Merge tag 'for-3.7-rc1' of git://gitorious.org/linux-pwm/linux-pwm
[deliverable/linux.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62
63 #include <trace/events/task.h>
64 #include "internal.h"
65 #include "coredump.h"
66
67 #include <trace/events/sched.h>
68
69 int suid_dumpable = 0;
70
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76 BUG_ON(!fmt);
77 write_lock(&binfmt_lock);
78 insert ? list_add(&fmt->lh, &formats) :
79 list_add_tail(&fmt->lh, &formats);
80 write_unlock(&binfmt_lock);
81 }
82
83 EXPORT_SYMBOL(__register_binfmt);
84
85 void unregister_binfmt(struct linux_binfmt * fmt)
86 {
87 write_lock(&binfmt_lock);
88 list_del(&fmt->lh);
89 write_unlock(&binfmt_lock);
90 }
91
92 EXPORT_SYMBOL(unregister_binfmt);
93
94 static inline void put_binfmt(struct linux_binfmt * fmt)
95 {
96 module_put(fmt->module);
97 }
98
99 /*
100 * Note that a shared library must be both readable and executable due to
101 * security reasons.
102 *
103 * Also note that we take the address to load from from the file itself.
104 */
105 SYSCALL_DEFINE1(uselib, const char __user *, library)
106 {
107 struct file *file;
108 char *tmp = getname(library);
109 int error = PTR_ERR(tmp);
110 static const struct open_flags uselib_flags = {
111 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
112 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
113 .intent = LOOKUP_OPEN
114 };
115
116 if (IS_ERR(tmp))
117 goto out;
118
119 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
120 putname(tmp);
121 error = PTR_ERR(file);
122 if (IS_ERR(file))
123 goto out;
124
125 error = -EINVAL;
126 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
127 goto exit;
128
129 error = -EACCES;
130 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
131 goto exit;
132
133 fsnotify_open(file);
134
135 error = -ENOEXEC;
136 if(file->f_op) {
137 struct linux_binfmt * fmt;
138
139 read_lock(&binfmt_lock);
140 list_for_each_entry(fmt, &formats, lh) {
141 if (!fmt->load_shlib)
142 continue;
143 if (!try_module_get(fmt->module))
144 continue;
145 read_unlock(&binfmt_lock);
146 error = fmt->load_shlib(file);
147 read_lock(&binfmt_lock);
148 put_binfmt(fmt);
149 if (error != -ENOEXEC)
150 break;
151 }
152 read_unlock(&binfmt_lock);
153 }
154 exit:
155 fput(file);
156 out:
157 return error;
158 }
159
160 #ifdef CONFIG_MMU
161 /*
162 * The nascent bprm->mm is not visible until exec_mmap() but it can
163 * use a lot of memory, account these pages in current->mm temporary
164 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
165 * change the counter back via acct_arg_size(0).
166 */
167 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
168 {
169 struct mm_struct *mm = current->mm;
170 long diff = (long)(pages - bprm->vma_pages);
171
172 if (!mm || !diff)
173 return;
174
175 bprm->vma_pages = pages;
176 add_mm_counter(mm, MM_ANONPAGES, diff);
177 }
178
179 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
180 int write)
181 {
182 struct page *page;
183 int ret;
184
185 #ifdef CONFIG_STACK_GROWSUP
186 if (write) {
187 ret = expand_downwards(bprm->vma, pos);
188 if (ret < 0)
189 return NULL;
190 }
191 #endif
192 ret = get_user_pages(current, bprm->mm, pos,
193 1, write, 1, &page, NULL);
194 if (ret <= 0)
195 return NULL;
196
197 if (write) {
198 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
199 struct rlimit *rlim;
200
201 acct_arg_size(bprm, size / PAGE_SIZE);
202
203 /*
204 * We've historically supported up to 32 pages (ARG_MAX)
205 * of argument strings even with small stacks
206 */
207 if (size <= ARG_MAX)
208 return page;
209
210 /*
211 * Limit to 1/4-th the stack size for the argv+env strings.
212 * This ensures that:
213 * - the remaining binfmt code will not run out of stack space,
214 * - the program will have a reasonable amount of stack left
215 * to work from.
216 */
217 rlim = current->signal->rlim;
218 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
219 put_page(page);
220 return NULL;
221 }
222 }
223
224 return page;
225 }
226
227 static void put_arg_page(struct page *page)
228 {
229 put_page(page);
230 }
231
232 static void free_arg_page(struct linux_binprm *bprm, int i)
233 {
234 }
235
236 static void free_arg_pages(struct linux_binprm *bprm)
237 {
238 }
239
240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241 struct page *page)
242 {
243 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
244 }
245
246 static int __bprm_mm_init(struct linux_binprm *bprm)
247 {
248 int err;
249 struct vm_area_struct *vma = NULL;
250 struct mm_struct *mm = bprm->mm;
251
252 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
253 if (!vma)
254 return -ENOMEM;
255
256 down_write(&mm->mmap_sem);
257 vma->vm_mm = mm;
258
259 /*
260 * Place the stack at the largest stack address the architecture
261 * supports. Later, we'll move this to an appropriate place. We don't
262 * use STACK_TOP because that can depend on attributes which aren't
263 * configured yet.
264 */
265 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266 vma->vm_end = STACK_TOP_MAX;
267 vma->vm_start = vma->vm_end - PAGE_SIZE;
268 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
270 INIT_LIST_HEAD(&vma->anon_vma_chain);
271
272 err = insert_vm_struct(mm, vma);
273 if (err)
274 goto err;
275
276 mm->stack_vm = mm->total_vm = 1;
277 up_write(&mm->mmap_sem);
278 bprm->p = vma->vm_end - sizeof(void *);
279 return 0;
280 err:
281 up_write(&mm->mmap_sem);
282 bprm->vma = NULL;
283 kmem_cache_free(vm_area_cachep, vma);
284 return err;
285 }
286
287 static bool valid_arg_len(struct linux_binprm *bprm, long len)
288 {
289 return len <= MAX_ARG_STRLEN;
290 }
291
292 #else
293
294 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
295 {
296 }
297
298 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
299 int write)
300 {
301 struct page *page;
302
303 page = bprm->page[pos / PAGE_SIZE];
304 if (!page && write) {
305 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
306 if (!page)
307 return NULL;
308 bprm->page[pos / PAGE_SIZE] = page;
309 }
310
311 return page;
312 }
313
314 static void put_arg_page(struct page *page)
315 {
316 }
317
318 static void free_arg_page(struct linux_binprm *bprm, int i)
319 {
320 if (bprm->page[i]) {
321 __free_page(bprm->page[i]);
322 bprm->page[i] = NULL;
323 }
324 }
325
326 static void free_arg_pages(struct linux_binprm *bprm)
327 {
328 int i;
329
330 for (i = 0; i < MAX_ARG_PAGES; i++)
331 free_arg_page(bprm, i);
332 }
333
334 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
335 struct page *page)
336 {
337 }
338
339 static int __bprm_mm_init(struct linux_binprm *bprm)
340 {
341 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
342 return 0;
343 }
344
345 static bool valid_arg_len(struct linux_binprm *bprm, long len)
346 {
347 return len <= bprm->p;
348 }
349
350 #endif /* CONFIG_MMU */
351
352 /*
353 * Create a new mm_struct and populate it with a temporary stack
354 * vm_area_struct. We don't have enough context at this point to set the stack
355 * flags, permissions, and offset, so we use temporary values. We'll update
356 * them later in setup_arg_pages().
357 */
358 int bprm_mm_init(struct linux_binprm *bprm)
359 {
360 int err;
361 struct mm_struct *mm = NULL;
362
363 bprm->mm = mm = mm_alloc();
364 err = -ENOMEM;
365 if (!mm)
366 goto err;
367
368 err = init_new_context(current, mm);
369 if (err)
370 goto err;
371
372 err = __bprm_mm_init(bprm);
373 if (err)
374 goto err;
375
376 return 0;
377
378 err:
379 if (mm) {
380 bprm->mm = NULL;
381 mmdrop(mm);
382 }
383
384 return err;
385 }
386
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389 bool is_compat;
390 #endif
391 union {
392 const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394 const compat_uptr_t __user *compat;
395 #endif
396 } ptr;
397 };
398
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400 {
401 const char __user *native;
402
403 #ifdef CONFIG_COMPAT
404 if (unlikely(argv.is_compat)) {
405 compat_uptr_t compat;
406
407 if (get_user(compat, argv.ptr.compat + nr))
408 return ERR_PTR(-EFAULT);
409
410 return compat_ptr(compat);
411 }
412 #endif
413
414 if (get_user(native, argv.ptr.native + nr))
415 return ERR_PTR(-EFAULT);
416
417 return native;
418 }
419
420 /*
421 * count() counts the number of strings in array ARGV.
422 */
423 static int count(struct user_arg_ptr argv, int max)
424 {
425 int i = 0;
426
427 if (argv.ptr.native != NULL) {
428 for (;;) {
429 const char __user *p = get_user_arg_ptr(argv, i);
430
431 if (!p)
432 break;
433
434 if (IS_ERR(p))
435 return -EFAULT;
436
437 if (i++ >= max)
438 return -E2BIG;
439
440 if (fatal_signal_pending(current))
441 return -ERESTARTNOHAND;
442 cond_resched();
443 }
444 }
445 return i;
446 }
447
448 /*
449 * 'copy_strings()' copies argument/environment strings from the old
450 * processes's memory to the new process's stack. The call to get_user_pages()
451 * ensures the destination page is created and not swapped out.
452 */
453 static int copy_strings(int argc, struct user_arg_ptr argv,
454 struct linux_binprm *bprm)
455 {
456 struct page *kmapped_page = NULL;
457 char *kaddr = NULL;
458 unsigned long kpos = 0;
459 int ret;
460
461 while (argc-- > 0) {
462 const char __user *str;
463 int len;
464 unsigned long pos;
465
466 ret = -EFAULT;
467 str = get_user_arg_ptr(argv, argc);
468 if (IS_ERR(str))
469 goto out;
470
471 len = strnlen_user(str, MAX_ARG_STRLEN);
472 if (!len)
473 goto out;
474
475 ret = -E2BIG;
476 if (!valid_arg_len(bprm, len))
477 goto out;
478
479 /* We're going to work our way backwords. */
480 pos = bprm->p;
481 str += len;
482 bprm->p -= len;
483
484 while (len > 0) {
485 int offset, bytes_to_copy;
486
487 if (fatal_signal_pending(current)) {
488 ret = -ERESTARTNOHAND;
489 goto out;
490 }
491 cond_resched();
492
493 offset = pos % PAGE_SIZE;
494 if (offset == 0)
495 offset = PAGE_SIZE;
496
497 bytes_to_copy = offset;
498 if (bytes_to_copy > len)
499 bytes_to_copy = len;
500
501 offset -= bytes_to_copy;
502 pos -= bytes_to_copy;
503 str -= bytes_to_copy;
504 len -= bytes_to_copy;
505
506 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
507 struct page *page;
508
509 page = get_arg_page(bprm, pos, 1);
510 if (!page) {
511 ret = -E2BIG;
512 goto out;
513 }
514
515 if (kmapped_page) {
516 flush_kernel_dcache_page(kmapped_page);
517 kunmap(kmapped_page);
518 put_arg_page(kmapped_page);
519 }
520 kmapped_page = page;
521 kaddr = kmap(kmapped_page);
522 kpos = pos & PAGE_MASK;
523 flush_arg_page(bprm, kpos, kmapped_page);
524 }
525 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
526 ret = -EFAULT;
527 goto out;
528 }
529 }
530 }
531 ret = 0;
532 out:
533 if (kmapped_page) {
534 flush_kernel_dcache_page(kmapped_page);
535 kunmap(kmapped_page);
536 put_arg_page(kmapped_page);
537 }
538 return ret;
539 }
540
541 /*
542 * Like copy_strings, but get argv and its values from kernel memory.
543 */
544 int copy_strings_kernel(int argc, const char *const *__argv,
545 struct linux_binprm *bprm)
546 {
547 int r;
548 mm_segment_t oldfs = get_fs();
549 struct user_arg_ptr argv = {
550 .ptr.native = (const char __user *const __user *)__argv,
551 };
552
553 set_fs(KERNEL_DS);
554 r = copy_strings(argc, argv, bprm);
555 set_fs(oldfs);
556
557 return r;
558 }
559 EXPORT_SYMBOL(copy_strings_kernel);
560
561 #ifdef CONFIG_MMU
562
563 /*
564 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
565 * the binfmt code determines where the new stack should reside, we shift it to
566 * its final location. The process proceeds as follows:
567 *
568 * 1) Use shift to calculate the new vma endpoints.
569 * 2) Extend vma to cover both the old and new ranges. This ensures the
570 * arguments passed to subsequent functions are consistent.
571 * 3) Move vma's page tables to the new range.
572 * 4) Free up any cleared pgd range.
573 * 5) Shrink the vma to cover only the new range.
574 */
575 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
576 {
577 struct mm_struct *mm = vma->vm_mm;
578 unsigned long old_start = vma->vm_start;
579 unsigned long old_end = vma->vm_end;
580 unsigned long length = old_end - old_start;
581 unsigned long new_start = old_start - shift;
582 unsigned long new_end = old_end - shift;
583 struct mmu_gather tlb;
584
585 BUG_ON(new_start > new_end);
586
587 /*
588 * ensure there are no vmas between where we want to go
589 * and where we are
590 */
591 if (vma != find_vma(mm, new_start))
592 return -EFAULT;
593
594 /*
595 * cover the whole range: [new_start, old_end)
596 */
597 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
598 return -ENOMEM;
599
600 /*
601 * move the page tables downwards, on failure we rely on
602 * process cleanup to remove whatever mess we made.
603 */
604 if (length != move_page_tables(vma, old_start,
605 vma, new_start, length, false))
606 return -ENOMEM;
607
608 lru_add_drain();
609 tlb_gather_mmu(&tlb, mm, 0);
610 if (new_end > old_start) {
611 /*
612 * when the old and new regions overlap clear from new_end.
613 */
614 free_pgd_range(&tlb, new_end, old_end, new_end,
615 vma->vm_next ? vma->vm_next->vm_start : 0);
616 } else {
617 /*
618 * otherwise, clean from old_start; this is done to not touch
619 * the address space in [new_end, old_start) some architectures
620 * have constraints on va-space that make this illegal (IA64) -
621 * for the others its just a little faster.
622 */
623 free_pgd_range(&tlb, old_start, old_end, new_end,
624 vma->vm_next ? vma->vm_next->vm_start : 0);
625 }
626 tlb_finish_mmu(&tlb, new_end, old_end);
627
628 /*
629 * Shrink the vma to just the new range. Always succeeds.
630 */
631 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
632
633 return 0;
634 }
635
636 /*
637 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
638 * the stack is optionally relocated, and some extra space is added.
639 */
640 int setup_arg_pages(struct linux_binprm *bprm,
641 unsigned long stack_top,
642 int executable_stack)
643 {
644 unsigned long ret;
645 unsigned long stack_shift;
646 struct mm_struct *mm = current->mm;
647 struct vm_area_struct *vma = bprm->vma;
648 struct vm_area_struct *prev = NULL;
649 unsigned long vm_flags;
650 unsigned long stack_base;
651 unsigned long stack_size;
652 unsigned long stack_expand;
653 unsigned long rlim_stack;
654
655 #ifdef CONFIG_STACK_GROWSUP
656 /* Limit stack size to 1GB */
657 stack_base = rlimit_max(RLIMIT_STACK);
658 if (stack_base > (1 << 30))
659 stack_base = 1 << 30;
660
661 /* Make sure we didn't let the argument array grow too large. */
662 if (vma->vm_end - vma->vm_start > stack_base)
663 return -ENOMEM;
664
665 stack_base = PAGE_ALIGN(stack_top - stack_base);
666
667 stack_shift = vma->vm_start - stack_base;
668 mm->arg_start = bprm->p - stack_shift;
669 bprm->p = vma->vm_end - stack_shift;
670 #else
671 stack_top = arch_align_stack(stack_top);
672 stack_top = PAGE_ALIGN(stack_top);
673
674 if (unlikely(stack_top < mmap_min_addr) ||
675 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
676 return -ENOMEM;
677
678 stack_shift = vma->vm_end - stack_top;
679
680 bprm->p -= stack_shift;
681 mm->arg_start = bprm->p;
682 #endif
683
684 if (bprm->loader)
685 bprm->loader -= stack_shift;
686 bprm->exec -= stack_shift;
687
688 down_write(&mm->mmap_sem);
689 vm_flags = VM_STACK_FLAGS;
690
691 /*
692 * Adjust stack execute permissions; explicitly enable for
693 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
694 * (arch default) otherwise.
695 */
696 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
697 vm_flags |= VM_EXEC;
698 else if (executable_stack == EXSTACK_DISABLE_X)
699 vm_flags &= ~VM_EXEC;
700 vm_flags |= mm->def_flags;
701 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
702
703 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
704 vm_flags);
705 if (ret)
706 goto out_unlock;
707 BUG_ON(prev != vma);
708
709 /* Move stack pages down in memory. */
710 if (stack_shift) {
711 ret = shift_arg_pages(vma, stack_shift);
712 if (ret)
713 goto out_unlock;
714 }
715
716 /* mprotect_fixup is overkill to remove the temporary stack flags */
717 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
718
719 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
720 stack_size = vma->vm_end - vma->vm_start;
721 /*
722 * Align this down to a page boundary as expand_stack
723 * will align it up.
724 */
725 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
726 #ifdef CONFIG_STACK_GROWSUP
727 if (stack_size + stack_expand > rlim_stack)
728 stack_base = vma->vm_start + rlim_stack;
729 else
730 stack_base = vma->vm_end + stack_expand;
731 #else
732 if (stack_size + stack_expand > rlim_stack)
733 stack_base = vma->vm_end - rlim_stack;
734 else
735 stack_base = vma->vm_start - stack_expand;
736 #endif
737 current->mm->start_stack = bprm->p;
738 ret = expand_stack(vma, stack_base);
739 if (ret)
740 ret = -EFAULT;
741
742 out_unlock:
743 up_write(&mm->mmap_sem);
744 return ret;
745 }
746 EXPORT_SYMBOL(setup_arg_pages);
747
748 #endif /* CONFIG_MMU */
749
750 struct file *open_exec(const char *name)
751 {
752 struct file *file;
753 int err;
754 static const struct open_flags open_exec_flags = {
755 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
756 .acc_mode = MAY_EXEC | MAY_OPEN,
757 .intent = LOOKUP_OPEN
758 };
759
760 file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
761 if (IS_ERR(file))
762 goto out;
763
764 err = -EACCES;
765 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
766 goto exit;
767
768 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
769 goto exit;
770
771 fsnotify_open(file);
772
773 err = deny_write_access(file);
774 if (err)
775 goto exit;
776
777 out:
778 return file;
779
780 exit:
781 fput(file);
782 return ERR_PTR(err);
783 }
784 EXPORT_SYMBOL(open_exec);
785
786 int kernel_read(struct file *file, loff_t offset,
787 char *addr, unsigned long count)
788 {
789 mm_segment_t old_fs;
790 loff_t pos = offset;
791 int result;
792
793 old_fs = get_fs();
794 set_fs(get_ds());
795 /* The cast to a user pointer is valid due to the set_fs() */
796 result = vfs_read(file, (void __user *)addr, count, &pos);
797 set_fs(old_fs);
798 return result;
799 }
800
801 EXPORT_SYMBOL(kernel_read);
802
803 static int exec_mmap(struct mm_struct *mm)
804 {
805 struct task_struct *tsk;
806 struct mm_struct * old_mm, *active_mm;
807
808 /* Notify parent that we're no longer interested in the old VM */
809 tsk = current;
810 old_mm = current->mm;
811 mm_release(tsk, old_mm);
812
813 if (old_mm) {
814 sync_mm_rss(old_mm);
815 /*
816 * Make sure that if there is a core dump in progress
817 * for the old mm, we get out and die instead of going
818 * through with the exec. We must hold mmap_sem around
819 * checking core_state and changing tsk->mm.
820 */
821 down_read(&old_mm->mmap_sem);
822 if (unlikely(old_mm->core_state)) {
823 up_read(&old_mm->mmap_sem);
824 return -EINTR;
825 }
826 }
827 task_lock(tsk);
828 active_mm = tsk->active_mm;
829 tsk->mm = mm;
830 tsk->active_mm = mm;
831 activate_mm(active_mm, mm);
832 task_unlock(tsk);
833 arch_pick_mmap_layout(mm);
834 if (old_mm) {
835 up_read(&old_mm->mmap_sem);
836 BUG_ON(active_mm != old_mm);
837 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
838 mm_update_next_owner(old_mm);
839 mmput(old_mm);
840 return 0;
841 }
842 mmdrop(active_mm);
843 return 0;
844 }
845
846 /*
847 * This function makes sure the current process has its own signal table,
848 * so that flush_signal_handlers can later reset the handlers without
849 * disturbing other processes. (Other processes might share the signal
850 * table via the CLONE_SIGHAND option to clone().)
851 */
852 static int de_thread(struct task_struct *tsk)
853 {
854 struct signal_struct *sig = tsk->signal;
855 struct sighand_struct *oldsighand = tsk->sighand;
856 spinlock_t *lock = &oldsighand->siglock;
857
858 if (thread_group_empty(tsk))
859 goto no_thread_group;
860
861 /*
862 * Kill all other threads in the thread group.
863 */
864 spin_lock_irq(lock);
865 if (signal_group_exit(sig)) {
866 /*
867 * Another group action in progress, just
868 * return so that the signal is processed.
869 */
870 spin_unlock_irq(lock);
871 return -EAGAIN;
872 }
873
874 sig->group_exit_task = tsk;
875 sig->notify_count = zap_other_threads(tsk);
876 if (!thread_group_leader(tsk))
877 sig->notify_count--;
878
879 while (sig->notify_count) {
880 __set_current_state(TASK_KILLABLE);
881 spin_unlock_irq(lock);
882 schedule();
883 if (unlikely(__fatal_signal_pending(tsk)))
884 goto killed;
885 spin_lock_irq(lock);
886 }
887 spin_unlock_irq(lock);
888
889 /*
890 * At this point all other threads have exited, all we have to
891 * do is to wait for the thread group leader to become inactive,
892 * and to assume its PID:
893 */
894 if (!thread_group_leader(tsk)) {
895 struct task_struct *leader = tsk->group_leader;
896
897 sig->notify_count = -1; /* for exit_notify() */
898 for (;;) {
899 write_lock_irq(&tasklist_lock);
900 if (likely(leader->exit_state))
901 break;
902 __set_current_state(TASK_KILLABLE);
903 write_unlock_irq(&tasklist_lock);
904 schedule();
905 if (unlikely(__fatal_signal_pending(tsk)))
906 goto killed;
907 }
908
909 /*
910 * The only record we have of the real-time age of a
911 * process, regardless of execs it's done, is start_time.
912 * All the past CPU time is accumulated in signal_struct
913 * from sister threads now dead. But in this non-leader
914 * exec, nothing survives from the original leader thread,
915 * whose birth marks the true age of this process now.
916 * When we take on its identity by switching to its PID, we
917 * also take its birthdate (always earlier than our own).
918 */
919 tsk->start_time = leader->start_time;
920
921 BUG_ON(!same_thread_group(leader, tsk));
922 BUG_ON(has_group_leader_pid(tsk));
923 /*
924 * An exec() starts a new thread group with the
925 * TGID of the previous thread group. Rehash the
926 * two threads with a switched PID, and release
927 * the former thread group leader:
928 */
929
930 /* Become a process group leader with the old leader's pid.
931 * The old leader becomes a thread of the this thread group.
932 * Note: The old leader also uses this pid until release_task
933 * is called. Odd but simple and correct.
934 */
935 detach_pid(tsk, PIDTYPE_PID);
936 tsk->pid = leader->pid;
937 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
938 transfer_pid(leader, tsk, PIDTYPE_PGID);
939 transfer_pid(leader, tsk, PIDTYPE_SID);
940
941 list_replace_rcu(&leader->tasks, &tsk->tasks);
942 list_replace_init(&leader->sibling, &tsk->sibling);
943
944 tsk->group_leader = tsk;
945 leader->group_leader = tsk;
946
947 tsk->exit_signal = SIGCHLD;
948 leader->exit_signal = -1;
949
950 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
951 leader->exit_state = EXIT_DEAD;
952
953 /*
954 * We are going to release_task()->ptrace_unlink() silently,
955 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
956 * the tracer wont't block again waiting for this thread.
957 */
958 if (unlikely(leader->ptrace))
959 __wake_up_parent(leader, leader->parent);
960 write_unlock_irq(&tasklist_lock);
961
962 release_task(leader);
963 }
964
965 sig->group_exit_task = NULL;
966 sig->notify_count = 0;
967
968 no_thread_group:
969 /* we have changed execution domain */
970 tsk->exit_signal = SIGCHLD;
971
972 exit_itimers(sig);
973 flush_itimer_signals();
974
975 if (atomic_read(&oldsighand->count) != 1) {
976 struct sighand_struct *newsighand;
977 /*
978 * This ->sighand is shared with the CLONE_SIGHAND
979 * but not CLONE_THREAD task, switch to the new one.
980 */
981 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
982 if (!newsighand)
983 return -ENOMEM;
984
985 atomic_set(&newsighand->count, 1);
986 memcpy(newsighand->action, oldsighand->action,
987 sizeof(newsighand->action));
988
989 write_lock_irq(&tasklist_lock);
990 spin_lock(&oldsighand->siglock);
991 rcu_assign_pointer(tsk->sighand, newsighand);
992 spin_unlock(&oldsighand->siglock);
993 write_unlock_irq(&tasklist_lock);
994
995 __cleanup_sighand(oldsighand);
996 }
997
998 BUG_ON(!thread_group_leader(tsk));
999 return 0;
1000
1001 killed:
1002 /* protects against exit_notify() and __exit_signal() */
1003 read_lock(&tasklist_lock);
1004 sig->group_exit_task = NULL;
1005 sig->notify_count = 0;
1006 read_unlock(&tasklist_lock);
1007 return -EAGAIN;
1008 }
1009
1010 char *get_task_comm(char *buf, struct task_struct *tsk)
1011 {
1012 /* buf must be at least sizeof(tsk->comm) in size */
1013 task_lock(tsk);
1014 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1015 task_unlock(tsk);
1016 return buf;
1017 }
1018 EXPORT_SYMBOL_GPL(get_task_comm);
1019
1020 /*
1021 * These functions flushes out all traces of the currently running executable
1022 * so that a new one can be started
1023 */
1024
1025 void set_task_comm(struct task_struct *tsk, char *buf)
1026 {
1027 task_lock(tsk);
1028
1029 trace_task_rename(tsk, buf);
1030
1031 /*
1032 * Threads may access current->comm without holding
1033 * the task lock, so write the string carefully.
1034 * Readers without a lock may see incomplete new
1035 * names but are safe from non-terminating string reads.
1036 */
1037 memset(tsk->comm, 0, TASK_COMM_LEN);
1038 wmb();
1039 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1040 task_unlock(tsk);
1041 perf_event_comm(tsk);
1042 }
1043
1044 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1045 {
1046 int i, ch;
1047
1048 /* Copies the binary name from after last slash */
1049 for (i = 0; (ch = *(fn++)) != '\0';) {
1050 if (ch == '/')
1051 i = 0; /* overwrite what we wrote */
1052 else
1053 if (i < len - 1)
1054 tcomm[i++] = ch;
1055 }
1056 tcomm[i] = '\0';
1057 }
1058
1059 int flush_old_exec(struct linux_binprm * bprm)
1060 {
1061 int retval;
1062
1063 /*
1064 * Make sure we have a private signal table and that
1065 * we are unassociated from the previous thread group.
1066 */
1067 retval = de_thread(current);
1068 if (retval)
1069 goto out;
1070
1071 set_mm_exe_file(bprm->mm, bprm->file);
1072
1073 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1074 /*
1075 * Release all of the old mmap stuff
1076 */
1077 acct_arg_size(bprm, 0);
1078 retval = exec_mmap(bprm->mm);
1079 if (retval)
1080 goto out;
1081
1082 bprm->mm = NULL; /* We're using it now */
1083
1084 set_fs(USER_DS);
1085 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD);
1086 flush_thread();
1087 current->personality &= ~bprm->per_clear;
1088
1089 return 0;
1090
1091 out:
1092 return retval;
1093 }
1094 EXPORT_SYMBOL(flush_old_exec);
1095
1096 void would_dump(struct linux_binprm *bprm, struct file *file)
1097 {
1098 if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1099 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1100 }
1101 EXPORT_SYMBOL(would_dump);
1102
1103 void setup_new_exec(struct linux_binprm * bprm)
1104 {
1105 arch_pick_mmap_layout(current->mm);
1106
1107 /* This is the point of no return */
1108 current->sas_ss_sp = current->sas_ss_size = 0;
1109
1110 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1111 set_dumpable(current->mm, SUID_DUMPABLE_ENABLED);
1112 else
1113 set_dumpable(current->mm, suid_dumpable);
1114
1115 set_task_comm(current, bprm->tcomm);
1116
1117 /* Set the new mm task size. We have to do that late because it may
1118 * depend on TIF_32BIT which is only updated in flush_thread() on
1119 * some architectures like powerpc
1120 */
1121 current->mm->task_size = TASK_SIZE;
1122
1123 /* install the new credentials */
1124 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1125 !gid_eq(bprm->cred->gid, current_egid())) {
1126 current->pdeath_signal = 0;
1127 } else {
1128 would_dump(bprm, bprm->file);
1129 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1130 set_dumpable(current->mm, suid_dumpable);
1131 }
1132
1133 /*
1134 * Flush performance counters when crossing a
1135 * security domain:
1136 */
1137 if (!get_dumpable(current->mm))
1138 perf_event_exit_task(current);
1139
1140 /* An exec changes our domain. We are no longer part of the thread
1141 group */
1142
1143 current->self_exec_id++;
1144
1145 flush_signal_handlers(current, 0);
1146 do_close_on_exec(current->files);
1147 }
1148 EXPORT_SYMBOL(setup_new_exec);
1149
1150 /*
1151 * Prepare credentials and lock ->cred_guard_mutex.
1152 * install_exec_creds() commits the new creds and drops the lock.
1153 * Or, if exec fails before, free_bprm() should release ->cred and
1154 * and unlock.
1155 */
1156 int prepare_bprm_creds(struct linux_binprm *bprm)
1157 {
1158 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1159 return -ERESTARTNOINTR;
1160
1161 bprm->cred = prepare_exec_creds();
1162 if (likely(bprm->cred))
1163 return 0;
1164
1165 mutex_unlock(&current->signal->cred_guard_mutex);
1166 return -ENOMEM;
1167 }
1168
1169 void free_bprm(struct linux_binprm *bprm)
1170 {
1171 free_arg_pages(bprm);
1172 if (bprm->cred) {
1173 mutex_unlock(&current->signal->cred_guard_mutex);
1174 abort_creds(bprm->cred);
1175 }
1176 kfree(bprm);
1177 }
1178
1179 /*
1180 * install the new credentials for this executable
1181 */
1182 void install_exec_creds(struct linux_binprm *bprm)
1183 {
1184 security_bprm_committing_creds(bprm);
1185
1186 commit_creds(bprm->cred);
1187 bprm->cred = NULL;
1188 /*
1189 * cred_guard_mutex must be held at least to this point to prevent
1190 * ptrace_attach() from altering our determination of the task's
1191 * credentials; any time after this it may be unlocked.
1192 */
1193 security_bprm_committed_creds(bprm);
1194 mutex_unlock(&current->signal->cred_guard_mutex);
1195 }
1196 EXPORT_SYMBOL(install_exec_creds);
1197
1198 /*
1199 * determine how safe it is to execute the proposed program
1200 * - the caller must hold ->cred_guard_mutex to protect against
1201 * PTRACE_ATTACH
1202 */
1203 static int check_unsafe_exec(struct linux_binprm *bprm)
1204 {
1205 struct task_struct *p = current, *t;
1206 unsigned n_fs;
1207 int res = 0;
1208
1209 if (p->ptrace) {
1210 if (p->ptrace & PT_PTRACE_CAP)
1211 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1212 else
1213 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1214 }
1215
1216 /*
1217 * This isn't strictly necessary, but it makes it harder for LSMs to
1218 * mess up.
1219 */
1220 if (current->no_new_privs)
1221 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1222
1223 n_fs = 1;
1224 spin_lock(&p->fs->lock);
1225 rcu_read_lock();
1226 for (t = next_thread(p); t != p; t = next_thread(t)) {
1227 if (t->fs == p->fs)
1228 n_fs++;
1229 }
1230 rcu_read_unlock();
1231
1232 if (p->fs->users > n_fs) {
1233 bprm->unsafe |= LSM_UNSAFE_SHARE;
1234 } else {
1235 res = -EAGAIN;
1236 if (!p->fs->in_exec) {
1237 p->fs->in_exec = 1;
1238 res = 1;
1239 }
1240 }
1241 spin_unlock(&p->fs->lock);
1242
1243 return res;
1244 }
1245
1246 /*
1247 * Fill the binprm structure from the inode.
1248 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1249 *
1250 * This may be called multiple times for binary chains (scripts for example).
1251 */
1252 int prepare_binprm(struct linux_binprm *bprm)
1253 {
1254 umode_t mode;
1255 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1256 int retval;
1257
1258 mode = inode->i_mode;
1259 if (bprm->file->f_op == NULL)
1260 return -EACCES;
1261
1262 /* clear any previous set[ug]id data from a previous binary */
1263 bprm->cred->euid = current_euid();
1264 bprm->cred->egid = current_egid();
1265
1266 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1267 !current->no_new_privs) {
1268 /* Set-uid? */
1269 if (mode & S_ISUID) {
1270 if (!kuid_has_mapping(bprm->cred->user_ns, inode->i_uid))
1271 return -EPERM;
1272 bprm->per_clear |= PER_CLEAR_ON_SETID;
1273 bprm->cred->euid = inode->i_uid;
1274
1275 }
1276
1277 /* Set-gid? */
1278 /*
1279 * If setgid is set but no group execute bit then this
1280 * is a candidate for mandatory locking, not a setgid
1281 * executable.
1282 */
1283 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1284 if (!kgid_has_mapping(bprm->cred->user_ns, inode->i_gid))
1285 return -EPERM;
1286 bprm->per_clear |= PER_CLEAR_ON_SETID;
1287 bprm->cred->egid = inode->i_gid;
1288 }
1289 }
1290
1291 /* fill in binprm security blob */
1292 retval = security_bprm_set_creds(bprm);
1293 if (retval)
1294 return retval;
1295 bprm->cred_prepared = 1;
1296
1297 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1298 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1299 }
1300
1301 EXPORT_SYMBOL(prepare_binprm);
1302
1303 /*
1304 * Arguments are '\0' separated strings found at the location bprm->p
1305 * points to; chop off the first by relocating brpm->p to right after
1306 * the first '\0' encountered.
1307 */
1308 int remove_arg_zero(struct linux_binprm *bprm)
1309 {
1310 int ret = 0;
1311 unsigned long offset;
1312 char *kaddr;
1313 struct page *page;
1314
1315 if (!bprm->argc)
1316 return 0;
1317
1318 do {
1319 offset = bprm->p & ~PAGE_MASK;
1320 page = get_arg_page(bprm, bprm->p, 0);
1321 if (!page) {
1322 ret = -EFAULT;
1323 goto out;
1324 }
1325 kaddr = kmap_atomic(page);
1326
1327 for (; offset < PAGE_SIZE && kaddr[offset];
1328 offset++, bprm->p++)
1329 ;
1330
1331 kunmap_atomic(kaddr);
1332 put_arg_page(page);
1333
1334 if (offset == PAGE_SIZE)
1335 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1336 } while (offset == PAGE_SIZE);
1337
1338 bprm->p++;
1339 bprm->argc--;
1340 ret = 0;
1341
1342 out:
1343 return ret;
1344 }
1345 EXPORT_SYMBOL(remove_arg_zero);
1346
1347 /*
1348 * cycle the list of binary formats handler, until one recognizes the image
1349 */
1350 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1351 {
1352 unsigned int depth = bprm->recursion_depth;
1353 int try,retval;
1354 struct linux_binfmt *fmt;
1355 pid_t old_pid, old_vpid;
1356
1357 retval = security_bprm_check(bprm);
1358 if (retval)
1359 return retval;
1360
1361 retval = audit_bprm(bprm);
1362 if (retval)
1363 return retval;
1364
1365 /* Need to fetch pid before load_binary changes it */
1366 old_pid = current->pid;
1367 rcu_read_lock();
1368 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1369 rcu_read_unlock();
1370
1371 retval = -ENOENT;
1372 for (try=0; try<2; try++) {
1373 read_lock(&binfmt_lock);
1374 list_for_each_entry(fmt, &formats, lh) {
1375 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1376 if (!fn)
1377 continue;
1378 if (!try_module_get(fmt->module))
1379 continue;
1380 read_unlock(&binfmt_lock);
1381 retval = fn(bprm, regs);
1382 /*
1383 * Restore the depth counter to its starting value
1384 * in this call, so we don't have to rely on every
1385 * load_binary function to restore it on return.
1386 */
1387 bprm->recursion_depth = depth;
1388 if (retval >= 0) {
1389 if (depth == 0) {
1390 trace_sched_process_exec(current, old_pid, bprm);
1391 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1392 }
1393 put_binfmt(fmt);
1394 allow_write_access(bprm->file);
1395 if (bprm->file)
1396 fput(bprm->file);
1397 bprm->file = NULL;
1398 current->did_exec = 1;
1399 proc_exec_connector(current);
1400 return retval;
1401 }
1402 read_lock(&binfmt_lock);
1403 put_binfmt(fmt);
1404 if (retval != -ENOEXEC || bprm->mm == NULL)
1405 break;
1406 if (!bprm->file) {
1407 read_unlock(&binfmt_lock);
1408 return retval;
1409 }
1410 }
1411 read_unlock(&binfmt_lock);
1412 #ifdef CONFIG_MODULES
1413 if (retval != -ENOEXEC || bprm->mm == NULL) {
1414 break;
1415 } else {
1416 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1417 if (printable(bprm->buf[0]) &&
1418 printable(bprm->buf[1]) &&
1419 printable(bprm->buf[2]) &&
1420 printable(bprm->buf[3]))
1421 break; /* -ENOEXEC */
1422 if (try)
1423 break; /* -ENOEXEC */
1424 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1425 }
1426 #else
1427 break;
1428 #endif
1429 }
1430 return retval;
1431 }
1432
1433 EXPORT_SYMBOL(search_binary_handler);
1434
1435 /*
1436 * sys_execve() executes a new program.
1437 */
1438 static int do_execve_common(const char *filename,
1439 struct user_arg_ptr argv,
1440 struct user_arg_ptr envp,
1441 struct pt_regs *regs)
1442 {
1443 struct linux_binprm *bprm;
1444 struct file *file;
1445 struct files_struct *displaced;
1446 bool clear_in_exec;
1447 int retval;
1448 const struct cred *cred = current_cred();
1449
1450 /*
1451 * We move the actual failure in case of RLIMIT_NPROC excess from
1452 * set*uid() to execve() because too many poorly written programs
1453 * don't check setuid() return code. Here we additionally recheck
1454 * whether NPROC limit is still exceeded.
1455 */
1456 if ((current->flags & PF_NPROC_EXCEEDED) &&
1457 atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1458 retval = -EAGAIN;
1459 goto out_ret;
1460 }
1461
1462 /* We're below the limit (still or again), so we don't want to make
1463 * further execve() calls fail. */
1464 current->flags &= ~PF_NPROC_EXCEEDED;
1465
1466 retval = unshare_files(&displaced);
1467 if (retval)
1468 goto out_ret;
1469
1470 retval = -ENOMEM;
1471 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1472 if (!bprm)
1473 goto out_files;
1474
1475 retval = prepare_bprm_creds(bprm);
1476 if (retval)
1477 goto out_free;
1478
1479 retval = check_unsafe_exec(bprm);
1480 if (retval < 0)
1481 goto out_free;
1482 clear_in_exec = retval;
1483 current->in_execve = 1;
1484
1485 file = open_exec(filename);
1486 retval = PTR_ERR(file);
1487 if (IS_ERR(file))
1488 goto out_unmark;
1489
1490 sched_exec();
1491
1492 bprm->file = file;
1493 bprm->filename = filename;
1494 bprm->interp = filename;
1495
1496 retval = bprm_mm_init(bprm);
1497 if (retval)
1498 goto out_file;
1499
1500 bprm->argc = count(argv, MAX_ARG_STRINGS);
1501 if ((retval = bprm->argc) < 0)
1502 goto out;
1503
1504 bprm->envc = count(envp, MAX_ARG_STRINGS);
1505 if ((retval = bprm->envc) < 0)
1506 goto out;
1507
1508 retval = prepare_binprm(bprm);
1509 if (retval < 0)
1510 goto out;
1511
1512 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1513 if (retval < 0)
1514 goto out;
1515
1516 bprm->exec = bprm->p;
1517 retval = copy_strings(bprm->envc, envp, bprm);
1518 if (retval < 0)
1519 goto out;
1520
1521 retval = copy_strings(bprm->argc, argv, bprm);
1522 if (retval < 0)
1523 goto out;
1524
1525 retval = search_binary_handler(bprm,regs);
1526 if (retval < 0)
1527 goto out;
1528
1529 /* execve succeeded */
1530 current->fs->in_exec = 0;
1531 current->in_execve = 0;
1532 acct_update_integrals(current);
1533 free_bprm(bprm);
1534 if (displaced)
1535 put_files_struct(displaced);
1536 return retval;
1537
1538 out:
1539 if (bprm->mm) {
1540 acct_arg_size(bprm, 0);
1541 mmput(bprm->mm);
1542 }
1543
1544 out_file:
1545 if (bprm->file) {
1546 allow_write_access(bprm->file);
1547 fput(bprm->file);
1548 }
1549
1550 out_unmark:
1551 if (clear_in_exec)
1552 current->fs->in_exec = 0;
1553 current->in_execve = 0;
1554
1555 out_free:
1556 free_bprm(bprm);
1557
1558 out_files:
1559 if (displaced)
1560 reset_files_struct(displaced);
1561 out_ret:
1562 return retval;
1563 }
1564
1565 int do_execve(const char *filename,
1566 const char __user *const __user *__argv,
1567 const char __user *const __user *__envp,
1568 struct pt_regs *regs)
1569 {
1570 struct user_arg_ptr argv = { .ptr.native = __argv };
1571 struct user_arg_ptr envp = { .ptr.native = __envp };
1572 return do_execve_common(filename, argv, envp, regs);
1573 }
1574
1575 #ifdef CONFIG_COMPAT
1576 int compat_do_execve(const char *filename,
1577 const compat_uptr_t __user *__argv,
1578 const compat_uptr_t __user *__envp,
1579 struct pt_regs *regs)
1580 {
1581 struct user_arg_ptr argv = {
1582 .is_compat = true,
1583 .ptr.compat = __argv,
1584 };
1585 struct user_arg_ptr envp = {
1586 .is_compat = true,
1587 .ptr.compat = __envp,
1588 };
1589 return do_execve_common(filename, argv, envp, regs);
1590 }
1591 #endif
1592
1593 void set_binfmt(struct linux_binfmt *new)
1594 {
1595 struct mm_struct *mm = current->mm;
1596
1597 if (mm->binfmt)
1598 module_put(mm->binfmt->module);
1599
1600 mm->binfmt = new;
1601 if (new)
1602 __module_get(new->module);
1603 }
1604
1605 EXPORT_SYMBOL(set_binfmt);
1606
1607 /*
1608 * set_dumpable converts traditional three-value dumpable to two flags and
1609 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1610 * these bits are not changed atomically. So get_dumpable can observe the
1611 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1612 * return either old dumpable or new one by paying attention to the order of
1613 * modifying the bits.
1614 *
1615 * dumpable | mm->flags (binary)
1616 * old new | initial interim final
1617 * ---------+-----------------------
1618 * 0 1 | 00 01 01
1619 * 0 2 | 00 10(*) 11
1620 * 1 0 | 01 00 00
1621 * 1 2 | 01 11 11
1622 * 2 0 | 11 10(*) 00
1623 * 2 1 | 11 11 01
1624 *
1625 * (*) get_dumpable regards interim value of 10 as 11.
1626 */
1627 void set_dumpable(struct mm_struct *mm, int value)
1628 {
1629 switch (value) {
1630 case SUID_DUMPABLE_DISABLED:
1631 clear_bit(MMF_DUMPABLE, &mm->flags);
1632 smp_wmb();
1633 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1634 break;
1635 case SUID_DUMPABLE_ENABLED:
1636 set_bit(MMF_DUMPABLE, &mm->flags);
1637 smp_wmb();
1638 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1639 break;
1640 case SUID_DUMPABLE_SAFE:
1641 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1642 smp_wmb();
1643 set_bit(MMF_DUMPABLE, &mm->flags);
1644 break;
1645 }
1646 }
1647
1648 int __get_dumpable(unsigned long mm_flags)
1649 {
1650 int ret;
1651
1652 ret = mm_flags & MMF_DUMPABLE_MASK;
1653 return (ret > SUID_DUMPABLE_ENABLED) ? SUID_DUMPABLE_SAFE : ret;
1654 }
1655
1656 int get_dumpable(struct mm_struct *mm)
1657 {
1658 return __get_dumpable(mm->flags);
1659 }
1660
1661 #ifdef __ARCH_WANT_SYS_EXECVE
1662 SYSCALL_DEFINE3(execve,
1663 const char __user *, filename,
1664 const char __user *const __user *, argv,
1665 const char __user *const __user *, envp)
1666 {
1667 const char *path = getname(filename);
1668 int error = PTR_ERR(path);
1669 if (!IS_ERR(path)) {
1670 error = do_execve(path, argv, envp, current_pt_regs());
1671 putname(path);
1672 }
1673 return error;
1674 }
1675 #ifdef CONFIG_COMPAT
1676 asmlinkage long compat_sys_execve(const char __user * filename,
1677 const compat_uptr_t __user * argv,
1678 const compat_uptr_t __user * envp)
1679 {
1680 const char *path = getname(filename);
1681 int error = PTR_ERR(path);
1682 if (!IS_ERR(path)) {
1683 error = compat_do_execve(path, argv, envp, current_pt_regs());
1684 putname(path);
1685 }
1686 return error;
1687 }
1688 #endif
1689 #endif
1690
1691 #ifdef __ARCH_WANT_KERNEL_EXECVE
1692 int kernel_execve(const char *filename,
1693 const char *const argv[],
1694 const char *const envp[])
1695 {
1696 struct pt_regs *p = current_pt_regs();
1697 int ret;
1698
1699 ret = do_execve(filename,
1700 (const char __user *const __user *)argv,
1701 (const char __user *const __user *)envp, p);
1702 if (ret < 0)
1703 return ret;
1704
1705 /*
1706 * We were successful. We won't be returning to our caller, but
1707 * instead to user space by manipulating the kernel stack.
1708 */
1709 ret_from_kernel_execve(p);
1710 }
1711 #endif
This page took 0.06346 seconds and 6 git commands to generate.