4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
60 /* for /sbin/loader handling in search_binary_handler() */
61 #include <linux/a.out.h>
65 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
66 int suid_dumpable
= 0;
68 /* The maximal length of core_pattern is also specified in sysctl.c */
70 static LIST_HEAD(formats
);
71 static DEFINE_RWLOCK(binfmt_lock
);
73 int register_binfmt(struct linux_binfmt
* fmt
)
77 write_lock(&binfmt_lock
);
78 list_add(&fmt
->lh
, &formats
);
79 write_unlock(&binfmt_lock
);
83 EXPORT_SYMBOL(register_binfmt
);
85 void unregister_binfmt(struct linux_binfmt
* fmt
)
87 write_lock(&binfmt_lock
);
89 write_unlock(&binfmt_lock
);
92 EXPORT_SYMBOL(unregister_binfmt
);
94 static inline void put_binfmt(struct linux_binfmt
* fmt
)
96 module_put(fmt
->module
);
100 * Note that a shared library must be both readable and executable due to
103 * Also note that we take the address to load from from the file itself.
105 asmlinkage
long sys_uselib(const char __user
* library
)
109 char *tmp
= getname(library
);
110 int error
= PTR_ERR(tmp
);
113 error
= path_lookup_open(AT_FDCWD
, tmp
,
115 FMODE_READ
|FMODE_EXEC
);
122 if (!S_ISREG(nd
.path
.dentry
->d_inode
->i_mode
))
126 if (nd
.path
.mnt
->mnt_flags
& MNT_NOEXEC
)
129 error
= vfs_permission(&nd
, MAY_READ
| MAY_EXEC
| MAY_OPEN
);
133 file
= nameidata_to_filp(&nd
, O_RDONLY
|O_LARGEFILE
);
134 error
= PTR_ERR(file
);
140 struct linux_binfmt
* fmt
;
142 read_lock(&binfmt_lock
);
143 list_for_each_entry(fmt
, &formats
, lh
) {
144 if (!fmt
->load_shlib
)
146 if (!try_module_get(fmt
->module
))
148 read_unlock(&binfmt_lock
);
149 error
= fmt
->load_shlib(file
);
150 read_lock(&binfmt_lock
);
152 if (error
!= -ENOEXEC
)
155 read_unlock(&binfmt_lock
);
161 release_open_intent(&nd
);
168 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
174 #ifdef CONFIG_STACK_GROWSUP
176 ret
= expand_stack_downwards(bprm
->vma
, pos
);
181 ret
= get_user_pages(current
, bprm
->mm
, pos
,
182 1, write
, 1, &page
, NULL
);
187 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
191 * We've historically supported up to 32 pages (ARG_MAX)
192 * of argument strings even with small stacks
198 * Limit to 1/4-th the stack size for the argv+env strings.
200 * - the remaining binfmt code will not run out of stack space,
201 * - the program will have a reasonable amount of stack left
204 rlim
= current
->signal
->rlim
;
205 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
/ 4) {
214 static void put_arg_page(struct page
*page
)
219 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
223 static void free_arg_pages(struct linux_binprm
*bprm
)
227 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
230 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
233 static int __bprm_mm_init(struct linux_binprm
*bprm
)
236 struct vm_area_struct
*vma
= NULL
;
237 struct mm_struct
*mm
= bprm
->mm
;
239 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
243 down_write(&mm
->mmap_sem
);
247 * Place the stack at the largest stack address the architecture
248 * supports. Later, we'll move this to an appropriate place. We don't
249 * use STACK_TOP because that can depend on attributes which aren't
252 vma
->vm_end
= STACK_TOP_MAX
;
253 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
255 vma
->vm_flags
= VM_STACK_FLAGS
;
256 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
257 err
= insert_vm_struct(mm
, vma
);
259 up_write(&mm
->mmap_sem
);
263 mm
->stack_vm
= mm
->total_vm
= 1;
264 up_write(&mm
->mmap_sem
);
266 bprm
->p
= vma
->vm_end
- sizeof(void *);
273 kmem_cache_free(vm_area_cachep
, vma
);
279 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
281 return len
<= MAX_ARG_STRLEN
;
286 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
291 page
= bprm
->page
[pos
/ PAGE_SIZE
];
292 if (!page
&& write
) {
293 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
296 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
302 static void put_arg_page(struct page
*page
)
306 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
309 __free_page(bprm
->page
[i
]);
310 bprm
->page
[i
] = NULL
;
314 static void free_arg_pages(struct linux_binprm
*bprm
)
318 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
319 free_arg_page(bprm
, i
);
322 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
327 static int __bprm_mm_init(struct linux_binprm
*bprm
)
329 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
333 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
335 return len
<= bprm
->p
;
338 #endif /* CONFIG_MMU */
341 * Create a new mm_struct and populate it with a temporary stack
342 * vm_area_struct. We don't have enough context at this point to set the stack
343 * flags, permissions, and offset, so we use temporary values. We'll update
344 * them later in setup_arg_pages().
346 int bprm_mm_init(struct linux_binprm
*bprm
)
349 struct mm_struct
*mm
= NULL
;
351 bprm
->mm
= mm
= mm_alloc();
356 err
= init_new_context(current
, mm
);
360 err
= __bprm_mm_init(bprm
);
376 * count() counts the number of strings in array ARGV.
378 static int count(char __user
* __user
* argv
, int max
)
386 if (get_user(p
, argv
))
400 * 'copy_strings()' copies argument/environment strings from the old
401 * processes's memory to the new process's stack. The call to get_user_pages()
402 * ensures the destination page is created and not swapped out.
404 static int copy_strings(int argc
, char __user
* __user
* argv
,
405 struct linux_binprm
*bprm
)
407 struct page
*kmapped_page
= NULL
;
409 unsigned long kpos
= 0;
417 if (get_user(str
, argv
+argc
) ||
418 !(len
= strnlen_user(str
, MAX_ARG_STRLEN
))) {
423 if (!valid_arg_len(bprm
, len
)) {
428 /* We're going to work our way backwords. */
434 int offset
, bytes_to_copy
;
436 offset
= pos
% PAGE_SIZE
;
440 bytes_to_copy
= offset
;
441 if (bytes_to_copy
> len
)
444 offset
-= bytes_to_copy
;
445 pos
-= bytes_to_copy
;
446 str
-= bytes_to_copy
;
447 len
-= bytes_to_copy
;
449 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
452 page
= get_arg_page(bprm
, pos
, 1);
459 flush_kernel_dcache_page(kmapped_page
);
460 kunmap(kmapped_page
);
461 put_arg_page(kmapped_page
);
464 kaddr
= kmap(kmapped_page
);
465 kpos
= pos
& PAGE_MASK
;
466 flush_arg_page(bprm
, kpos
, kmapped_page
);
468 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
477 flush_kernel_dcache_page(kmapped_page
);
478 kunmap(kmapped_page
);
479 put_arg_page(kmapped_page
);
485 * Like copy_strings, but get argv and its values from kernel memory.
487 int copy_strings_kernel(int argc
,char ** argv
, struct linux_binprm
*bprm
)
490 mm_segment_t oldfs
= get_fs();
492 r
= copy_strings(argc
, (char __user
* __user
*)argv
, bprm
);
496 EXPORT_SYMBOL(copy_strings_kernel
);
501 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
502 * the binfmt code determines where the new stack should reside, we shift it to
503 * its final location. The process proceeds as follows:
505 * 1) Use shift to calculate the new vma endpoints.
506 * 2) Extend vma to cover both the old and new ranges. This ensures the
507 * arguments passed to subsequent functions are consistent.
508 * 3) Move vma's page tables to the new range.
509 * 4) Free up any cleared pgd range.
510 * 5) Shrink the vma to cover only the new range.
512 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
514 struct mm_struct
*mm
= vma
->vm_mm
;
515 unsigned long old_start
= vma
->vm_start
;
516 unsigned long old_end
= vma
->vm_end
;
517 unsigned long length
= old_end
- old_start
;
518 unsigned long new_start
= old_start
- shift
;
519 unsigned long new_end
= old_end
- shift
;
520 struct mmu_gather
*tlb
;
522 BUG_ON(new_start
> new_end
);
525 * ensure there are no vmas between where we want to go
528 if (vma
!= find_vma(mm
, new_start
))
532 * cover the whole range: [new_start, old_end)
534 vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
);
537 * move the page tables downwards, on failure we rely on
538 * process cleanup to remove whatever mess we made.
540 if (length
!= move_page_tables(vma
, old_start
,
541 vma
, new_start
, length
))
545 tlb
= tlb_gather_mmu(mm
, 0);
546 if (new_end
> old_start
) {
548 * when the old and new regions overlap clear from new_end.
550 free_pgd_range(tlb
, new_end
, old_end
, new_end
,
551 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
554 * otherwise, clean from old_start; this is done to not touch
555 * the address space in [new_end, old_start) some architectures
556 * have constraints on va-space that make this illegal (IA64) -
557 * for the others its just a little faster.
559 free_pgd_range(tlb
, old_start
, old_end
, new_end
,
560 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
562 tlb_finish_mmu(tlb
, new_end
, old_end
);
565 * shrink the vma to just the new range.
567 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
572 #define EXTRA_STACK_VM_PAGES 20 /* random */
575 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
576 * the stack is optionally relocated, and some extra space is added.
578 int setup_arg_pages(struct linux_binprm
*bprm
,
579 unsigned long stack_top
,
580 int executable_stack
)
583 unsigned long stack_shift
;
584 struct mm_struct
*mm
= current
->mm
;
585 struct vm_area_struct
*vma
= bprm
->vma
;
586 struct vm_area_struct
*prev
= NULL
;
587 unsigned long vm_flags
;
588 unsigned long stack_base
;
590 #ifdef CONFIG_STACK_GROWSUP
591 /* Limit stack size to 1GB */
592 stack_base
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
;
593 if (stack_base
> (1 << 30))
594 stack_base
= 1 << 30;
596 /* Make sure we didn't let the argument array grow too large. */
597 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
600 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
602 stack_shift
= vma
->vm_start
- stack_base
;
603 mm
->arg_start
= bprm
->p
- stack_shift
;
604 bprm
->p
= vma
->vm_end
- stack_shift
;
606 stack_top
= arch_align_stack(stack_top
);
607 stack_top
= PAGE_ALIGN(stack_top
);
608 stack_shift
= vma
->vm_end
- stack_top
;
610 bprm
->p
-= stack_shift
;
611 mm
->arg_start
= bprm
->p
;
615 bprm
->loader
-= stack_shift
;
616 bprm
->exec
-= stack_shift
;
618 down_write(&mm
->mmap_sem
);
619 vm_flags
= VM_STACK_FLAGS
;
622 * Adjust stack execute permissions; explicitly enable for
623 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
624 * (arch default) otherwise.
626 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
628 else if (executable_stack
== EXSTACK_DISABLE_X
)
629 vm_flags
&= ~VM_EXEC
;
630 vm_flags
|= mm
->def_flags
;
632 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
638 /* Move stack pages down in memory. */
640 ret
= shift_arg_pages(vma
, stack_shift
);
642 up_write(&mm
->mmap_sem
);
647 #ifdef CONFIG_STACK_GROWSUP
648 stack_base
= vma
->vm_end
+ EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
650 stack_base
= vma
->vm_start
- EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
652 ret
= expand_stack(vma
, stack_base
);
657 up_write(&mm
->mmap_sem
);
660 EXPORT_SYMBOL(setup_arg_pages
);
662 #endif /* CONFIG_MMU */
664 struct file
*open_exec(const char *name
)
670 err
= path_lookup_open(AT_FDCWD
, name
, LOOKUP_FOLLOW
, &nd
,
671 FMODE_READ
|FMODE_EXEC
);
676 if (!S_ISREG(nd
.path
.dentry
->d_inode
->i_mode
))
679 if (nd
.path
.mnt
->mnt_flags
& MNT_NOEXEC
)
682 err
= vfs_permission(&nd
, MAY_EXEC
| MAY_OPEN
);
686 file
= nameidata_to_filp(&nd
, O_RDONLY
|O_LARGEFILE
);
690 err
= deny_write_access(file
);
699 release_open_intent(&nd
);
704 EXPORT_SYMBOL(open_exec
);
706 int kernel_read(struct file
*file
, unsigned long offset
,
707 char *addr
, unsigned long count
)
715 /* The cast to a user pointer is valid due to the set_fs() */
716 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
721 EXPORT_SYMBOL(kernel_read
);
723 static int exec_mmap(struct mm_struct
*mm
)
725 struct task_struct
*tsk
;
726 struct mm_struct
* old_mm
, *active_mm
;
728 /* Notify parent that we're no longer interested in the old VM */
730 old_mm
= current
->mm
;
731 mm_release(tsk
, old_mm
);
735 * Make sure that if there is a core dump in progress
736 * for the old mm, we get out and die instead of going
737 * through with the exec. We must hold mmap_sem around
738 * checking core_state and changing tsk->mm.
740 down_read(&old_mm
->mmap_sem
);
741 if (unlikely(old_mm
->core_state
)) {
742 up_read(&old_mm
->mmap_sem
);
747 active_mm
= tsk
->active_mm
;
750 activate_mm(active_mm
, mm
);
752 arch_pick_mmap_layout(mm
);
754 up_read(&old_mm
->mmap_sem
);
755 BUG_ON(active_mm
!= old_mm
);
756 mm_update_next_owner(old_mm
);
765 * This function makes sure the current process has its own signal table,
766 * so that flush_signal_handlers can later reset the handlers without
767 * disturbing other processes. (Other processes might share the signal
768 * table via the CLONE_SIGHAND option to clone().)
770 static int de_thread(struct task_struct
*tsk
)
772 struct signal_struct
*sig
= tsk
->signal
;
773 struct sighand_struct
*oldsighand
= tsk
->sighand
;
774 spinlock_t
*lock
= &oldsighand
->siglock
;
775 struct task_struct
*leader
= NULL
;
778 if (thread_group_empty(tsk
))
779 goto no_thread_group
;
782 * Kill all other threads in the thread group.
785 if (signal_group_exit(sig
)) {
787 * Another group action in progress, just
788 * return so that the signal is processed.
790 spin_unlock_irq(lock
);
793 sig
->group_exit_task
= tsk
;
794 zap_other_threads(tsk
);
796 /* Account for the thread group leader hanging around: */
797 count
= thread_group_leader(tsk
) ? 1 : 2;
798 sig
->notify_count
= count
;
799 while (atomic_read(&sig
->count
) > count
) {
800 __set_current_state(TASK_UNINTERRUPTIBLE
);
801 spin_unlock_irq(lock
);
805 spin_unlock_irq(lock
);
808 * At this point all other threads have exited, all we have to
809 * do is to wait for the thread group leader to become inactive,
810 * and to assume its PID:
812 if (!thread_group_leader(tsk
)) {
813 leader
= tsk
->group_leader
;
815 sig
->notify_count
= -1; /* for exit_notify() */
817 write_lock_irq(&tasklist_lock
);
818 if (likely(leader
->exit_state
))
820 __set_current_state(TASK_UNINTERRUPTIBLE
);
821 write_unlock_irq(&tasklist_lock
);
826 * The only record we have of the real-time age of a
827 * process, regardless of execs it's done, is start_time.
828 * All the past CPU time is accumulated in signal_struct
829 * from sister threads now dead. But in this non-leader
830 * exec, nothing survives from the original leader thread,
831 * whose birth marks the true age of this process now.
832 * When we take on its identity by switching to its PID, we
833 * also take its birthdate (always earlier than our own).
835 tsk
->start_time
= leader
->start_time
;
837 BUG_ON(!same_thread_group(leader
, tsk
));
838 BUG_ON(has_group_leader_pid(tsk
));
840 * An exec() starts a new thread group with the
841 * TGID of the previous thread group. Rehash the
842 * two threads with a switched PID, and release
843 * the former thread group leader:
846 /* Become a process group leader with the old leader's pid.
847 * The old leader becomes a thread of the this thread group.
848 * Note: The old leader also uses this pid until release_task
849 * is called. Odd but simple and correct.
851 detach_pid(tsk
, PIDTYPE_PID
);
852 tsk
->pid
= leader
->pid
;
853 attach_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
854 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
855 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
856 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
858 tsk
->group_leader
= tsk
;
859 leader
->group_leader
= tsk
;
861 tsk
->exit_signal
= SIGCHLD
;
863 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
864 leader
->exit_state
= EXIT_DEAD
;
866 write_unlock_irq(&tasklist_lock
);
869 sig
->group_exit_task
= NULL
;
870 sig
->notify_count
= 0;
874 flush_itimer_signals();
876 release_task(leader
);
878 if (atomic_read(&oldsighand
->count
) != 1) {
879 struct sighand_struct
*newsighand
;
881 * This ->sighand is shared with the CLONE_SIGHAND
882 * but not CLONE_THREAD task, switch to the new one.
884 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
888 atomic_set(&newsighand
->count
, 1);
889 memcpy(newsighand
->action
, oldsighand
->action
,
890 sizeof(newsighand
->action
));
892 write_lock_irq(&tasklist_lock
);
893 spin_lock(&oldsighand
->siglock
);
894 rcu_assign_pointer(tsk
->sighand
, newsighand
);
895 spin_unlock(&oldsighand
->siglock
);
896 write_unlock_irq(&tasklist_lock
);
898 __cleanup_sighand(oldsighand
);
901 BUG_ON(!thread_group_leader(tsk
));
906 * These functions flushes out all traces of the currently running executable
907 * so that a new one can be started
909 static void flush_old_files(struct files_struct
* files
)
914 spin_lock(&files
->file_lock
);
916 unsigned long set
, i
;
920 fdt
= files_fdtable(files
);
921 if (i
>= fdt
->max_fds
)
923 set
= fdt
->close_on_exec
->fds_bits
[j
];
926 fdt
->close_on_exec
->fds_bits
[j
] = 0;
927 spin_unlock(&files
->file_lock
);
928 for ( ; set
; i
++,set
>>= 1) {
933 spin_lock(&files
->file_lock
);
936 spin_unlock(&files
->file_lock
);
939 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
941 /* buf must be at least sizeof(tsk->comm) in size */
943 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
948 void set_task_comm(struct task_struct
*tsk
, char *buf
)
951 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
955 int flush_old_exec(struct linux_binprm
* bprm
)
959 char tcomm
[sizeof(current
->comm
)];
962 * Make sure we have a private signal table and that
963 * we are unassociated from the previous thread group.
965 retval
= de_thread(current
);
969 set_mm_exe_file(bprm
->mm
, bprm
->file
);
972 * Release all of the old mmap stuff
974 retval
= exec_mmap(bprm
->mm
);
978 bprm
->mm
= NULL
; /* We're using it now */
980 /* This is the point of no return */
981 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
983 if (current_euid() == current_uid() && current_egid() == current_gid())
984 set_dumpable(current
->mm
, 1);
986 set_dumpable(current
->mm
, suid_dumpable
);
988 name
= bprm
->filename
;
990 /* Copies the binary name from after last slash */
991 for (i
=0; (ch
= *(name
++)) != '\0';) {
993 i
= 0; /* overwrite what we wrote */
995 if (i
< (sizeof(tcomm
) - 1))
999 set_task_comm(current
, tcomm
);
1001 current
->flags
&= ~PF_RANDOMIZE
;
1004 /* Set the new mm task size. We have to do that late because it may
1005 * depend on TIF_32BIT which is only updated in flush_thread() on
1006 * some architectures like powerpc
1008 current
->mm
->task_size
= TASK_SIZE
;
1010 if (bprm
->e_uid
!= current_euid() ||
1011 bprm
->e_gid
!= current_egid()) {
1012 set_dumpable(current
->mm
, suid_dumpable
);
1013 current
->pdeath_signal
= 0;
1014 } else if (file_permission(bprm
->file
, MAY_READ
) ||
1015 (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)) {
1016 set_dumpable(current
->mm
, suid_dumpable
);
1019 /* An exec changes our domain. We are no longer part of the thread
1022 current
->self_exec_id
++;
1024 flush_signal_handlers(current
, 0);
1025 flush_old_files(current
->files
);
1033 EXPORT_SYMBOL(flush_old_exec
);
1036 * Fill the binprm structure from the inode.
1037 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1039 int prepare_binprm(struct linux_binprm
*bprm
)
1042 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1045 mode
= inode
->i_mode
;
1046 if (bprm
->file
->f_op
== NULL
)
1049 bprm
->e_uid
= current_euid();
1050 bprm
->e_gid
= current_egid();
1052 if(!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1054 if (mode
& S_ISUID
) {
1055 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1056 bprm
->e_uid
= inode
->i_uid
;
1061 * If setgid is set but no group execute bit then this
1062 * is a candidate for mandatory locking, not a setgid
1065 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1066 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1067 bprm
->e_gid
= inode
->i_gid
;
1071 /* fill in binprm security blob */
1072 retval
= security_bprm_set(bprm
);
1076 memset(bprm
->buf
,0,BINPRM_BUF_SIZE
);
1077 return kernel_read(bprm
->file
,0,bprm
->buf
,BINPRM_BUF_SIZE
);
1080 EXPORT_SYMBOL(prepare_binprm
);
1082 static int unsafe_exec(struct task_struct
*p
)
1084 int unsafe
= tracehook_unsafe_exec(p
);
1086 if (atomic_read(&p
->fs
->count
) > 1 ||
1087 atomic_read(&p
->files
->count
) > 1 ||
1088 atomic_read(&p
->sighand
->count
) > 1)
1089 unsafe
|= LSM_UNSAFE_SHARE
;
1094 void compute_creds(struct linux_binprm
*bprm
)
1098 if (bprm
->e_uid
!= current_uid())
1099 current
->pdeath_signal
= 0;
1103 unsafe
= unsafe_exec(current
);
1104 security_bprm_apply_creds(bprm
, unsafe
);
1105 task_unlock(current
);
1106 security_bprm_post_apply_creds(bprm
);
1108 EXPORT_SYMBOL(compute_creds
);
1111 * Arguments are '\0' separated strings found at the location bprm->p
1112 * points to; chop off the first by relocating brpm->p to right after
1113 * the first '\0' encountered.
1115 int remove_arg_zero(struct linux_binprm
*bprm
)
1118 unsigned long offset
;
1126 offset
= bprm
->p
& ~PAGE_MASK
;
1127 page
= get_arg_page(bprm
, bprm
->p
, 0);
1132 kaddr
= kmap_atomic(page
, KM_USER0
);
1134 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1135 offset
++, bprm
->p
++)
1138 kunmap_atomic(kaddr
, KM_USER0
);
1141 if (offset
== PAGE_SIZE
)
1142 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1143 } while (offset
== PAGE_SIZE
);
1152 EXPORT_SYMBOL(remove_arg_zero
);
1155 * cycle the list of binary formats handler, until one recognizes the image
1157 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1160 struct linux_binfmt
*fmt
;
1162 /* handle /sbin/loader.. */
1164 struct exec
* eh
= (struct exec
*) bprm
->buf
;
1166 if (!bprm
->loader
&& eh
->fh
.f_magic
== 0x183 &&
1167 (eh
->fh
.f_flags
& 0x3000) == 0x3000)
1170 unsigned long loader
;
1172 allow_write_access(bprm
->file
);
1176 loader
= bprm
->vma
->vm_end
- sizeof(void *);
1178 file
= open_exec("/sbin/loader");
1179 retval
= PTR_ERR(file
);
1183 /* Remember if the application is TASO. */
1184 bprm
->taso
= eh
->ah
.entry
< 0x100000000UL
;
1187 bprm
->loader
= loader
;
1188 retval
= prepare_binprm(bprm
);
1191 /* should call search_binary_handler recursively here,
1192 but it does not matter */
1196 retval
= security_bprm_check(bprm
);
1200 /* kernel module loader fixup */
1201 /* so we don't try to load run modprobe in kernel space. */
1204 retval
= audit_bprm(bprm
);
1209 for (try=0; try<2; try++) {
1210 read_lock(&binfmt_lock
);
1211 list_for_each_entry(fmt
, &formats
, lh
) {
1212 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1215 if (!try_module_get(fmt
->module
))
1217 read_unlock(&binfmt_lock
);
1218 retval
= fn(bprm
, regs
);
1220 tracehook_report_exec(fmt
, bprm
, regs
);
1222 allow_write_access(bprm
->file
);
1226 current
->did_exec
= 1;
1227 proc_exec_connector(current
);
1230 read_lock(&binfmt_lock
);
1232 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1235 read_unlock(&binfmt_lock
);
1239 read_unlock(&binfmt_lock
);
1240 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1242 #ifdef CONFIG_MODULES
1244 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1245 if (printable(bprm
->buf
[0]) &&
1246 printable(bprm
->buf
[1]) &&
1247 printable(bprm
->buf
[2]) &&
1248 printable(bprm
->buf
[3]))
1249 break; /* -ENOEXEC */
1250 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1257 EXPORT_SYMBOL(search_binary_handler
);
1259 void free_bprm(struct linux_binprm
*bprm
)
1261 free_arg_pages(bprm
);
1266 * sys_execve() executes a new program.
1268 int do_execve(char * filename
,
1269 char __user
*__user
*argv
,
1270 char __user
*__user
*envp
,
1271 struct pt_regs
* regs
)
1273 struct linux_binprm
*bprm
;
1275 struct files_struct
*displaced
;
1278 retval
= unshare_files(&displaced
);
1283 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1287 file
= open_exec(filename
);
1288 retval
= PTR_ERR(file
);
1295 bprm
->filename
= filename
;
1296 bprm
->interp
= filename
;
1298 retval
= bprm_mm_init(bprm
);
1302 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1303 if ((retval
= bprm
->argc
) < 0)
1306 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1307 if ((retval
= bprm
->envc
) < 0)
1310 retval
= security_bprm_alloc(bprm
);
1314 retval
= prepare_binprm(bprm
);
1318 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1322 bprm
->exec
= bprm
->p
;
1323 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1327 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1331 current
->flags
&= ~PF_KTHREAD
;
1332 retval
= search_binary_handler(bprm
,regs
);
1334 /* execve success */
1335 security_bprm_free(bprm
);
1336 acct_update_integrals(current
);
1339 put_files_struct(displaced
);
1345 security_bprm_free(bprm
);
1353 allow_write_access(bprm
->file
);
1361 reset_files_struct(displaced
);
1366 int set_binfmt(struct linux_binfmt
*new)
1368 struct linux_binfmt
*old
= current
->binfmt
;
1371 if (!try_module_get(new->module
))
1374 current
->binfmt
= new;
1376 module_put(old
->module
);
1380 EXPORT_SYMBOL(set_binfmt
);
1382 /* format_corename will inspect the pattern parameter, and output a
1383 * name into corename, which must have space for at least
1384 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1386 static int format_corename(char *corename
, long signr
)
1388 const struct cred
*cred
= current_cred();
1389 const char *pat_ptr
= core_pattern
;
1390 int ispipe
= (*pat_ptr
== '|');
1391 char *out_ptr
= corename
;
1392 char *const out_end
= corename
+ CORENAME_MAX_SIZE
;
1394 int pid_in_pattern
= 0;
1396 /* Repeat as long as we have more pattern to process and more output
1399 if (*pat_ptr
!= '%') {
1400 if (out_ptr
== out_end
)
1402 *out_ptr
++ = *pat_ptr
++;
1404 switch (*++pat_ptr
) {
1407 /* Double percent, output one percent */
1409 if (out_ptr
== out_end
)
1416 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1417 "%d", task_tgid_vnr(current
));
1418 if (rc
> out_end
- out_ptr
)
1424 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1426 if (rc
> out_end
- out_ptr
)
1432 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1434 if (rc
> out_end
- out_ptr
)
1438 /* signal that caused the coredump */
1440 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1442 if (rc
> out_end
- out_ptr
)
1446 /* UNIX time of coredump */
1449 do_gettimeofday(&tv
);
1450 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1452 if (rc
> out_end
- out_ptr
)
1459 down_read(&uts_sem
);
1460 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1461 "%s", utsname()->nodename
);
1463 if (rc
> out_end
- out_ptr
)
1469 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1470 "%s", current
->comm
);
1471 if (rc
> out_end
- out_ptr
)
1475 /* core limit size */
1477 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1478 "%lu", current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
);
1479 if (rc
> out_end
- out_ptr
)
1489 /* Backward compatibility with core_uses_pid:
1491 * If core_pattern does not include a %p (as is the default)
1492 * and core_uses_pid is set, then .%pid will be appended to
1493 * the filename. Do not do this for piped commands. */
1494 if (!ispipe
&& !pid_in_pattern
&& core_uses_pid
) {
1495 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1496 ".%d", task_tgid_vnr(current
));
1497 if (rc
> out_end
- out_ptr
)
1506 static int zap_process(struct task_struct
*start
)
1508 struct task_struct
*t
;
1511 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1512 start
->signal
->group_stop_count
= 0;
1516 if (t
!= current
&& t
->mm
) {
1517 sigaddset(&t
->pending
.signal
, SIGKILL
);
1518 signal_wake_up(t
, 1);
1521 } while_each_thread(start
, t
);
1526 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1527 struct core_state
*core_state
, int exit_code
)
1529 struct task_struct
*g
, *p
;
1530 unsigned long flags
;
1533 spin_lock_irq(&tsk
->sighand
->siglock
);
1534 if (!signal_group_exit(tsk
->signal
)) {
1535 mm
->core_state
= core_state
;
1536 tsk
->signal
->group_exit_code
= exit_code
;
1537 nr
= zap_process(tsk
);
1539 spin_unlock_irq(&tsk
->sighand
->siglock
);
1540 if (unlikely(nr
< 0))
1543 if (atomic_read(&mm
->mm_users
) == nr
+ 1)
1546 * We should find and kill all tasks which use this mm, and we should
1547 * count them correctly into ->nr_threads. We don't take tasklist
1548 * lock, but this is safe wrt:
1551 * None of sub-threads can fork after zap_process(leader). All
1552 * processes which were created before this point should be
1553 * visible to zap_threads() because copy_process() adds the new
1554 * process to the tail of init_task.tasks list, and lock/unlock
1555 * of ->siglock provides a memory barrier.
1558 * The caller holds mm->mmap_sem. This means that the task which
1559 * uses this mm can't pass exit_mm(), so it can't exit or clear
1563 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1564 * we must see either old or new leader, this does not matter.
1565 * However, it can change p->sighand, so lock_task_sighand(p)
1566 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1569 * Note also that "g" can be the old leader with ->mm == NULL
1570 * and already unhashed and thus removed from ->thread_group.
1571 * This is OK, __unhash_process()->list_del_rcu() does not
1572 * clear the ->next pointer, we will find the new leader via
1576 for_each_process(g
) {
1577 if (g
== tsk
->group_leader
)
1579 if (g
->flags
& PF_KTHREAD
)
1584 if (unlikely(p
->mm
== mm
)) {
1585 lock_task_sighand(p
, &flags
);
1586 nr
+= zap_process(p
);
1587 unlock_task_sighand(p
, &flags
);
1591 } while_each_thread(g
, p
);
1595 atomic_set(&core_state
->nr_threads
, nr
);
1599 static int coredump_wait(int exit_code
, struct core_state
*core_state
)
1601 struct task_struct
*tsk
= current
;
1602 struct mm_struct
*mm
= tsk
->mm
;
1603 struct completion
*vfork_done
;
1606 init_completion(&core_state
->startup
);
1607 core_state
->dumper
.task
= tsk
;
1608 core_state
->dumper
.next
= NULL
;
1609 core_waiters
= zap_threads(tsk
, mm
, core_state
, exit_code
);
1610 up_write(&mm
->mmap_sem
);
1612 if (unlikely(core_waiters
< 0))
1616 * Make sure nobody is waiting for us to release the VM,
1617 * otherwise we can deadlock when we wait on each other
1619 vfork_done
= tsk
->vfork_done
;
1621 tsk
->vfork_done
= NULL
;
1622 complete(vfork_done
);
1626 wait_for_completion(&core_state
->startup
);
1628 return core_waiters
;
1631 static void coredump_finish(struct mm_struct
*mm
)
1633 struct core_thread
*curr
, *next
;
1634 struct task_struct
*task
;
1636 next
= mm
->core_state
->dumper
.next
;
1637 while ((curr
= next
) != NULL
) {
1641 * see exit_mm(), curr->task must not see
1642 * ->task == NULL before we read ->next.
1646 wake_up_process(task
);
1649 mm
->core_state
= NULL
;
1653 * set_dumpable converts traditional three-value dumpable to two flags and
1654 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1655 * these bits are not changed atomically. So get_dumpable can observe the
1656 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1657 * return either old dumpable or new one by paying attention to the order of
1658 * modifying the bits.
1660 * dumpable | mm->flags (binary)
1661 * old new | initial interim final
1662 * ---------+-----------------------
1670 * (*) get_dumpable regards interim value of 10 as 11.
1672 void set_dumpable(struct mm_struct
*mm
, int value
)
1676 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1678 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1681 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1683 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1686 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1688 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1693 int get_dumpable(struct mm_struct
*mm
)
1697 ret
= mm
->flags
& 0x3;
1698 return (ret
>= 2) ? 2 : ret
;
1701 int do_coredump(long signr
, int exit_code
, struct pt_regs
* regs
)
1703 struct core_state core_state
;
1704 char corename
[CORENAME_MAX_SIZE
+ 1];
1705 struct mm_struct
*mm
= current
->mm
;
1706 struct linux_binfmt
* binfmt
;
1707 struct inode
* inode
;
1709 const struct cred
*old_cred
;
1714 unsigned long core_limit
= current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
;
1715 char **helper_argv
= NULL
;
1716 int helper_argc
= 0;
1719 audit_core_dumps(signr
);
1721 binfmt
= current
->binfmt
;
1722 if (!binfmt
|| !binfmt
->core_dump
)
1725 cred
= prepare_creds();
1731 down_write(&mm
->mmap_sem
);
1733 * If another thread got here first, or we are not dumpable, bail out.
1735 if (mm
->core_state
|| !get_dumpable(mm
)) {
1736 up_write(&mm
->mmap_sem
);
1742 * We cannot trust fsuid as being the "true" uid of the
1743 * process nor do we know its entire history. We only know it
1744 * was tainted so we dump it as root in mode 2.
1746 if (get_dumpable(mm
) == 2) { /* Setuid core dump mode */
1747 flag
= O_EXCL
; /* Stop rewrite attacks */
1748 cred
->fsuid
= 0; /* Dump root private */
1751 retval
= coredump_wait(exit_code
, &core_state
);
1757 old_cred
= override_creds(cred
);
1760 * Clear any false indication of pending signals that might
1761 * be seen by the filesystem code called to write the core file.
1763 clear_thread_flag(TIF_SIGPENDING
);
1766 * lock_kernel() because format_corename() is controlled by sysctl, which
1767 * uses lock_kernel()
1770 ispipe
= format_corename(corename
, signr
);
1773 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1774 * to a pipe. Since we're not writing directly to the filesystem
1775 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1776 * created unless the pipe reader choses to write out the core file
1777 * at which point file size limits and permissions will be imposed
1778 * as it does with any other process
1780 if ((!ispipe
) && (core_limit
< binfmt
->min_coredump
))
1784 helper_argv
= argv_split(GFP_KERNEL
, corename
+1, &helper_argc
);
1785 /* Terminate the string before the first option */
1786 delimit
= strchr(corename
, ' ');
1789 delimit
= strrchr(helper_argv
[0], '/');
1793 delimit
= helper_argv
[0];
1794 if (!strcmp(delimit
, current
->comm
)) {
1795 printk(KERN_NOTICE
"Recursive core dump detected, "
1800 core_limit
= RLIM_INFINITY
;
1802 /* SIGPIPE can happen, but it's just never processed */
1803 if (call_usermodehelper_pipe(corename
+1, helper_argv
, NULL
,
1805 printk(KERN_INFO
"Core dump to %s pipe failed\n",
1810 file
= filp_open(corename
,
1811 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
1815 inode
= file
->f_path
.dentry
->d_inode
;
1816 if (inode
->i_nlink
> 1)
1817 goto close_fail
; /* multiple links - don't dump */
1818 if (!ispipe
&& d_unhashed(file
->f_path
.dentry
))
1821 /* AK: actually i see no reason to not allow this for named pipes etc.,
1822 but keep the previous behaviour for now. */
1823 if (!ispipe
&& !S_ISREG(inode
->i_mode
))
1826 * Dont allow local users get cute and trick others to coredump
1827 * into their pre-created files:
1829 if (inode
->i_uid
!= current_fsuid())
1833 if (!file
->f_op
->write
)
1835 if (!ispipe
&& do_truncate(file
->f_path
.dentry
, 0, 0, file
) != 0)
1838 retval
= binfmt
->core_dump(signr
, regs
, file
, core_limit
);
1841 current
->signal
->group_exit_code
|= 0x80;
1843 filp_close(file
, NULL
);
1846 argv_free(helper_argv
);
1848 revert_creds(old_cred
);
1850 coredump_finish(mm
);