The data to send
455 * @data_len: The length of data
456 * @msg_ctx: The message context allocated for the send
457 *
458 * Must be called with ecryptfs_daemon_hash_mux held.
459 *
460 * Returns zero on success; non-zero otherwise
461 */
462 static int
463 ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type,
464 struct ecryptfs_msg_ctx **msg_ctx)
465 {
466 struct ecryptfs_daemon *daemon;
467 uid_t euid = current_euid();
468 int rc;
469
470 rc = ecryptfs_find_daemon_by_euid(&daemon, euid, current_user_ns());
471 if (rc || !daemon) {
472 rc = -ENOTCONN;
473 printk(KERN_ERR "%s: User [%d] does not have a daemon "
474 "registered\n", __func__, euid);
475 goto out;
476 }
477 mutex_lock(&ecryptfs_msg_ctx_lists_mux);
478 rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
479 if (rc) {
480 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
481 printk(KERN_WARNING "%s: Could not claim a free "
482 "context element\n", __func__);
483 goto out;
484 }
485 ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
486 mutex_unlock(&(*msg_ctx)->mux);
487 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
488 rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type, 0,
489 daemon);
490 if (rc)
491 printk(KERN_ERR "%s: Error attempting to send message to "
492 "userspace daemon; rc = [%d]\n", __func__, rc);
493 out:
494 return rc;
495 }
496
497 /**
498 * ecryptfs_send_message
499 * @data: The data to send
500 * @data_len: The length of data
501 * @msg_ctx: The message context allocated for the send
502 *
503 * Grabs ecryptfs_daemon_hash_mux.
504 *
505 * Returns zero on success; non-zero otherwise
506 */
507 int ecryptfs_send_message(char *data, int data_len,
508 struct ecryptfs_msg_ctx **msg_ctx)
509 {
510 int rc;
511
512 mutex_lock(&ecryptfs_daemon_hash_mux);
513 rc = ecryptfs_send_message_locked(data, data_len, ECRYPTFS_MSG_REQUEST,
514 msg_ctx);
515 mutex_unlock(&ecryptfs_daemon_hash_mux);
516 return rc;
517 }
518
519 /**
520 * ecryptfs_wait_for_response
521 * @msg_ctx: The context that was assigned when sending a message
522 * @msg: The incoming message from userspace; not set if rc != 0
523 *
524 * Sleeps until awaken by ecryptfs_receive_message or until the amount
525 * of time exceeds ecryptfs_message_wait_timeout. If zero is
526 * returned, msg will point to a valid message from userspace; a
527 * non-zero value is returned upon failure to receive a message or an
528 * error occurs. Callee must free @msg on success.
529 */
530 int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
531 struct ecryptfs_message **msg)
532 {
533 signed long timeout = ecryptfs_message_wait_timeout * HZ;
534 int rc = 0;
535
536 sleep:
537 timeout = schedule_timeout_interruptible(timeout);
538 mutex_lock(&ecryptfs_msg_ctx_lists_mux);
539 mutex_lock(&msg_ctx->mux);
540 if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
541 if (timeout) {
542 mutex_unlock(&msg_ctx->mux);
543 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
544 goto sleep;
545 }
546 rc = -ENOMSG;
547 } else {
548 *msg = msg_ctx->msg;
549 msg_ctx->msg = NULL;
550 }
551 ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
552 mutex_unlock(&msg_ctx->mux);
553 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
554 return rc;
555 }
556
557 int ecryptfs_init_messaging(void)
558 {
559 int i;
560 int rc = 0;
561
562 if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
563 ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
564 printk(KERN_WARNING "%s: Specified number of users is "
565 "too large, defaulting to [%d] users\n", __func__,
566 ecryptfs_number_of_users);
567 }
568 mutex_init(&ecryptfs_daemon_hash_mux);
569 mutex_lock(&ecryptfs_daemon_hash_mux);
570 ecryptfs_hash_buckets = 1;
571 while (ecryptfs_number_of_users >> ecryptfs_hash_buckets)
572 ecryptfs_hash_buckets++;
573 ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head)
574 * ecryptfs_hash_buckets), GFP_KERNEL);
575 if (!ecryptfs_daemon_hash) {
576 rc = -ENOMEM;
577 printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
578 mutex_unlock(&ecryptfs_daemon_hash_mux);
579 goto out;
580 }
581 for (i = 0; i < ecryptfs_hash_buckets; i++)
582 INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]);
583 mutex_unlock(&ecryptfs_daemon_hash_mux);
584 ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
585 * ecryptfs_message_buf_len),
586 GFP_KERNEL);
587 if (!ecryptfs_msg_ctx_arr) {
588 rc = -ENOMEM;
589 printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
590 goto out;
591 }
592 mutex_init(&ecryptfs_msg_ctx_lists_mux);
593 mutex_lock(&ecryptfs_msg_ctx_lists_mux);
594 ecryptfs_msg_counter = 0;
595 for (i = 0; i < ecryptfs_message_buf_len; i++) {
596 INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
597 INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list);
598 mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
599 mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
600 ecryptfs_msg_ctx_arr[i].index = i;
601 ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
602 ecryptfs_msg_ctx_arr[i].counter = 0;
603 ecryptfs_msg_ctx_arr[i].task = NULL;
604 ecryptfs_msg_ctx_arr[i].msg = NULL;
605 list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
606 &ecryptfs_msg_ctx_free_list);
607 mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
608 }
609 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
610 rc = ecryptfs_init_ecryptfs_miscdev();
611 if (rc)
612 ecryptfs_release_messaging();
613 out:
614 return rc;
615 }
616
617 void ecryptfs_release_messaging(void)
618 {
619 if (ecryptfs_msg_ctx_arr) {
620 int i;
621
622 mutex_lock(&ecryptfs_msg_ctx_lists_mux);
623 for (i = 0; i < ecryptfs_message_buf_len; i++) {
624 mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
625 if (ecryptfs_msg_ctx_arr[i].msg)
626 kfree(ecryptfs_msg_ctx_arr[i].msg);
627 mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
628 }
629 kfree(ecryptfs_msg_ctx_arr);
630 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
631 }
632 if (ecryptfs_daemon_hash) {
633 struct hlist_node *elem;
634 struct ecryptfs_daemon *daemon;
635 int i;
636
637 mutex_lock(&ecryptfs_daemon_hash_mux);
638 for (i = 0; i < ecryptfs_hash_buckets; i++) {
639 int rc;
640
641 hlist_for_each_entry(daemon, elem,
642 &ecryptfs_daemon_hash[i],
643 euid_chain) {
644 rc = ecryptfs_exorcise_daemon(daemon);
645 if (rc)
646 printk(KERN_ERR "%s: Error whilst "
647 "attempting to destroy daemon; "
648 "rc = [%d]. Dazed and confused, "
649 "but trying to continue.\n",
650 __func__, rc);
651 }
652 }
653 kfree(ecryptfs_daemon_hash);
654 mutex_unlock(&ecryptfs_daemon_hash_mux);
655 }
656 ecryptfs_destroy_ecryptfs_miscdev();
657 return;
658 }
This page took 0.044108 seconds and 6 git commands to generate.