Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next-2.6
[deliverable/linux.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
58 #include "internal.h"
59
60 #ifdef __alpha__
61 /* for /sbin/loader handling in search_binary_handler() */
62 #include <linux/a.out.h>
63 #endif
64
65 int core_uses_pid;
66 char core_pattern[CORENAME_MAX_SIZE] = "core";
67 int suid_dumpable = 0;
68
69 /* The maximal length of core_pattern is also specified in sysctl.c */
70
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73
74 int register_binfmt(struct linux_binfmt * fmt)
75 {
76 if (!fmt)
77 return -EINVAL;
78 write_lock(&binfmt_lock);
79 list_add(&fmt->lh, &formats);
80 write_unlock(&binfmt_lock);
81 return 0;
82 }
83
84 EXPORT_SYMBOL(register_binfmt);
85
86 void unregister_binfmt(struct linux_binfmt * fmt)
87 {
88 write_lock(&binfmt_lock);
89 list_del(&fmt->lh);
90 write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(unregister_binfmt);
94
95 static inline void put_binfmt(struct linux_binfmt * fmt)
96 {
97 module_put(fmt->module);
98 }
99
100 /*
101 * Note that a shared library must be both readable and executable due to
102 * security reasons.
103 *
104 * Also note that we take the address to load from from the file itself.
105 */
106 asmlinkage long sys_uselib(const char __user * library)
107 {
108 struct file *file;
109 struct nameidata nd;
110 char *tmp = getname(library);
111 int error = PTR_ERR(tmp);
112
113 if (!IS_ERR(tmp)) {
114 error = path_lookup_open(AT_FDCWD, tmp,
115 LOOKUP_FOLLOW, &nd,
116 FMODE_READ|FMODE_EXEC);
117 putname(tmp);
118 }
119 if (error)
120 goto out;
121
122 error = -EINVAL;
123 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
124 goto exit;
125
126 error = -EACCES;
127 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
128 goto exit;
129
130 error = vfs_permission(&nd, MAY_READ | MAY_EXEC | MAY_OPEN);
131 if (error)
132 goto exit;
133
134 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
135 error = PTR_ERR(file);
136 if (IS_ERR(file))
137 goto out;
138
139 error = -ENOEXEC;
140 if(file->f_op) {
141 struct linux_binfmt * fmt;
142
143 read_lock(&binfmt_lock);
144 list_for_each_entry(fmt, &formats, lh) {
145 if (!fmt->load_shlib)
146 continue;
147 if (!try_module_get(fmt->module))
148 continue;
149 read_unlock(&binfmt_lock);
150 error = fmt->load_shlib(file);
151 read_lock(&binfmt_lock);
152 put_binfmt(fmt);
153 if (error != -ENOEXEC)
154 break;
155 }
156 read_unlock(&binfmt_lock);
157 }
158 fput(file);
159 out:
160 return error;
161 exit:
162 release_open_intent(&nd);
163 path_put(&nd.path);
164 goto out;
165 }
166
167 #ifdef CONFIG_MMU
168
169 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
170 int write)
171 {
172 struct page *page;
173 int ret;
174
175 #ifdef CONFIG_STACK_GROWSUP
176 if (write) {
177 ret = expand_stack_downwards(bprm->vma, pos);
178 if (ret < 0)
179 return NULL;
180 }
181 #endif
182 ret = get_user_pages(current, bprm->mm, pos,
183 1, write, 1, &page, NULL);
184 if (ret <= 0)
185 return NULL;
186
187 if (write) {
188 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
189 struct rlimit *rlim;
190
191 /*
192 * We've historically supported up to 32 pages (ARG_MAX)
193 * of argument strings even with small stacks
194 */
195 if (size <= ARG_MAX)
196 return page;
197
198 /*
199 * Limit to 1/4-th the stack size for the argv+env strings.
200 * This ensures that:
201 * - the remaining binfmt code will not run out of stack space,
202 * - the program will have a reasonable amount of stack left
203 * to work from.
204 */
205 rlim = current->signal->rlim;
206 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
207 put_page(page);
208 return NULL;
209 }
210 }
211
212 return page;
213 }
214
215 static void put_arg_page(struct page *page)
216 {
217 put_page(page);
218 }
219
220 static void free_arg_page(struct linux_binprm *bprm, int i)
221 {
222 }
223
224 static void free_arg_pages(struct linux_binprm *bprm)
225 {
226 }
227
228 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
229 struct page *page)
230 {
231 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
232 }
233
234 static int __bprm_mm_init(struct linux_binprm *bprm)
235 {
236 int err = -ENOMEM;
237 struct vm_area_struct *vma = NULL;
238 struct mm_struct *mm = bprm->mm;
239
240 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
241 if (!vma)
242 goto err;
243
244 down_write(&mm->mmap_sem);
245 vma->vm_mm = mm;
246
247 /*
248 * Place the stack at the largest stack address the architecture
249 * supports. Later, we'll move this to an appropriate place. We don't
250 * use STACK_TOP because that can depend on attributes which aren't
251 * configured yet.
252 */
253 vma->vm_end = STACK_TOP_MAX;
254 vma->vm_start = vma->vm_end - PAGE_SIZE;
255
256 vma->vm_flags = VM_STACK_FLAGS;
257 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
258 err = insert_vm_struct(mm, vma);
259 if (err) {
260 up_write(&mm->mmap_sem);
261 goto err;
262 }
263
264 mm->stack_vm = mm->total_vm = 1;
265 up_write(&mm->mmap_sem);
266
267 bprm->p = vma->vm_end - sizeof(void *);
268
269 return 0;
270
271 err:
272 if (vma) {
273 bprm->vma = NULL;
274 kmem_cache_free(vm_area_cachep, vma);
275 }
276
277 return err;
278 }
279
280 static bool valid_arg_len(struct linux_binprm *bprm, long len)
281 {
282 return len <= MAX_ARG_STRLEN;
283 }
284
285 #else
286
287 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
288 int write)
289 {
290 struct page *page;
291
292 page = bprm->page[pos / PAGE_SIZE];
293 if (!page && write) {
294 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
295 if (!page)
296 return NULL;
297 bprm->page[pos / PAGE_SIZE] = page;
298 }
299
300 return page;
301 }
302
303 static void put_arg_page(struct page *page)
304 {
305 }
306
307 static void free_arg_page(struct linux_binprm *bprm, int i)
308 {
309 if (bprm->page[i]) {
310 __free_page(bprm->page[i]);
311 bprm->page[i] = NULL;
312 }
313 }
314
315 static void free_arg_pages(struct linux_binprm *bprm)
316 {
317 int i;
318
319 for (i = 0; i < MAX_ARG_PAGES; i++)
320 free_arg_page(bprm, i);
321 }
322
323 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
324 struct page *page)
325 {
326 }
327
328 static int __bprm_mm_init(struct linux_binprm *bprm)
329 {
330 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
331 return 0;
332 }
333
334 static bool valid_arg_len(struct linux_binprm *bprm, long len)
335 {
336 return len <= bprm->p;
337 }
338
339 #endif /* CONFIG_MMU */
340
341 /*
342 * Create a new mm_struct and populate it with a temporary stack
343 * vm_area_struct. We don't have enough context at this point to set the stack
344 * flags, permissions, and offset, so we use temporary values. We'll update
345 * them later in setup_arg_pages().
346 */
347 int bprm_mm_init(struct linux_binprm *bprm)
348 {
349 int err;
350 struct mm_struct *mm = NULL;
351
352 bprm->mm = mm = mm_alloc();
353 err = -ENOMEM;
354 if (!mm)
355 goto err;
356
357 err = init_new_context(current, mm);
358 if (err)
359 goto err;
360
361 err = __bprm_mm_init(bprm);
362 if (err)
363 goto err;
364
365 return 0;
366
367 err:
368 if (mm) {
369 bprm->mm = NULL;
370 mmdrop(mm);
371 }
372
373 return err;
374 }
375
376 /*
377 * count() counts the number of strings in array ARGV.
378 */
379 static int count(char __user * __user * argv, int max)
380 {
381 int i = 0;
382
383 if (argv != NULL) {
384 for (;;) {
385 char __user * p;
386
387 if (get_user(p, argv))
388 return -EFAULT;
389 if (!p)
390 break;
391 argv++;
392 if (i++ >= max)
393 return -E2BIG;
394 cond_resched();
395 }
396 }
397 return i;
398 }
399
400 /*
401 * 'copy_strings()' copies argument/environment strings from the old
402 * processes's memory to the new process's stack. The call to get_user_pages()
403 * ensures the destination page is created and not swapped out.
404 */
405 static int copy_strings(int argc, char __user * __user * argv,
406 struct linux_binprm *bprm)
407 {
408 struct page *kmapped_page = NULL;
409 char *kaddr = NULL;
410 unsigned long kpos = 0;
411 int ret;
412
413 while (argc-- > 0) {
414 char __user *str;
415 int len;
416 unsigned long pos;
417
418 if (get_user(str, argv+argc) ||
419 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
420 ret = -EFAULT;
421 goto out;
422 }
423
424 if (!valid_arg_len(bprm, len)) {
425 ret = -E2BIG;
426 goto out;
427 }
428
429 /* We're going to work our way backwords. */
430 pos = bprm->p;
431 str += len;
432 bprm->p -= len;
433
434 while (len > 0) {
435 int offset, bytes_to_copy;
436
437 offset = pos % PAGE_SIZE;
438 if (offset == 0)
439 offset = PAGE_SIZE;
440
441 bytes_to_copy = offset;
442 if (bytes_to_copy > len)
443 bytes_to_copy = len;
444
445 offset -= bytes_to_copy;
446 pos -= bytes_to_copy;
447 str -= bytes_to_copy;
448 len -= bytes_to_copy;
449
450 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
451 struct page *page;
452
453 page = get_arg_page(bprm, pos, 1);
454 if (!page) {
455 ret = -E2BIG;
456 goto out;
457 }
458
459 if (kmapped_page) {
460 flush_kernel_dcache_page(kmapped_page);
461 kunmap(kmapped_page);
462 put_arg_page(kmapped_page);
463 }
464 kmapped_page = page;
465 kaddr = kmap(kmapped_page);
466 kpos = pos & PAGE_MASK;
467 flush_arg_page(bprm, kpos, kmapped_page);
468 }
469 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
470 ret = -EFAULT;
471 goto out;
472 }
473 }
474 }
475 ret = 0;
476 out:
477 if (kmapped_page) {
478 flush_kernel_dcache_page(kmapped_page);
479 kunmap(kmapped_page);
480 put_arg_page(kmapped_page);
481 }
482 return ret;
483 }
484
485 /*
486 * Like copy_strings, but get argv and its values from kernel memory.
487 */
488 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
489 {
490 int r;
491 mm_segment_t oldfs = get_fs();
492 set_fs(KERNEL_DS);
493 r = copy_strings(argc, (char __user * __user *)argv, bprm);
494 set_fs(oldfs);
495 return r;
496 }
497 EXPORT_SYMBOL(copy_strings_kernel);
498
499 #ifdef CONFIG_MMU
500
501 /*
502 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
503 * the binfmt code determines where the new stack should reside, we shift it to
504 * its final location. The process proceeds as follows:
505 *
506 * 1) Use shift to calculate the new vma endpoints.
507 * 2) Extend vma to cover both the old and new ranges. This ensures the
508 * arguments passed to subsequent functions are consistent.
509 * 3) Move vma's page tables to the new range.
510 * 4) Free up any cleared pgd range.
511 * 5) Shrink the vma to cover only the new range.
512 */
513 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
514 {
515 struct mm_struct *mm = vma->vm_mm;
516 unsigned long old_start = vma->vm_start;
517 unsigned long old_end = vma->vm_end;
518 unsigned long length = old_end - old_start;
519 unsigned long new_start = old_start - shift;
520 unsigned long new_end = old_end - shift;
521 struct mmu_gather *tlb;
522
523 BUG_ON(new_start > new_end);
524
525 /*
526 * ensure there are no vmas between where we want to go
527 * and where we are
528 */
529 if (vma != find_vma(mm, new_start))
530 return -EFAULT;
531
532 /*
533 * cover the whole range: [new_start, old_end)
534 */
535 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
536
537 /*
538 * move the page tables downwards, on failure we rely on
539 * process cleanup to remove whatever mess we made.
540 */
541 if (length != move_page_tables(vma, old_start,
542 vma, new_start, length))
543 return -ENOMEM;
544
545 lru_add_drain();
546 tlb = tlb_gather_mmu(mm, 0);
547 if (new_end > old_start) {
548 /*
549 * when the old and new regions overlap clear from new_end.
550 */
551 free_pgd_range(tlb, new_end, old_end, new_end,
552 vma->vm_next ? vma->vm_next->vm_start : 0);
553 } else {
554 /*
555 * otherwise, clean from old_start; this is done to not touch
556 * the address space in [new_end, old_start) some architectures
557 * have constraints on va-space that make this illegal (IA64) -
558 * for the others its just a little faster.
559 */
560 free_pgd_range(tlb, old_start, old_end, new_end,
561 vma->vm_next ? vma->vm_next->vm_start : 0);
562 }
563 tlb_finish_mmu(tlb, new_end, old_end);
564
565 /*
566 * shrink the vma to just the new range.
567 */
568 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
569
570 return 0;
571 }
572
573 #define EXTRA_STACK_VM_PAGES 20 /* random */
574
575 /*
576 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
577 * the stack is optionally relocated, and some extra space is added.
578 */
579 int setup_arg_pages(struct linux_binprm *bprm,
580 unsigned long stack_top,
581 int executable_stack)
582 {
583 unsigned long ret;
584 unsigned long stack_shift;
585 struct mm_struct *mm = current->mm;
586 struct vm_area_struct *vma = bprm->vma;
587 struct vm_area_struct *prev = NULL;
588 unsigned long vm_flags;
589 unsigned long stack_base;
590
591 #ifdef CONFIG_STACK_GROWSUP
592 /* Limit stack size to 1GB */
593 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
594 if (stack_base > (1 << 30))
595 stack_base = 1 << 30;
596
597 /* Make sure we didn't let the argument array grow too large. */
598 if (vma->vm_end - vma->vm_start > stack_base)
599 return -ENOMEM;
600
601 stack_base = PAGE_ALIGN(stack_top - stack_base);
602
603 stack_shift = vma->vm_start - stack_base;
604 mm->arg_start = bprm->p - stack_shift;
605 bprm->p = vma->vm_end - stack_shift;
606 #else
607 stack_top = arch_align_stack(stack_top);
608 stack_top = PAGE_ALIGN(stack_top);
609 stack_shift = vma->vm_end - stack_top;
610
611 bprm->p -= stack_shift;
612 mm->arg_start = bprm->p;
613 #endif
614
615 if (bprm->loader)
616 bprm->loader -= stack_shift;
617 bprm->exec -= stack_shift;
618
619 down_write(&mm->mmap_sem);
620 vm_flags = VM_STACK_FLAGS;
621
622 /*
623 * Adjust stack execute permissions; explicitly enable for
624 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
625 * (arch default) otherwise.
626 */
627 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
628 vm_flags |= VM_EXEC;
629 else if (executable_stack == EXSTACK_DISABLE_X)
630 vm_flags &= ~VM_EXEC;
631 vm_flags |= mm->def_flags;
632
633 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
634 vm_flags);
635 if (ret)
636 goto out_unlock;
637 BUG_ON(prev != vma);
638
639 /* Move stack pages down in memory. */
640 if (stack_shift) {
641 ret = shift_arg_pages(vma, stack_shift);
642 if (ret) {
643 up_write(&mm->mmap_sem);
644 return ret;
645 }
646 }
647
648 #ifdef CONFIG_STACK_GROWSUP
649 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
650 #else
651 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
652 #endif
653 ret = expand_stack(vma, stack_base);
654 if (ret)
655 ret = -EFAULT;
656
657 out_unlock:
658 up_write(&mm->mmap_sem);
659 return 0;
660 }
661 EXPORT_SYMBOL(setup_arg_pages);
662
663 #endif /* CONFIG_MMU */
664
665 struct file *open_exec(const char *name)
666 {
667 struct nameidata nd;
668 struct file *file;
669 int err;
670
671 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
672 FMODE_READ|FMODE_EXEC);
673 if (err)
674 goto out;
675
676 err = -EACCES;
677 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
678 goto out_path_put;
679
680 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
681 goto out_path_put;
682
683 err = vfs_permission(&nd, MAY_EXEC | MAY_OPEN);
684 if (err)
685 goto out_path_put;
686
687 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
688 if (IS_ERR(file))
689 return file;
690
691 err = deny_write_access(file);
692 if (err) {
693 fput(file);
694 goto out;
695 }
696
697 return file;
698
699 out_path_put:
700 release_open_intent(&nd);
701 path_put(&nd.path);
702 out:
703 return ERR_PTR(err);
704 }
705 EXPORT_SYMBOL(open_exec);
706
707 int kernel_read(struct file *file, unsigned long offset,
708 char *addr, unsigned long count)
709 {
710 mm_segment_t old_fs;
711 loff_t pos = offset;
712 int result;
713
714 old_fs = get_fs();
715 set_fs(get_ds());
716 /* The cast to a user pointer is valid due to the set_fs() */
717 result = vfs_read(file, (void __user *)addr, count, &pos);
718 set_fs(old_fs);
719 return result;
720 }
721
722 EXPORT_SYMBOL(kernel_read);
723
724 static int exec_mmap(struct mm_struct *mm)
725 {
726 struct task_struct *tsk;
727 struct mm_struct * old_mm, *active_mm;
728
729 /* Notify parent that we're no longer interested in the old VM */
730 tsk = current;
731 old_mm = current->mm;
732 mm_release(tsk, old_mm);
733
734 if (old_mm) {
735 /*
736 * Make sure that if there is a core dump in progress
737 * for the old mm, we get out and die instead of going
738 * through with the exec. We must hold mmap_sem around
739 * checking core_state and changing tsk->mm.
740 */
741 down_read(&old_mm->mmap_sem);
742 if (unlikely(old_mm->core_state)) {
743 up_read(&old_mm->mmap_sem);
744 return -EINTR;
745 }
746 }
747 task_lock(tsk);
748 active_mm = tsk->active_mm;
749 tsk->mm = mm;
750 tsk->active_mm = mm;
751 activate_mm(active_mm, mm);
752 task_unlock(tsk);
753 arch_pick_mmap_layout(mm);
754 if (old_mm) {
755 up_read(&old_mm->mmap_sem);
756 BUG_ON(active_mm != old_mm);
757 mm_update_next_owner(old_mm);
758 mmput(old_mm);
759 return 0;
760 }
761 mmdrop(active_mm);
762 return 0;
763 }
764
765 /*
766 * This function makes sure the current process has its own signal table,
767 * so that flush_signal_handlers can later reset the handlers without
768 * disturbing other processes. (Other processes might share the signal
769 * table via the CLONE_SIGHAND option to clone().)
770 */
771 static int de_thread(struct task_struct *tsk)
772 {
773 struct signal_struct *sig = tsk->signal;
774 struct sighand_struct *oldsighand = tsk->sighand;
775 spinlock_t *lock = &oldsighand->siglock;
776 struct task_struct *leader = NULL;
777 int count;
778
779 if (thread_group_empty(tsk))
780 goto no_thread_group;
781
782 /*
783 * Kill all other threads in the thread group.
784 */
785 spin_lock_irq(lock);
786 if (signal_group_exit(sig)) {
787 /*
788 * Another group action in progress, just
789 * return so that the signal is processed.
790 */
791 spin_unlock_irq(lock);
792 return -EAGAIN;
793 }
794 sig->group_exit_task = tsk;
795 zap_other_threads(tsk);
796
797 /* Account for the thread group leader hanging around: */
798 count = thread_group_leader(tsk) ? 1 : 2;
799 sig->notify_count = count;
800 while (atomic_read(&sig->count) > count) {
801 __set_current_state(TASK_UNINTERRUPTIBLE);
802 spin_unlock_irq(lock);
803 schedule();
804 spin_lock_irq(lock);
805 }
806 spin_unlock_irq(lock);
807
808 /*
809 * At this point all other threads have exited, all we have to
810 * do is to wait for the thread group leader to become inactive,
811 * and to assume its PID:
812 */
813 if (!thread_group_leader(tsk)) {
814 leader = tsk->group_leader;
815
816 sig->notify_count = -1; /* for exit_notify() */
817 for (;;) {
818 write_lock_irq(&tasklist_lock);
819 if (likely(leader->exit_state))
820 break;
821 __set_current_state(TASK_UNINTERRUPTIBLE);
822 write_unlock_irq(&tasklist_lock);
823 schedule();
824 }
825
826 /*
827 * The only record we have of the real-time age of a
828 * process, regardless of execs it's done, is start_time.
829 * All the past CPU time is accumulated in signal_struct
830 * from sister threads now dead. But in this non-leader
831 * exec, nothing survives from the original leader thread,
832 * whose birth marks the true age of this process now.
833 * When we take on its identity by switching to its PID, we
834 * also take its birthdate (always earlier than our own).
835 */
836 tsk->start_time = leader->start_time;
837
838 BUG_ON(!same_thread_group(leader, tsk));
839 BUG_ON(has_group_leader_pid(tsk));
840 /*
841 * An exec() starts a new thread group with the
842 * TGID of the previous thread group. Rehash the
843 * two threads with a switched PID, and release
844 * the former thread group leader:
845 */
846
847 /* Become a process group leader with the old leader's pid.
848 * The old leader becomes a thread of the this thread group.
849 * Note: The old leader also uses this pid until release_task
850 * is called. Odd but simple and correct.
851 */
852 detach_pid(tsk, PIDTYPE_PID);
853 tsk->pid = leader->pid;
854 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
855 transfer_pid(leader, tsk, PIDTYPE_PGID);
856 transfer_pid(leader, tsk, PIDTYPE_SID);
857 list_replace_rcu(&leader->tasks, &tsk->tasks);
858
859 tsk->group_leader = tsk;
860 leader->group_leader = tsk;
861
862 tsk->exit_signal = SIGCHLD;
863
864 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
865 leader->exit_state = EXIT_DEAD;
866
867 write_unlock_irq(&tasklist_lock);
868 }
869
870 sig->group_exit_task = NULL;
871 sig->notify_count = 0;
872
873 no_thread_group:
874 exit_itimers(sig);
875 flush_itimer_signals();
876 if (leader)
877 release_task(leader);
878
879 if (atomic_read(&oldsighand->count) != 1) {
880 struct sighand_struct *newsighand;
881 /*
882 * This ->sighand is shared with the CLONE_SIGHAND
883 * but not CLONE_THREAD task, switch to the new one.
884 */
885 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
886 if (!newsighand)
887 return -ENOMEM;
888
889 atomic_set(&newsighand->count, 1);
890 memcpy(newsighand->action, oldsighand->action,
891 sizeof(newsighand->action));
892
893 write_lock_irq(&tasklist_lock);
894 spin_lock(&oldsighand->siglock);
895 rcu_assign_pointer(tsk->sighand, newsighand);
896 spin_unlock(&oldsighand->siglock);
897 write_unlock_irq(&tasklist_lock);
898
899 __cleanup_sighand(oldsighand);
900 }
901
902 BUG_ON(!thread_group_leader(tsk));
903 return 0;
904 }
905
906 /*
907 * These functions flushes out all traces of the currently running executable
908 * so that a new one can be started
909 */
910 static void flush_old_files(struct files_struct * files)
911 {
912 long j = -1;
913 struct fdtable *fdt;
914
915 spin_lock(&files->file_lock);
916 for (;;) {
917 unsigned long set, i;
918
919 j++;
920 i = j * __NFDBITS;
921 fdt = files_fdtable(files);
922 if (i >= fdt->max_fds)
923 break;
924 set = fdt->close_on_exec->fds_bits[j];
925 if (!set)
926 continue;
927 fdt->close_on_exec->fds_bits[j] = 0;
928 spin_unlock(&files->file_lock);
929 for ( ; set ; i++,set >>= 1) {
930 if (set & 1) {
931 sys_close(i);
932 }
933 }
934 spin_lock(&files->file_lock);
935
936 }
937 spin_unlock(&files->file_lock);
938 }
939
940 char *get_task_comm(char *buf, struct task_struct *tsk)
941 {
942 /* buf must be at least sizeof(tsk->comm) in size */
943 task_lock(tsk);
944 strncpy(buf, tsk->comm, sizeof(tsk->comm));
945 task_unlock(tsk);
946 return buf;
947 }
948
949 void set_task_comm(struct task_struct *tsk, char *buf)
950 {
951 task_lock(tsk);
952 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
953 task_unlock(tsk);
954 }
955
956 int flush_old_exec(struct linux_binprm * bprm)
957 {
958 char * name;
959 int i, ch, retval;
960 char tcomm[sizeof(current->comm)];
961
962 /*
963 * Make sure we have a private signal table and that
964 * we are unassociated from the previous thread group.
965 */
966 retval = de_thread(current);
967 if (retval)
968 goto out;
969
970 set_mm_exe_file(bprm->mm, bprm->file);
971
972 /*
973 * Release all of the old mmap stuff
974 */
975 retval = exec_mmap(bprm->mm);
976 if (retval)
977 goto out;
978
979 bprm->mm = NULL; /* We're using it now */
980
981 /* This is the point of no return */
982 current->sas_ss_sp = current->sas_ss_size = 0;
983
984 if (current_euid() == current_uid() && current_egid() == current_gid())
985 set_dumpable(current->mm, 1);
986 else
987 set_dumpable(current->mm, suid_dumpable);
988
989 name = bprm->filename;
990
991 /* Copies the binary name from after last slash */
992 for (i=0; (ch = *(name++)) != '\0';) {
993 if (ch == '/')
994 i = 0; /* overwrite what we wrote */
995 else
996 if (i < (sizeof(tcomm) - 1))
997 tcomm[i++] = ch;
998 }
999 tcomm[i] = '\0';
1000 set_task_comm(current, tcomm);
1001
1002 current->flags &= ~PF_RANDOMIZE;
1003 flush_thread();
1004
1005 /* Set the new mm task size. We have to do that late because it may
1006 * depend on TIF_32BIT which is only updated in flush_thread() on
1007 * some architectures like powerpc
1008 */
1009 current->mm->task_size = TASK_SIZE;
1010
1011 /* install the new credentials */
1012 if (bprm->cred->uid != current_euid() ||
1013 bprm->cred->gid != current_egid()) {
1014 current->pdeath_signal = 0;
1015 } else if (file_permission(bprm->file, MAY_READ) ||
1016 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1017 set_dumpable(current->mm, suid_dumpable);
1018 }
1019
1020 current->personality &= ~bprm->per_clear;
1021
1022 /* An exec changes our domain. We are no longer part of the thread
1023 group */
1024
1025 current->self_exec_id++;
1026
1027 flush_signal_handlers(current, 0);
1028 flush_old_files(current->files);
1029
1030 return 0;
1031
1032 out:
1033 return retval;
1034 }
1035
1036 EXPORT_SYMBOL(flush_old_exec);
1037
1038 /*
1039 * install the new credentials for this executable
1040 */
1041 void install_exec_creds(struct linux_binprm *bprm)
1042 {
1043 security_bprm_committing_creds(bprm);
1044
1045 commit_creds(bprm->cred);
1046 bprm->cred = NULL;
1047
1048 /* cred_exec_mutex must be held at least to this point to prevent
1049 * ptrace_attach() from altering our determination of the task's
1050 * credentials; any time after this it may be unlocked */
1051
1052 security_bprm_committed_creds(bprm);
1053 }
1054 EXPORT_SYMBOL(install_exec_creds);
1055
1056 /*
1057 * determine how safe it is to execute the proposed program
1058 * - the caller must hold current->cred_exec_mutex to protect against
1059 * PTRACE_ATTACH
1060 */
1061 void check_unsafe_exec(struct linux_binprm *bprm)
1062 {
1063 struct task_struct *p = current;
1064
1065 bprm->unsafe = tracehook_unsafe_exec(p);
1066
1067 if (atomic_read(&p->fs->count) > 1 ||
1068 atomic_read(&p->files->count) > 1 ||
1069 atomic_read(&p->sighand->count) > 1)
1070 bprm->unsafe |= LSM_UNSAFE_SHARE;
1071 }
1072
1073 /*
1074 * Fill the binprm structure from the inode.
1075 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1076 *
1077 * This may be called multiple times for binary chains (scripts for example).
1078 */
1079 int prepare_binprm(struct linux_binprm *bprm)
1080 {
1081 umode_t mode;
1082 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1083 int retval;
1084
1085 mode = inode->i_mode;
1086 if (bprm->file->f_op == NULL)
1087 return -EACCES;
1088
1089 /* clear any previous set[ug]id data from a previous binary */
1090 bprm->cred->euid = current_euid();
1091 bprm->cred->egid = current_egid();
1092
1093 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1094 /* Set-uid? */
1095 if (mode & S_ISUID) {
1096 bprm->per_clear |= PER_CLEAR_ON_SETID;
1097 bprm->cred->euid = inode->i_uid;
1098 }
1099
1100 /* Set-gid? */
1101 /*
1102 * If setgid is set but no group execute bit then this
1103 * is a candidate for mandatory locking, not a setgid
1104 * executable.
1105 */
1106 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1107 bprm->per_clear |= PER_CLEAR_ON_SETID;
1108 bprm->cred->egid = inode->i_gid;
1109 }
1110 }
1111
1112 /* fill in binprm security blob */
1113 retval = security_bprm_set_creds(bprm);
1114 if (retval)
1115 return retval;
1116 bprm->cred_prepared = 1;
1117
1118 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1119 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1120 }
1121
1122 EXPORT_SYMBOL(prepare_binprm);
1123
1124 /*
1125 * Arguments are '\0' separated strings found at the location bprm->p
1126 * points to; chop off the first by relocating brpm->p to right after
1127 * the first '\0' encountered.
1128 */
1129 int remove_arg_zero(struct linux_binprm *bprm)
1130 {
1131 int ret = 0;
1132 unsigned long offset;
1133 char *kaddr;
1134 struct page *page;
1135
1136 if (!bprm->argc)
1137 return 0;
1138
1139 do {
1140 offset = bprm->p & ~PAGE_MASK;
1141 page = get_arg_page(bprm, bprm->p, 0);
1142 if (!page) {
1143 ret = -EFAULT;
1144 goto out;
1145 }
1146 kaddr = kmap_atomic(page, KM_USER0);
1147
1148 for (; offset < PAGE_SIZE && kaddr[offset];
1149 offset++, bprm->p++)
1150 ;
1151
1152 kunmap_atomic(kaddr, KM_USER0);
1153 put_arg_page(page);
1154
1155 if (offset == PAGE_SIZE)
1156 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1157 } while (offset == PAGE_SIZE);
1158
1159 bprm->p++;
1160 bprm->argc--;
1161 ret = 0;
1162
1163 out:
1164 return ret;
1165 }
1166 EXPORT_SYMBOL(remove_arg_zero);
1167
1168 /*
1169 * cycle the list of binary formats handler, until one recognizes the image
1170 */
1171 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1172 {
1173 unsigned int depth = bprm->recursion_depth;
1174 int try,retval;
1175 struct linux_binfmt *fmt;
1176 #ifdef __alpha__
1177 /* handle /sbin/loader.. */
1178 {
1179 struct exec * eh = (struct exec *) bprm->buf;
1180
1181 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1182 (eh->fh.f_flags & 0x3000) == 0x3000)
1183 {
1184 struct file * file;
1185 unsigned long loader;
1186
1187 allow_write_access(bprm->file);
1188 fput(bprm->file);
1189 bprm->file = NULL;
1190
1191 loader = bprm->vma->vm_end - sizeof(void *);
1192
1193 file = open_exec("/sbin/loader");
1194 retval = PTR_ERR(file);
1195 if (IS_ERR(file))
1196 return retval;
1197
1198 /* Remember if the application is TASO. */
1199 bprm->taso = eh->ah.entry < 0x100000000UL;
1200
1201 bprm->file = file;
1202 bprm->loader = loader;
1203 retval = prepare_binprm(bprm);
1204 if (retval<0)
1205 return retval;
1206 /* should call search_binary_handler recursively here,
1207 but it does not matter */
1208 }
1209 }
1210 #endif
1211 retval = security_bprm_check(bprm);
1212 if (retval)
1213 return retval;
1214
1215 /* kernel module loader fixup */
1216 /* so we don't try to load run modprobe in kernel space. */
1217 set_fs(USER_DS);
1218
1219 retval = audit_bprm(bprm);
1220 if (retval)
1221 return retval;
1222
1223 retval = -ENOENT;
1224 for (try=0; try<2; try++) {
1225 read_lock(&binfmt_lock);
1226 list_for_each_entry(fmt, &formats, lh) {
1227 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1228 if (!fn)
1229 continue;
1230 if (!try_module_get(fmt->module))
1231 continue;
1232 read_unlock(&binfmt_lock);
1233 retval = fn(bprm, regs);
1234 /*
1235 * Restore the depth counter to its starting value
1236 * in this call, so we don't have to rely on every
1237 * load_binary function to restore it on return.
1238 */
1239 bprm->recursion_depth = depth;
1240 if (retval >= 0) {
1241 if (depth == 0)
1242 tracehook_report_exec(fmt, bprm, regs);
1243 put_binfmt(fmt);
1244 allow_write_access(bprm->file);
1245 if (bprm->file)
1246 fput(bprm->file);
1247 bprm->file = NULL;
1248 current->did_exec = 1;
1249 proc_exec_connector(current);
1250 return retval;
1251 }
1252 read_lock(&binfmt_lock);
1253 put_binfmt(fmt);
1254 if (retval != -ENOEXEC || bprm->mm == NULL)
1255 break;
1256 if (!bprm->file) {
1257 read_unlock(&binfmt_lock);
1258 return retval;
1259 }
1260 }
1261 read_unlock(&binfmt_lock);
1262 if (retval != -ENOEXEC || bprm->mm == NULL) {
1263 break;
1264 #ifdef CONFIG_MODULES
1265 } else {
1266 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1267 if (printable(bprm->buf[0]) &&
1268 printable(bprm->buf[1]) &&
1269 printable(bprm->buf[2]) &&
1270 printable(bprm->buf[3]))
1271 break; /* -ENOEXEC */
1272 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1273 #endif
1274 }
1275 }
1276 return retval;
1277 }
1278
1279 EXPORT_SYMBOL(search_binary_handler);
1280
1281 void free_bprm(struct linux_binprm *bprm)
1282 {
1283 free_arg_pages(bprm);
1284 if (bprm->cred)
1285 abort_creds(bprm->cred);
1286 kfree(bprm);
1287 }
1288
1289 /*
1290 * sys_execve() executes a new program.
1291 */
1292 int do_execve(char * filename,
1293 char __user *__user *argv,
1294 char __user *__user *envp,
1295 struct pt_regs * regs)
1296 {
1297 struct linux_binprm *bprm;
1298 struct file *file;
1299 struct files_struct *displaced;
1300 int retval;
1301
1302 retval = unshare_files(&displaced);
1303 if (retval)
1304 goto out_ret;
1305
1306 retval = -ENOMEM;
1307 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1308 if (!bprm)
1309 goto out_files;
1310
1311 retval = mutex_lock_interruptible(&current->cred_exec_mutex);
1312 if (retval < 0)
1313 goto out_free;
1314
1315 retval = -ENOMEM;
1316 bprm->cred = prepare_exec_creds();
1317 if (!bprm->cred)
1318 goto out_unlock;
1319 check_unsafe_exec(bprm);
1320
1321 file = open_exec(filename);
1322 retval = PTR_ERR(file);
1323 if (IS_ERR(file))
1324 goto out_unlock;
1325
1326 sched_exec();
1327
1328 bprm->file = file;
1329 bprm->filename = filename;
1330 bprm->interp = filename;
1331
1332 retval = bprm_mm_init(bprm);
1333 if (retval)
1334 goto out_file;
1335
1336 bprm->argc = count(argv, MAX_ARG_STRINGS);
1337 if ((retval = bprm->argc) < 0)
1338 goto out;
1339
1340 bprm->envc = count(envp, MAX_ARG_STRINGS);
1341 if ((retval = bprm->envc) < 0)
1342 goto out;
1343
1344 retval = prepare_binprm(bprm);
1345 if (retval < 0)
1346 goto out;
1347
1348 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1349 if (retval < 0)
1350 goto out;
1351
1352 bprm->exec = bprm->p;
1353 retval = copy_strings(bprm->envc, envp, bprm);
1354 if (retval < 0)
1355 goto out;
1356
1357 retval = copy_strings(bprm->argc, argv, bprm);
1358 if (retval < 0)
1359 goto out;
1360
1361 current->flags &= ~PF_KTHREAD;
1362 retval = search_binary_handler(bprm,regs);
1363 if (retval < 0)
1364 goto out;
1365
1366 /* execve succeeded */
1367 mutex_unlock(&current->cred_exec_mutex);
1368 acct_update_integrals(current);
1369 free_bprm(bprm);
1370 if (displaced)
1371 put_files_struct(displaced);
1372 return retval;
1373
1374 out:
1375 if (bprm->mm)
1376 mmput (bprm->mm);
1377
1378 out_file:
1379 if (bprm->file) {
1380 allow_write_access(bprm->file);
1381 fput(bprm->file);
1382 }
1383
1384 out_unlock:
1385 mutex_unlock(&current->cred_exec_mutex);
1386
1387 out_free:
1388 free_bprm(bprm);
1389
1390 out_files:
1391 if (displaced)
1392 reset_files_struct(displaced);
1393 out_ret:
1394 return retval;
1395 }
1396
1397 int set_binfmt(struct linux_binfmt *new)
1398 {
1399 struct linux_binfmt *old = current->binfmt;
1400
1401 if (new) {
1402 if (!try_module_get(new->module))
1403 return -1;
1404 }
1405 current->binfmt = new;
1406 if (old)
1407 module_put(old->module);
1408 return 0;
1409 }
1410
1411 EXPORT_SYMBOL(set_binfmt);
1412
1413 /* format_corename will inspect the pattern parameter, and output a
1414 * name into corename, which must have space for at least
1415 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1416 */
1417 static int format_corename(char *corename, long signr)
1418 {
1419 const struct cred *cred = current_cred();
1420 const char *pat_ptr = core_pattern;
1421 int ispipe = (*pat_ptr == '|');
1422 char *out_ptr = corename;
1423 char *const out_end = corename + CORENAME_MAX_SIZE;
1424 int rc;
1425 int pid_in_pattern = 0;
1426
1427 /* Repeat as long as we have more pattern to process and more output
1428 space */
1429 while (*pat_ptr) {
1430 if (*pat_ptr != '%') {
1431 if (out_ptr == out_end)
1432 goto out;
1433 *out_ptr++ = *pat_ptr++;
1434 } else {
1435 switch (*++pat_ptr) {
1436 case 0:
1437 goto out;
1438 /* Double percent, output one percent */
1439 case '%':
1440 if (out_ptr == out_end)
1441 goto out;
1442 *out_ptr++ = '%';
1443 break;
1444 /* pid */
1445 case 'p':
1446 pid_in_pattern = 1;
1447 rc = snprintf(out_ptr, out_end - out_ptr,
1448 "%d", task_tgid_vnr(current));
1449 if (rc > out_end - out_ptr)
1450 goto out;
1451 out_ptr += rc;
1452 break;
1453 /* uid */
1454 case 'u':
1455 rc = snprintf(out_ptr, out_end - out_ptr,
1456 "%d", cred->uid);
1457 if (rc > out_end - out_ptr)
1458 goto out;
1459 out_ptr += rc;
1460 break;
1461 /* gid */
1462 case 'g':
1463 rc = snprintf(out_ptr, out_end - out_ptr,
1464 "%d", cred->gid);
1465 if (rc > out_end - out_ptr)
1466 goto out;
1467 out_ptr += rc;
1468 break;
1469 /* signal that caused the coredump */
1470 case 's':
1471 rc = snprintf(out_ptr, out_end - out_ptr,
1472 "%ld", signr);
1473 if (rc > out_end - out_ptr)
1474 goto out;
1475 out_ptr += rc;
1476 break;
1477 /* UNIX time of coredump */
1478 case 't': {
1479 struct timeval tv;
1480 do_gettimeofday(&tv);
1481 rc = snprintf(out_ptr, out_end - out_ptr,
1482 "%lu", tv.tv_sec);
1483 if (rc > out_end - out_ptr)
1484 goto out;
1485 out_ptr += rc;
1486 break;
1487 }
1488 /* hostname */
1489 case 'h':
1490 down_read(&uts_sem);
1491 rc = snprintf(out_ptr, out_end - out_ptr,
1492 "%s", utsname()->nodename);
1493 up_read(&uts_sem);
1494 if (rc > out_end - out_ptr)
1495 goto out;
1496 out_ptr += rc;
1497 break;
1498 /* executable */
1499 case 'e':
1500 rc = snprintf(out_ptr, out_end - out_ptr,
1501 "%s", current->comm);
1502 if (rc > out_end - out_ptr)
1503 goto out;
1504 out_ptr += rc;
1505 break;
1506 /* core limit size */
1507 case 'c':
1508 rc = snprintf(out_ptr, out_end - out_ptr,
1509 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1510 if (rc > out_end - out_ptr)
1511 goto out;
1512 out_ptr += rc;
1513 break;
1514 default:
1515 break;
1516 }
1517 ++pat_ptr;
1518 }
1519 }
1520 /* Backward compatibility with core_uses_pid:
1521 *
1522 * If core_pattern does not include a %p (as is the default)
1523 * and core_uses_pid is set, then .%pid will be appended to
1524 * the filename. Do not do this for piped commands. */
1525 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1526 rc = snprintf(out_ptr, out_end - out_ptr,
1527 ".%d", task_tgid_vnr(current));
1528 if (rc > out_end - out_ptr)
1529 goto out;
1530 out_ptr += rc;
1531 }
1532 out:
1533 *out_ptr = 0;
1534 return ispipe;
1535 }
1536
1537 static int zap_process(struct task_struct *start)
1538 {
1539 struct task_struct *t;
1540 int nr = 0;
1541
1542 start->signal->flags = SIGNAL_GROUP_EXIT;
1543 start->signal->group_stop_count = 0;
1544
1545 t = start;
1546 do {
1547 if (t != current && t->mm) {
1548 sigaddset(&t->pending.signal, SIGKILL);
1549 signal_wake_up(t, 1);
1550 nr++;
1551 }
1552 } while_each_thread(start, t);
1553
1554 return nr;
1555 }
1556
1557 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1558 struct core_state *core_state, int exit_code)
1559 {
1560 struct task_struct *g, *p;
1561 unsigned long flags;
1562 int nr = -EAGAIN;
1563
1564 spin_lock_irq(&tsk->sighand->siglock);
1565 if (!signal_group_exit(tsk->signal)) {
1566 mm->core_state = core_state;
1567 tsk->signal->group_exit_code = exit_code;
1568 nr = zap_process(tsk);
1569 }
1570 spin_unlock_irq(&tsk->sighand->siglock);
1571 if (unlikely(nr < 0))
1572 return nr;
1573
1574 if (atomic_read(&mm->mm_users) == nr + 1)
1575 goto done;
1576 /*
1577 * We should find and kill all tasks which use this mm, and we should
1578 * count them correctly into ->nr_threads. We don't take tasklist
1579 * lock, but this is safe wrt:
1580 *
1581 * fork:
1582 * None of sub-threads can fork after zap_process(leader). All
1583 * processes which were created before this point should be
1584 * visible to zap_threads() because copy_process() adds the new
1585 * process to the tail of init_task.tasks list, and lock/unlock
1586 * of ->siglock provides a memory barrier.
1587 *
1588 * do_exit:
1589 * The caller holds mm->mmap_sem. This means that the task which
1590 * uses this mm can't pass exit_mm(), so it can't exit or clear
1591 * its ->mm.
1592 *
1593 * de_thread:
1594 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1595 * we must see either old or new leader, this does not matter.
1596 * However, it can change p->sighand, so lock_task_sighand(p)
1597 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1598 * it can't fail.
1599 *
1600 * Note also that "g" can be the old leader with ->mm == NULL
1601 * and already unhashed and thus removed from ->thread_group.
1602 * This is OK, __unhash_process()->list_del_rcu() does not
1603 * clear the ->next pointer, we will find the new leader via
1604 * next_thread().
1605 */
1606 rcu_read_lock();
1607 for_each_process(g) {
1608 if (g == tsk->group_leader)
1609 continue;
1610 if (g->flags & PF_KTHREAD)
1611 continue;
1612 p = g;
1613 do {
1614 if (p->mm) {
1615 if (unlikely(p->mm == mm)) {
1616 lock_task_sighand(p, &flags);
1617 nr += zap_process(p);
1618 unlock_task_sighand(p, &flags);
1619 }
1620 break;
1621 }
1622 } while_each_thread(g, p);
1623 }
1624 rcu_read_unlock();
1625 done:
1626 atomic_set(&core_state->nr_threads, nr);
1627 return nr;
1628 }
1629
1630 static int coredump_wait(int exit_code, struct core_state *core_state)
1631 {
1632 struct task_struct *tsk = current;
1633 struct mm_struct *mm = tsk->mm;
1634 struct completion *vfork_done;
1635 int core_waiters;
1636
1637 init_completion(&core_state->startup);
1638 core_state->dumper.task = tsk;
1639 core_state->dumper.next = NULL;
1640 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1641 up_write(&mm->mmap_sem);
1642
1643 if (unlikely(core_waiters < 0))
1644 goto fail;
1645
1646 /*
1647 * Make sure nobody is waiting for us to release the VM,
1648 * otherwise we can deadlock when we wait on each other
1649 */
1650 vfork_done = tsk->vfork_done;
1651 if (vfork_done) {
1652 tsk->vfork_done = NULL;
1653 complete(vfork_done);
1654 }
1655
1656 if (core_waiters)
1657 wait_for_completion(&core_state->startup);
1658 fail:
1659 return core_waiters;
1660 }
1661
1662 static void coredump_finish(struct mm_struct *mm)
1663 {
1664 struct core_thread *curr, *next;
1665 struct task_struct *task;
1666
1667 next = mm->core_state->dumper.next;
1668 while ((curr = next) != NULL) {
1669 next = curr->next;
1670 task = curr->task;
1671 /*
1672 * see exit_mm(), curr->task must not see
1673 * ->task == NULL before we read ->next.
1674 */
1675 smp_mb();
1676 curr->task = NULL;
1677 wake_up_process(task);
1678 }
1679
1680 mm->core_state = NULL;
1681 }
1682
1683 /*
1684 * set_dumpable converts traditional three-value dumpable to two flags and
1685 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1686 * these bits are not changed atomically. So get_dumpable can observe the
1687 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1688 * return either old dumpable or new one by paying attention to the order of
1689 * modifying the bits.
1690 *
1691 * dumpable | mm->flags (binary)
1692 * old new | initial interim final
1693 * ---------+-----------------------
1694 * 0 1 | 00 01 01
1695 * 0 2 | 00 10(*) 11
1696 * 1 0 | 01 00 00
1697 * 1 2 | 01 11 11
1698 * 2 0 | 11 10(*) 00
1699 * 2 1 | 11 11 01
1700 *
1701 * (*) get_dumpable regards interim value of 10 as 11.
1702 */
1703 void set_dumpable(struct mm_struct *mm, int value)
1704 {
1705 switch (value) {
1706 case 0:
1707 clear_bit(MMF_DUMPABLE, &mm->flags);
1708 smp_wmb();
1709 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1710 break;
1711 case 1:
1712 set_bit(MMF_DUMPABLE, &mm->flags);
1713 smp_wmb();
1714 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1715 break;
1716 case 2:
1717 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1718 smp_wmb();
1719 set_bit(MMF_DUMPABLE, &mm->flags);
1720 break;
1721 }
1722 }
1723
1724 int get_dumpable(struct mm_struct *mm)
1725 {
1726 int ret;
1727
1728 ret = mm->flags & 0x3;
1729 return (ret >= 2) ? 2 : ret;
1730 }
1731
1732 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1733 {
1734 struct core_state core_state;
1735 char corename[CORENAME_MAX_SIZE + 1];
1736 struct mm_struct *mm = current->mm;
1737 struct linux_binfmt * binfmt;
1738 struct inode * inode;
1739 struct file * file;
1740 const struct cred *old_cred;
1741 struct cred *cred;
1742 int retval = 0;
1743 int flag = 0;
1744 int ispipe = 0;
1745 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1746 char **helper_argv = NULL;
1747 int helper_argc = 0;
1748 char *delimit;
1749
1750 audit_core_dumps(signr);
1751
1752 binfmt = current->binfmt;
1753 if (!binfmt || !binfmt->core_dump)
1754 goto fail;
1755
1756 cred = prepare_creds();
1757 if (!cred) {
1758 retval = -ENOMEM;
1759 goto fail;
1760 }
1761
1762 down_write(&mm->mmap_sem);
1763 /*
1764 * If another thread got here first, or we are not dumpable, bail out.
1765 */
1766 if (mm->core_state || !get_dumpable(mm)) {
1767 up_write(&mm->mmap_sem);
1768 put_cred(cred);
1769 goto fail;
1770 }
1771
1772 /*
1773 * We cannot trust fsuid as being the "true" uid of the
1774 * process nor do we know its entire history. We only know it
1775 * was tainted so we dump it as root in mode 2.
1776 */
1777 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1778 flag = O_EXCL; /* Stop rewrite attacks */
1779 cred->fsuid = 0; /* Dump root private */
1780 }
1781
1782 retval = coredump_wait(exit_code, &core_state);
1783 if (retval < 0) {
1784 put_cred(cred);
1785 goto fail;
1786 }
1787
1788 old_cred = override_creds(cred);
1789
1790 /*
1791 * Clear any false indication of pending signals that might
1792 * be seen by the filesystem code called to write the core file.
1793 */
1794 clear_thread_flag(TIF_SIGPENDING);
1795
1796 /*
1797 * lock_kernel() because format_corename() is controlled by sysctl, which
1798 * uses lock_kernel()
1799 */
1800 lock_kernel();
1801 ispipe = format_corename(corename, signr);
1802 unlock_kernel();
1803 /*
1804 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1805 * to a pipe. Since we're not writing directly to the filesystem
1806 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1807 * created unless the pipe reader choses to write out the core file
1808 * at which point file size limits and permissions will be imposed
1809 * as it does with any other process
1810 */
1811 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1812 goto fail_unlock;
1813
1814 if (ispipe) {
1815 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1816 /* Terminate the string before the first option */
1817 delimit = strchr(corename, ' ');
1818 if (delimit)
1819 *delimit = '\0';
1820 delimit = strrchr(helper_argv[0], '/');
1821 if (delimit)
1822 delimit++;
1823 else
1824 delimit = helper_argv[0];
1825 if (!strcmp(delimit, current->comm)) {
1826 printk(KERN_NOTICE "Recursive core dump detected, "
1827 "aborting\n");
1828 goto fail_unlock;
1829 }
1830
1831 core_limit = RLIM_INFINITY;
1832
1833 /* SIGPIPE can happen, but it's just never processed */
1834 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1835 &file)) {
1836 printk(KERN_INFO "Core dump to %s pipe failed\n",
1837 corename);
1838 goto fail_unlock;
1839 }
1840 } else
1841 file = filp_open(corename,
1842 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1843 0600);
1844 if (IS_ERR(file))
1845 goto fail_unlock;
1846 inode = file->f_path.dentry->d_inode;
1847 if (inode->i_nlink > 1)
1848 goto close_fail; /* multiple links - don't dump */
1849 if (!ispipe && d_unhashed(file->f_path.dentry))
1850 goto close_fail;
1851
1852 /* AK: actually i see no reason to not allow this for named pipes etc.,
1853 but keep the previous behaviour for now. */
1854 if (!ispipe && !S_ISREG(inode->i_mode))
1855 goto close_fail;
1856 /*
1857 * Dont allow local users get cute and trick others to coredump
1858 * into their pre-created files:
1859 */
1860 if (inode->i_uid != current_fsuid())
1861 goto close_fail;
1862 if (!file->f_op)
1863 goto close_fail;
1864 if (!file->f_op->write)
1865 goto close_fail;
1866 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1867 goto close_fail;
1868
1869 retval = binfmt->core_dump(signr, regs, file, core_limit);
1870
1871 if (retval)
1872 current->signal->group_exit_code |= 0x80;
1873 close_fail:
1874 filp_close(file, NULL);
1875 fail_unlock:
1876 if (helper_argv)
1877 argv_free(helper_argv);
1878
1879 revert_creds(old_cred);
1880 put_cred(cred);
1881 coredump_finish(mm);
1882 fail:
1883 return retval;
1884 }
This page took 0.066694 seconds and 6 git commands to generate.