CRED: Inaugurate COW credentials
[deliverable/linux.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
58
59 #ifdef __alpha__
60 /* for /sbin/loader handling in search_binary_handler() */
61 #include <linux/a.out.h>
62 #endif
63
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 int suid_dumpable = 0;
67
68 /* The maximal length of core_pattern is also specified in sysctl.c */
69
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72
73 int register_binfmt(struct linux_binfmt * fmt)
74 {
75 if (!fmt)
76 return -EINVAL;
77 write_lock(&binfmt_lock);
78 list_add(&fmt->lh, &formats);
79 write_unlock(&binfmt_lock);
80 return 0;
81 }
82
83 EXPORT_SYMBOL(register_binfmt);
84
85 void unregister_binfmt(struct linux_binfmt * fmt)
86 {
87 write_lock(&binfmt_lock);
88 list_del(&fmt->lh);
89 write_unlock(&binfmt_lock);
90 }
91
92 EXPORT_SYMBOL(unregister_binfmt);
93
94 static inline void put_binfmt(struct linux_binfmt * fmt)
95 {
96 module_put(fmt->module);
97 }
98
99 /*
100 * Note that a shared library must be both readable and executable due to
101 * security reasons.
102 *
103 * Also note that we take the address to load from from the file itself.
104 */
105 asmlinkage long sys_uselib(const char __user * library)
106 {
107 struct file *file;
108 struct nameidata nd;
109 char *tmp = getname(library);
110 int error = PTR_ERR(tmp);
111
112 if (!IS_ERR(tmp)) {
113 error = path_lookup_open(AT_FDCWD, tmp,
114 LOOKUP_FOLLOW, &nd,
115 FMODE_READ|FMODE_EXEC);
116 putname(tmp);
117 }
118 if (error)
119 goto out;
120
121 error = -EINVAL;
122 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
123 goto exit;
124
125 error = -EACCES;
126 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
127 goto exit;
128
129 error = vfs_permission(&nd, MAY_READ | MAY_EXEC | MAY_OPEN);
130 if (error)
131 goto exit;
132
133 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
134 error = PTR_ERR(file);
135 if (IS_ERR(file))
136 goto out;
137
138 error = -ENOEXEC;
139 if(file->f_op) {
140 struct linux_binfmt * fmt;
141
142 read_lock(&binfmt_lock);
143 list_for_each_entry(fmt, &formats, lh) {
144 if (!fmt->load_shlib)
145 continue;
146 if (!try_module_get(fmt->module))
147 continue;
148 read_unlock(&binfmt_lock);
149 error = fmt->load_shlib(file);
150 read_lock(&binfmt_lock);
151 put_binfmt(fmt);
152 if (error != -ENOEXEC)
153 break;
154 }
155 read_unlock(&binfmt_lock);
156 }
157 fput(file);
158 out:
159 return error;
160 exit:
161 release_open_intent(&nd);
162 path_put(&nd.path);
163 goto out;
164 }
165
166 #ifdef CONFIG_MMU
167
168 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
169 int write)
170 {
171 struct page *page;
172 int ret;
173
174 #ifdef CONFIG_STACK_GROWSUP
175 if (write) {
176 ret = expand_stack_downwards(bprm->vma, pos);
177 if (ret < 0)
178 return NULL;
179 }
180 #endif
181 ret = get_user_pages(current, bprm->mm, pos,
182 1, write, 1, &page, NULL);
183 if (ret <= 0)
184 return NULL;
185
186 if (write) {
187 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
188 struct rlimit *rlim;
189
190 /*
191 * We've historically supported up to 32 pages (ARG_MAX)
192 * of argument strings even with small stacks
193 */
194 if (size <= ARG_MAX)
195 return page;
196
197 /*
198 * Limit to 1/4-th the stack size for the argv+env strings.
199 * This ensures that:
200 * - the remaining binfmt code will not run out of stack space,
201 * - the program will have a reasonable amount of stack left
202 * to work from.
203 */
204 rlim = current->signal->rlim;
205 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
206 put_page(page);
207 return NULL;
208 }
209 }
210
211 return page;
212 }
213
214 static void put_arg_page(struct page *page)
215 {
216 put_page(page);
217 }
218
219 static void free_arg_page(struct linux_binprm *bprm, int i)
220 {
221 }
222
223 static void free_arg_pages(struct linux_binprm *bprm)
224 {
225 }
226
227 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
228 struct page *page)
229 {
230 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
231 }
232
233 static int __bprm_mm_init(struct linux_binprm *bprm)
234 {
235 int err = -ENOMEM;
236 struct vm_area_struct *vma = NULL;
237 struct mm_struct *mm = bprm->mm;
238
239 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
240 if (!vma)
241 goto err;
242
243 down_write(&mm->mmap_sem);
244 vma->vm_mm = mm;
245
246 /*
247 * Place the stack at the largest stack address the architecture
248 * supports. Later, we'll move this to an appropriate place. We don't
249 * use STACK_TOP because that can depend on attributes which aren't
250 * configured yet.
251 */
252 vma->vm_end = STACK_TOP_MAX;
253 vma->vm_start = vma->vm_end - PAGE_SIZE;
254
255 vma->vm_flags = VM_STACK_FLAGS;
256 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
257 err = insert_vm_struct(mm, vma);
258 if (err) {
259 up_write(&mm->mmap_sem);
260 goto err;
261 }
262
263 mm->stack_vm = mm->total_vm = 1;
264 up_write(&mm->mmap_sem);
265
266 bprm->p = vma->vm_end - sizeof(void *);
267
268 return 0;
269
270 err:
271 if (vma) {
272 bprm->vma = NULL;
273 kmem_cache_free(vm_area_cachep, vma);
274 }
275
276 return err;
277 }
278
279 static bool valid_arg_len(struct linux_binprm *bprm, long len)
280 {
281 return len <= MAX_ARG_STRLEN;
282 }
283
284 #else
285
286 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
287 int write)
288 {
289 struct page *page;
290
291 page = bprm->page[pos / PAGE_SIZE];
292 if (!page && write) {
293 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
294 if (!page)
295 return NULL;
296 bprm->page[pos / PAGE_SIZE] = page;
297 }
298
299 return page;
300 }
301
302 static void put_arg_page(struct page *page)
303 {
304 }
305
306 static void free_arg_page(struct linux_binprm *bprm, int i)
307 {
308 if (bprm->page[i]) {
309 __free_page(bprm->page[i]);
310 bprm->page[i] = NULL;
311 }
312 }
313
314 static void free_arg_pages(struct linux_binprm *bprm)
315 {
316 int i;
317
318 for (i = 0; i < MAX_ARG_PAGES; i++)
319 free_arg_page(bprm, i);
320 }
321
322 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
323 struct page *page)
324 {
325 }
326
327 static int __bprm_mm_init(struct linux_binprm *bprm)
328 {
329 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
330 return 0;
331 }
332
333 static bool valid_arg_len(struct linux_binprm *bprm, long len)
334 {
335 return len <= bprm->p;
336 }
337
338 #endif /* CONFIG_MMU */
339
340 /*
341 * Create a new mm_struct and populate it with a temporary stack
342 * vm_area_struct. We don't have enough context at this point to set the stack
343 * flags, permissions, and offset, so we use temporary values. We'll update
344 * them later in setup_arg_pages().
345 */
346 int bprm_mm_init(struct linux_binprm *bprm)
347 {
348 int err;
349 struct mm_struct *mm = NULL;
350
351 bprm->mm = mm = mm_alloc();
352 err = -ENOMEM;
353 if (!mm)
354 goto err;
355
356 err = init_new_context(current, mm);
357 if (err)
358 goto err;
359
360 err = __bprm_mm_init(bprm);
361 if (err)
362 goto err;
363
364 return 0;
365
366 err:
367 if (mm) {
368 bprm->mm = NULL;
369 mmdrop(mm);
370 }
371
372 return err;
373 }
374
375 /*
376 * count() counts the number of strings in array ARGV.
377 */
378 static int count(char __user * __user * argv, int max)
379 {
380 int i = 0;
381
382 if (argv != NULL) {
383 for (;;) {
384 char __user * p;
385
386 if (get_user(p, argv))
387 return -EFAULT;
388 if (!p)
389 break;
390 argv++;
391 if (i++ >= max)
392 return -E2BIG;
393 cond_resched();
394 }
395 }
396 return i;
397 }
398
399 /*
400 * 'copy_strings()' copies argument/environment strings from the old
401 * processes's memory to the new process's stack. The call to get_user_pages()
402 * ensures the destination page is created and not swapped out.
403 */
404 static int copy_strings(int argc, char __user * __user * argv,
405 struct linux_binprm *bprm)
406 {
407 struct page *kmapped_page = NULL;
408 char *kaddr = NULL;
409 unsigned long kpos = 0;
410 int ret;
411
412 while (argc-- > 0) {
413 char __user *str;
414 int len;
415 unsigned long pos;
416
417 if (get_user(str, argv+argc) ||
418 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
419 ret = -EFAULT;
420 goto out;
421 }
422
423 if (!valid_arg_len(bprm, len)) {
424 ret = -E2BIG;
425 goto out;
426 }
427
428 /* We're going to work our way backwords. */
429 pos = bprm->p;
430 str += len;
431 bprm->p -= len;
432
433 while (len > 0) {
434 int offset, bytes_to_copy;
435
436 offset = pos % PAGE_SIZE;
437 if (offset == 0)
438 offset = PAGE_SIZE;
439
440 bytes_to_copy = offset;
441 if (bytes_to_copy > len)
442 bytes_to_copy = len;
443
444 offset -= bytes_to_copy;
445 pos -= bytes_to_copy;
446 str -= bytes_to_copy;
447 len -= bytes_to_copy;
448
449 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
450 struct page *page;
451
452 page = get_arg_page(bprm, pos, 1);
453 if (!page) {
454 ret = -E2BIG;
455 goto out;
456 }
457
458 if (kmapped_page) {
459 flush_kernel_dcache_page(kmapped_page);
460 kunmap(kmapped_page);
461 put_arg_page(kmapped_page);
462 }
463 kmapped_page = page;
464 kaddr = kmap(kmapped_page);
465 kpos = pos & PAGE_MASK;
466 flush_arg_page(bprm, kpos, kmapped_page);
467 }
468 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
469 ret = -EFAULT;
470 goto out;
471 }
472 }
473 }
474 ret = 0;
475 out:
476 if (kmapped_page) {
477 flush_kernel_dcache_page(kmapped_page);
478 kunmap(kmapped_page);
479 put_arg_page(kmapped_page);
480 }
481 return ret;
482 }
483
484 /*
485 * Like copy_strings, but get argv and its values from kernel memory.
486 */
487 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
488 {
489 int r;
490 mm_segment_t oldfs = get_fs();
491 set_fs(KERNEL_DS);
492 r = copy_strings(argc, (char __user * __user *)argv, bprm);
493 set_fs(oldfs);
494 return r;
495 }
496 EXPORT_SYMBOL(copy_strings_kernel);
497
498 #ifdef CONFIG_MMU
499
500 /*
501 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
502 * the binfmt code determines where the new stack should reside, we shift it to
503 * its final location. The process proceeds as follows:
504 *
505 * 1) Use shift to calculate the new vma endpoints.
506 * 2) Extend vma to cover both the old and new ranges. This ensures the
507 * arguments passed to subsequent functions are consistent.
508 * 3) Move vma's page tables to the new range.
509 * 4) Free up any cleared pgd range.
510 * 5) Shrink the vma to cover only the new range.
511 */
512 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
513 {
514 struct mm_struct *mm = vma->vm_mm;
515 unsigned long old_start = vma->vm_start;
516 unsigned long old_end = vma->vm_end;
517 unsigned long length = old_end - old_start;
518 unsigned long new_start = old_start - shift;
519 unsigned long new_end = old_end - shift;
520 struct mmu_gather *tlb;
521
522 BUG_ON(new_start > new_end);
523
524 /*
525 * ensure there are no vmas between where we want to go
526 * and where we are
527 */
528 if (vma != find_vma(mm, new_start))
529 return -EFAULT;
530
531 /*
532 * cover the whole range: [new_start, old_end)
533 */
534 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
535
536 /*
537 * move the page tables downwards, on failure we rely on
538 * process cleanup to remove whatever mess we made.
539 */
540 if (length != move_page_tables(vma, old_start,
541 vma, new_start, length))
542 return -ENOMEM;
543
544 lru_add_drain();
545 tlb = tlb_gather_mmu(mm, 0);
546 if (new_end > old_start) {
547 /*
548 * when the old and new regions overlap clear from new_end.
549 */
550 free_pgd_range(tlb, new_end, old_end, new_end,
551 vma->vm_next ? vma->vm_next->vm_start : 0);
552 } else {
553 /*
554 * otherwise, clean from old_start; this is done to not touch
555 * the address space in [new_end, old_start) some architectures
556 * have constraints on va-space that make this illegal (IA64) -
557 * for the others its just a little faster.
558 */
559 free_pgd_range(tlb, old_start, old_end, new_end,
560 vma->vm_next ? vma->vm_next->vm_start : 0);
561 }
562 tlb_finish_mmu(tlb, new_end, old_end);
563
564 /*
565 * shrink the vma to just the new range.
566 */
567 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
568
569 return 0;
570 }
571
572 #define EXTRA_STACK_VM_PAGES 20 /* random */
573
574 /*
575 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
576 * the stack is optionally relocated, and some extra space is added.
577 */
578 int setup_arg_pages(struct linux_binprm *bprm,
579 unsigned long stack_top,
580 int executable_stack)
581 {
582 unsigned long ret;
583 unsigned long stack_shift;
584 struct mm_struct *mm = current->mm;
585 struct vm_area_struct *vma = bprm->vma;
586 struct vm_area_struct *prev = NULL;
587 unsigned long vm_flags;
588 unsigned long stack_base;
589
590 #ifdef CONFIG_STACK_GROWSUP
591 /* Limit stack size to 1GB */
592 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
593 if (stack_base > (1 << 30))
594 stack_base = 1 << 30;
595
596 /* Make sure we didn't let the argument array grow too large. */
597 if (vma->vm_end - vma->vm_start > stack_base)
598 return -ENOMEM;
599
600 stack_base = PAGE_ALIGN(stack_top - stack_base);
601
602 stack_shift = vma->vm_start - stack_base;
603 mm->arg_start = bprm->p - stack_shift;
604 bprm->p = vma->vm_end - stack_shift;
605 #else
606 stack_top = arch_align_stack(stack_top);
607 stack_top = PAGE_ALIGN(stack_top);
608 stack_shift = vma->vm_end - stack_top;
609
610 bprm->p -= stack_shift;
611 mm->arg_start = bprm->p;
612 #endif
613
614 if (bprm->loader)
615 bprm->loader -= stack_shift;
616 bprm->exec -= stack_shift;
617
618 down_write(&mm->mmap_sem);
619 vm_flags = VM_STACK_FLAGS;
620
621 /*
622 * Adjust stack execute permissions; explicitly enable for
623 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
624 * (arch default) otherwise.
625 */
626 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
627 vm_flags |= VM_EXEC;
628 else if (executable_stack == EXSTACK_DISABLE_X)
629 vm_flags &= ~VM_EXEC;
630 vm_flags |= mm->def_flags;
631
632 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
633 vm_flags);
634 if (ret)
635 goto out_unlock;
636 BUG_ON(prev != vma);
637
638 /* Move stack pages down in memory. */
639 if (stack_shift) {
640 ret = shift_arg_pages(vma, stack_shift);
641 if (ret) {
642 up_write(&mm->mmap_sem);
643 return ret;
644 }
645 }
646
647 #ifdef CONFIG_STACK_GROWSUP
648 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
649 #else
650 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
651 #endif
652 ret = expand_stack(vma, stack_base);
653 if (ret)
654 ret = -EFAULT;
655
656 out_unlock:
657 up_write(&mm->mmap_sem);
658 return 0;
659 }
660 EXPORT_SYMBOL(setup_arg_pages);
661
662 #endif /* CONFIG_MMU */
663
664 struct file *open_exec(const char *name)
665 {
666 struct nameidata nd;
667 struct file *file;
668 int err;
669
670 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
671 FMODE_READ|FMODE_EXEC);
672 if (err)
673 goto out;
674
675 err = -EACCES;
676 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
677 goto out_path_put;
678
679 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
680 goto out_path_put;
681
682 err = vfs_permission(&nd, MAY_EXEC | MAY_OPEN);
683 if (err)
684 goto out_path_put;
685
686 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
687 if (IS_ERR(file))
688 return file;
689
690 err = deny_write_access(file);
691 if (err) {
692 fput(file);
693 goto out;
694 }
695
696 return file;
697
698 out_path_put:
699 release_open_intent(&nd);
700 path_put(&nd.path);
701 out:
702 return ERR_PTR(err);
703 }
704 EXPORT_SYMBOL(open_exec);
705
706 int kernel_read(struct file *file, unsigned long offset,
707 char *addr, unsigned long count)
708 {
709 mm_segment_t old_fs;
710 loff_t pos = offset;
711 int result;
712
713 old_fs = get_fs();
714 set_fs(get_ds());
715 /* The cast to a user pointer is valid due to the set_fs() */
716 result = vfs_read(file, (void __user *)addr, count, &pos);
717 set_fs(old_fs);
718 return result;
719 }
720
721 EXPORT_SYMBOL(kernel_read);
722
723 static int exec_mmap(struct mm_struct *mm)
724 {
725 struct task_struct *tsk;
726 struct mm_struct * old_mm, *active_mm;
727
728 /* Notify parent that we're no longer interested in the old VM */
729 tsk = current;
730 old_mm = current->mm;
731 mm_release(tsk, old_mm);
732
733 if (old_mm) {
734 /*
735 * Make sure that if there is a core dump in progress
736 * for the old mm, we get out and die instead of going
737 * through with the exec. We must hold mmap_sem around
738 * checking core_state and changing tsk->mm.
739 */
740 down_read(&old_mm->mmap_sem);
741 if (unlikely(old_mm->core_state)) {
742 up_read(&old_mm->mmap_sem);
743 return -EINTR;
744 }
745 }
746 task_lock(tsk);
747 active_mm = tsk->active_mm;
748 tsk->mm = mm;
749 tsk->active_mm = mm;
750 activate_mm(active_mm, mm);
751 task_unlock(tsk);
752 arch_pick_mmap_layout(mm);
753 if (old_mm) {
754 up_read(&old_mm->mmap_sem);
755 BUG_ON(active_mm != old_mm);
756 mm_update_next_owner(old_mm);
757 mmput(old_mm);
758 return 0;
759 }
760 mmdrop(active_mm);
761 return 0;
762 }
763
764 /*
765 * This function makes sure the current process has its own signal table,
766 * so that flush_signal_handlers can later reset the handlers without
767 * disturbing other processes. (Other processes might share the signal
768 * table via the CLONE_SIGHAND option to clone().)
769 */
770 static int de_thread(struct task_struct *tsk)
771 {
772 struct signal_struct *sig = tsk->signal;
773 struct sighand_struct *oldsighand = tsk->sighand;
774 spinlock_t *lock = &oldsighand->siglock;
775 struct task_struct *leader = NULL;
776 int count;
777
778 if (thread_group_empty(tsk))
779 goto no_thread_group;
780
781 /*
782 * Kill all other threads in the thread group.
783 */
784 spin_lock_irq(lock);
785 if (signal_group_exit(sig)) {
786 /*
787 * Another group action in progress, just
788 * return so that the signal is processed.
789 */
790 spin_unlock_irq(lock);
791 return -EAGAIN;
792 }
793 sig->group_exit_task = tsk;
794 zap_other_threads(tsk);
795
796 /* Account for the thread group leader hanging around: */
797 count = thread_group_leader(tsk) ? 1 : 2;
798 sig->notify_count = count;
799 while (atomic_read(&sig->count) > count) {
800 __set_current_state(TASK_UNINTERRUPTIBLE);
801 spin_unlock_irq(lock);
802 schedule();
803 spin_lock_irq(lock);
804 }
805 spin_unlock_irq(lock);
806
807 /*
808 * At this point all other threads have exited, all we have to
809 * do is to wait for the thread group leader to become inactive,
810 * and to assume its PID:
811 */
812 if (!thread_group_leader(tsk)) {
813 leader = tsk->group_leader;
814
815 sig->notify_count = -1; /* for exit_notify() */
816 for (;;) {
817 write_lock_irq(&tasklist_lock);
818 if (likely(leader->exit_state))
819 break;
820 __set_current_state(TASK_UNINTERRUPTIBLE);
821 write_unlock_irq(&tasklist_lock);
822 schedule();
823 }
824
825 /*
826 * The only record we have of the real-time age of a
827 * process, regardless of execs it's done, is start_time.
828 * All the past CPU time is accumulated in signal_struct
829 * from sister threads now dead. But in this non-leader
830 * exec, nothing survives from the original leader thread,
831 * whose birth marks the true age of this process now.
832 * When we take on its identity by switching to its PID, we
833 * also take its birthdate (always earlier than our own).
834 */
835 tsk->start_time = leader->start_time;
836
837 BUG_ON(!same_thread_group(leader, tsk));
838 BUG_ON(has_group_leader_pid(tsk));
839 /*
840 * An exec() starts a new thread group with the
841 * TGID of the previous thread group. Rehash the
842 * two threads with a switched PID, and release
843 * the former thread group leader:
844 */
845
846 /* Become a process group leader with the old leader's pid.
847 * The old leader becomes a thread of the this thread group.
848 * Note: The old leader also uses this pid until release_task
849 * is called. Odd but simple and correct.
850 */
851 detach_pid(tsk, PIDTYPE_PID);
852 tsk->pid = leader->pid;
853 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
854 transfer_pid(leader, tsk, PIDTYPE_PGID);
855 transfer_pid(leader, tsk, PIDTYPE_SID);
856 list_replace_rcu(&leader->tasks, &tsk->tasks);
857
858 tsk->group_leader = tsk;
859 leader->group_leader = tsk;
860
861 tsk->exit_signal = SIGCHLD;
862
863 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
864 leader->exit_state = EXIT_DEAD;
865
866 write_unlock_irq(&tasklist_lock);
867 }
868
869 sig->group_exit_task = NULL;
870 sig->notify_count = 0;
871
872 no_thread_group:
873 exit_itimers(sig);
874 flush_itimer_signals();
875 if (leader)
876 release_task(leader);
877
878 if (atomic_read(&oldsighand->count) != 1) {
879 struct sighand_struct *newsighand;
880 /*
881 * This ->sighand is shared with the CLONE_SIGHAND
882 * but not CLONE_THREAD task, switch to the new one.
883 */
884 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
885 if (!newsighand)
886 return -ENOMEM;
887
888 atomic_set(&newsighand->count, 1);
889 memcpy(newsighand->action, oldsighand->action,
890 sizeof(newsighand->action));
891
892 write_lock_irq(&tasklist_lock);
893 spin_lock(&oldsighand->siglock);
894 rcu_assign_pointer(tsk->sighand, newsighand);
895 spin_unlock(&oldsighand->siglock);
896 write_unlock_irq(&tasklist_lock);
897
898 __cleanup_sighand(oldsighand);
899 }
900
901 BUG_ON(!thread_group_leader(tsk));
902 return 0;
903 }
904
905 /*
906 * These functions flushes out all traces of the currently running executable
907 * so that a new one can be started
908 */
909 static void flush_old_files(struct files_struct * files)
910 {
911 long j = -1;
912 struct fdtable *fdt;
913
914 spin_lock(&files->file_lock);
915 for (;;) {
916 unsigned long set, i;
917
918 j++;
919 i = j * __NFDBITS;
920 fdt = files_fdtable(files);
921 if (i >= fdt->max_fds)
922 break;
923 set = fdt->close_on_exec->fds_bits[j];
924 if (!set)
925 continue;
926 fdt->close_on_exec->fds_bits[j] = 0;
927 spin_unlock(&files->file_lock);
928 for ( ; set ; i++,set >>= 1) {
929 if (set & 1) {
930 sys_close(i);
931 }
932 }
933 spin_lock(&files->file_lock);
934
935 }
936 spin_unlock(&files->file_lock);
937 }
938
939 char *get_task_comm(char *buf, struct task_struct *tsk)
940 {
941 /* buf must be at least sizeof(tsk->comm) in size */
942 task_lock(tsk);
943 strncpy(buf, tsk->comm, sizeof(tsk->comm));
944 task_unlock(tsk);
945 return buf;
946 }
947
948 void set_task_comm(struct task_struct *tsk, char *buf)
949 {
950 task_lock(tsk);
951 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
952 task_unlock(tsk);
953 }
954
955 int flush_old_exec(struct linux_binprm * bprm)
956 {
957 char * name;
958 int i, ch, retval;
959 char tcomm[sizeof(current->comm)];
960
961 /*
962 * Make sure we have a private signal table and that
963 * we are unassociated from the previous thread group.
964 */
965 retval = de_thread(current);
966 if (retval)
967 goto out;
968
969 set_mm_exe_file(bprm->mm, bprm->file);
970
971 /*
972 * Release all of the old mmap stuff
973 */
974 retval = exec_mmap(bprm->mm);
975 if (retval)
976 goto out;
977
978 bprm->mm = NULL; /* We're using it now */
979
980 /* This is the point of no return */
981 current->sas_ss_sp = current->sas_ss_size = 0;
982
983 if (current_euid() == current_uid() && current_egid() == current_gid())
984 set_dumpable(current->mm, 1);
985 else
986 set_dumpable(current->mm, suid_dumpable);
987
988 name = bprm->filename;
989
990 /* Copies the binary name from after last slash */
991 for (i=0; (ch = *(name++)) != '\0';) {
992 if (ch == '/')
993 i = 0; /* overwrite what we wrote */
994 else
995 if (i < (sizeof(tcomm) - 1))
996 tcomm[i++] = ch;
997 }
998 tcomm[i] = '\0';
999 set_task_comm(current, tcomm);
1000
1001 current->flags &= ~PF_RANDOMIZE;
1002 flush_thread();
1003
1004 /* Set the new mm task size. We have to do that late because it may
1005 * depend on TIF_32BIT which is only updated in flush_thread() on
1006 * some architectures like powerpc
1007 */
1008 current->mm->task_size = TASK_SIZE;
1009
1010 if (bprm->e_uid != current_euid() ||
1011 bprm->e_gid != current_egid()) {
1012 set_dumpable(current->mm, suid_dumpable);
1013 current->pdeath_signal = 0;
1014 } else if (file_permission(bprm->file, MAY_READ) ||
1015 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1016 set_dumpable(current->mm, suid_dumpable);
1017 }
1018
1019 /* An exec changes our domain. We are no longer part of the thread
1020 group */
1021
1022 current->self_exec_id++;
1023
1024 flush_signal_handlers(current, 0);
1025 flush_old_files(current->files);
1026
1027 return 0;
1028
1029 out:
1030 return retval;
1031 }
1032
1033 EXPORT_SYMBOL(flush_old_exec);
1034
1035 /*
1036 * Fill the binprm structure from the inode.
1037 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1038 */
1039 int prepare_binprm(struct linux_binprm *bprm)
1040 {
1041 int mode;
1042 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1043 int retval;
1044
1045 mode = inode->i_mode;
1046 if (bprm->file->f_op == NULL)
1047 return -EACCES;
1048
1049 bprm->e_uid = current_euid();
1050 bprm->e_gid = current_egid();
1051
1052 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1053 /* Set-uid? */
1054 if (mode & S_ISUID) {
1055 current->personality &= ~PER_CLEAR_ON_SETID;
1056 bprm->e_uid = inode->i_uid;
1057 }
1058
1059 /* Set-gid? */
1060 /*
1061 * If setgid is set but no group execute bit then this
1062 * is a candidate for mandatory locking, not a setgid
1063 * executable.
1064 */
1065 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1066 current->personality &= ~PER_CLEAR_ON_SETID;
1067 bprm->e_gid = inode->i_gid;
1068 }
1069 }
1070
1071 /* fill in binprm security blob */
1072 retval = security_bprm_set(bprm);
1073 if (retval)
1074 return retval;
1075
1076 memset(bprm->buf,0,BINPRM_BUF_SIZE);
1077 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1078 }
1079
1080 EXPORT_SYMBOL(prepare_binprm);
1081
1082 static int unsafe_exec(struct task_struct *p)
1083 {
1084 int unsafe = tracehook_unsafe_exec(p);
1085
1086 if (atomic_read(&p->fs->count) > 1 ||
1087 atomic_read(&p->files->count) > 1 ||
1088 atomic_read(&p->sighand->count) > 1)
1089 unsafe |= LSM_UNSAFE_SHARE;
1090
1091 return unsafe;
1092 }
1093
1094 void compute_creds(struct linux_binprm *bprm)
1095 {
1096 int unsafe;
1097
1098 if (bprm->e_uid != current_uid())
1099 current->pdeath_signal = 0;
1100 exec_keys(current);
1101
1102 task_lock(current);
1103 unsafe = unsafe_exec(current);
1104 security_bprm_apply_creds(bprm, unsafe);
1105 task_unlock(current);
1106 security_bprm_post_apply_creds(bprm);
1107 }
1108 EXPORT_SYMBOL(compute_creds);
1109
1110 /*
1111 * Arguments are '\0' separated strings found at the location bprm->p
1112 * points to; chop off the first by relocating brpm->p to right after
1113 * the first '\0' encountered.
1114 */
1115 int remove_arg_zero(struct linux_binprm *bprm)
1116 {
1117 int ret = 0;
1118 unsigned long offset;
1119 char *kaddr;
1120 struct page *page;
1121
1122 if (!bprm->argc)
1123 return 0;
1124
1125 do {
1126 offset = bprm->p & ~PAGE_MASK;
1127 page = get_arg_page(bprm, bprm->p, 0);
1128 if (!page) {
1129 ret = -EFAULT;
1130 goto out;
1131 }
1132 kaddr = kmap_atomic(page, KM_USER0);
1133
1134 for (; offset < PAGE_SIZE && kaddr[offset];
1135 offset++, bprm->p++)
1136 ;
1137
1138 kunmap_atomic(kaddr, KM_USER0);
1139 put_arg_page(page);
1140
1141 if (offset == PAGE_SIZE)
1142 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1143 } while (offset == PAGE_SIZE);
1144
1145 bprm->p++;
1146 bprm->argc--;
1147 ret = 0;
1148
1149 out:
1150 return ret;
1151 }
1152 EXPORT_SYMBOL(remove_arg_zero);
1153
1154 /*
1155 * cycle the list of binary formats handler, until one recognizes the image
1156 */
1157 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1158 {
1159 int try,retval;
1160 struct linux_binfmt *fmt;
1161 #ifdef __alpha__
1162 /* handle /sbin/loader.. */
1163 {
1164 struct exec * eh = (struct exec *) bprm->buf;
1165
1166 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1167 (eh->fh.f_flags & 0x3000) == 0x3000)
1168 {
1169 struct file * file;
1170 unsigned long loader;
1171
1172 allow_write_access(bprm->file);
1173 fput(bprm->file);
1174 bprm->file = NULL;
1175
1176 loader = bprm->vma->vm_end - sizeof(void *);
1177
1178 file = open_exec("/sbin/loader");
1179 retval = PTR_ERR(file);
1180 if (IS_ERR(file))
1181 return retval;
1182
1183 /* Remember if the application is TASO. */
1184 bprm->taso = eh->ah.entry < 0x100000000UL;
1185
1186 bprm->file = file;
1187 bprm->loader = loader;
1188 retval = prepare_binprm(bprm);
1189 if (retval<0)
1190 return retval;
1191 /* should call search_binary_handler recursively here,
1192 but it does not matter */
1193 }
1194 }
1195 #endif
1196 retval = security_bprm_check(bprm);
1197 if (retval)
1198 return retval;
1199
1200 /* kernel module loader fixup */
1201 /* so we don't try to load run modprobe in kernel space. */
1202 set_fs(USER_DS);
1203
1204 retval = audit_bprm(bprm);
1205 if (retval)
1206 return retval;
1207
1208 retval = -ENOENT;
1209 for (try=0; try<2; try++) {
1210 read_lock(&binfmt_lock);
1211 list_for_each_entry(fmt, &formats, lh) {
1212 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1213 if (!fn)
1214 continue;
1215 if (!try_module_get(fmt->module))
1216 continue;
1217 read_unlock(&binfmt_lock);
1218 retval = fn(bprm, regs);
1219 if (retval >= 0) {
1220 tracehook_report_exec(fmt, bprm, regs);
1221 put_binfmt(fmt);
1222 allow_write_access(bprm->file);
1223 if (bprm->file)
1224 fput(bprm->file);
1225 bprm->file = NULL;
1226 current->did_exec = 1;
1227 proc_exec_connector(current);
1228 return retval;
1229 }
1230 read_lock(&binfmt_lock);
1231 put_binfmt(fmt);
1232 if (retval != -ENOEXEC || bprm->mm == NULL)
1233 break;
1234 if (!bprm->file) {
1235 read_unlock(&binfmt_lock);
1236 return retval;
1237 }
1238 }
1239 read_unlock(&binfmt_lock);
1240 if (retval != -ENOEXEC || bprm->mm == NULL) {
1241 break;
1242 #ifdef CONFIG_MODULES
1243 } else {
1244 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1245 if (printable(bprm->buf[0]) &&
1246 printable(bprm->buf[1]) &&
1247 printable(bprm->buf[2]) &&
1248 printable(bprm->buf[3]))
1249 break; /* -ENOEXEC */
1250 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1251 #endif
1252 }
1253 }
1254 return retval;
1255 }
1256
1257 EXPORT_SYMBOL(search_binary_handler);
1258
1259 void free_bprm(struct linux_binprm *bprm)
1260 {
1261 free_arg_pages(bprm);
1262 kfree(bprm);
1263 }
1264
1265 /*
1266 * sys_execve() executes a new program.
1267 */
1268 int do_execve(char * filename,
1269 char __user *__user *argv,
1270 char __user *__user *envp,
1271 struct pt_regs * regs)
1272 {
1273 struct linux_binprm *bprm;
1274 struct file *file;
1275 struct files_struct *displaced;
1276 int retval;
1277
1278 retval = unshare_files(&displaced);
1279 if (retval)
1280 goto out_ret;
1281
1282 retval = -ENOMEM;
1283 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1284 if (!bprm)
1285 goto out_files;
1286
1287 file = open_exec(filename);
1288 retval = PTR_ERR(file);
1289 if (IS_ERR(file))
1290 goto out_kfree;
1291
1292 sched_exec();
1293
1294 bprm->file = file;
1295 bprm->filename = filename;
1296 bprm->interp = filename;
1297
1298 retval = bprm_mm_init(bprm);
1299 if (retval)
1300 goto out_file;
1301
1302 bprm->argc = count(argv, MAX_ARG_STRINGS);
1303 if ((retval = bprm->argc) < 0)
1304 goto out_mm;
1305
1306 bprm->envc = count(envp, MAX_ARG_STRINGS);
1307 if ((retval = bprm->envc) < 0)
1308 goto out_mm;
1309
1310 retval = security_bprm_alloc(bprm);
1311 if (retval)
1312 goto out;
1313
1314 retval = prepare_binprm(bprm);
1315 if (retval < 0)
1316 goto out;
1317
1318 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1319 if (retval < 0)
1320 goto out;
1321
1322 bprm->exec = bprm->p;
1323 retval = copy_strings(bprm->envc, envp, bprm);
1324 if (retval < 0)
1325 goto out;
1326
1327 retval = copy_strings(bprm->argc, argv, bprm);
1328 if (retval < 0)
1329 goto out;
1330
1331 current->flags &= ~PF_KTHREAD;
1332 retval = search_binary_handler(bprm,regs);
1333 if (retval >= 0) {
1334 /* execve success */
1335 security_bprm_free(bprm);
1336 acct_update_integrals(current);
1337 free_bprm(bprm);
1338 if (displaced)
1339 put_files_struct(displaced);
1340 return retval;
1341 }
1342
1343 out:
1344 if (bprm->security)
1345 security_bprm_free(bprm);
1346
1347 out_mm:
1348 if (bprm->mm)
1349 mmput (bprm->mm);
1350
1351 out_file:
1352 if (bprm->file) {
1353 allow_write_access(bprm->file);
1354 fput(bprm->file);
1355 }
1356 out_kfree:
1357 free_bprm(bprm);
1358
1359 out_files:
1360 if (displaced)
1361 reset_files_struct(displaced);
1362 out_ret:
1363 return retval;
1364 }
1365
1366 int set_binfmt(struct linux_binfmt *new)
1367 {
1368 struct linux_binfmt *old = current->binfmt;
1369
1370 if (new) {
1371 if (!try_module_get(new->module))
1372 return -1;
1373 }
1374 current->binfmt = new;
1375 if (old)
1376 module_put(old->module);
1377 return 0;
1378 }
1379
1380 EXPORT_SYMBOL(set_binfmt);
1381
1382 /* format_corename will inspect the pattern parameter, and output a
1383 * name into corename, which must have space for at least
1384 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1385 */
1386 static int format_corename(char *corename, long signr)
1387 {
1388 const struct cred *cred = current_cred();
1389 const char *pat_ptr = core_pattern;
1390 int ispipe = (*pat_ptr == '|');
1391 char *out_ptr = corename;
1392 char *const out_end = corename + CORENAME_MAX_SIZE;
1393 int rc;
1394 int pid_in_pattern = 0;
1395
1396 /* Repeat as long as we have more pattern to process and more output
1397 space */
1398 while (*pat_ptr) {
1399 if (*pat_ptr != '%') {
1400 if (out_ptr == out_end)
1401 goto out;
1402 *out_ptr++ = *pat_ptr++;
1403 } else {
1404 switch (*++pat_ptr) {
1405 case 0:
1406 goto out;
1407 /* Double percent, output one percent */
1408 case '%':
1409 if (out_ptr == out_end)
1410 goto out;
1411 *out_ptr++ = '%';
1412 break;
1413 /* pid */
1414 case 'p':
1415 pid_in_pattern = 1;
1416 rc = snprintf(out_ptr, out_end - out_ptr,
1417 "%d", task_tgid_vnr(current));
1418 if (rc > out_end - out_ptr)
1419 goto out;
1420 out_ptr += rc;
1421 break;
1422 /* uid */
1423 case 'u':
1424 rc = snprintf(out_ptr, out_end - out_ptr,
1425 "%d", cred->uid);
1426 if (rc > out_end - out_ptr)
1427 goto out;
1428 out_ptr += rc;
1429 break;
1430 /* gid */
1431 case 'g':
1432 rc = snprintf(out_ptr, out_end - out_ptr,
1433 "%d", cred->gid);
1434 if (rc > out_end - out_ptr)
1435 goto out;
1436 out_ptr += rc;
1437 break;
1438 /* signal that caused the coredump */
1439 case 's':
1440 rc = snprintf(out_ptr, out_end - out_ptr,
1441 "%ld", signr);
1442 if (rc > out_end - out_ptr)
1443 goto out;
1444 out_ptr += rc;
1445 break;
1446 /* UNIX time of coredump */
1447 case 't': {
1448 struct timeval tv;
1449 do_gettimeofday(&tv);
1450 rc = snprintf(out_ptr, out_end - out_ptr,
1451 "%lu", tv.tv_sec);
1452 if (rc > out_end - out_ptr)
1453 goto out;
1454 out_ptr += rc;
1455 break;
1456 }
1457 /* hostname */
1458 case 'h':
1459 down_read(&uts_sem);
1460 rc = snprintf(out_ptr, out_end - out_ptr,
1461 "%s", utsname()->nodename);
1462 up_read(&uts_sem);
1463 if (rc > out_end - out_ptr)
1464 goto out;
1465 out_ptr += rc;
1466 break;
1467 /* executable */
1468 case 'e':
1469 rc = snprintf(out_ptr, out_end - out_ptr,
1470 "%s", current->comm);
1471 if (rc > out_end - out_ptr)
1472 goto out;
1473 out_ptr += rc;
1474 break;
1475 /* core limit size */
1476 case 'c':
1477 rc = snprintf(out_ptr, out_end - out_ptr,
1478 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1479 if (rc > out_end - out_ptr)
1480 goto out;
1481 out_ptr += rc;
1482 break;
1483 default:
1484 break;
1485 }
1486 ++pat_ptr;
1487 }
1488 }
1489 /* Backward compatibility with core_uses_pid:
1490 *
1491 * If core_pattern does not include a %p (as is the default)
1492 * and core_uses_pid is set, then .%pid will be appended to
1493 * the filename. Do not do this for piped commands. */
1494 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1495 rc = snprintf(out_ptr, out_end - out_ptr,
1496 ".%d", task_tgid_vnr(current));
1497 if (rc > out_end - out_ptr)
1498 goto out;
1499 out_ptr += rc;
1500 }
1501 out:
1502 *out_ptr = 0;
1503 return ispipe;
1504 }
1505
1506 static int zap_process(struct task_struct *start)
1507 {
1508 struct task_struct *t;
1509 int nr = 0;
1510
1511 start->signal->flags = SIGNAL_GROUP_EXIT;
1512 start->signal->group_stop_count = 0;
1513
1514 t = start;
1515 do {
1516 if (t != current && t->mm) {
1517 sigaddset(&t->pending.signal, SIGKILL);
1518 signal_wake_up(t, 1);
1519 nr++;
1520 }
1521 } while_each_thread(start, t);
1522
1523 return nr;
1524 }
1525
1526 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1527 struct core_state *core_state, int exit_code)
1528 {
1529 struct task_struct *g, *p;
1530 unsigned long flags;
1531 int nr = -EAGAIN;
1532
1533 spin_lock_irq(&tsk->sighand->siglock);
1534 if (!signal_group_exit(tsk->signal)) {
1535 mm->core_state = core_state;
1536 tsk->signal->group_exit_code = exit_code;
1537 nr = zap_process(tsk);
1538 }
1539 spin_unlock_irq(&tsk->sighand->siglock);
1540 if (unlikely(nr < 0))
1541 return nr;
1542
1543 if (atomic_read(&mm->mm_users) == nr + 1)
1544 goto done;
1545 /*
1546 * We should find and kill all tasks which use this mm, and we should
1547 * count them correctly into ->nr_threads. We don't take tasklist
1548 * lock, but this is safe wrt:
1549 *
1550 * fork:
1551 * None of sub-threads can fork after zap_process(leader). All
1552 * processes which were created before this point should be
1553 * visible to zap_threads() because copy_process() adds the new
1554 * process to the tail of init_task.tasks list, and lock/unlock
1555 * of ->siglock provides a memory barrier.
1556 *
1557 * do_exit:
1558 * The caller holds mm->mmap_sem. This means that the task which
1559 * uses this mm can't pass exit_mm(), so it can't exit or clear
1560 * its ->mm.
1561 *
1562 * de_thread:
1563 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1564 * we must see either old or new leader, this does not matter.
1565 * However, it can change p->sighand, so lock_task_sighand(p)
1566 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1567 * it can't fail.
1568 *
1569 * Note also that "g" can be the old leader with ->mm == NULL
1570 * and already unhashed and thus removed from ->thread_group.
1571 * This is OK, __unhash_process()->list_del_rcu() does not
1572 * clear the ->next pointer, we will find the new leader via
1573 * next_thread().
1574 */
1575 rcu_read_lock();
1576 for_each_process(g) {
1577 if (g == tsk->group_leader)
1578 continue;
1579 if (g->flags & PF_KTHREAD)
1580 continue;
1581 p = g;
1582 do {
1583 if (p->mm) {
1584 if (unlikely(p->mm == mm)) {
1585 lock_task_sighand(p, &flags);
1586 nr += zap_process(p);
1587 unlock_task_sighand(p, &flags);
1588 }
1589 break;
1590 }
1591 } while_each_thread(g, p);
1592 }
1593 rcu_read_unlock();
1594 done:
1595 atomic_set(&core_state->nr_threads, nr);
1596 return nr;
1597 }
1598
1599 static int coredump_wait(int exit_code, struct core_state *core_state)
1600 {
1601 struct task_struct *tsk = current;
1602 struct mm_struct *mm = tsk->mm;
1603 struct completion *vfork_done;
1604 int core_waiters;
1605
1606 init_completion(&core_state->startup);
1607 core_state->dumper.task = tsk;
1608 core_state->dumper.next = NULL;
1609 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1610 up_write(&mm->mmap_sem);
1611
1612 if (unlikely(core_waiters < 0))
1613 goto fail;
1614
1615 /*
1616 * Make sure nobody is waiting for us to release the VM,
1617 * otherwise we can deadlock when we wait on each other
1618 */
1619 vfork_done = tsk->vfork_done;
1620 if (vfork_done) {
1621 tsk->vfork_done = NULL;
1622 complete(vfork_done);
1623 }
1624
1625 if (core_waiters)
1626 wait_for_completion(&core_state->startup);
1627 fail:
1628 return core_waiters;
1629 }
1630
1631 static void coredump_finish(struct mm_struct *mm)
1632 {
1633 struct core_thread *curr, *next;
1634 struct task_struct *task;
1635
1636 next = mm->core_state->dumper.next;
1637 while ((curr = next) != NULL) {
1638 next = curr->next;
1639 task = curr->task;
1640 /*
1641 * see exit_mm(), curr->task must not see
1642 * ->task == NULL before we read ->next.
1643 */
1644 smp_mb();
1645 curr->task = NULL;
1646 wake_up_process(task);
1647 }
1648
1649 mm->core_state = NULL;
1650 }
1651
1652 /*
1653 * set_dumpable converts traditional three-value dumpable to two flags and
1654 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1655 * these bits are not changed atomically. So get_dumpable can observe the
1656 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1657 * return either old dumpable or new one by paying attention to the order of
1658 * modifying the bits.
1659 *
1660 * dumpable | mm->flags (binary)
1661 * old new | initial interim final
1662 * ---------+-----------------------
1663 * 0 1 | 00 01 01
1664 * 0 2 | 00 10(*) 11
1665 * 1 0 | 01 00 00
1666 * 1 2 | 01 11 11
1667 * 2 0 | 11 10(*) 00
1668 * 2 1 | 11 11 01
1669 *
1670 * (*) get_dumpable regards interim value of 10 as 11.
1671 */
1672 void set_dumpable(struct mm_struct *mm, int value)
1673 {
1674 switch (value) {
1675 case 0:
1676 clear_bit(MMF_DUMPABLE, &mm->flags);
1677 smp_wmb();
1678 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1679 break;
1680 case 1:
1681 set_bit(MMF_DUMPABLE, &mm->flags);
1682 smp_wmb();
1683 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1684 break;
1685 case 2:
1686 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1687 smp_wmb();
1688 set_bit(MMF_DUMPABLE, &mm->flags);
1689 break;
1690 }
1691 }
1692
1693 int get_dumpable(struct mm_struct *mm)
1694 {
1695 int ret;
1696
1697 ret = mm->flags & 0x3;
1698 return (ret >= 2) ? 2 : ret;
1699 }
1700
1701 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1702 {
1703 struct core_state core_state;
1704 char corename[CORENAME_MAX_SIZE + 1];
1705 struct mm_struct *mm = current->mm;
1706 struct linux_binfmt * binfmt;
1707 struct inode * inode;
1708 struct file * file;
1709 const struct cred *old_cred;
1710 struct cred *cred;
1711 int retval = 0;
1712 int flag = 0;
1713 int ispipe = 0;
1714 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1715 char **helper_argv = NULL;
1716 int helper_argc = 0;
1717 char *delimit;
1718
1719 audit_core_dumps(signr);
1720
1721 binfmt = current->binfmt;
1722 if (!binfmt || !binfmt->core_dump)
1723 goto fail;
1724
1725 cred = prepare_creds();
1726 if (!cred) {
1727 retval = -ENOMEM;
1728 goto fail;
1729 }
1730
1731 down_write(&mm->mmap_sem);
1732 /*
1733 * If another thread got here first, or we are not dumpable, bail out.
1734 */
1735 if (mm->core_state || !get_dumpable(mm)) {
1736 up_write(&mm->mmap_sem);
1737 put_cred(cred);
1738 goto fail;
1739 }
1740
1741 /*
1742 * We cannot trust fsuid as being the "true" uid of the
1743 * process nor do we know its entire history. We only know it
1744 * was tainted so we dump it as root in mode 2.
1745 */
1746 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1747 flag = O_EXCL; /* Stop rewrite attacks */
1748 cred->fsuid = 0; /* Dump root private */
1749 }
1750
1751 retval = coredump_wait(exit_code, &core_state);
1752 if (retval < 0) {
1753 put_cred(cred);
1754 goto fail;
1755 }
1756
1757 old_cred = override_creds(cred);
1758
1759 /*
1760 * Clear any false indication of pending signals that might
1761 * be seen by the filesystem code called to write the core file.
1762 */
1763 clear_thread_flag(TIF_SIGPENDING);
1764
1765 /*
1766 * lock_kernel() because format_corename() is controlled by sysctl, which
1767 * uses lock_kernel()
1768 */
1769 lock_kernel();
1770 ispipe = format_corename(corename, signr);
1771 unlock_kernel();
1772 /*
1773 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1774 * to a pipe. Since we're not writing directly to the filesystem
1775 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1776 * created unless the pipe reader choses to write out the core file
1777 * at which point file size limits and permissions will be imposed
1778 * as it does with any other process
1779 */
1780 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1781 goto fail_unlock;
1782
1783 if (ispipe) {
1784 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1785 /* Terminate the string before the first option */
1786 delimit = strchr(corename, ' ');
1787 if (delimit)
1788 *delimit = '\0';
1789 delimit = strrchr(helper_argv[0], '/');
1790 if (delimit)
1791 delimit++;
1792 else
1793 delimit = helper_argv[0];
1794 if (!strcmp(delimit, current->comm)) {
1795 printk(KERN_NOTICE "Recursive core dump detected, "
1796 "aborting\n");
1797 goto fail_unlock;
1798 }
1799
1800 core_limit = RLIM_INFINITY;
1801
1802 /* SIGPIPE can happen, but it's just never processed */
1803 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1804 &file)) {
1805 printk(KERN_INFO "Core dump to %s pipe failed\n",
1806 corename);
1807 goto fail_unlock;
1808 }
1809 } else
1810 file = filp_open(corename,
1811 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1812 0600);
1813 if (IS_ERR(file))
1814 goto fail_unlock;
1815 inode = file->f_path.dentry->d_inode;
1816 if (inode->i_nlink > 1)
1817 goto close_fail; /* multiple links - don't dump */
1818 if (!ispipe && d_unhashed(file->f_path.dentry))
1819 goto close_fail;
1820
1821 /* AK: actually i see no reason to not allow this for named pipes etc.,
1822 but keep the previous behaviour for now. */
1823 if (!ispipe && !S_ISREG(inode->i_mode))
1824 goto close_fail;
1825 /*
1826 * Dont allow local users get cute and trick others to coredump
1827 * into their pre-created files:
1828 */
1829 if (inode->i_uid != current_fsuid())
1830 goto close_fail;
1831 if (!file->f_op)
1832 goto close_fail;
1833 if (!file->f_op->write)
1834 goto close_fail;
1835 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1836 goto close_fail;
1837
1838 retval = binfmt->core_dump(signr, regs, file, core_limit);
1839
1840 if (retval)
1841 current->signal->group_exit_code |= 0x80;
1842 close_fail:
1843 filp_close(file, NULL);
1844 fail_unlock:
1845 if (helper_argv)
1846 argv_free(helper_argv);
1847
1848 revert_creds(old_cred);
1849 put_cred(cred);
1850 coredump_finish(mm);
1851 fail:
1852 return retval;
1853 }
This page took 0.098783 seconds and 6 git commands to generate.