Merge tag 'usb-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[deliverable/linux.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64
65 #include <trace/events/task.h>
66 #include "internal.h"
67
68 #include <trace/events/sched.h>
69
70 int suid_dumpable = 0;
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77 BUG_ON(!fmt);
78 if (WARN_ON(!fmt->load_binary))
79 return;
80 write_lock(&binfmt_lock);
81 insert ? list_add(&fmt->lh, &formats) :
82 list_add_tail(&fmt->lh, &formats);
83 write_unlock(&binfmt_lock);
84 }
85
86 EXPORT_SYMBOL(__register_binfmt);
87
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90 write_lock(&binfmt_lock);
91 list_del(&fmt->lh);
92 write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(unregister_binfmt);
96
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99 module_put(fmt->module);
100 }
101
102 bool path_noexec(const struct path *path)
103 {
104 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107
108 #ifdef CONFIG_USELIB
109 /*
110 * Note that a shared library must be both readable and executable due to
111 * security reasons.
112 *
113 * Also note that we take the address to load from from the file itself.
114 */
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117 struct linux_binfmt *fmt;
118 struct file *file;
119 struct filename *tmp = getname(library);
120 int error = PTR_ERR(tmp);
121 static const struct open_flags uselib_flags = {
122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 .acc_mode = MAY_READ | MAY_EXEC,
124 .intent = LOOKUP_OPEN,
125 .lookup_flags = LOOKUP_FOLLOW,
126 };
127
128 if (IS_ERR(tmp))
129 goto out;
130
131 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 putname(tmp);
133 error = PTR_ERR(file);
134 if (IS_ERR(file))
135 goto out;
136
137 error = -EINVAL;
138 if (!S_ISREG(file_inode(file)->i_mode))
139 goto exit;
140
141 error = -EACCES;
142 if (path_noexec(&file->f_path))
143 goto exit;
144
145 fsnotify_open(file);
146
147 error = -ENOEXEC;
148
149 read_lock(&binfmt_lock);
150 list_for_each_entry(fmt, &formats, lh) {
151 if (!fmt->load_shlib)
152 continue;
153 if (!try_module_get(fmt->module))
154 continue;
155 read_unlock(&binfmt_lock);
156 error = fmt->load_shlib(file);
157 read_lock(&binfmt_lock);
158 put_binfmt(fmt);
159 if (error != -ENOEXEC)
160 break;
161 }
162 read_unlock(&binfmt_lock);
163 exit:
164 fput(file);
165 out:
166 return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169
170 #ifdef CONFIG_MMU
171 /*
172 * The nascent bprm->mm is not visible until exec_mmap() but it can
173 * use a lot of memory, account these pages in current->mm temporary
174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175 * change the counter back via acct_arg_size(0).
176 */
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179 struct mm_struct *mm = current->mm;
180 long diff = (long)(pages - bprm->vma_pages);
181
182 if (!mm || !diff)
183 return;
184
185 bprm->vma_pages = pages;
186 add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 int write)
191 {
192 struct page *page;
193 int ret;
194
195 #ifdef CONFIG_STACK_GROWSUP
196 if (write) {
197 ret = expand_downwards(bprm->vma, pos);
198 if (ret < 0)
199 return NULL;
200 }
201 #endif
202 /*
203 * We are doing an exec(). 'current' is the process
204 * doing the exec and bprm->mm is the new process's mm.
205 */
206 ret = get_user_pages_remote(current, bprm->mm, pos, 1, write,
207 1, &page, NULL);
208 if (ret <= 0)
209 return NULL;
210
211 if (write) {
212 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
213 struct rlimit *rlim;
214
215 acct_arg_size(bprm, size / PAGE_SIZE);
216
217 /*
218 * We've historically supported up to 32 pages (ARG_MAX)
219 * of argument strings even with small stacks
220 */
221 if (size <= ARG_MAX)
222 return page;
223
224 /*
225 * Limit to 1/4-th the stack size for the argv+env strings.
226 * This ensures that:
227 * - the remaining binfmt code will not run out of stack space,
228 * - the program will have a reasonable amount of stack left
229 * to work from.
230 */
231 rlim = current->signal->rlim;
232 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
233 put_page(page);
234 return NULL;
235 }
236 }
237
238 return page;
239 }
240
241 static void put_arg_page(struct page *page)
242 {
243 put_page(page);
244 }
245
246 static void free_arg_page(struct linux_binprm *bprm, int i)
247 {
248 }
249
250 static void free_arg_pages(struct linux_binprm *bprm)
251 {
252 }
253
254 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
255 struct page *page)
256 {
257 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
258 }
259
260 static int __bprm_mm_init(struct linux_binprm *bprm)
261 {
262 int err;
263 struct vm_area_struct *vma = NULL;
264 struct mm_struct *mm = bprm->mm;
265
266 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
267 if (!vma)
268 return -ENOMEM;
269
270 down_write(&mm->mmap_sem);
271 vma->vm_mm = mm;
272
273 /*
274 * Place the stack at the largest stack address the architecture
275 * supports. Later, we'll move this to an appropriate place. We don't
276 * use STACK_TOP because that can depend on attributes which aren't
277 * configured yet.
278 */
279 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
280 vma->vm_end = STACK_TOP_MAX;
281 vma->vm_start = vma->vm_end - PAGE_SIZE;
282 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
283 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
284 INIT_LIST_HEAD(&vma->anon_vma_chain);
285
286 err = insert_vm_struct(mm, vma);
287 if (err)
288 goto err;
289
290 mm->stack_vm = mm->total_vm = 1;
291 arch_bprm_mm_init(mm, vma);
292 up_write(&mm->mmap_sem);
293 bprm->p = vma->vm_end - sizeof(void *);
294 return 0;
295 err:
296 up_write(&mm->mmap_sem);
297 bprm->vma = NULL;
298 kmem_cache_free(vm_area_cachep, vma);
299 return err;
300 }
301
302 static bool valid_arg_len(struct linux_binprm *bprm, long len)
303 {
304 return len <= MAX_ARG_STRLEN;
305 }
306
307 #else
308
309 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
310 {
311 }
312
313 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
314 int write)
315 {
316 struct page *page;
317
318 page = bprm->page[pos / PAGE_SIZE];
319 if (!page && write) {
320 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
321 if (!page)
322 return NULL;
323 bprm->page[pos / PAGE_SIZE] = page;
324 }
325
326 return page;
327 }
328
329 static void put_arg_page(struct page *page)
330 {
331 }
332
333 static void free_arg_page(struct linux_binprm *bprm, int i)
334 {
335 if (bprm->page[i]) {
336 __free_page(bprm->page[i]);
337 bprm->page[i] = NULL;
338 }
339 }
340
341 static void free_arg_pages(struct linux_binprm *bprm)
342 {
343 int i;
344
345 for (i = 0; i < MAX_ARG_PAGES; i++)
346 free_arg_page(bprm, i);
347 }
348
349 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
350 struct page *page)
351 {
352 }
353
354 static int __bprm_mm_init(struct linux_binprm *bprm)
355 {
356 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
357 return 0;
358 }
359
360 static bool valid_arg_len(struct linux_binprm *bprm, long len)
361 {
362 return len <= bprm->p;
363 }
364
365 #endif /* CONFIG_MMU */
366
367 /*
368 * Create a new mm_struct and populate it with a temporary stack
369 * vm_area_struct. We don't have enough context at this point to set the stack
370 * flags, permissions, and offset, so we use temporary values. We'll update
371 * them later in setup_arg_pages().
372 */
373 static int bprm_mm_init(struct linux_binprm *bprm)
374 {
375 int err;
376 struct mm_struct *mm = NULL;
377
378 bprm->mm = mm = mm_alloc();
379 err = -ENOMEM;
380 if (!mm)
381 goto err;
382
383 err = __bprm_mm_init(bprm);
384 if (err)
385 goto err;
386
387 return 0;
388
389 err:
390 if (mm) {
391 bprm->mm = NULL;
392 mmdrop(mm);
393 }
394
395 return err;
396 }
397
398 struct user_arg_ptr {
399 #ifdef CONFIG_COMPAT
400 bool is_compat;
401 #endif
402 union {
403 const char __user *const __user *native;
404 #ifdef CONFIG_COMPAT
405 const compat_uptr_t __user *compat;
406 #endif
407 } ptr;
408 };
409
410 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
411 {
412 const char __user *native;
413
414 #ifdef CONFIG_COMPAT
415 if (unlikely(argv.is_compat)) {
416 compat_uptr_t compat;
417
418 if (get_user(compat, argv.ptr.compat + nr))
419 return ERR_PTR(-EFAULT);
420
421 return compat_ptr(compat);
422 }
423 #endif
424
425 if (get_user(native, argv.ptr.native + nr))
426 return ERR_PTR(-EFAULT);
427
428 return native;
429 }
430
431 /*
432 * count() counts the number of strings in array ARGV.
433 */
434 static int count(struct user_arg_ptr argv, int max)
435 {
436 int i = 0;
437
438 if (argv.ptr.native != NULL) {
439 for (;;) {
440 const char __user *p = get_user_arg_ptr(argv, i);
441
442 if (!p)
443 break;
444
445 if (IS_ERR(p))
446 return -EFAULT;
447
448 if (i >= max)
449 return -E2BIG;
450 ++i;
451
452 if (fatal_signal_pending(current))
453 return -ERESTARTNOHAND;
454 cond_resched();
455 }
456 }
457 return i;
458 }
459
460 /*
461 * 'copy_strings()' copies argument/environment strings from the old
462 * processes's memory to the new process's stack. The call to get_user_pages()
463 * ensures the destination page is created and not swapped out.
464 */
465 static int copy_strings(int argc, struct user_arg_ptr argv,
466 struct linux_binprm *bprm)
467 {
468 struct page *kmapped_page = NULL;
469 char *kaddr = NULL;
470 unsigned long kpos = 0;
471 int ret;
472
473 while (argc-- > 0) {
474 const char __user *str;
475 int len;
476 unsigned long pos;
477
478 ret = -EFAULT;
479 str = get_user_arg_ptr(argv, argc);
480 if (IS_ERR(str))
481 goto out;
482
483 len = strnlen_user(str, MAX_ARG_STRLEN);
484 if (!len)
485 goto out;
486
487 ret = -E2BIG;
488 if (!valid_arg_len(bprm, len))
489 goto out;
490
491 /* We're going to work our way backwords. */
492 pos = bprm->p;
493 str += len;
494 bprm->p -= len;
495
496 while (len > 0) {
497 int offset, bytes_to_copy;
498
499 if (fatal_signal_pending(current)) {
500 ret = -ERESTARTNOHAND;
501 goto out;
502 }
503 cond_resched();
504
505 offset = pos % PAGE_SIZE;
506 if (offset == 0)
507 offset = PAGE_SIZE;
508
509 bytes_to_copy = offset;
510 if (bytes_to_copy > len)
511 bytes_to_copy = len;
512
513 offset -= bytes_to_copy;
514 pos -= bytes_to_copy;
515 str -= bytes_to_copy;
516 len -= bytes_to_copy;
517
518 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
519 struct page *page;
520
521 page = get_arg_page(bprm, pos, 1);
522 if (!page) {
523 ret = -E2BIG;
524 goto out;
525 }
526
527 if (kmapped_page) {
528 flush_kernel_dcache_page(kmapped_page);
529 kunmap(kmapped_page);
530 put_arg_page(kmapped_page);
531 }
532 kmapped_page = page;
533 kaddr = kmap(kmapped_page);
534 kpos = pos & PAGE_MASK;
535 flush_arg_page(bprm, kpos, kmapped_page);
536 }
537 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
538 ret = -EFAULT;
539 goto out;
540 }
541 }
542 }
543 ret = 0;
544 out:
545 if (kmapped_page) {
546 flush_kernel_dcache_page(kmapped_page);
547 kunmap(kmapped_page);
548 put_arg_page(kmapped_page);
549 }
550 return ret;
551 }
552
553 /*
554 * Like copy_strings, but get argv and its values from kernel memory.
555 */
556 int copy_strings_kernel(int argc, const char *const *__argv,
557 struct linux_binprm *bprm)
558 {
559 int r;
560 mm_segment_t oldfs = get_fs();
561 struct user_arg_ptr argv = {
562 .ptr.native = (const char __user *const __user *)__argv,
563 };
564
565 set_fs(KERNEL_DS);
566 r = copy_strings(argc, argv, bprm);
567 set_fs(oldfs);
568
569 return r;
570 }
571 EXPORT_SYMBOL(copy_strings_kernel);
572
573 #ifdef CONFIG_MMU
574
575 /*
576 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
577 * the binfmt code determines where the new stack should reside, we shift it to
578 * its final location. The process proceeds as follows:
579 *
580 * 1) Use shift to calculate the new vma endpoints.
581 * 2) Extend vma to cover both the old and new ranges. This ensures the
582 * arguments passed to subsequent functions are consistent.
583 * 3) Move vma's page tables to the new range.
584 * 4) Free up any cleared pgd range.
585 * 5) Shrink the vma to cover only the new range.
586 */
587 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
588 {
589 struct mm_struct *mm = vma->vm_mm;
590 unsigned long old_start = vma->vm_start;
591 unsigned long old_end = vma->vm_end;
592 unsigned long length = old_end - old_start;
593 unsigned long new_start = old_start - shift;
594 unsigned long new_end = old_end - shift;
595 struct mmu_gather tlb;
596
597 BUG_ON(new_start > new_end);
598
599 /*
600 * ensure there are no vmas between where we want to go
601 * and where we are
602 */
603 if (vma != find_vma(mm, new_start))
604 return -EFAULT;
605
606 /*
607 * cover the whole range: [new_start, old_end)
608 */
609 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
610 return -ENOMEM;
611
612 /*
613 * move the page tables downwards, on failure we rely on
614 * process cleanup to remove whatever mess we made.
615 */
616 if (length != move_page_tables(vma, old_start,
617 vma, new_start, length, false))
618 return -ENOMEM;
619
620 lru_add_drain();
621 tlb_gather_mmu(&tlb, mm, old_start, old_end);
622 if (new_end > old_start) {
623 /*
624 * when the old and new regions overlap clear from new_end.
625 */
626 free_pgd_range(&tlb, new_end, old_end, new_end,
627 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
628 } else {
629 /*
630 * otherwise, clean from old_start; this is done to not touch
631 * the address space in [new_end, old_start) some architectures
632 * have constraints on va-space that make this illegal (IA64) -
633 * for the others its just a little faster.
634 */
635 free_pgd_range(&tlb, old_start, old_end, new_end,
636 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
637 }
638 tlb_finish_mmu(&tlb, old_start, old_end);
639
640 /*
641 * Shrink the vma to just the new range. Always succeeds.
642 */
643 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
644
645 return 0;
646 }
647
648 /*
649 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
650 * the stack is optionally relocated, and some extra space is added.
651 */
652 int setup_arg_pages(struct linux_binprm *bprm,
653 unsigned long stack_top,
654 int executable_stack)
655 {
656 unsigned long ret;
657 unsigned long stack_shift;
658 struct mm_struct *mm = current->mm;
659 struct vm_area_struct *vma = bprm->vma;
660 struct vm_area_struct *prev = NULL;
661 unsigned long vm_flags;
662 unsigned long stack_base;
663 unsigned long stack_size;
664 unsigned long stack_expand;
665 unsigned long rlim_stack;
666
667 #ifdef CONFIG_STACK_GROWSUP
668 /* Limit stack size */
669 stack_base = rlimit_max(RLIMIT_STACK);
670 if (stack_base > STACK_SIZE_MAX)
671 stack_base = STACK_SIZE_MAX;
672
673 /* Add space for stack randomization. */
674 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
675
676 /* Make sure we didn't let the argument array grow too large. */
677 if (vma->vm_end - vma->vm_start > stack_base)
678 return -ENOMEM;
679
680 stack_base = PAGE_ALIGN(stack_top - stack_base);
681
682 stack_shift = vma->vm_start - stack_base;
683 mm->arg_start = bprm->p - stack_shift;
684 bprm->p = vma->vm_end - stack_shift;
685 #else
686 stack_top = arch_align_stack(stack_top);
687 stack_top = PAGE_ALIGN(stack_top);
688
689 if (unlikely(stack_top < mmap_min_addr) ||
690 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
691 return -ENOMEM;
692
693 stack_shift = vma->vm_end - stack_top;
694
695 bprm->p -= stack_shift;
696 mm->arg_start = bprm->p;
697 #endif
698
699 if (bprm->loader)
700 bprm->loader -= stack_shift;
701 bprm->exec -= stack_shift;
702
703 down_write(&mm->mmap_sem);
704 vm_flags = VM_STACK_FLAGS;
705
706 /*
707 * Adjust stack execute permissions; explicitly enable for
708 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
709 * (arch default) otherwise.
710 */
711 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
712 vm_flags |= VM_EXEC;
713 else if (executable_stack == EXSTACK_DISABLE_X)
714 vm_flags &= ~VM_EXEC;
715 vm_flags |= mm->def_flags;
716 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
717
718 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
719 vm_flags);
720 if (ret)
721 goto out_unlock;
722 BUG_ON(prev != vma);
723
724 /* Move stack pages down in memory. */
725 if (stack_shift) {
726 ret = shift_arg_pages(vma, stack_shift);
727 if (ret)
728 goto out_unlock;
729 }
730
731 /* mprotect_fixup is overkill to remove the temporary stack flags */
732 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
733
734 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
735 stack_size = vma->vm_end - vma->vm_start;
736 /*
737 * Align this down to a page boundary as expand_stack
738 * will align it up.
739 */
740 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
741 #ifdef CONFIG_STACK_GROWSUP
742 if (stack_size + stack_expand > rlim_stack)
743 stack_base = vma->vm_start + rlim_stack;
744 else
745 stack_base = vma->vm_end + stack_expand;
746 #else
747 if (stack_size + stack_expand > rlim_stack)
748 stack_base = vma->vm_end - rlim_stack;
749 else
750 stack_base = vma->vm_start - stack_expand;
751 #endif
752 current->mm->start_stack = bprm->p;
753 ret = expand_stack(vma, stack_base);
754 if (ret)
755 ret = -EFAULT;
756
757 out_unlock:
758 up_write(&mm->mmap_sem);
759 return ret;
760 }
761 EXPORT_SYMBOL(setup_arg_pages);
762
763 #endif /* CONFIG_MMU */
764
765 static struct file *do_open_execat(int fd, struct filename *name, int flags)
766 {
767 struct file *file;
768 int err;
769 struct open_flags open_exec_flags = {
770 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
771 .acc_mode = MAY_EXEC,
772 .intent = LOOKUP_OPEN,
773 .lookup_flags = LOOKUP_FOLLOW,
774 };
775
776 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
777 return ERR_PTR(-EINVAL);
778 if (flags & AT_SYMLINK_NOFOLLOW)
779 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
780 if (flags & AT_EMPTY_PATH)
781 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
782
783 file = do_filp_open(fd, name, &open_exec_flags);
784 if (IS_ERR(file))
785 goto out;
786
787 err = -EACCES;
788 if (!S_ISREG(file_inode(file)->i_mode))
789 goto exit;
790
791 if (path_noexec(&file->f_path))
792 goto exit;
793
794 err = deny_write_access(file);
795 if (err)
796 goto exit;
797
798 if (name->name[0] != '\0')
799 fsnotify_open(file);
800
801 out:
802 return file;
803
804 exit:
805 fput(file);
806 return ERR_PTR(err);
807 }
808
809 struct file *open_exec(const char *name)
810 {
811 struct filename *filename = getname_kernel(name);
812 struct file *f = ERR_CAST(filename);
813
814 if (!IS_ERR(filename)) {
815 f = do_open_execat(AT_FDCWD, filename, 0);
816 putname(filename);
817 }
818 return f;
819 }
820 EXPORT_SYMBOL(open_exec);
821
822 int kernel_read(struct file *file, loff_t offset,
823 char *addr, unsigned long count)
824 {
825 mm_segment_t old_fs;
826 loff_t pos = offset;
827 int result;
828
829 old_fs = get_fs();
830 set_fs(get_ds());
831 /* The cast to a user pointer is valid due to the set_fs() */
832 result = vfs_read(file, (void __user *)addr, count, &pos);
833 set_fs(old_fs);
834 return result;
835 }
836
837 EXPORT_SYMBOL(kernel_read);
838
839 int kernel_read_file(struct file *file, void **buf, loff_t *size,
840 loff_t max_size, enum kernel_read_file_id id)
841 {
842 loff_t i_size, pos;
843 ssize_t bytes = 0;
844 int ret;
845
846 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
847 return -EINVAL;
848
849 ret = security_kernel_read_file(file, id);
850 if (ret)
851 return ret;
852
853 ret = deny_write_access(file);
854 if (ret)
855 return ret;
856
857 i_size = i_size_read(file_inode(file));
858 if (max_size > 0 && i_size > max_size) {
859 ret = -EFBIG;
860 goto out;
861 }
862 if (i_size <= 0) {
863 ret = -EINVAL;
864 goto out;
865 }
866
867 *buf = vmalloc(i_size);
868 if (!*buf) {
869 ret = -ENOMEM;
870 goto out;
871 }
872
873 pos = 0;
874 while (pos < i_size) {
875 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
876 i_size - pos);
877 if (bytes < 0) {
878 ret = bytes;
879 goto out;
880 }
881
882 if (bytes == 0)
883 break;
884 pos += bytes;
885 }
886
887 if (pos != i_size) {
888 ret = -EIO;
889 goto out_free;
890 }
891
892 ret = security_kernel_post_read_file(file, *buf, i_size, id);
893 if (!ret)
894 *size = pos;
895
896 out_free:
897 if (ret < 0) {
898 vfree(*buf);
899 *buf = NULL;
900 }
901
902 out:
903 allow_write_access(file);
904 return ret;
905 }
906 EXPORT_SYMBOL_GPL(kernel_read_file);
907
908 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
909 loff_t max_size, enum kernel_read_file_id id)
910 {
911 struct file *file;
912 int ret;
913
914 if (!path || !*path)
915 return -EINVAL;
916
917 file = filp_open(path, O_RDONLY, 0);
918 if (IS_ERR(file))
919 return PTR_ERR(file);
920
921 ret = kernel_read_file(file, buf, size, max_size, id);
922 fput(file);
923 return ret;
924 }
925 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
926
927 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
928 enum kernel_read_file_id id)
929 {
930 struct fd f = fdget(fd);
931 int ret = -EBADF;
932
933 if (!f.file)
934 goto out;
935
936 ret = kernel_read_file(f.file, buf, size, max_size, id);
937 out:
938 fdput(f);
939 return ret;
940 }
941 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
942
943 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
944 {
945 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
946 if (res > 0)
947 flush_icache_range(addr, addr + len);
948 return res;
949 }
950 EXPORT_SYMBOL(read_code);
951
952 static int exec_mmap(struct mm_struct *mm)
953 {
954 struct task_struct *tsk;
955 struct mm_struct *old_mm, *active_mm;
956
957 /* Notify parent that we're no longer interested in the old VM */
958 tsk = current;
959 old_mm = current->mm;
960 mm_release(tsk, old_mm);
961
962 if (old_mm) {
963 sync_mm_rss(old_mm);
964 /*
965 * Make sure that if there is a core dump in progress
966 * for the old mm, we get out and die instead of going
967 * through with the exec. We must hold mmap_sem around
968 * checking core_state and changing tsk->mm.
969 */
970 down_read(&old_mm->mmap_sem);
971 if (unlikely(old_mm->core_state)) {
972 up_read(&old_mm->mmap_sem);
973 return -EINTR;
974 }
975 }
976 task_lock(tsk);
977 active_mm = tsk->active_mm;
978 tsk->mm = mm;
979 tsk->active_mm = mm;
980 activate_mm(active_mm, mm);
981 tsk->mm->vmacache_seqnum = 0;
982 vmacache_flush(tsk);
983 task_unlock(tsk);
984 if (old_mm) {
985 up_read(&old_mm->mmap_sem);
986 BUG_ON(active_mm != old_mm);
987 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
988 mm_update_next_owner(old_mm);
989 mmput(old_mm);
990 return 0;
991 }
992 mmdrop(active_mm);
993 return 0;
994 }
995
996 /*
997 * This function makes sure the current process has its own signal table,
998 * so that flush_signal_handlers can later reset the handlers without
999 * disturbing other processes. (Other processes might share the signal
1000 * table via the CLONE_SIGHAND option to clone().)
1001 */
1002 static int de_thread(struct task_struct *tsk)
1003 {
1004 struct signal_struct *sig = tsk->signal;
1005 struct sighand_struct *oldsighand = tsk->sighand;
1006 spinlock_t *lock = &oldsighand->siglock;
1007
1008 if (thread_group_empty(tsk))
1009 goto no_thread_group;
1010
1011 /*
1012 * Kill all other threads in the thread group.
1013 */
1014 spin_lock_irq(lock);
1015 if (signal_group_exit(sig)) {
1016 /*
1017 * Another group action in progress, just
1018 * return so that the signal is processed.
1019 */
1020 spin_unlock_irq(lock);
1021 return -EAGAIN;
1022 }
1023
1024 sig->group_exit_task = tsk;
1025 sig->notify_count = zap_other_threads(tsk);
1026 if (!thread_group_leader(tsk))
1027 sig->notify_count--;
1028
1029 while (sig->notify_count) {
1030 __set_current_state(TASK_KILLABLE);
1031 spin_unlock_irq(lock);
1032 schedule();
1033 if (unlikely(__fatal_signal_pending(tsk)))
1034 goto killed;
1035 spin_lock_irq(lock);
1036 }
1037 spin_unlock_irq(lock);
1038
1039 /*
1040 * At this point all other threads have exited, all we have to
1041 * do is to wait for the thread group leader to become inactive,
1042 * and to assume its PID:
1043 */
1044 if (!thread_group_leader(tsk)) {
1045 struct task_struct *leader = tsk->group_leader;
1046
1047 for (;;) {
1048 threadgroup_change_begin(tsk);
1049 write_lock_irq(&tasklist_lock);
1050 /*
1051 * Do this under tasklist_lock to ensure that
1052 * exit_notify() can't miss ->group_exit_task
1053 */
1054 sig->notify_count = -1;
1055 if (likely(leader->exit_state))
1056 break;
1057 __set_current_state(TASK_KILLABLE);
1058 write_unlock_irq(&tasklist_lock);
1059 threadgroup_change_end(tsk);
1060 schedule();
1061 if (unlikely(__fatal_signal_pending(tsk)))
1062 goto killed;
1063 }
1064
1065 /*
1066 * The only record we have of the real-time age of a
1067 * process, regardless of execs it's done, is start_time.
1068 * All the past CPU time is accumulated in signal_struct
1069 * from sister threads now dead. But in this non-leader
1070 * exec, nothing survives from the original leader thread,
1071 * whose birth marks the true age of this process now.
1072 * When we take on its identity by switching to its PID, we
1073 * also take its birthdate (always earlier than our own).
1074 */
1075 tsk->start_time = leader->start_time;
1076 tsk->real_start_time = leader->real_start_time;
1077
1078 BUG_ON(!same_thread_group(leader, tsk));
1079 BUG_ON(has_group_leader_pid(tsk));
1080 /*
1081 * An exec() starts a new thread group with the
1082 * TGID of the previous thread group. Rehash the
1083 * two threads with a switched PID, and release
1084 * the former thread group leader:
1085 */
1086
1087 /* Become a process group leader with the old leader's pid.
1088 * The old leader becomes a thread of the this thread group.
1089 * Note: The old leader also uses this pid until release_task
1090 * is called. Odd but simple and correct.
1091 */
1092 tsk->pid = leader->pid;
1093 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1094 transfer_pid(leader, tsk, PIDTYPE_PGID);
1095 transfer_pid(leader, tsk, PIDTYPE_SID);
1096
1097 list_replace_rcu(&leader->tasks, &tsk->tasks);
1098 list_replace_init(&leader->sibling, &tsk->sibling);
1099
1100 tsk->group_leader = tsk;
1101 leader->group_leader = tsk;
1102
1103 tsk->exit_signal = SIGCHLD;
1104 leader->exit_signal = -1;
1105
1106 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1107 leader->exit_state = EXIT_DEAD;
1108
1109 /*
1110 * We are going to release_task()->ptrace_unlink() silently,
1111 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1112 * the tracer wont't block again waiting for this thread.
1113 */
1114 if (unlikely(leader->ptrace))
1115 __wake_up_parent(leader, leader->parent);
1116 write_unlock_irq(&tasklist_lock);
1117 threadgroup_change_end(tsk);
1118
1119 release_task(leader);
1120 }
1121
1122 sig->group_exit_task = NULL;
1123 sig->notify_count = 0;
1124
1125 no_thread_group:
1126 /* we have changed execution domain */
1127 tsk->exit_signal = SIGCHLD;
1128
1129 exit_itimers(sig);
1130 flush_itimer_signals();
1131
1132 if (atomic_read(&oldsighand->count) != 1) {
1133 struct sighand_struct *newsighand;
1134 /*
1135 * This ->sighand is shared with the CLONE_SIGHAND
1136 * but not CLONE_THREAD task, switch to the new one.
1137 */
1138 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1139 if (!newsighand)
1140 return -ENOMEM;
1141
1142 atomic_set(&newsighand->count, 1);
1143 memcpy(newsighand->action, oldsighand->action,
1144 sizeof(newsighand->action));
1145
1146 write_lock_irq(&tasklist_lock);
1147 spin_lock(&oldsighand->siglock);
1148 rcu_assign_pointer(tsk->sighand, newsighand);
1149 spin_unlock(&oldsighand->siglock);
1150 write_unlock_irq(&tasklist_lock);
1151
1152 __cleanup_sighand(oldsighand);
1153 }
1154
1155 BUG_ON(!thread_group_leader(tsk));
1156 return 0;
1157
1158 killed:
1159 /* protects against exit_notify() and __exit_signal() */
1160 read_lock(&tasklist_lock);
1161 sig->group_exit_task = NULL;
1162 sig->notify_count = 0;
1163 read_unlock(&tasklist_lock);
1164 return -EAGAIN;
1165 }
1166
1167 char *get_task_comm(char *buf, struct task_struct *tsk)
1168 {
1169 /* buf must be at least sizeof(tsk->comm) in size */
1170 task_lock(tsk);
1171 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1172 task_unlock(tsk);
1173 return buf;
1174 }
1175 EXPORT_SYMBOL_GPL(get_task_comm);
1176
1177 /*
1178 * These functions flushes out all traces of the currently running executable
1179 * so that a new one can be started
1180 */
1181
1182 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1183 {
1184 task_lock(tsk);
1185 trace_task_rename(tsk, buf);
1186 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1187 task_unlock(tsk);
1188 perf_event_comm(tsk, exec);
1189 }
1190
1191 int flush_old_exec(struct linux_binprm * bprm)
1192 {
1193 int retval;
1194
1195 /*
1196 * Make sure we have a private signal table and that
1197 * we are unassociated from the previous thread group.
1198 */
1199 retval = de_thread(current);
1200 if (retval)
1201 goto out;
1202
1203 /*
1204 * Must be called _before_ exec_mmap() as bprm->mm is
1205 * not visibile until then. This also enables the update
1206 * to be lockless.
1207 */
1208 set_mm_exe_file(bprm->mm, bprm->file);
1209
1210 /*
1211 * Release all of the old mmap stuff
1212 */
1213 acct_arg_size(bprm, 0);
1214 retval = exec_mmap(bprm->mm);
1215 if (retval)
1216 goto out;
1217
1218 bprm->mm = NULL; /* We're using it now */
1219
1220 set_fs(USER_DS);
1221 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1222 PF_NOFREEZE | PF_NO_SETAFFINITY);
1223 flush_thread();
1224 current->personality &= ~bprm->per_clear;
1225
1226 return 0;
1227
1228 out:
1229 return retval;
1230 }
1231 EXPORT_SYMBOL(flush_old_exec);
1232
1233 void would_dump(struct linux_binprm *bprm, struct file *file)
1234 {
1235 if (inode_permission(file_inode(file), MAY_READ) < 0)
1236 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1237 }
1238 EXPORT_SYMBOL(would_dump);
1239
1240 void setup_new_exec(struct linux_binprm * bprm)
1241 {
1242 arch_pick_mmap_layout(current->mm);
1243
1244 /* This is the point of no return */
1245 current->sas_ss_sp = current->sas_ss_size = 0;
1246
1247 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1248 set_dumpable(current->mm, SUID_DUMP_USER);
1249 else
1250 set_dumpable(current->mm, suid_dumpable);
1251
1252 perf_event_exec();
1253 __set_task_comm(current, kbasename(bprm->filename), true);
1254
1255 /* Set the new mm task size. We have to do that late because it may
1256 * depend on TIF_32BIT which is only updated in flush_thread() on
1257 * some architectures like powerpc
1258 */
1259 current->mm->task_size = TASK_SIZE;
1260
1261 /* install the new credentials */
1262 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1263 !gid_eq(bprm->cred->gid, current_egid())) {
1264 current->pdeath_signal = 0;
1265 } else {
1266 would_dump(bprm, bprm->file);
1267 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1268 set_dumpable(current->mm, suid_dumpable);
1269 }
1270
1271 /* An exec changes our domain. We are no longer part of the thread
1272 group */
1273 current->self_exec_id++;
1274 flush_signal_handlers(current, 0);
1275 do_close_on_exec(current->files);
1276 }
1277 EXPORT_SYMBOL(setup_new_exec);
1278
1279 /*
1280 * Prepare credentials and lock ->cred_guard_mutex.
1281 * install_exec_creds() commits the new creds and drops the lock.
1282 * Or, if exec fails before, free_bprm() should release ->cred and
1283 * and unlock.
1284 */
1285 int prepare_bprm_creds(struct linux_binprm *bprm)
1286 {
1287 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1288 return -ERESTARTNOINTR;
1289
1290 bprm->cred = prepare_exec_creds();
1291 if (likely(bprm->cred))
1292 return 0;
1293
1294 mutex_unlock(&current->signal->cred_guard_mutex);
1295 return -ENOMEM;
1296 }
1297
1298 static void free_bprm(struct linux_binprm *bprm)
1299 {
1300 free_arg_pages(bprm);
1301 if (bprm->cred) {
1302 mutex_unlock(&current->signal->cred_guard_mutex);
1303 abort_creds(bprm->cred);
1304 }
1305 if (bprm->file) {
1306 allow_write_access(bprm->file);
1307 fput(bprm->file);
1308 }
1309 /* If a binfmt changed the interp, free it. */
1310 if (bprm->interp != bprm->filename)
1311 kfree(bprm->interp);
1312 kfree(bprm);
1313 }
1314
1315 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1316 {
1317 /* If a binfmt changed the interp, free it first. */
1318 if (bprm->interp != bprm->filename)
1319 kfree(bprm->interp);
1320 bprm->interp = kstrdup(interp, GFP_KERNEL);
1321 if (!bprm->interp)
1322 return -ENOMEM;
1323 return 0;
1324 }
1325 EXPORT_SYMBOL(bprm_change_interp);
1326
1327 /*
1328 * install the new credentials for this executable
1329 */
1330 void install_exec_creds(struct linux_binprm *bprm)
1331 {
1332 security_bprm_committing_creds(bprm);
1333
1334 commit_creds(bprm->cred);
1335 bprm->cred = NULL;
1336
1337 /*
1338 * Disable monitoring for regular users
1339 * when executing setuid binaries. Must
1340 * wait until new credentials are committed
1341 * by commit_creds() above
1342 */
1343 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1344 perf_event_exit_task(current);
1345 /*
1346 * cred_guard_mutex must be held at least to this point to prevent
1347 * ptrace_attach() from altering our determination of the task's
1348 * credentials; any time after this it may be unlocked.
1349 */
1350 security_bprm_committed_creds(bprm);
1351 mutex_unlock(&current->signal->cred_guard_mutex);
1352 }
1353 EXPORT_SYMBOL(install_exec_creds);
1354
1355 /*
1356 * determine how safe it is to execute the proposed program
1357 * - the caller must hold ->cred_guard_mutex to protect against
1358 * PTRACE_ATTACH or seccomp thread-sync
1359 */
1360 static void check_unsafe_exec(struct linux_binprm *bprm)
1361 {
1362 struct task_struct *p = current, *t;
1363 unsigned n_fs;
1364
1365 if (p->ptrace) {
1366 if (p->ptrace & PT_PTRACE_CAP)
1367 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1368 else
1369 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1370 }
1371
1372 /*
1373 * This isn't strictly necessary, but it makes it harder for LSMs to
1374 * mess up.
1375 */
1376 if (task_no_new_privs(current))
1377 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1378
1379 t = p;
1380 n_fs = 1;
1381 spin_lock(&p->fs->lock);
1382 rcu_read_lock();
1383 while_each_thread(p, t) {
1384 if (t->fs == p->fs)
1385 n_fs++;
1386 }
1387 rcu_read_unlock();
1388
1389 if (p->fs->users > n_fs)
1390 bprm->unsafe |= LSM_UNSAFE_SHARE;
1391 else
1392 p->fs->in_exec = 1;
1393 spin_unlock(&p->fs->lock);
1394 }
1395
1396 static void bprm_fill_uid(struct linux_binprm *bprm)
1397 {
1398 struct inode *inode;
1399 unsigned int mode;
1400 kuid_t uid;
1401 kgid_t gid;
1402
1403 /*
1404 * Since this can be called multiple times (via prepare_binprm),
1405 * we must clear any previous work done when setting set[ug]id
1406 * bits from any earlier bprm->file uses (for example when run
1407 * first for a setuid script then again for its interpreter).
1408 */
1409 bprm->cred->euid = current_euid();
1410 bprm->cred->egid = current_egid();
1411
1412 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1413 return;
1414
1415 if (task_no_new_privs(current))
1416 return;
1417
1418 inode = file_inode(bprm->file);
1419 mode = READ_ONCE(inode->i_mode);
1420 if (!(mode & (S_ISUID|S_ISGID)))
1421 return;
1422
1423 /* Be careful if suid/sgid is set */
1424 inode_lock(inode);
1425
1426 /* reload atomically mode/uid/gid now that lock held */
1427 mode = inode->i_mode;
1428 uid = inode->i_uid;
1429 gid = inode->i_gid;
1430 inode_unlock(inode);
1431
1432 /* We ignore suid/sgid if there are no mappings for them in the ns */
1433 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1434 !kgid_has_mapping(bprm->cred->user_ns, gid))
1435 return;
1436
1437 if (mode & S_ISUID) {
1438 bprm->per_clear |= PER_CLEAR_ON_SETID;
1439 bprm->cred->euid = uid;
1440 }
1441
1442 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1443 bprm->per_clear |= PER_CLEAR_ON_SETID;
1444 bprm->cred->egid = gid;
1445 }
1446 }
1447
1448 /*
1449 * Fill the binprm structure from the inode.
1450 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1451 *
1452 * This may be called multiple times for binary chains (scripts for example).
1453 */
1454 int prepare_binprm(struct linux_binprm *bprm)
1455 {
1456 int retval;
1457
1458 bprm_fill_uid(bprm);
1459
1460 /* fill in binprm security blob */
1461 retval = security_bprm_set_creds(bprm);
1462 if (retval)
1463 return retval;
1464 bprm->cred_prepared = 1;
1465
1466 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1467 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1468 }
1469
1470 EXPORT_SYMBOL(prepare_binprm);
1471
1472 /*
1473 * Arguments are '\0' separated strings found at the location bprm->p
1474 * points to; chop off the first by relocating brpm->p to right after
1475 * the first '\0' encountered.
1476 */
1477 int remove_arg_zero(struct linux_binprm *bprm)
1478 {
1479 int ret = 0;
1480 unsigned long offset;
1481 char *kaddr;
1482 struct page *page;
1483
1484 if (!bprm->argc)
1485 return 0;
1486
1487 do {
1488 offset = bprm->p & ~PAGE_MASK;
1489 page = get_arg_page(bprm, bprm->p, 0);
1490 if (!page) {
1491 ret = -EFAULT;
1492 goto out;
1493 }
1494 kaddr = kmap_atomic(page);
1495
1496 for (; offset < PAGE_SIZE && kaddr[offset];
1497 offset++, bprm->p++)
1498 ;
1499
1500 kunmap_atomic(kaddr);
1501 put_arg_page(page);
1502
1503 if (offset == PAGE_SIZE)
1504 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1505 } while (offset == PAGE_SIZE);
1506
1507 bprm->p++;
1508 bprm->argc--;
1509 ret = 0;
1510
1511 out:
1512 return ret;
1513 }
1514 EXPORT_SYMBOL(remove_arg_zero);
1515
1516 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1517 /*
1518 * cycle the list of binary formats handler, until one recognizes the image
1519 */
1520 int search_binary_handler(struct linux_binprm *bprm)
1521 {
1522 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1523 struct linux_binfmt *fmt;
1524 int retval;
1525
1526 /* This allows 4 levels of binfmt rewrites before failing hard. */
1527 if (bprm->recursion_depth > 5)
1528 return -ELOOP;
1529
1530 retval = security_bprm_check(bprm);
1531 if (retval)
1532 return retval;
1533
1534 retval = -ENOENT;
1535 retry:
1536 read_lock(&binfmt_lock);
1537 list_for_each_entry(fmt, &formats, lh) {
1538 if (!try_module_get(fmt->module))
1539 continue;
1540 read_unlock(&binfmt_lock);
1541 bprm->recursion_depth++;
1542 retval = fmt->load_binary(bprm);
1543 read_lock(&binfmt_lock);
1544 put_binfmt(fmt);
1545 bprm->recursion_depth--;
1546 if (retval < 0 && !bprm->mm) {
1547 /* we got to flush_old_exec() and failed after it */
1548 read_unlock(&binfmt_lock);
1549 force_sigsegv(SIGSEGV, current);
1550 return retval;
1551 }
1552 if (retval != -ENOEXEC || !bprm->file) {
1553 read_unlock(&binfmt_lock);
1554 return retval;
1555 }
1556 }
1557 read_unlock(&binfmt_lock);
1558
1559 if (need_retry) {
1560 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1561 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1562 return retval;
1563 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1564 return retval;
1565 need_retry = false;
1566 goto retry;
1567 }
1568
1569 return retval;
1570 }
1571 EXPORT_SYMBOL(search_binary_handler);
1572
1573 static int exec_binprm(struct linux_binprm *bprm)
1574 {
1575 pid_t old_pid, old_vpid;
1576 int ret;
1577
1578 /* Need to fetch pid before load_binary changes it */
1579 old_pid = current->pid;
1580 rcu_read_lock();
1581 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1582 rcu_read_unlock();
1583
1584 ret = search_binary_handler(bprm);
1585 if (ret >= 0) {
1586 audit_bprm(bprm);
1587 trace_sched_process_exec(current, old_pid, bprm);
1588 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1589 proc_exec_connector(current);
1590 }
1591
1592 return ret;
1593 }
1594
1595 /*
1596 * sys_execve() executes a new program.
1597 */
1598 static int do_execveat_common(int fd, struct filename *filename,
1599 struct user_arg_ptr argv,
1600 struct user_arg_ptr envp,
1601 int flags)
1602 {
1603 char *pathbuf = NULL;
1604 struct linux_binprm *bprm;
1605 struct file *file;
1606 struct files_struct *displaced;
1607 int retval;
1608
1609 if (IS_ERR(filename))
1610 return PTR_ERR(filename);
1611
1612 /*
1613 * We move the actual failure in case of RLIMIT_NPROC excess from
1614 * set*uid() to execve() because too many poorly written programs
1615 * don't check setuid() return code. Here we additionally recheck
1616 * whether NPROC limit is still exceeded.
1617 */
1618 if ((current->flags & PF_NPROC_EXCEEDED) &&
1619 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1620 retval = -EAGAIN;
1621 goto out_ret;
1622 }
1623
1624 /* We're below the limit (still or again), so we don't want to make
1625 * further execve() calls fail. */
1626 current->flags &= ~PF_NPROC_EXCEEDED;
1627
1628 retval = unshare_files(&displaced);
1629 if (retval)
1630 goto out_ret;
1631
1632 retval = -ENOMEM;
1633 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1634 if (!bprm)
1635 goto out_files;
1636
1637 retval = prepare_bprm_creds(bprm);
1638 if (retval)
1639 goto out_free;
1640
1641 check_unsafe_exec(bprm);
1642 current->in_execve = 1;
1643
1644 file = do_open_execat(fd, filename, flags);
1645 retval = PTR_ERR(file);
1646 if (IS_ERR(file))
1647 goto out_unmark;
1648
1649 sched_exec();
1650
1651 bprm->file = file;
1652 if (fd == AT_FDCWD || filename->name[0] == '/') {
1653 bprm->filename = filename->name;
1654 } else {
1655 if (filename->name[0] == '\0')
1656 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1657 else
1658 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1659 fd, filename->name);
1660 if (!pathbuf) {
1661 retval = -ENOMEM;
1662 goto out_unmark;
1663 }
1664 /*
1665 * Record that a name derived from an O_CLOEXEC fd will be
1666 * inaccessible after exec. Relies on having exclusive access to
1667 * current->files (due to unshare_files above).
1668 */
1669 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1670 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1671 bprm->filename = pathbuf;
1672 }
1673 bprm->interp = bprm->filename;
1674
1675 retval = bprm_mm_init(bprm);
1676 if (retval)
1677 goto out_unmark;
1678
1679 bprm->argc = count(argv, MAX_ARG_STRINGS);
1680 if ((retval = bprm->argc) < 0)
1681 goto out;
1682
1683 bprm->envc = count(envp, MAX_ARG_STRINGS);
1684 if ((retval = bprm->envc) < 0)
1685 goto out;
1686
1687 retval = prepare_binprm(bprm);
1688 if (retval < 0)
1689 goto out;
1690
1691 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1692 if (retval < 0)
1693 goto out;
1694
1695 bprm->exec = bprm->p;
1696 retval = copy_strings(bprm->envc, envp, bprm);
1697 if (retval < 0)
1698 goto out;
1699
1700 retval = copy_strings(bprm->argc, argv, bprm);
1701 if (retval < 0)
1702 goto out;
1703
1704 retval = exec_binprm(bprm);
1705 if (retval < 0)
1706 goto out;
1707
1708 /* execve succeeded */
1709 current->fs->in_exec = 0;
1710 current->in_execve = 0;
1711 acct_update_integrals(current);
1712 task_numa_free(current);
1713 free_bprm(bprm);
1714 kfree(pathbuf);
1715 putname(filename);
1716 if (displaced)
1717 put_files_struct(displaced);
1718 return retval;
1719
1720 out:
1721 if (bprm->mm) {
1722 acct_arg_size(bprm, 0);
1723 mmput(bprm->mm);
1724 }
1725
1726 out_unmark:
1727 current->fs->in_exec = 0;
1728 current->in_execve = 0;
1729
1730 out_free:
1731 free_bprm(bprm);
1732 kfree(pathbuf);
1733
1734 out_files:
1735 if (displaced)
1736 reset_files_struct(displaced);
1737 out_ret:
1738 putname(filename);
1739 return retval;
1740 }
1741
1742 int do_execve(struct filename *filename,
1743 const char __user *const __user *__argv,
1744 const char __user *const __user *__envp)
1745 {
1746 struct user_arg_ptr argv = { .ptr.native = __argv };
1747 struct user_arg_ptr envp = { .ptr.native = __envp };
1748 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1749 }
1750
1751 int do_execveat(int fd, struct filename *filename,
1752 const char __user *const __user *__argv,
1753 const char __user *const __user *__envp,
1754 int flags)
1755 {
1756 struct user_arg_ptr argv = { .ptr.native = __argv };
1757 struct user_arg_ptr envp = { .ptr.native = __envp };
1758
1759 return do_execveat_common(fd, filename, argv, envp, flags);
1760 }
1761
1762 #ifdef CONFIG_COMPAT
1763 static int compat_do_execve(struct filename *filename,
1764 const compat_uptr_t __user *__argv,
1765 const compat_uptr_t __user *__envp)
1766 {
1767 struct user_arg_ptr argv = {
1768 .is_compat = true,
1769 .ptr.compat = __argv,
1770 };
1771 struct user_arg_ptr envp = {
1772 .is_compat = true,
1773 .ptr.compat = __envp,
1774 };
1775 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1776 }
1777
1778 static int compat_do_execveat(int fd, struct filename *filename,
1779 const compat_uptr_t __user *__argv,
1780 const compat_uptr_t __user *__envp,
1781 int flags)
1782 {
1783 struct user_arg_ptr argv = {
1784 .is_compat = true,
1785 .ptr.compat = __argv,
1786 };
1787 struct user_arg_ptr envp = {
1788 .is_compat = true,
1789 .ptr.compat = __envp,
1790 };
1791 return do_execveat_common(fd, filename, argv, envp, flags);
1792 }
1793 #endif
1794
1795 void set_binfmt(struct linux_binfmt *new)
1796 {
1797 struct mm_struct *mm = current->mm;
1798
1799 if (mm->binfmt)
1800 module_put(mm->binfmt->module);
1801
1802 mm->binfmt = new;
1803 if (new)
1804 __module_get(new->module);
1805 }
1806 EXPORT_SYMBOL(set_binfmt);
1807
1808 /*
1809 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1810 */
1811 void set_dumpable(struct mm_struct *mm, int value)
1812 {
1813 unsigned long old, new;
1814
1815 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1816 return;
1817
1818 do {
1819 old = ACCESS_ONCE(mm->flags);
1820 new = (old & ~MMF_DUMPABLE_MASK) | value;
1821 } while (cmpxchg(&mm->flags, old, new) != old);
1822 }
1823
1824 SYSCALL_DEFINE3(execve,
1825 const char __user *, filename,
1826 const char __user *const __user *, argv,
1827 const char __user *const __user *, envp)
1828 {
1829 return do_execve(getname(filename), argv, envp);
1830 }
1831
1832 SYSCALL_DEFINE5(execveat,
1833 int, fd, const char __user *, filename,
1834 const char __user *const __user *, argv,
1835 const char __user *const __user *, envp,
1836 int, flags)
1837 {
1838 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1839
1840 return do_execveat(fd,
1841 getname_flags(filename, lookup_flags, NULL),
1842 argv, envp, flags);
1843 }
1844
1845 #ifdef CONFIG_COMPAT
1846 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1847 const compat_uptr_t __user *, argv,
1848 const compat_uptr_t __user *, envp)
1849 {
1850 return compat_do_execve(getname(filename), argv, envp);
1851 }
1852
1853 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1854 const char __user *, filename,
1855 const compat_uptr_t __user *, argv,
1856 const compat_uptr_t __user *, envp,
1857 int, flags)
1858 {
1859 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1860
1861 return compat_do_execveat(fd,
1862 getname_flags(filename, lookup_flags, NULL),
1863 argv, envp, flags);
1864 }
1865 #endif
This page took 0.087965 seconds and 6 git commands to generate.