Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzi...
[deliverable/linux.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
58 #include "internal.h"
59
60 #ifdef __alpha__
61 /* for /sbin/loader handling in search_binary_handler() */
62 #include <linux/a.out.h>
63 #endif
64
65 int core_uses_pid;
66 char core_pattern[CORENAME_MAX_SIZE] = "core";
67 int suid_dumpable = 0;
68
69 /* The maximal length of core_pattern is also specified in sysctl.c */
70
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73
74 int register_binfmt(struct linux_binfmt * fmt)
75 {
76 if (!fmt)
77 return -EINVAL;
78 write_lock(&binfmt_lock);
79 list_add(&fmt->lh, &formats);
80 write_unlock(&binfmt_lock);
81 return 0;
82 }
83
84 EXPORT_SYMBOL(register_binfmt);
85
86 void unregister_binfmt(struct linux_binfmt * fmt)
87 {
88 write_lock(&binfmt_lock);
89 list_del(&fmt->lh);
90 write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(unregister_binfmt);
94
95 static inline void put_binfmt(struct linux_binfmt * fmt)
96 {
97 module_put(fmt->module);
98 }
99
100 /*
101 * Note that a shared library must be both readable and executable due to
102 * security reasons.
103 *
104 * Also note that we take the address to load from from the file itself.
105 */
106 asmlinkage long sys_uselib(const char __user * library)
107 {
108 struct file *file;
109 struct nameidata nd;
110 char *tmp = getname(library);
111 int error = PTR_ERR(tmp);
112
113 if (!IS_ERR(tmp)) {
114 error = path_lookup_open(AT_FDCWD, tmp,
115 LOOKUP_FOLLOW, &nd,
116 FMODE_READ|FMODE_EXEC);
117 putname(tmp);
118 }
119 if (error)
120 goto out;
121
122 error = -EINVAL;
123 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
124 goto exit;
125
126 error = -EACCES;
127 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
128 goto exit;
129
130 error = vfs_permission(&nd, MAY_READ | MAY_EXEC | MAY_OPEN);
131 if (error)
132 goto exit;
133
134 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
135 error = PTR_ERR(file);
136 if (IS_ERR(file))
137 goto out;
138
139 error = -ENOEXEC;
140 if(file->f_op) {
141 struct linux_binfmt * fmt;
142
143 read_lock(&binfmt_lock);
144 list_for_each_entry(fmt, &formats, lh) {
145 if (!fmt->load_shlib)
146 continue;
147 if (!try_module_get(fmt->module))
148 continue;
149 read_unlock(&binfmt_lock);
150 error = fmt->load_shlib(file);
151 read_lock(&binfmt_lock);
152 put_binfmt(fmt);
153 if (error != -ENOEXEC)
154 break;
155 }
156 read_unlock(&binfmt_lock);
157 }
158 fput(file);
159 out:
160 return error;
161 exit:
162 release_open_intent(&nd);
163 path_put(&nd.path);
164 goto out;
165 }
166
167 #ifdef CONFIG_MMU
168
169 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
170 int write)
171 {
172 struct page *page;
173 int ret;
174
175 #ifdef CONFIG_STACK_GROWSUP
176 if (write) {
177 ret = expand_stack_downwards(bprm->vma, pos);
178 if (ret < 0)
179 return NULL;
180 }
181 #endif
182 ret = get_user_pages(current, bprm->mm, pos,
183 1, write, 1, &page, NULL);
184 if (ret <= 0)
185 return NULL;
186
187 if (write) {
188 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
189 struct rlimit *rlim;
190
191 /*
192 * We've historically supported up to 32 pages (ARG_MAX)
193 * of argument strings even with small stacks
194 */
195 if (size <= ARG_MAX)
196 return page;
197
198 /*
199 * Limit to 1/4-th the stack size for the argv+env strings.
200 * This ensures that:
201 * - the remaining binfmt code will not run out of stack space,
202 * - the program will have a reasonable amount of stack left
203 * to work from.
204 */
205 rlim = current->signal->rlim;
206 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
207 put_page(page);
208 return NULL;
209 }
210 }
211
212 return page;
213 }
214
215 static void put_arg_page(struct page *page)
216 {
217 put_page(page);
218 }
219
220 static void free_arg_page(struct linux_binprm *bprm, int i)
221 {
222 }
223
224 static void free_arg_pages(struct linux_binprm *bprm)
225 {
226 }
227
228 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
229 struct page *page)
230 {
231 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
232 }
233
234 static int __bprm_mm_init(struct linux_binprm *bprm)
235 {
236 int err = -ENOMEM;
237 struct vm_area_struct *vma = NULL;
238 struct mm_struct *mm = bprm->mm;
239
240 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
241 if (!vma)
242 goto err;
243
244 down_write(&mm->mmap_sem);
245 vma->vm_mm = mm;
246
247 /*
248 * Place the stack at the largest stack address the architecture
249 * supports. Later, we'll move this to an appropriate place. We don't
250 * use STACK_TOP because that can depend on attributes which aren't
251 * configured yet.
252 */
253 vma->vm_end = STACK_TOP_MAX;
254 vma->vm_start = vma->vm_end - PAGE_SIZE;
255
256 vma->vm_flags = VM_STACK_FLAGS;
257 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
258 err = insert_vm_struct(mm, vma);
259 if (err) {
260 up_write(&mm->mmap_sem);
261 goto err;
262 }
263
264 mm->stack_vm = mm->total_vm = 1;
265 up_write(&mm->mmap_sem);
266
267 bprm->p = vma->vm_end - sizeof(void *);
268
269 return 0;
270
271 err:
272 if (vma) {
273 bprm->vma = NULL;
274 kmem_cache_free(vm_area_cachep, vma);
275 }
276
277 return err;
278 }
279
280 static bool valid_arg_len(struct linux_binprm *bprm, long len)
281 {
282 return len <= MAX_ARG_STRLEN;
283 }
284
285 #else
286
287 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
288 int write)
289 {
290 struct page *page;
291
292 page = bprm->page[pos / PAGE_SIZE];
293 if (!page && write) {
294 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
295 if (!page)
296 return NULL;
297 bprm->page[pos / PAGE_SIZE] = page;
298 }
299
300 return page;
301 }
302
303 static void put_arg_page(struct page *page)
304 {
305 }
306
307 static void free_arg_page(struct linux_binprm *bprm, int i)
308 {
309 if (bprm->page[i]) {
310 __free_page(bprm->page[i]);
311 bprm->page[i] = NULL;
312 }
313 }
314
315 static void free_arg_pages(struct linux_binprm *bprm)
316 {
317 int i;
318
319 for (i = 0; i < MAX_ARG_PAGES; i++)
320 free_arg_page(bprm, i);
321 }
322
323 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
324 struct page *page)
325 {
326 }
327
328 static int __bprm_mm_init(struct linux_binprm *bprm)
329 {
330 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
331 return 0;
332 }
333
334 static bool valid_arg_len(struct linux_binprm *bprm, long len)
335 {
336 return len <= bprm->p;
337 }
338
339 #endif /* CONFIG_MMU */
340
341 /*
342 * Create a new mm_struct and populate it with a temporary stack
343 * vm_area_struct. We don't have enough context at this point to set the stack
344 * flags, permissions, and offset, so we use temporary values. We'll update
345 * them later in setup_arg_pages().
346 */
347 int bprm_mm_init(struct linux_binprm *bprm)
348 {
349 int err;
350 struct mm_struct *mm = NULL;
351
352 bprm->mm = mm = mm_alloc();
353 err = -ENOMEM;
354 if (!mm)
355 goto err;
356
357 err = init_new_context(current, mm);
358 if (err)
359 goto err;
360
361 err = __bprm_mm_init(bprm);
362 if (err)
363 goto err;
364
365 return 0;
366
367 err:
368 if (mm) {
369 bprm->mm = NULL;
370 mmdrop(mm);
371 }
372
373 return err;
374 }
375
376 /*
377 * count() counts the number of strings in array ARGV.
378 */
379 static int count(char __user * __user * argv, int max)
380 {
381 int i = 0;
382
383 if (argv != NULL) {
384 for (;;) {
385 char __user * p;
386
387 if (get_user(p, argv))
388 return -EFAULT;
389 if (!p)
390 break;
391 argv++;
392 if (i++ >= max)
393 return -E2BIG;
394 cond_resched();
395 }
396 }
397 return i;
398 }
399
400 /*
401 * 'copy_strings()' copies argument/environment strings from the old
402 * processes's memory to the new process's stack. The call to get_user_pages()
403 * ensures the destination page is created and not swapped out.
404 */
405 static int copy_strings(int argc, char __user * __user * argv,
406 struct linux_binprm *bprm)
407 {
408 struct page *kmapped_page = NULL;
409 char *kaddr = NULL;
410 unsigned long kpos = 0;
411 int ret;
412
413 while (argc-- > 0) {
414 char __user *str;
415 int len;
416 unsigned long pos;
417
418 if (get_user(str, argv+argc) ||
419 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
420 ret = -EFAULT;
421 goto out;
422 }
423
424 if (!valid_arg_len(bprm, len)) {
425 ret = -E2BIG;
426 goto out;
427 }
428
429 /* We're going to work our way backwords. */
430 pos = bprm->p;
431 str += len;
432 bprm->p -= len;
433
434 while (len > 0) {
435 int offset, bytes_to_copy;
436
437 offset = pos % PAGE_SIZE;
438 if (offset == 0)
439 offset = PAGE_SIZE;
440
441 bytes_to_copy = offset;
442 if (bytes_to_copy > len)
443 bytes_to_copy = len;
444
445 offset -= bytes_to_copy;
446 pos -= bytes_to_copy;
447 str -= bytes_to_copy;
448 len -= bytes_to_copy;
449
450 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
451 struct page *page;
452
453 page = get_arg_page(bprm, pos, 1);
454 if (!page) {
455 ret = -E2BIG;
456 goto out;
457 }
458
459 if (kmapped_page) {
460 flush_kernel_dcache_page(kmapped_page);
461 kunmap(kmapped_page);
462 put_arg_page(kmapped_page);
463 }
464 kmapped_page = page;
465 kaddr = kmap(kmapped_page);
466 kpos = pos & PAGE_MASK;
467 flush_arg_page(bprm, kpos, kmapped_page);
468 }
469 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
470 ret = -EFAULT;
471 goto out;
472 }
473 }
474 }
475 ret = 0;
476 out:
477 if (kmapped_page) {
478 flush_kernel_dcache_page(kmapped_page);
479 kunmap(kmapped_page);
480 put_arg_page(kmapped_page);
481 }
482 return ret;
483 }
484
485 /*
486 * Like copy_strings, but get argv and its values from kernel memory.
487 */
488 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
489 {
490 int r;
491 mm_segment_t oldfs = get_fs();
492 set_fs(KERNEL_DS);
493 r = copy_strings(argc, (char __user * __user *)argv, bprm);
494 set_fs(oldfs);
495 return r;
496 }
497 EXPORT_SYMBOL(copy_strings_kernel);
498
499 #ifdef CONFIG_MMU
500
501 /*
502 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
503 * the binfmt code determines where the new stack should reside, we shift it to
504 * its final location. The process proceeds as follows:
505 *
506 * 1) Use shift to calculate the new vma endpoints.
507 * 2) Extend vma to cover both the old and new ranges. This ensures the
508 * arguments passed to subsequent functions are consistent.
509 * 3) Move vma's page tables to the new range.
510 * 4) Free up any cleared pgd range.
511 * 5) Shrink the vma to cover only the new range.
512 */
513 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
514 {
515 struct mm_struct *mm = vma->vm_mm;
516 unsigned long old_start = vma->vm_start;
517 unsigned long old_end = vma->vm_end;
518 unsigned long length = old_end - old_start;
519 unsigned long new_start = old_start - shift;
520 unsigned long new_end = old_end - shift;
521 struct mmu_gather *tlb;
522
523 BUG_ON(new_start > new_end);
524
525 /*
526 * ensure there are no vmas between where we want to go
527 * and where we are
528 */
529 if (vma != find_vma(mm, new_start))
530 return -EFAULT;
531
532 /*
533 * cover the whole range: [new_start, old_end)
534 */
535 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
536
537 /*
538 * move the page tables downwards, on failure we rely on
539 * process cleanup to remove whatever mess we made.
540 */
541 if (length != move_page_tables(vma, old_start,
542 vma, new_start, length))
543 return -ENOMEM;
544
545 lru_add_drain();
546 tlb = tlb_gather_mmu(mm, 0);
547 if (new_end > old_start) {
548 /*
549 * when the old and new regions overlap clear from new_end.
550 */
551 free_pgd_range(tlb, new_end, old_end, new_end,
552 vma->vm_next ? vma->vm_next->vm_start : 0);
553 } else {
554 /*
555 * otherwise, clean from old_start; this is done to not touch
556 * the address space in [new_end, old_start) some architectures
557 * have constraints on va-space that make this illegal (IA64) -
558 * for the others its just a little faster.
559 */
560 free_pgd_range(tlb, old_start, old_end, new_end,
561 vma->vm_next ? vma->vm_next->vm_start : 0);
562 }
563 tlb_finish_mmu(tlb, new_end, old_end);
564
565 /*
566 * shrink the vma to just the new range.
567 */
568 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
569
570 return 0;
571 }
572
573 #define EXTRA_STACK_VM_PAGES 20 /* random */
574
575 /*
576 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
577 * the stack is optionally relocated, and some extra space is added.
578 */
579 int setup_arg_pages(struct linux_binprm *bprm,
580 unsigned long stack_top,
581 int executable_stack)
582 {
583 unsigned long ret;
584 unsigned long stack_shift;
585 struct mm_struct *mm = current->mm;
586 struct vm_area_struct *vma = bprm->vma;
587 struct vm_area_struct *prev = NULL;
588 unsigned long vm_flags;
589 unsigned long stack_base;
590
591 #ifdef CONFIG_STACK_GROWSUP
592 /* Limit stack size to 1GB */
593 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
594 if (stack_base > (1 << 30))
595 stack_base = 1 << 30;
596
597 /* Make sure we didn't let the argument array grow too large. */
598 if (vma->vm_end - vma->vm_start > stack_base)
599 return -ENOMEM;
600
601 stack_base = PAGE_ALIGN(stack_top - stack_base);
602
603 stack_shift = vma->vm_start - stack_base;
604 mm->arg_start = bprm->p - stack_shift;
605 bprm->p = vma->vm_end - stack_shift;
606 #else
607 stack_top = arch_align_stack(stack_top);
608 stack_top = PAGE_ALIGN(stack_top);
609 stack_shift = vma->vm_end - stack_top;
610
611 bprm->p -= stack_shift;
612 mm->arg_start = bprm->p;
613 #endif
614
615 if (bprm->loader)
616 bprm->loader -= stack_shift;
617 bprm->exec -= stack_shift;
618
619 down_write(&mm->mmap_sem);
620 vm_flags = VM_STACK_FLAGS;
621
622 /*
623 * Adjust stack execute permissions; explicitly enable for
624 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
625 * (arch default) otherwise.
626 */
627 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
628 vm_flags |= VM_EXEC;
629 else if (executable_stack == EXSTACK_DISABLE_X)
630 vm_flags &= ~VM_EXEC;
631 vm_flags |= mm->def_flags;
632
633 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
634 vm_flags);
635 if (ret)
636 goto out_unlock;
637 BUG_ON(prev != vma);
638
639 /* Move stack pages down in memory. */
640 if (stack_shift) {
641 ret = shift_arg_pages(vma, stack_shift);
642 if (ret) {
643 up_write(&mm->mmap_sem);
644 return ret;
645 }
646 }
647
648 #ifdef CONFIG_STACK_GROWSUP
649 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
650 #else
651 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
652 #endif
653 ret = expand_stack(vma, stack_base);
654 if (ret)
655 ret = -EFAULT;
656
657 out_unlock:
658 up_write(&mm->mmap_sem);
659 return 0;
660 }
661 EXPORT_SYMBOL(setup_arg_pages);
662
663 #endif /* CONFIG_MMU */
664
665 struct file *open_exec(const char *name)
666 {
667 struct nameidata nd;
668 struct file *file;
669 int err;
670
671 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
672 FMODE_READ|FMODE_EXEC);
673 if (err)
674 goto out;
675
676 err = -EACCES;
677 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
678 goto out_path_put;
679
680 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
681 goto out_path_put;
682
683 err = vfs_permission(&nd, MAY_EXEC | MAY_OPEN);
684 if (err)
685 goto out_path_put;
686
687 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
688 if (IS_ERR(file))
689 return file;
690
691 err = deny_write_access(file);
692 if (err) {
693 fput(file);
694 goto out;
695 }
696
697 return file;
698
699 out_path_put:
700 release_open_intent(&nd);
701 path_put(&nd.path);
702 out:
703 return ERR_PTR(err);
704 }
705 EXPORT_SYMBOL(open_exec);
706
707 int kernel_read(struct file *file, unsigned long offset,
708 char *addr, unsigned long count)
709 {
710 mm_segment_t old_fs;
711 loff_t pos = offset;
712 int result;
713
714 old_fs = get_fs();
715 set_fs(get_ds());
716 /* The cast to a user pointer is valid due to the set_fs() */
717 result = vfs_read(file, (void __user *)addr, count, &pos);
718 set_fs(old_fs);
719 return result;
720 }
721
722 EXPORT_SYMBOL(kernel_read);
723
724 static int exec_mmap(struct mm_struct *mm)
725 {
726 struct task_struct *tsk;
727 struct mm_struct * old_mm, *active_mm;
728
729 /* Notify parent that we're no longer interested in the old VM */
730 tsk = current;
731 old_mm = current->mm;
732 mm_release(tsk, old_mm);
733
734 if (old_mm) {
735 /*
736 * Make sure that if there is a core dump in progress
737 * for the old mm, we get out and die instead of going
738 * through with the exec. We must hold mmap_sem around
739 * checking core_state and changing tsk->mm.
740 */
741 down_read(&old_mm->mmap_sem);
742 if (unlikely(old_mm->core_state)) {
743 up_read(&old_mm->mmap_sem);
744 return -EINTR;
745 }
746 }
747 task_lock(tsk);
748 active_mm = tsk->active_mm;
749 tsk->mm = mm;
750 tsk->active_mm = mm;
751 activate_mm(active_mm, mm);
752 task_unlock(tsk);
753 arch_pick_mmap_layout(mm);
754 if (old_mm) {
755 up_read(&old_mm->mmap_sem);
756 BUG_ON(active_mm != old_mm);
757 mm_update_next_owner(old_mm);
758 mmput(old_mm);
759 return 0;
760 }
761 mmdrop(active_mm);
762 return 0;
763 }
764
765 /*
766 * This function makes sure the current process has its own signal table,
767 * so that flush_signal_handlers can later reset the handlers without
768 * disturbing other processes. (Other processes might share the signal
769 * table via the CLONE_SIGHAND option to clone().)
770 */
771 static int de_thread(struct task_struct *tsk)
772 {
773 struct signal_struct *sig = tsk->signal;
774 struct sighand_struct *oldsighand = tsk->sighand;
775 spinlock_t *lock = &oldsighand->siglock;
776 int count;
777
778 if (thread_group_empty(tsk))
779 goto no_thread_group;
780
781 /*
782 * Kill all other threads in the thread group.
783 */
784 spin_lock_irq(lock);
785 if (signal_group_exit(sig)) {
786 /*
787 * Another group action in progress, just
788 * return so that the signal is processed.
789 */
790 spin_unlock_irq(lock);
791 return -EAGAIN;
792 }
793 sig->group_exit_task = tsk;
794 zap_other_threads(tsk);
795
796 /* Account for the thread group leader hanging around: */
797 count = thread_group_leader(tsk) ? 1 : 2;
798 sig->notify_count = count;
799 while (atomic_read(&sig->count) > count) {
800 __set_current_state(TASK_UNINTERRUPTIBLE);
801 spin_unlock_irq(lock);
802 schedule();
803 spin_lock_irq(lock);
804 }
805 spin_unlock_irq(lock);
806
807 /*
808 * At this point all other threads have exited, all we have to
809 * do is to wait for the thread group leader to become inactive,
810 * and to assume its PID:
811 */
812 if (!thread_group_leader(tsk)) {
813 struct task_struct *leader = tsk->group_leader;
814
815 sig->notify_count = -1; /* for exit_notify() */
816 for (;;) {
817 write_lock_irq(&tasklist_lock);
818 if (likely(leader->exit_state))
819 break;
820 __set_current_state(TASK_UNINTERRUPTIBLE);
821 write_unlock_irq(&tasklist_lock);
822 schedule();
823 }
824
825 /*
826 * The only record we have of the real-time age of a
827 * process, regardless of execs it's done, is start_time.
828 * All the past CPU time is accumulated in signal_struct
829 * from sister threads now dead. But in this non-leader
830 * exec, nothing survives from the original leader thread,
831 * whose birth marks the true age of this process now.
832 * When we take on its identity by switching to its PID, we
833 * also take its birthdate (always earlier than our own).
834 */
835 tsk->start_time = leader->start_time;
836
837 BUG_ON(!same_thread_group(leader, tsk));
838 BUG_ON(has_group_leader_pid(tsk));
839 /*
840 * An exec() starts a new thread group with the
841 * TGID of the previous thread group. Rehash the
842 * two threads with a switched PID, and release
843 * the former thread group leader:
844 */
845
846 /* Become a process group leader with the old leader's pid.
847 * The old leader becomes a thread of the this thread group.
848 * Note: The old leader also uses this pid until release_task
849 * is called. Odd but simple and correct.
850 */
851 detach_pid(tsk, PIDTYPE_PID);
852 tsk->pid = leader->pid;
853 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
854 transfer_pid(leader, tsk, PIDTYPE_PGID);
855 transfer_pid(leader, tsk, PIDTYPE_SID);
856 list_replace_rcu(&leader->tasks, &tsk->tasks);
857
858 tsk->group_leader = tsk;
859 leader->group_leader = tsk;
860
861 tsk->exit_signal = SIGCHLD;
862
863 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
864 leader->exit_state = EXIT_DEAD;
865 write_unlock_irq(&tasklist_lock);
866
867 release_task(leader);
868 }
869
870 sig->group_exit_task = NULL;
871 sig->notify_count = 0;
872
873 no_thread_group:
874 exit_itimers(sig);
875 flush_itimer_signals();
876
877 if (atomic_read(&oldsighand->count) != 1) {
878 struct sighand_struct *newsighand;
879 /*
880 * This ->sighand is shared with the CLONE_SIGHAND
881 * but not CLONE_THREAD task, switch to the new one.
882 */
883 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
884 if (!newsighand)
885 return -ENOMEM;
886
887 atomic_set(&newsighand->count, 1);
888 memcpy(newsighand->action, oldsighand->action,
889 sizeof(newsighand->action));
890
891 write_lock_irq(&tasklist_lock);
892 spin_lock(&oldsighand->siglock);
893 rcu_assign_pointer(tsk->sighand, newsighand);
894 spin_unlock(&oldsighand->siglock);
895 write_unlock_irq(&tasklist_lock);
896
897 __cleanup_sighand(oldsighand);
898 }
899
900 BUG_ON(!thread_group_leader(tsk));
901 return 0;
902 }
903
904 /*
905 * These functions flushes out all traces of the currently running executable
906 * so that a new one can be started
907 */
908 static void flush_old_files(struct files_struct * files)
909 {
910 long j = -1;
911 struct fdtable *fdt;
912
913 spin_lock(&files->file_lock);
914 for (;;) {
915 unsigned long set, i;
916
917 j++;
918 i = j * __NFDBITS;
919 fdt = files_fdtable(files);
920 if (i >= fdt->max_fds)
921 break;
922 set = fdt->close_on_exec->fds_bits[j];
923 if (!set)
924 continue;
925 fdt->close_on_exec->fds_bits[j] = 0;
926 spin_unlock(&files->file_lock);
927 for ( ; set ; i++,set >>= 1) {
928 if (set & 1) {
929 sys_close(i);
930 }
931 }
932 spin_lock(&files->file_lock);
933
934 }
935 spin_unlock(&files->file_lock);
936 }
937
938 char *get_task_comm(char *buf, struct task_struct *tsk)
939 {
940 /* buf must be at least sizeof(tsk->comm) in size */
941 task_lock(tsk);
942 strncpy(buf, tsk->comm, sizeof(tsk->comm));
943 task_unlock(tsk);
944 return buf;
945 }
946
947 void set_task_comm(struct task_struct *tsk, char *buf)
948 {
949 task_lock(tsk);
950 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
951 task_unlock(tsk);
952 }
953
954 int flush_old_exec(struct linux_binprm * bprm)
955 {
956 char * name;
957 int i, ch, retval;
958 char tcomm[sizeof(current->comm)];
959
960 /*
961 * Make sure we have a private signal table and that
962 * we are unassociated from the previous thread group.
963 */
964 retval = de_thread(current);
965 if (retval)
966 goto out;
967
968 set_mm_exe_file(bprm->mm, bprm->file);
969
970 /*
971 * Release all of the old mmap stuff
972 */
973 retval = exec_mmap(bprm->mm);
974 if (retval)
975 goto out;
976
977 bprm->mm = NULL; /* We're using it now */
978
979 /* This is the point of no return */
980 current->sas_ss_sp = current->sas_ss_size = 0;
981
982 if (current_euid() == current_uid() && current_egid() == current_gid())
983 set_dumpable(current->mm, 1);
984 else
985 set_dumpable(current->mm, suid_dumpable);
986
987 name = bprm->filename;
988
989 /* Copies the binary name from after last slash */
990 for (i=0; (ch = *(name++)) != '\0';) {
991 if (ch == '/')
992 i = 0; /* overwrite what we wrote */
993 else
994 if (i < (sizeof(tcomm) - 1))
995 tcomm[i++] = ch;
996 }
997 tcomm[i] = '\0';
998 set_task_comm(current, tcomm);
999
1000 current->flags &= ~PF_RANDOMIZE;
1001 flush_thread();
1002
1003 /* Set the new mm task size. We have to do that late because it may
1004 * depend on TIF_32BIT which is only updated in flush_thread() on
1005 * some architectures like powerpc
1006 */
1007 current->mm->task_size = TASK_SIZE;
1008
1009 /* install the new credentials */
1010 if (bprm->cred->uid != current_euid() ||
1011 bprm->cred->gid != current_egid()) {
1012 current->pdeath_signal = 0;
1013 } else if (file_permission(bprm->file, MAY_READ) ||
1014 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1015 set_dumpable(current->mm, suid_dumpable);
1016 }
1017
1018 current->personality &= ~bprm->per_clear;
1019
1020 /* An exec changes our domain. We are no longer part of the thread
1021 group */
1022
1023 current->self_exec_id++;
1024
1025 flush_signal_handlers(current, 0);
1026 flush_old_files(current->files);
1027
1028 return 0;
1029
1030 out:
1031 return retval;
1032 }
1033
1034 EXPORT_SYMBOL(flush_old_exec);
1035
1036 /*
1037 * install the new credentials for this executable
1038 */
1039 void install_exec_creds(struct linux_binprm *bprm)
1040 {
1041 security_bprm_committing_creds(bprm);
1042
1043 commit_creds(bprm->cred);
1044 bprm->cred = NULL;
1045
1046 /* cred_exec_mutex must be held at least to this point to prevent
1047 * ptrace_attach() from altering our determination of the task's
1048 * credentials; any time after this it may be unlocked */
1049
1050 security_bprm_committed_creds(bprm);
1051 }
1052 EXPORT_SYMBOL(install_exec_creds);
1053
1054 /*
1055 * determine how safe it is to execute the proposed program
1056 * - the caller must hold current->cred_exec_mutex to protect against
1057 * PTRACE_ATTACH
1058 */
1059 void check_unsafe_exec(struct linux_binprm *bprm)
1060 {
1061 struct task_struct *p = current;
1062
1063 bprm->unsafe = tracehook_unsafe_exec(p);
1064
1065 if (atomic_read(&p->fs->count) > 1 ||
1066 atomic_read(&p->files->count) > 1 ||
1067 atomic_read(&p->sighand->count) > 1)
1068 bprm->unsafe |= LSM_UNSAFE_SHARE;
1069 }
1070
1071 /*
1072 * Fill the binprm structure from the inode.
1073 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1074 *
1075 * This may be called multiple times for binary chains (scripts for example).
1076 */
1077 int prepare_binprm(struct linux_binprm *bprm)
1078 {
1079 umode_t mode;
1080 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1081 int retval;
1082
1083 mode = inode->i_mode;
1084 if (bprm->file->f_op == NULL)
1085 return -EACCES;
1086
1087 /* clear any previous set[ug]id data from a previous binary */
1088 bprm->cred->euid = current_euid();
1089 bprm->cred->egid = current_egid();
1090
1091 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1092 /* Set-uid? */
1093 if (mode & S_ISUID) {
1094 bprm->per_clear |= PER_CLEAR_ON_SETID;
1095 bprm->cred->euid = inode->i_uid;
1096 }
1097
1098 /* Set-gid? */
1099 /*
1100 * If setgid is set but no group execute bit then this
1101 * is a candidate for mandatory locking, not a setgid
1102 * executable.
1103 */
1104 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1105 bprm->per_clear |= PER_CLEAR_ON_SETID;
1106 bprm->cred->egid = inode->i_gid;
1107 }
1108 }
1109
1110 /* fill in binprm security blob */
1111 retval = security_bprm_set_creds(bprm);
1112 if (retval)
1113 return retval;
1114 bprm->cred_prepared = 1;
1115
1116 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1117 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1118 }
1119
1120 EXPORT_SYMBOL(prepare_binprm);
1121
1122 /*
1123 * Arguments are '\0' separated strings found at the location bprm->p
1124 * points to; chop off the first by relocating brpm->p to right after
1125 * the first '\0' encountered.
1126 */
1127 int remove_arg_zero(struct linux_binprm *bprm)
1128 {
1129 int ret = 0;
1130 unsigned long offset;
1131 char *kaddr;
1132 struct page *page;
1133
1134 if (!bprm->argc)
1135 return 0;
1136
1137 do {
1138 offset = bprm->p & ~PAGE_MASK;
1139 page = get_arg_page(bprm, bprm->p, 0);
1140 if (!page) {
1141 ret = -EFAULT;
1142 goto out;
1143 }
1144 kaddr = kmap_atomic(page, KM_USER0);
1145
1146 for (; offset < PAGE_SIZE && kaddr[offset];
1147 offset++, bprm->p++)
1148 ;
1149
1150 kunmap_atomic(kaddr, KM_USER0);
1151 put_arg_page(page);
1152
1153 if (offset == PAGE_SIZE)
1154 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1155 } while (offset == PAGE_SIZE);
1156
1157 bprm->p++;
1158 bprm->argc--;
1159 ret = 0;
1160
1161 out:
1162 return ret;
1163 }
1164 EXPORT_SYMBOL(remove_arg_zero);
1165
1166 /*
1167 * cycle the list of binary formats handler, until one recognizes the image
1168 */
1169 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1170 {
1171 unsigned int depth = bprm->recursion_depth;
1172 int try,retval;
1173 struct linux_binfmt *fmt;
1174 #ifdef __alpha__
1175 /* handle /sbin/loader.. */
1176 {
1177 struct exec * eh = (struct exec *) bprm->buf;
1178
1179 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1180 (eh->fh.f_flags & 0x3000) == 0x3000)
1181 {
1182 struct file * file;
1183 unsigned long loader;
1184
1185 allow_write_access(bprm->file);
1186 fput(bprm->file);
1187 bprm->file = NULL;
1188
1189 loader = bprm->vma->vm_end - sizeof(void *);
1190
1191 file = open_exec("/sbin/loader");
1192 retval = PTR_ERR(file);
1193 if (IS_ERR(file))
1194 return retval;
1195
1196 /* Remember if the application is TASO. */
1197 bprm->taso = eh->ah.entry < 0x100000000UL;
1198
1199 bprm->file = file;
1200 bprm->loader = loader;
1201 retval = prepare_binprm(bprm);
1202 if (retval<0)
1203 return retval;
1204 /* should call search_binary_handler recursively here,
1205 but it does not matter */
1206 }
1207 }
1208 #endif
1209 retval = security_bprm_check(bprm);
1210 if (retval)
1211 return retval;
1212
1213 /* kernel module loader fixup */
1214 /* so we don't try to load run modprobe in kernel space. */
1215 set_fs(USER_DS);
1216
1217 retval = audit_bprm(bprm);
1218 if (retval)
1219 return retval;
1220
1221 retval = -ENOENT;
1222 for (try=0; try<2; try++) {
1223 read_lock(&binfmt_lock);
1224 list_for_each_entry(fmt, &formats, lh) {
1225 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1226 if (!fn)
1227 continue;
1228 if (!try_module_get(fmt->module))
1229 continue;
1230 read_unlock(&binfmt_lock);
1231 retval = fn(bprm, regs);
1232 /*
1233 * Restore the depth counter to its starting value
1234 * in this call, so we don't have to rely on every
1235 * load_binary function to restore it on return.
1236 */
1237 bprm->recursion_depth = depth;
1238 if (retval >= 0) {
1239 if (depth == 0)
1240 tracehook_report_exec(fmt, bprm, regs);
1241 put_binfmt(fmt);
1242 allow_write_access(bprm->file);
1243 if (bprm->file)
1244 fput(bprm->file);
1245 bprm->file = NULL;
1246 current->did_exec = 1;
1247 proc_exec_connector(current);
1248 return retval;
1249 }
1250 read_lock(&binfmt_lock);
1251 put_binfmt(fmt);
1252 if (retval != -ENOEXEC || bprm->mm == NULL)
1253 break;
1254 if (!bprm->file) {
1255 read_unlock(&binfmt_lock);
1256 return retval;
1257 }
1258 }
1259 read_unlock(&binfmt_lock);
1260 if (retval != -ENOEXEC || bprm->mm == NULL) {
1261 break;
1262 #ifdef CONFIG_MODULES
1263 } else {
1264 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1265 if (printable(bprm->buf[0]) &&
1266 printable(bprm->buf[1]) &&
1267 printable(bprm->buf[2]) &&
1268 printable(bprm->buf[3]))
1269 break; /* -ENOEXEC */
1270 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1271 #endif
1272 }
1273 }
1274 return retval;
1275 }
1276
1277 EXPORT_SYMBOL(search_binary_handler);
1278
1279 void free_bprm(struct linux_binprm *bprm)
1280 {
1281 free_arg_pages(bprm);
1282 if (bprm->cred)
1283 abort_creds(bprm->cred);
1284 kfree(bprm);
1285 }
1286
1287 /*
1288 * sys_execve() executes a new program.
1289 */
1290 int do_execve(char * filename,
1291 char __user *__user *argv,
1292 char __user *__user *envp,
1293 struct pt_regs * regs)
1294 {
1295 struct linux_binprm *bprm;
1296 struct file *file;
1297 struct files_struct *displaced;
1298 int retval;
1299
1300 retval = unshare_files(&displaced);
1301 if (retval)
1302 goto out_ret;
1303
1304 retval = -ENOMEM;
1305 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1306 if (!bprm)
1307 goto out_files;
1308
1309 retval = mutex_lock_interruptible(&current->cred_exec_mutex);
1310 if (retval < 0)
1311 goto out_free;
1312
1313 retval = -ENOMEM;
1314 bprm->cred = prepare_exec_creds();
1315 if (!bprm->cred)
1316 goto out_unlock;
1317 check_unsafe_exec(bprm);
1318
1319 file = open_exec(filename);
1320 retval = PTR_ERR(file);
1321 if (IS_ERR(file))
1322 goto out_unlock;
1323
1324 sched_exec();
1325
1326 bprm->file = file;
1327 bprm->filename = filename;
1328 bprm->interp = filename;
1329
1330 retval = bprm_mm_init(bprm);
1331 if (retval)
1332 goto out_file;
1333
1334 bprm->argc = count(argv, MAX_ARG_STRINGS);
1335 if ((retval = bprm->argc) < 0)
1336 goto out;
1337
1338 bprm->envc = count(envp, MAX_ARG_STRINGS);
1339 if ((retval = bprm->envc) < 0)
1340 goto out;
1341
1342 retval = prepare_binprm(bprm);
1343 if (retval < 0)
1344 goto out;
1345
1346 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1347 if (retval < 0)
1348 goto out;
1349
1350 bprm->exec = bprm->p;
1351 retval = copy_strings(bprm->envc, envp, bprm);
1352 if (retval < 0)
1353 goto out;
1354
1355 retval = copy_strings(bprm->argc, argv, bprm);
1356 if (retval < 0)
1357 goto out;
1358
1359 current->flags &= ~PF_KTHREAD;
1360 retval = search_binary_handler(bprm,regs);
1361 if (retval < 0)
1362 goto out;
1363
1364 /* execve succeeded */
1365 mutex_unlock(&current->cred_exec_mutex);
1366 acct_update_integrals(current);
1367 free_bprm(bprm);
1368 if (displaced)
1369 put_files_struct(displaced);
1370 return retval;
1371
1372 out:
1373 if (bprm->mm)
1374 mmput (bprm->mm);
1375
1376 out_file:
1377 if (bprm->file) {
1378 allow_write_access(bprm->file);
1379 fput(bprm->file);
1380 }
1381
1382 out_unlock:
1383 mutex_unlock(&current->cred_exec_mutex);
1384
1385 out_free:
1386 free_bprm(bprm);
1387
1388 out_files:
1389 if (displaced)
1390 reset_files_struct(displaced);
1391 out_ret:
1392 return retval;
1393 }
1394
1395 int set_binfmt(struct linux_binfmt *new)
1396 {
1397 struct linux_binfmt *old = current->binfmt;
1398
1399 if (new) {
1400 if (!try_module_get(new->module))
1401 return -1;
1402 }
1403 current->binfmt = new;
1404 if (old)
1405 module_put(old->module);
1406 return 0;
1407 }
1408
1409 EXPORT_SYMBOL(set_binfmt);
1410
1411 /* format_corename will inspect the pattern parameter, and output a
1412 * name into corename, which must have space for at least
1413 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1414 */
1415 static int format_corename(char *corename, long signr)
1416 {
1417 const struct cred *cred = current_cred();
1418 const char *pat_ptr = core_pattern;
1419 int ispipe = (*pat_ptr == '|');
1420 char *out_ptr = corename;
1421 char *const out_end = corename + CORENAME_MAX_SIZE;
1422 int rc;
1423 int pid_in_pattern = 0;
1424
1425 /* Repeat as long as we have more pattern to process and more output
1426 space */
1427 while (*pat_ptr) {
1428 if (*pat_ptr != '%') {
1429 if (out_ptr == out_end)
1430 goto out;
1431 *out_ptr++ = *pat_ptr++;
1432 } else {
1433 switch (*++pat_ptr) {
1434 case 0:
1435 goto out;
1436 /* Double percent, output one percent */
1437 case '%':
1438 if (out_ptr == out_end)
1439 goto out;
1440 *out_ptr++ = '%';
1441 break;
1442 /* pid */
1443 case 'p':
1444 pid_in_pattern = 1;
1445 rc = snprintf(out_ptr, out_end - out_ptr,
1446 "%d", task_tgid_vnr(current));
1447 if (rc > out_end - out_ptr)
1448 goto out;
1449 out_ptr += rc;
1450 break;
1451 /* uid */
1452 case 'u':
1453 rc = snprintf(out_ptr, out_end - out_ptr,
1454 "%d", cred->uid);
1455 if (rc > out_end - out_ptr)
1456 goto out;
1457 out_ptr += rc;
1458 break;
1459 /* gid */
1460 case 'g':
1461 rc = snprintf(out_ptr, out_end - out_ptr,
1462 "%d", cred->gid);
1463 if (rc > out_end - out_ptr)
1464 goto out;
1465 out_ptr += rc;
1466 break;
1467 /* signal that caused the coredump */
1468 case 's':
1469 rc = snprintf(out_ptr, out_end - out_ptr,
1470 "%ld", signr);
1471 if (rc > out_end - out_ptr)
1472 goto out;
1473 out_ptr += rc;
1474 break;
1475 /* UNIX time of coredump */
1476 case 't': {
1477 struct timeval tv;
1478 do_gettimeofday(&tv);
1479 rc = snprintf(out_ptr, out_end - out_ptr,
1480 "%lu", tv.tv_sec);
1481 if (rc > out_end - out_ptr)
1482 goto out;
1483 out_ptr += rc;
1484 break;
1485 }
1486 /* hostname */
1487 case 'h':
1488 down_read(&uts_sem);
1489 rc = snprintf(out_ptr, out_end - out_ptr,
1490 "%s", utsname()->nodename);
1491 up_read(&uts_sem);
1492 if (rc > out_end - out_ptr)
1493 goto out;
1494 out_ptr += rc;
1495 break;
1496 /* executable */
1497 case 'e':
1498 rc = snprintf(out_ptr, out_end - out_ptr,
1499 "%s", current->comm);
1500 if (rc > out_end - out_ptr)
1501 goto out;
1502 out_ptr += rc;
1503 break;
1504 /* core limit size */
1505 case 'c':
1506 rc = snprintf(out_ptr, out_end - out_ptr,
1507 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1508 if (rc > out_end - out_ptr)
1509 goto out;
1510 out_ptr += rc;
1511 break;
1512 default:
1513 break;
1514 }
1515 ++pat_ptr;
1516 }
1517 }
1518 /* Backward compatibility with core_uses_pid:
1519 *
1520 * If core_pattern does not include a %p (as is the default)
1521 * and core_uses_pid is set, then .%pid will be appended to
1522 * the filename. Do not do this for piped commands. */
1523 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1524 rc = snprintf(out_ptr, out_end - out_ptr,
1525 ".%d", task_tgid_vnr(current));
1526 if (rc > out_end - out_ptr)
1527 goto out;
1528 out_ptr += rc;
1529 }
1530 out:
1531 *out_ptr = 0;
1532 return ispipe;
1533 }
1534
1535 static int zap_process(struct task_struct *start)
1536 {
1537 struct task_struct *t;
1538 int nr = 0;
1539
1540 start->signal->flags = SIGNAL_GROUP_EXIT;
1541 start->signal->group_stop_count = 0;
1542
1543 t = start;
1544 do {
1545 if (t != current && t->mm) {
1546 sigaddset(&t->pending.signal, SIGKILL);
1547 signal_wake_up(t, 1);
1548 nr++;
1549 }
1550 } while_each_thread(start, t);
1551
1552 return nr;
1553 }
1554
1555 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1556 struct core_state *core_state, int exit_code)
1557 {
1558 struct task_struct *g, *p;
1559 unsigned long flags;
1560 int nr = -EAGAIN;
1561
1562 spin_lock_irq(&tsk->sighand->siglock);
1563 if (!signal_group_exit(tsk->signal)) {
1564 mm->core_state = core_state;
1565 tsk->signal->group_exit_code = exit_code;
1566 nr = zap_process(tsk);
1567 }
1568 spin_unlock_irq(&tsk->sighand->siglock);
1569 if (unlikely(nr < 0))
1570 return nr;
1571
1572 if (atomic_read(&mm->mm_users) == nr + 1)
1573 goto done;
1574 /*
1575 * We should find and kill all tasks which use this mm, and we should
1576 * count them correctly into ->nr_threads. We don't take tasklist
1577 * lock, but this is safe wrt:
1578 *
1579 * fork:
1580 * None of sub-threads can fork after zap_process(leader). All
1581 * processes which were created before this point should be
1582 * visible to zap_threads() because copy_process() adds the new
1583 * process to the tail of init_task.tasks list, and lock/unlock
1584 * of ->siglock provides a memory barrier.
1585 *
1586 * do_exit:
1587 * The caller holds mm->mmap_sem. This means that the task which
1588 * uses this mm can't pass exit_mm(), so it can't exit or clear
1589 * its ->mm.
1590 *
1591 * de_thread:
1592 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1593 * we must see either old or new leader, this does not matter.
1594 * However, it can change p->sighand, so lock_task_sighand(p)
1595 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1596 * it can't fail.
1597 *
1598 * Note also that "g" can be the old leader with ->mm == NULL
1599 * and already unhashed and thus removed from ->thread_group.
1600 * This is OK, __unhash_process()->list_del_rcu() does not
1601 * clear the ->next pointer, we will find the new leader via
1602 * next_thread().
1603 */
1604 rcu_read_lock();
1605 for_each_process(g) {
1606 if (g == tsk->group_leader)
1607 continue;
1608 if (g->flags & PF_KTHREAD)
1609 continue;
1610 p = g;
1611 do {
1612 if (p->mm) {
1613 if (unlikely(p->mm == mm)) {
1614 lock_task_sighand(p, &flags);
1615 nr += zap_process(p);
1616 unlock_task_sighand(p, &flags);
1617 }
1618 break;
1619 }
1620 } while_each_thread(g, p);
1621 }
1622 rcu_read_unlock();
1623 done:
1624 atomic_set(&core_state->nr_threads, nr);
1625 return nr;
1626 }
1627
1628 static int coredump_wait(int exit_code, struct core_state *core_state)
1629 {
1630 struct task_struct *tsk = current;
1631 struct mm_struct *mm = tsk->mm;
1632 struct completion *vfork_done;
1633 int core_waiters;
1634
1635 init_completion(&core_state->startup);
1636 core_state->dumper.task = tsk;
1637 core_state->dumper.next = NULL;
1638 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1639 up_write(&mm->mmap_sem);
1640
1641 if (unlikely(core_waiters < 0))
1642 goto fail;
1643
1644 /*
1645 * Make sure nobody is waiting for us to release the VM,
1646 * otherwise we can deadlock when we wait on each other
1647 */
1648 vfork_done = tsk->vfork_done;
1649 if (vfork_done) {
1650 tsk->vfork_done = NULL;
1651 complete(vfork_done);
1652 }
1653
1654 if (core_waiters)
1655 wait_for_completion(&core_state->startup);
1656 fail:
1657 return core_waiters;
1658 }
1659
1660 static void coredump_finish(struct mm_struct *mm)
1661 {
1662 struct core_thread *curr, *next;
1663 struct task_struct *task;
1664
1665 next = mm->core_state->dumper.next;
1666 while ((curr = next) != NULL) {
1667 next = curr->next;
1668 task = curr->task;
1669 /*
1670 * see exit_mm(), curr->task must not see
1671 * ->task == NULL before we read ->next.
1672 */
1673 smp_mb();
1674 curr->task = NULL;
1675 wake_up_process(task);
1676 }
1677
1678 mm->core_state = NULL;
1679 }
1680
1681 /*
1682 * set_dumpable converts traditional three-value dumpable to two flags and
1683 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1684 * these bits are not changed atomically. So get_dumpable can observe the
1685 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1686 * return either old dumpable or new one by paying attention to the order of
1687 * modifying the bits.
1688 *
1689 * dumpable | mm->flags (binary)
1690 * old new | initial interim final
1691 * ---------+-----------------------
1692 * 0 1 | 00 01 01
1693 * 0 2 | 00 10(*) 11
1694 * 1 0 | 01 00 00
1695 * 1 2 | 01 11 11
1696 * 2 0 | 11 10(*) 00
1697 * 2 1 | 11 11 01
1698 *
1699 * (*) get_dumpable regards interim value of 10 as 11.
1700 */
1701 void set_dumpable(struct mm_struct *mm, int value)
1702 {
1703 switch (value) {
1704 case 0:
1705 clear_bit(MMF_DUMPABLE, &mm->flags);
1706 smp_wmb();
1707 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1708 break;
1709 case 1:
1710 set_bit(MMF_DUMPABLE, &mm->flags);
1711 smp_wmb();
1712 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1713 break;
1714 case 2:
1715 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1716 smp_wmb();
1717 set_bit(MMF_DUMPABLE, &mm->flags);
1718 break;
1719 }
1720 }
1721
1722 int get_dumpable(struct mm_struct *mm)
1723 {
1724 int ret;
1725
1726 ret = mm->flags & 0x3;
1727 return (ret >= 2) ? 2 : ret;
1728 }
1729
1730 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1731 {
1732 struct core_state core_state;
1733 char corename[CORENAME_MAX_SIZE + 1];
1734 struct mm_struct *mm = current->mm;
1735 struct linux_binfmt * binfmt;
1736 struct inode * inode;
1737 struct file * file;
1738 const struct cred *old_cred;
1739 struct cred *cred;
1740 int retval = 0;
1741 int flag = 0;
1742 int ispipe = 0;
1743 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1744 char **helper_argv = NULL;
1745 int helper_argc = 0;
1746 char *delimit;
1747
1748 audit_core_dumps(signr);
1749
1750 binfmt = current->binfmt;
1751 if (!binfmt || !binfmt->core_dump)
1752 goto fail;
1753
1754 cred = prepare_creds();
1755 if (!cred) {
1756 retval = -ENOMEM;
1757 goto fail;
1758 }
1759
1760 down_write(&mm->mmap_sem);
1761 /*
1762 * If another thread got here first, or we are not dumpable, bail out.
1763 */
1764 if (mm->core_state || !get_dumpable(mm)) {
1765 up_write(&mm->mmap_sem);
1766 put_cred(cred);
1767 goto fail;
1768 }
1769
1770 /*
1771 * We cannot trust fsuid as being the "true" uid of the
1772 * process nor do we know its entire history. We only know it
1773 * was tainted so we dump it as root in mode 2.
1774 */
1775 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1776 flag = O_EXCL; /* Stop rewrite attacks */
1777 cred->fsuid = 0; /* Dump root private */
1778 }
1779
1780 retval = coredump_wait(exit_code, &core_state);
1781 if (retval < 0) {
1782 put_cred(cred);
1783 goto fail;
1784 }
1785
1786 old_cred = override_creds(cred);
1787
1788 /*
1789 * Clear any false indication of pending signals that might
1790 * be seen by the filesystem code called to write the core file.
1791 */
1792 clear_thread_flag(TIF_SIGPENDING);
1793
1794 /*
1795 * lock_kernel() because format_corename() is controlled by sysctl, which
1796 * uses lock_kernel()
1797 */
1798 lock_kernel();
1799 ispipe = format_corename(corename, signr);
1800 unlock_kernel();
1801 /*
1802 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1803 * to a pipe. Since we're not writing directly to the filesystem
1804 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1805 * created unless the pipe reader choses to write out the core file
1806 * at which point file size limits and permissions will be imposed
1807 * as it does with any other process
1808 */
1809 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1810 goto fail_unlock;
1811
1812 if (ispipe) {
1813 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1814 /* Terminate the string before the first option */
1815 delimit = strchr(corename, ' ');
1816 if (delimit)
1817 *delimit = '\0';
1818 delimit = strrchr(helper_argv[0], '/');
1819 if (delimit)
1820 delimit++;
1821 else
1822 delimit = helper_argv[0];
1823 if (!strcmp(delimit, current->comm)) {
1824 printk(KERN_NOTICE "Recursive core dump detected, "
1825 "aborting\n");
1826 goto fail_unlock;
1827 }
1828
1829 core_limit = RLIM_INFINITY;
1830
1831 /* SIGPIPE can happen, but it's just never processed */
1832 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1833 &file)) {
1834 printk(KERN_INFO "Core dump to %s pipe failed\n",
1835 corename);
1836 goto fail_unlock;
1837 }
1838 } else
1839 file = filp_open(corename,
1840 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1841 0600);
1842 if (IS_ERR(file))
1843 goto fail_unlock;
1844 inode = file->f_path.dentry->d_inode;
1845 if (inode->i_nlink > 1)
1846 goto close_fail; /* multiple links - don't dump */
1847 if (!ispipe && d_unhashed(file->f_path.dentry))
1848 goto close_fail;
1849
1850 /* AK: actually i see no reason to not allow this for named pipes etc.,
1851 but keep the previous behaviour for now. */
1852 if (!ispipe && !S_ISREG(inode->i_mode))
1853 goto close_fail;
1854 /*
1855 * Dont allow local users get cute and trick others to coredump
1856 * into their pre-created files:
1857 */
1858 if (inode->i_uid != current_fsuid())
1859 goto close_fail;
1860 if (!file->f_op)
1861 goto close_fail;
1862 if (!file->f_op->write)
1863 goto close_fail;
1864 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1865 goto close_fail;
1866
1867 retval = binfmt->core_dump(signr, regs, file, core_limit);
1868
1869 if (retval)
1870 current->signal->group_exit_code |= 0x80;
1871 close_fail:
1872 filp_close(file, NULL);
1873 fail_unlock:
1874 if (helper_argv)
1875 argv_free(helper_argv);
1876
1877 revert_creds(old_cred);
1878 put_cred(cred);
1879 coredump_finish(mm);
1880 fail:
1881 return retval;
1882 }
This page took 0.071909 seconds and 6 git commands to generate.