4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
61 /* for /sbin/loader handling in search_binary_handler() */
62 #include <linux/a.out.h>
66 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
67 int suid_dumpable
= 0;
69 /* The maximal length of core_pattern is also specified in sysctl.c */
71 static LIST_HEAD(formats
);
72 static DEFINE_RWLOCK(binfmt_lock
);
74 int register_binfmt(struct linux_binfmt
* fmt
)
78 write_lock(&binfmt_lock
);
79 list_add(&fmt
->lh
, &formats
);
80 write_unlock(&binfmt_lock
);
84 EXPORT_SYMBOL(register_binfmt
);
86 void unregister_binfmt(struct linux_binfmt
* fmt
)
88 write_lock(&binfmt_lock
);
90 write_unlock(&binfmt_lock
);
93 EXPORT_SYMBOL(unregister_binfmt
);
95 static inline void put_binfmt(struct linux_binfmt
* fmt
)
97 module_put(fmt
->module
);
101 * Note that a shared library must be both readable and executable due to
104 * Also note that we take the address to load from from the file itself.
106 asmlinkage
long sys_uselib(const char __user
* library
)
110 char *tmp
= getname(library
);
111 int error
= PTR_ERR(tmp
);
114 error
= path_lookup_open(AT_FDCWD
, tmp
,
116 FMODE_READ
|FMODE_EXEC
);
123 if (!S_ISREG(nd
.path
.dentry
->d_inode
->i_mode
))
127 if (nd
.path
.mnt
->mnt_flags
& MNT_NOEXEC
)
130 error
= vfs_permission(&nd
, MAY_READ
| MAY_EXEC
| MAY_OPEN
);
134 file
= nameidata_to_filp(&nd
, O_RDONLY
|O_LARGEFILE
);
135 error
= PTR_ERR(file
);
141 struct linux_binfmt
* fmt
;
143 read_lock(&binfmt_lock
);
144 list_for_each_entry(fmt
, &formats
, lh
) {
145 if (!fmt
->load_shlib
)
147 if (!try_module_get(fmt
->module
))
149 read_unlock(&binfmt_lock
);
150 error
= fmt
->load_shlib(file
);
151 read_lock(&binfmt_lock
);
153 if (error
!= -ENOEXEC
)
156 read_unlock(&binfmt_lock
);
162 release_open_intent(&nd
);
169 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
175 #ifdef CONFIG_STACK_GROWSUP
177 ret
= expand_stack_downwards(bprm
->vma
, pos
);
182 ret
= get_user_pages(current
, bprm
->mm
, pos
,
183 1, write
, 1, &page
, NULL
);
188 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
192 * We've historically supported up to 32 pages (ARG_MAX)
193 * of argument strings even with small stacks
199 * Limit to 1/4-th the stack size for the argv+env strings.
201 * - the remaining binfmt code will not run out of stack space,
202 * - the program will have a reasonable amount of stack left
205 rlim
= current
->signal
->rlim
;
206 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
/ 4) {
215 static void put_arg_page(struct page
*page
)
220 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
224 static void free_arg_pages(struct linux_binprm
*bprm
)
228 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
231 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
234 static int __bprm_mm_init(struct linux_binprm
*bprm
)
237 struct vm_area_struct
*vma
= NULL
;
238 struct mm_struct
*mm
= bprm
->mm
;
240 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
244 down_write(&mm
->mmap_sem
);
248 * Place the stack at the largest stack address the architecture
249 * supports. Later, we'll move this to an appropriate place. We don't
250 * use STACK_TOP because that can depend on attributes which aren't
253 vma
->vm_end
= STACK_TOP_MAX
;
254 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
256 vma
->vm_flags
= VM_STACK_FLAGS
;
257 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
258 err
= insert_vm_struct(mm
, vma
);
260 up_write(&mm
->mmap_sem
);
264 mm
->stack_vm
= mm
->total_vm
= 1;
265 up_write(&mm
->mmap_sem
);
267 bprm
->p
= vma
->vm_end
- sizeof(void *);
274 kmem_cache_free(vm_area_cachep
, vma
);
280 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
282 return len
<= MAX_ARG_STRLEN
;
287 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
292 page
= bprm
->page
[pos
/ PAGE_SIZE
];
293 if (!page
&& write
) {
294 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
297 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
303 static void put_arg_page(struct page
*page
)
307 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
310 __free_page(bprm
->page
[i
]);
311 bprm
->page
[i
] = NULL
;
315 static void free_arg_pages(struct linux_binprm
*bprm
)
319 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
320 free_arg_page(bprm
, i
);
323 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
328 static int __bprm_mm_init(struct linux_binprm
*bprm
)
330 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
334 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
336 return len
<= bprm
->p
;
339 #endif /* CONFIG_MMU */
342 * Create a new mm_struct and populate it with a temporary stack
343 * vm_area_struct. We don't have enough context at this point to set the stack
344 * flags, permissions, and offset, so we use temporary values. We'll update
345 * them later in setup_arg_pages().
347 int bprm_mm_init(struct linux_binprm
*bprm
)
350 struct mm_struct
*mm
= NULL
;
352 bprm
->mm
= mm
= mm_alloc();
357 err
= init_new_context(current
, mm
);
361 err
= __bprm_mm_init(bprm
);
377 * count() counts the number of strings in array ARGV.
379 static int count(char __user
* __user
* argv
, int max
)
387 if (get_user(p
, argv
))
401 * 'copy_strings()' copies argument/environment strings from the old
402 * processes's memory to the new process's stack. The call to get_user_pages()
403 * ensures the destination page is created and not swapped out.
405 static int copy_strings(int argc
, char __user
* __user
* argv
,
406 struct linux_binprm
*bprm
)
408 struct page
*kmapped_page
= NULL
;
410 unsigned long kpos
= 0;
418 if (get_user(str
, argv
+argc
) ||
419 !(len
= strnlen_user(str
, MAX_ARG_STRLEN
))) {
424 if (!valid_arg_len(bprm
, len
)) {
429 /* We're going to work our way backwords. */
435 int offset
, bytes_to_copy
;
437 offset
= pos
% PAGE_SIZE
;
441 bytes_to_copy
= offset
;
442 if (bytes_to_copy
> len
)
445 offset
-= bytes_to_copy
;
446 pos
-= bytes_to_copy
;
447 str
-= bytes_to_copy
;
448 len
-= bytes_to_copy
;
450 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
453 page
= get_arg_page(bprm
, pos
, 1);
460 flush_kernel_dcache_page(kmapped_page
);
461 kunmap(kmapped_page
);
462 put_arg_page(kmapped_page
);
465 kaddr
= kmap(kmapped_page
);
466 kpos
= pos
& PAGE_MASK
;
467 flush_arg_page(bprm
, kpos
, kmapped_page
);
469 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
478 flush_kernel_dcache_page(kmapped_page
);
479 kunmap(kmapped_page
);
480 put_arg_page(kmapped_page
);
486 * Like copy_strings, but get argv and its values from kernel memory.
488 int copy_strings_kernel(int argc
,char ** argv
, struct linux_binprm
*bprm
)
491 mm_segment_t oldfs
= get_fs();
493 r
= copy_strings(argc
, (char __user
* __user
*)argv
, bprm
);
497 EXPORT_SYMBOL(copy_strings_kernel
);
502 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
503 * the binfmt code determines where the new stack should reside, we shift it to
504 * its final location. The process proceeds as follows:
506 * 1) Use shift to calculate the new vma endpoints.
507 * 2) Extend vma to cover both the old and new ranges. This ensures the
508 * arguments passed to subsequent functions are consistent.
509 * 3) Move vma's page tables to the new range.
510 * 4) Free up any cleared pgd range.
511 * 5) Shrink the vma to cover only the new range.
513 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
515 struct mm_struct
*mm
= vma
->vm_mm
;
516 unsigned long old_start
= vma
->vm_start
;
517 unsigned long old_end
= vma
->vm_end
;
518 unsigned long length
= old_end
- old_start
;
519 unsigned long new_start
= old_start
- shift
;
520 unsigned long new_end
= old_end
- shift
;
521 struct mmu_gather
*tlb
;
523 BUG_ON(new_start
> new_end
);
526 * ensure there are no vmas between where we want to go
529 if (vma
!= find_vma(mm
, new_start
))
533 * cover the whole range: [new_start, old_end)
535 vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
);
538 * move the page tables downwards, on failure we rely on
539 * process cleanup to remove whatever mess we made.
541 if (length
!= move_page_tables(vma
, old_start
,
542 vma
, new_start
, length
))
546 tlb
= tlb_gather_mmu(mm
, 0);
547 if (new_end
> old_start
) {
549 * when the old and new regions overlap clear from new_end.
551 free_pgd_range(tlb
, new_end
, old_end
, new_end
,
552 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
555 * otherwise, clean from old_start; this is done to not touch
556 * the address space in [new_end, old_start) some architectures
557 * have constraints on va-space that make this illegal (IA64) -
558 * for the others its just a little faster.
560 free_pgd_range(tlb
, old_start
, old_end
, new_end
,
561 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
563 tlb_finish_mmu(tlb
, new_end
, old_end
);
566 * shrink the vma to just the new range.
568 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
573 #define EXTRA_STACK_VM_PAGES 20 /* random */
576 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
577 * the stack is optionally relocated, and some extra space is added.
579 int setup_arg_pages(struct linux_binprm
*bprm
,
580 unsigned long stack_top
,
581 int executable_stack
)
584 unsigned long stack_shift
;
585 struct mm_struct
*mm
= current
->mm
;
586 struct vm_area_struct
*vma
= bprm
->vma
;
587 struct vm_area_struct
*prev
= NULL
;
588 unsigned long vm_flags
;
589 unsigned long stack_base
;
591 #ifdef CONFIG_STACK_GROWSUP
592 /* Limit stack size to 1GB */
593 stack_base
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
;
594 if (stack_base
> (1 << 30))
595 stack_base
= 1 << 30;
597 /* Make sure we didn't let the argument array grow too large. */
598 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
601 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
603 stack_shift
= vma
->vm_start
- stack_base
;
604 mm
->arg_start
= bprm
->p
- stack_shift
;
605 bprm
->p
= vma
->vm_end
- stack_shift
;
607 stack_top
= arch_align_stack(stack_top
);
608 stack_top
= PAGE_ALIGN(stack_top
);
609 stack_shift
= vma
->vm_end
- stack_top
;
611 bprm
->p
-= stack_shift
;
612 mm
->arg_start
= bprm
->p
;
616 bprm
->loader
-= stack_shift
;
617 bprm
->exec
-= stack_shift
;
619 down_write(&mm
->mmap_sem
);
620 vm_flags
= VM_STACK_FLAGS
;
623 * Adjust stack execute permissions; explicitly enable for
624 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
625 * (arch default) otherwise.
627 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
629 else if (executable_stack
== EXSTACK_DISABLE_X
)
630 vm_flags
&= ~VM_EXEC
;
631 vm_flags
|= mm
->def_flags
;
633 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
639 /* Move stack pages down in memory. */
641 ret
= shift_arg_pages(vma
, stack_shift
);
643 up_write(&mm
->mmap_sem
);
648 #ifdef CONFIG_STACK_GROWSUP
649 stack_base
= vma
->vm_end
+ EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
651 stack_base
= vma
->vm_start
- EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
653 ret
= expand_stack(vma
, stack_base
);
658 up_write(&mm
->mmap_sem
);
661 EXPORT_SYMBOL(setup_arg_pages
);
663 #endif /* CONFIG_MMU */
665 struct file
*open_exec(const char *name
)
671 err
= path_lookup_open(AT_FDCWD
, name
, LOOKUP_FOLLOW
, &nd
,
672 FMODE_READ
|FMODE_EXEC
);
677 if (!S_ISREG(nd
.path
.dentry
->d_inode
->i_mode
))
680 if (nd
.path
.mnt
->mnt_flags
& MNT_NOEXEC
)
683 err
= vfs_permission(&nd
, MAY_EXEC
| MAY_OPEN
);
687 file
= nameidata_to_filp(&nd
, O_RDONLY
|O_LARGEFILE
);
691 err
= deny_write_access(file
);
700 release_open_intent(&nd
);
705 EXPORT_SYMBOL(open_exec
);
707 int kernel_read(struct file
*file
, unsigned long offset
,
708 char *addr
, unsigned long count
)
716 /* The cast to a user pointer is valid due to the set_fs() */
717 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
722 EXPORT_SYMBOL(kernel_read
);
724 static int exec_mmap(struct mm_struct
*mm
)
726 struct task_struct
*tsk
;
727 struct mm_struct
* old_mm
, *active_mm
;
729 /* Notify parent that we're no longer interested in the old VM */
731 old_mm
= current
->mm
;
732 mm_release(tsk
, old_mm
);
736 * Make sure that if there is a core dump in progress
737 * for the old mm, we get out and die instead of going
738 * through with the exec. We must hold mmap_sem around
739 * checking core_state and changing tsk->mm.
741 down_read(&old_mm
->mmap_sem
);
742 if (unlikely(old_mm
->core_state
)) {
743 up_read(&old_mm
->mmap_sem
);
748 active_mm
= tsk
->active_mm
;
751 activate_mm(active_mm
, mm
);
753 arch_pick_mmap_layout(mm
);
755 up_read(&old_mm
->mmap_sem
);
756 BUG_ON(active_mm
!= old_mm
);
757 mm_update_next_owner(old_mm
);
766 * This function makes sure the current process has its own signal table,
767 * so that flush_signal_handlers can later reset the handlers without
768 * disturbing other processes. (Other processes might share the signal
769 * table via the CLONE_SIGHAND option to clone().)
771 static int de_thread(struct task_struct
*tsk
)
773 struct signal_struct
*sig
= tsk
->signal
;
774 struct sighand_struct
*oldsighand
= tsk
->sighand
;
775 spinlock_t
*lock
= &oldsighand
->siglock
;
776 struct task_struct
*leader
= NULL
;
779 if (thread_group_empty(tsk
))
780 goto no_thread_group
;
783 * Kill all other threads in the thread group.
786 if (signal_group_exit(sig
)) {
788 * Another group action in progress, just
789 * return so that the signal is processed.
791 spin_unlock_irq(lock
);
794 sig
->group_exit_task
= tsk
;
795 zap_other_threads(tsk
);
797 /* Account for the thread group leader hanging around: */
798 count
= thread_group_leader(tsk
) ? 1 : 2;
799 sig
->notify_count
= count
;
800 while (atomic_read(&sig
->count
) > count
) {
801 __set_current_state(TASK_UNINTERRUPTIBLE
);
802 spin_unlock_irq(lock
);
806 spin_unlock_irq(lock
);
809 * At this point all other threads have exited, all we have to
810 * do is to wait for the thread group leader to become inactive,
811 * and to assume its PID:
813 if (!thread_group_leader(tsk
)) {
814 leader
= tsk
->group_leader
;
816 sig
->notify_count
= -1; /* for exit_notify() */
818 write_lock_irq(&tasklist_lock
);
819 if (likely(leader
->exit_state
))
821 __set_current_state(TASK_UNINTERRUPTIBLE
);
822 write_unlock_irq(&tasklist_lock
);
827 * The only record we have of the real-time age of a
828 * process, regardless of execs it's done, is start_time.
829 * All the past CPU time is accumulated in signal_struct
830 * from sister threads now dead. But in this non-leader
831 * exec, nothing survives from the original leader thread,
832 * whose birth marks the true age of this process now.
833 * When we take on its identity by switching to its PID, we
834 * also take its birthdate (always earlier than our own).
836 tsk
->start_time
= leader
->start_time
;
838 BUG_ON(!same_thread_group(leader
, tsk
));
839 BUG_ON(has_group_leader_pid(tsk
));
841 * An exec() starts a new thread group with the
842 * TGID of the previous thread group. Rehash the
843 * two threads with a switched PID, and release
844 * the former thread group leader:
847 /* Become a process group leader with the old leader's pid.
848 * The old leader becomes a thread of the this thread group.
849 * Note: The old leader also uses this pid until release_task
850 * is called. Odd but simple and correct.
852 detach_pid(tsk
, PIDTYPE_PID
);
853 tsk
->pid
= leader
->pid
;
854 attach_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
855 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
856 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
857 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
859 tsk
->group_leader
= tsk
;
860 leader
->group_leader
= tsk
;
862 tsk
->exit_signal
= SIGCHLD
;
864 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
865 leader
->exit_state
= EXIT_DEAD
;
867 write_unlock_irq(&tasklist_lock
);
870 sig
->group_exit_task
= NULL
;
871 sig
->notify_count
= 0;
875 flush_itimer_signals();
877 release_task(leader
);
879 if (atomic_read(&oldsighand
->count
) != 1) {
880 struct sighand_struct
*newsighand
;
882 * This ->sighand is shared with the CLONE_SIGHAND
883 * but not CLONE_THREAD task, switch to the new one.
885 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
889 atomic_set(&newsighand
->count
, 1);
890 memcpy(newsighand
->action
, oldsighand
->action
,
891 sizeof(newsighand
->action
));
893 write_lock_irq(&tasklist_lock
);
894 spin_lock(&oldsighand
->siglock
);
895 rcu_assign_pointer(tsk
->sighand
, newsighand
);
896 spin_unlock(&oldsighand
->siglock
);
897 write_unlock_irq(&tasklist_lock
);
899 __cleanup_sighand(oldsighand
);
902 BUG_ON(!thread_group_leader(tsk
));
907 * These functions flushes out all traces of the currently running executable
908 * so that a new one can be started
910 static void flush_old_files(struct files_struct
* files
)
915 spin_lock(&files
->file_lock
);
917 unsigned long set
, i
;
921 fdt
= files_fdtable(files
);
922 if (i
>= fdt
->max_fds
)
924 set
= fdt
->close_on_exec
->fds_bits
[j
];
927 fdt
->close_on_exec
->fds_bits
[j
] = 0;
928 spin_unlock(&files
->file_lock
);
929 for ( ; set
; i
++,set
>>= 1) {
934 spin_lock(&files
->file_lock
);
937 spin_unlock(&files
->file_lock
);
940 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
942 /* buf must be at least sizeof(tsk->comm) in size */
944 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
949 void set_task_comm(struct task_struct
*tsk
, char *buf
)
952 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
956 int flush_old_exec(struct linux_binprm
* bprm
)
960 char tcomm
[sizeof(current
->comm
)];
963 * Make sure we have a private signal table and that
964 * we are unassociated from the previous thread group.
966 retval
= de_thread(current
);
970 set_mm_exe_file(bprm
->mm
, bprm
->file
);
973 * Release all of the old mmap stuff
975 retval
= exec_mmap(bprm
->mm
);
979 bprm
->mm
= NULL
; /* We're using it now */
981 /* This is the point of no return */
982 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
984 if (current_euid() == current_uid() && current_egid() == current_gid())
985 set_dumpable(current
->mm
, 1);
987 set_dumpable(current
->mm
, suid_dumpable
);
989 name
= bprm
->filename
;
991 /* Copies the binary name from after last slash */
992 for (i
=0; (ch
= *(name
++)) != '\0';) {
994 i
= 0; /* overwrite what we wrote */
996 if (i
< (sizeof(tcomm
) - 1))
1000 set_task_comm(current
, tcomm
);
1002 current
->flags
&= ~PF_RANDOMIZE
;
1005 /* Set the new mm task size. We have to do that late because it may
1006 * depend on TIF_32BIT which is only updated in flush_thread() on
1007 * some architectures like powerpc
1009 current
->mm
->task_size
= TASK_SIZE
;
1011 /* install the new credentials */
1012 if (bprm
->cred
->uid
!= current_euid() ||
1013 bprm
->cred
->gid
!= current_egid()) {
1014 current
->pdeath_signal
= 0;
1015 } else if (file_permission(bprm
->file
, MAY_READ
) ||
1016 bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
) {
1017 set_dumpable(current
->mm
, suid_dumpable
);
1020 current
->personality
&= ~bprm
->per_clear
;
1022 /* An exec changes our domain. We are no longer part of the thread
1025 current
->self_exec_id
++;
1027 flush_signal_handlers(current
, 0);
1028 flush_old_files(current
->files
);
1036 EXPORT_SYMBOL(flush_old_exec
);
1039 * install the new credentials for this executable
1041 void install_exec_creds(struct linux_binprm
*bprm
)
1043 security_bprm_committing_creds(bprm
);
1045 commit_creds(bprm
->cred
);
1048 /* cred_exec_mutex must be held at least to this point to prevent
1049 * ptrace_attach() from altering our determination of the task's
1050 * credentials; any time after this it may be unlocked */
1052 security_bprm_committed_creds(bprm
);
1054 EXPORT_SYMBOL(install_exec_creds
);
1057 * determine how safe it is to execute the proposed program
1058 * - the caller must hold current->cred_exec_mutex to protect against
1061 void check_unsafe_exec(struct linux_binprm
*bprm
)
1063 struct task_struct
*p
= current
;
1065 bprm
->unsafe
= tracehook_unsafe_exec(p
);
1067 if (atomic_read(&p
->fs
->count
) > 1 ||
1068 atomic_read(&p
->files
->count
) > 1 ||
1069 atomic_read(&p
->sighand
->count
) > 1)
1070 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1074 * Fill the binprm structure from the inode.
1075 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1077 * This may be called multiple times for binary chains (scripts for example).
1079 int prepare_binprm(struct linux_binprm
*bprm
)
1082 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1085 mode
= inode
->i_mode
;
1086 if (bprm
->file
->f_op
== NULL
)
1089 /* clear any previous set[ug]id data from a previous binary */
1090 bprm
->cred
->euid
= current_euid();
1091 bprm
->cred
->egid
= current_egid();
1093 if (!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1095 if (mode
& S_ISUID
) {
1096 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1097 bprm
->cred
->euid
= inode
->i_uid
;
1102 * If setgid is set but no group execute bit then this
1103 * is a candidate for mandatory locking, not a setgid
1106 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1107 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1108 bprm
->cred
->egid
= inode
->i_gid
;
1112 /* fill in binprm security blob */
1113 retval
= security_bprm_set_creds(bprm
);
1116 bprm
->cred_prepared
= 1;
1118 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1119 return kernel_read(bprm
->file
, 0, bprm
->buf
, BINPRM_BUF_SIZE
);
1122 EXPORT_SYMBOL(prepare_binprm
);
1125 * Arguments are '\0' separated strings found at the location bprm->p
1126 * points to; chop off the first by relocating brpm->p to right after
1127 * the first '\0' encountered.
1129 int remove_arg_zero(struct linux_binprm
*bprm
)
1132 unsigned long offset
;
1140 offset
= bprm
->p
& ~PAGE_MASK
;
1141 page
= get_arg_page(bprm
, bprm
->p
, 0);
1146 kaddr
= kmap_atomic(page
, KM_USER0
);
1148 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1149 offset
++, bprm
->p
++)
1152 kunmap_atomic(kaddr
, KM_USER0
);
1155 if (offset
== PAGE_SIZE
)
1156 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1157 } while (offset
== PAGE_SIZE
);
1166 EXPORT_SYMBOL(remove_arg_zero
);
1169 * cycle the list of binary formats handler, until one recognizes the image
1171 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1174 struct linux_binfmt
*fmt
;
1176 /* handle /sbin/loader.. */
1178 struct exec
* eh
= (struct exec
*) bprm
->buf
;
1180 if (!bprm
->loader
&& eh
->fh
.f_magic
== 0x183 &&
1181 (eh
->fh
.f_flags
& 0x3000) == 0x3000)
1184 unsigned long loader
;
1186 allow_write_access(bprm
->file
);
1190 loader
= bprm
->vma
->vm_end
- sizeof(void *);
1192 file
= open_exec("/sbin/loader");
1193 retval
= PTR_ERR(file
);
1197 /* Remember if the application is TASO. */
1198 bprm
->taso
= eh
->ah
.entry
< 0x100000000UL
;
1201 bprm
->loader
= loader
;
1202 retval
= prepare_binprm(bprm
);
1205 /* should call search_binary_handler recursively here,
1206 but it does not matter */
1210 retval
= security_bprm_check(bprm
);
1214 /* kernel module loader fixup */
1215 /* so we don't try to load run modprobe in kernel space. */
1218 retval
= audit_bprm(bprm
);
1223 for (try=0; try<2; try++) {
1224 read_lock(&binfmt_lock
);
1225 list_for_each_entry(fmt
, &formats
, lh
) {
1226 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1229 if (!try_module_get(fmt
->module
))
1231 read_unlock(&binfmt_lock
);
1232 retval
= fn(bprm
, regs
);
1234 tracehook_report_exec(fmt
, bprm
, regs
);
1236 allow_write_access(bprm
->file
);
1240 current
->did_exec
= 1;
1241 proc_exec_connector(current
);
1244 read_lock(&binfmt_lock
);
1246 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1249 read_unlock(&binfmt_lock
);
1253 read_unlock(&binfmt_lock
);
1254 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1256 #ifdef CONFIG_MODULES
1258 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1259 if (printable(bprm
->buf
[0]) &&
1260 printable(bprm
->buf
[1]) &&
1261 printable(bprm
->buf
[2]) &&
1262 printable(bprm
->buf
[3]))
1263 break; /* -ENOEXEC */
1264 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1271 EXPORT_SYMBOL(search_binary_handler
);
1273 void free_bprm(struct linux_binprm
*bprm
)
1275 free_arg_pages(bprm
);
1277 abort_creds(bprm
->cred
);
1282 * sys_execve() executes a new program.
1284 int do_execve(char * filename
,
1285 char __user
*__user
*argv
,
1286 char __user
*__user
*envp
,
1287 struct pt_regs
* regs
)
1289 struct linux_binprm
*bprm
;
1291 struct files_struct
*displaced
;
1294 retval
= unshare_files(&displaced
);
1299 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1303 retval
= mutex_lock_interruptible(¤t
->cred_exec_mutex
);
1308 bprm
->cred
= prepare_exec_creds();
1311 check_unsafe_exec(bprm
);
1313 file
= open_exec(filename
);
1314 retval
= PTR_ERR(file
);
1321 bprm
->filename
= filename
;
1322 bprm
->interp
= filename
;
1324 retval
= bprm_mm_init(bprm
);
1328 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1329 if ((retval
= bprm
->argc
) < 0)
1332 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1333 if ((retval
= bprm
->envc
) < 0)
1336 retval
= prepare_binprm(bprm
);
1340 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1344 bprm
->exec
= bprm
->p
;
1345 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1349 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1353 current
->flags
&= ~PF_KTHREAD
;
1354 retval
= search_binary_handler(bprm
,regs
);
1358 /* execve succeeded */
1359 mutex_unlock(¤t
->cred_exec_mutex
);
1360 acct_update_integrals(current
);
1363 put_files_struct(displaced
);
1372 allow_write_access(bprm
->file
);
1377 mutex_unlock(¤t
->cred_exec_mutex
);
1384 reset_files_struct(displaced
);
1389 int set_binfmt(struct linux_binfmt
*new)
1391 struct linux_binfmt
*old
= current
->binfmt
;
1394 if (!try_module_get(new->module
))
1397 current
->binfmt
= new;
1399 module_put(old
->module
);
1403 EXPORT_SYMBOL(set_binfmt
);
1405 /* format_corename will inspect the pattern parameter, and output a
1406 * name into corename, which must have space for at least
1407 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1409 static int format_corename(char *corename
, long signr
)
1411 const struct cred
*cred
= current_cred();
1412 const char *pat_ptr
= core_pattern
;
1413 int ispipe
= (*pat_ptr
== '|');
1414 char *out_ptr
= corename
;
1415 char *const out_end
= corename
+ CORENAME_MAX_SIZE
;
1417 int pid_in_pattern
= 0;
1419 /* Repeat as long as we have more pattern to process and more output
1422 if (*pat_ptr
!= '%') {
1423 if (out_ptr
== out_end
)
1425 *out_ptr
++ = *pat_ptr
++;
1427 switch (*++pat_ptr
) {
1430 /* Double percent, output one percent */
1432 if (out_ptr
== out_end
)
1439 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1440 "%d", task_tgid_vnr(current
));
1441 if (rc
> out_end
- out_ptr
)
1447 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1449 if (rc
> out_end
- out_ptr
)
1455 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1457 if (rc
> out_end
- out_ptr
)
1461 /* signal that caused the coredump */
1463 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1465 if (rc
> out_end
- out_ptr
)
1469 /* UNIX time of coredump */
1472 do_gettimeofday(&tv
);
1473 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1475 if (rc
> out_end
- out_ptr
)
1482 down_read(&uts_sem
);
1483 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1484 "%s", utsname()->nodename
);
1486 if (rc
> out_end
- out_ptr
)
1492 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1493 "%s", current
->comm
);
1494 if (rc
> out_end
- out_ptr
)
1498 /* core limit size */
1500 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1501 "%lu", current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
);
1502 if (rc
> out_end
- out_ptr
)
1512 /* Backward compatibility with core_uses_pid:
1514 * If core_pattern does not include a %p (as is the default)
1515 * and core_uses_pid is set, then .%pid will be appended to
1516 * the filename. Do not do this for piped commands. */
1517 if (!ispipe
&& !pid_in_pattern
&& core_uses_pid
) {
1518 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1519 ".%d", task_tgid_vnr(current
));
1520 if (rc
> out_end
- out_ptr
)
1529 static int zap_process(struct task_struct
*start
)
1531 struct task_struct
*t
;
1534 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1535 start
->signal
->group_stop_count
= 0;
1539 if (t
!= current
&& t
->mm
) {
1540 sigaddset(&t
->pending
.signal
, SIGKILL
);
1541 signal_wake_up(t
, 1);
1544 } while_each_thread(start
, t
);
1549 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1550 struct core_state
*core_state
, int exit_code
)
1552 struct task_struct
*g
, *p
;
1553 unsigned long flags
;
1556 spin_lock_irq(&tsk
->sighand
->siglock
);
1557 if (!signal_group_exit(tsk
->signal
)) {
1558 mm
->core_state
= core_state
;
1559 tsk
->signal
->group_exit_code
= exit_code
;
1560 nr
= zap_process(tsk
);
1562 spin_unlock_irq(&tsk
->sighand
->siglock
);
1563 if (unlikely(nr
< 0))
1566 if (atomic_read(&mm
->mm_users
) == nr
+ 1)
1569 * We should find and kill all tasks which use this mm, and we should
1570 * count them correctly into ->nr_threads. We don't take tasklist
1571 * lock, but this is safe wrt:
1574 * None of sub-threads can fork after zap_process(leader). All
1575 * processes which were created before this point should be
1576 * visible to zap_threads() because copy_process() adds the new
1577 * process to the tail of init_task.tasks list, and lock/unlock
1578 * of ->siglock provides a memory barrier.
1581 * The caller holds mm->mmap_sem. This means that the task which
1582 * uses this mm can't pass exit_mm(), so it can't exit or clear
1586 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1587 * we must see either old or new leader, this does not matter.
1588 * However, it can change p->sighand, so lock_task_sighand(p)
1589 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1592 * Note also that "g" can be the old leader with ->mm == NULL
1593 * and already unhashed and thus removed from ->thread_group.
1594 * This is OK, __unhash_process()->list_del_rcu() does not
1595 * clear the ->next pointer, we will find the new leader via
1599 for_each_process(g
) {
1600 if (g
== tsk
->group_leader
)
1602 if (g
->flags
& PF_KTHREAD
)
1607 if (unlikely(p
->mm
== mm
)) {
1608 lock_task_sighand(p
, &flags
);
1609 nr
+= zap_process(p
);
1610 unlock_task_sighand(p
, &flags
);
1614 } while_each_thread(g
, p
);
1618 atomic_set(&core_state
->nr_threads
, nr
);
1622 static int coredump_wait(int exit_code
, struct core_state
*core_state
)
1624 struct task_struct
*tsk
= current
;
1625 struct mm_struct
*mm
= tsk
->mm
;
1626 struct completion
*vfork_done
;
1629 init_completion(&core_state
->startup
);
1630 core_state
->dumper
.task
= tsk
;
1631 core_state
->dumper
.next
= NULL
;
1632 core_waiters
= zap_threads(tsk
, mm
, core_state
, exit_code
);
1633 up_write(&mm
->mmap_sem
);
1635 if (unlikely(core_waiters
< 0))
1639 * Make sure nobody is waiting for us to release the VM,
1640 * otherwise we can deadlock when we wait on each other
1642 vfork_done
= tsk
->vfork_done
;
1644 tsk
->vfork_done
= NULL
;
1645 complete(vfork_done
);
1649 wait_for_completion(&core_state
->startup
);
1651 return core_waiters
;
1654 static void coredump_finish(struct mm_struct
*mm
)
1656 struct core_thread
*curr
, *next
;
1657 struct task_struct
*task
;
1659 next
= mm
->core_state
->dumper
.next
;
1660 while ((curr
= next
) != NULL
) {
1664 * see exit_mm(), curr->task must not see
1665 * ->task == NULL before we read ->next.
1669 wake_up_process(task
);
1672 mm
->core_state
= NULL
;
1676 * set_dumpable converts traditional three-value dumpable to two flags and
1677 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1678 * these bits are not changed atomically. So get_dumpable can observe the
1679 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1680 * return either old dumpable or new one by paying attention to the order of
1681 * modifying the bits.
1683 * dumpable | mm->flags (binary)
1684 * old new | initial interim final
1685 * ---------+-----------------------
1693 * (*) get_dumpable regards interim value of 10 as 11.
1695 void set_dumpable(struct mm_struct
*mm
, int value
)
1699 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1701 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1704 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1706 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1709 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1711 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1716 int get_dumpable(struct mm_struct
*mm
)
1720 ret
= mm
->flags
& 0x3;
1721 return (ret
>= 2) ? 2 : ret
;
1724 int do_coredump(long signr
, int exit_code
, struct pt_regs
* regs
)
1726 struct core_state core_state
;
1727 char corename
[CORENAME_MAX_SIZE
+ 1];
1728 struct mm_struct
*mm
= current
->mm
;
1729 struct linux_binfmt
* binfmt
;
1730 struct inode
* inode
;
1732 const struct cred
*old_cred
;
1737 unsigned long core_limit
= current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
;
1738 char **helper_argv
= NULL
;
1739 int helper_argc
= 0;
1742 audit_core_dumps(signr
);
1744 binfmt
= current
->binfmt
;
1745 if (!binfmt
|| !binfmt
->core_dump
)
1748 cred
= prepare_creds();
1754 down_write(&mm
->mmap_sem
);
1756 * If another thread got here first, or we are not dumpable, bail out.
1758 if (mm
->core_state
|| !get_dumpable(mm
)) {
1759 up_write(&mm
->mmap_sem
);
1765 * We cannot trust fsuid as being the "true" uid of the
1766 * process nor do we know its entire history. We only know it
1767 * was tainted so we dump it as root in mode 2.
1769 if (get_dumpable(mm
) == 2) { /* Setuid core dump mode */
1770 flag
= O_EXCL
; /* Stop rewrite attacks */
1771 cred
->fsuid
= 0; /* Dump root private */
1774 retval
= coredump_wait(exit_code
, &core_state
);
1780 old_cred
= override_creds(cred
);
1783 * Clear any false indication of pending signals that might
1784 * be seen by the filesystem code called to write the core file.
1786 clear_thread_flag(TIF_SIGPENDING
);
1789 * lock_kernel() because format_corename() is controlled by sysctl, which
1790 * uses lock_kernel()
1793 ispipe
= format_corename(corename
, signr
);
1796 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1797 * to a pipe. Since we're not writing directly to the filesystem
1798 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1799 * created unless the pipe reader choses to write out the core file
1800 * at which point file size limits and permissions will be imposed
1801 * as it does with any other process
1803 if ((!ispipe
) && (core_limit
< binfmt
->min_coredump
))
1807 helper_argv
= argv_split(GFP_KERNEL
, corename
+1, &helper_argc
);
1808 /* Terminate the string before the first option */
1809 delimit
= strchr(corename
, ' ');
1812 delimit
= strrchr(helper_argv
[0], '/');
1816 delimit
= helper_argv
[0];
1817 if (!strcmp(delimit
, current
->comm
)) {
1818 printk(KERN_NOTICE
"Recursive core dump detected, "
1823 core_limit
= RLIM_INFINITY
;
1825 /* SIGPIPE can happen, but it's just never processed */
1826 if (call_usermodehelper_pipe(corename
+1, helper_argv
, NULL
,
1828 printk(KERN_INFO
"Core dump to %s pipe failed\n",
1833 file
= filp_open(corename
,
1834 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
1838 inode
= file
->f_path
.dentry
->d_inode
;
1839 if (inode
->i_nlink
> 1)
1840 goto close_fail
; /* multiple links - don't dump */
1841 if (!ispipe
&& d_unhashed(file
->f_path
.dentry
))
1844 /* AK: actually i see no reason to not allow this for named pipes etc.,
1845 but keep the previous behaviour for now. */
1846 if (!ispipe
&& !S_ISREG(inode
->i_mode
))
1849 * Dont allow local users get cute and trick others to coredump
1850 * into their pre-created files:
1852 if (inode
->i_uid
!= current_fsuid())
1856 if (!file
->f_op
->write
)
1858 if (!ispipe
&& do_truncate(file
->f_path
.dentry
, 0, 0, file
) != 0)
1861 retval
= binfmt
->core_dump(signr
, regs
, file
, core_limit
);
1864 current
->signal
->group_exit_code
|= 0x80;
1866 filp_close(file
, NULL
);
1869 argv_free(helper_argv
);
1871 revert_creds(old_cred
);
1873 coredump_finish(mm
);