ext4: change LRU to round-robin in extent status tree shrinker
[deliverable/linux.git] / fs / ext4 / extents_status.c
1 /*
2 * fs/ext4/extents_status.c
3 *
4 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
5 * Modified by
6 * Allison Henderson <achender@linux.vnet.ibm.com>
7 * Hugh Dickins <hughd@google.com>
8 * Zheng Liu <wenqing.lz@taobao.com>
9 *
10 * Ext4 extents status tree core functions.
11 */
12 #include <linux/rbtree.h>
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include "ext4.h"
17 #include "extents_status.h"
18
19 #include <trace/events/ext4.h>
20
21 /*
22 * According to previous discussion in Ext4 Developer Workshop, we
23 * will introduce a new structure called io tree to track all extent
24 * status in order to solve some problems that we have met
25 * (e.g. Reservation space warning), and provide extent-level locking.
26 * Delay extent tree is the first step to achieve this goal. It is
27 * original built by Yongqiang Yang. At that time it is called delay
28 * extent tree, whose goal is only track delayed extents in memory to
29 * simplify the implementation of fiemap and bigalloc, and introduce
30 * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
31 * delay extent tree at the first commit. But for better understand
32 * what it does, it has been rename to extent status tree.
33 *
34 * Step1:
35 * Currently the first step has been done. All delayed extents are
36 * tracked in the tree. It maintains the delayed extent when a delayed
37 * allocation is issued, and the delayed extent is written out or
38 * invalidated. Therefore the implementation of fiemap and bigalloc
39 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
40 *
41 * The following comment describes the implemenmtation of extent
42 * status tree and future works.
43 *
44 * Step2:
45 * In this step all extent status are tracked by extent status tree.
46 * Thus, we can first try to lookup a block mapping in this tree before
47 * finding it in extent tree. Hence, single extent cache can be removed
48 * because extent status tree can do a better job. Extents in status
49 * tree are loaded on-demand. Therefore, the extent status tree may not
50 * contain all of the extents in a file. Meanwhile we define a shrinker
51 * to reclaim memory from extent status tree because fragmented extent
52 * tree will make status tree cost too much memory. written/unwritten/-
53 * hole extents in the tree will be reclaimed by this shrinker when we
54 * are under high memory pressure. Delayed extents will not be
55 * reclimed because fiemap, bigalloc, and seek_data/hole need it.
56 */
57
58 /*
59 * Extent status tree implementation for ext4.
60 *
61 *
62 * ==========================================================================
63 * Extent status tree tracks all extent status.
64 *
65 * 1. Why we need to implement extent status tree?
66 *
67 * Without extent status tree, ext4 identifies a delayed extent by looking
68 * up page cache, this has several deficiencies - complicated, buggy,
69 * and inefficient code.
70 *
71 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
72 * block or a range of blocks are belonged to a delayed extent.
73 *
74 * Let us have a look at how they do without extent status tree.
75 * -- FIEMAP
76 * FIEMAP looks up page cache to identify delayed allocations from holes.
77 *
78 * -- SEEK_HOLE/DATA
79 * SEEK_HOLE/DATA has the same problem as FIEMAP.
80 *
81 * -- bigalloc
82 * bigalloc looks up page cache to figure out if a block is
83 * already under delayed allocation or not to determine whether
84 * quota reserving is needed for the cluster.
85 *
86 * -- writeout
87 * Writeout looks up whole page cache to see if a buffer is
88 * mapped, If there are not very many delayed buffers, then it is
89 * time comsuming.
90 *
91 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
92 * bigalloc and writeout can figure out if a block or a range of
93 * blocks is under delayed allocation(belonged to a delayed extent) or
94 * not by searching the extent tree.
95 *
96 *
97 * ==========================================================================
98 * 2. Ext4 extent status tree impelmentation
99 *
100 * -- extent
101 * A extent is a range of blocks which are contiguous logically and
102 * physically. Unlike extent in extent tree, this extent in ext4 is
103 * a in-memory struct, there is no corresponding on-disk data. There
104 * is no limit on length of extent, so an extent can contain as many
105 * blocks as they are contiguous logically and physically.
106 *
107 * -- extent status tree
108 * Every inode has an extent status tree and all allocation blocks
109 * are added to the tree with different status. The extent in the
110 * tree are ordered by logical block no.
111 *
112 * -- operations on a extent status tree
113 * There are three important operations on a delayed extent tree: find
114 * next extent, adding a extent(a range of blocks) and removing a extent.
115 *
116 * -- race on a extent status tree
117 * Extent status tree is protected by inode->i_es_lock.
118 *
119 * -- memory consumption
120 * Fragmented extent tree will make extent status tree cost too much
121 * memory. Hence, we will reclaim written/unwritten/hole extents from
122 * the tree under a heavy memory pressure.
123 *
124 *
125 * ==========================================================================
126 * 3. Performance analysis
127 *
128 * -- overhead
129 * 1. There is a cache extent for write access, so if writes are
130 * not very random, adding space operaions are in O(1) time.
131 *
132 * -- gain
133 * 2. Code is much simpler, more readable, more maintainable and
134 * more efficient.
135 *
136 *
137 * ==========================================================================
138 * 4. TODO list
139 *
140 * -- Refactor delayed space reservation
141 *
142 * -- Extent-level locking
143 */
144
145 static struct kmem_cache *ext4_es_cachep;
146
147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
148 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
149 ext4_lblk_t end);
150 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
151 int nr_to_scan);
152 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
153 struct ext4_inode_info *locked_ei);
154
155 int __init ext4_init_es(void)
156 {
157 ext4_es_cachep = kmem_cache_create("ext4_extent_status",
158 sizeof(struct extent_status),
159 0, (SLAB_RECLAIM_ACCOUNT), NULL);
160 if (ext4_es_cachep == NULL)
161 return -ENOMEM;
162 return 0;
163 }
164
165 void ext4_exit_es(void)
166 {
167 if (ext4_es_cachep)
168 kmem_cache_destroy(ext4_es_cachep);
169 }
170
171 void ext4_es_init_tree(struct ext4_es_tree *tree)
172 {
173 tree->root = RB_ROOT;
174 tree->cache_es = NULL;
175 }
176
177 #ifdef ES_DEBUG__
178 static void ext4_es_print_tree(struct inode *inode)
179 {
180 struct ext4_es_tree *tree;
181 struct rb_node *node;
182
183 printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
184 tree = &EXT4_I(inode)->i_es_tree;
185 node = rb_first(&tree->root);
186 while (node) {
187 struct extent_status *es;
188 es = rb_entry(node, struct extent_status, rb_node);
189 printk(KERN_DEBUG " [%u/%u) %llu %x",
190 es->es_lblk, es->es_len,
191 ext4_es_pblock(es), ext4_es_status(es));
192 node = rb_next(node);
193 }
194 printk(KERN_DEBUG "\n");
195 }
196 #else
197 #define ext4_es_print_tree(inode)
198 #endif
199
200 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
201 {
202 BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
203 return es->es_lblk + es->es_len - 1;
204 }
205
206 /*
207 * search through the tree for an delayed extent with a given offset. If
208 * it can't be found, try to find next extent.
209 */
210 static struct extent_status *__es_tree_search(struct rb_root *root,
211 ext4_lblk_t lblk)
212 {
213 struct rb_node *node = root->rb_node;
214 struct extent_status *es = NULL;
215
216 while (node) {
217 es = rb_entry(node, struct extent_status, rb_node);
218 if (lblk < es->es_lblk)
219 node = node->rb_left;
220 else if (lblk > ext4_es_end(es))
221 node = node->rb_right;
222 else
223 return es;
224 }
225
226 if (es && lblk < es->es_lblk)
227 return es;
228
229 if (es && lblk > ext4_es_end(es)) {
230 node = rb_next(&es->rb_node);
231 return node ? rb_entry(node, struct extent_status, rb_node) :
232 NULL;
233 }
234
235 return NULL;
236 }
237
238 /*
239 * ext4_es_find_delayed_extent_range: find the 1st delayed extent covering
240 * @es->lblk if it exists, otherwise, the next extent after @es->lblk.
241 *
242 * @inode: the inode which owns delayed extents
243 * @lblk: the offset where we start to search
244 * @end: the offset where we stop to search
245 * @es: delayed extent that we found
246 */
247 void ext4_es_find_delayed_extent_range(struct inode *inode,
248 ext4_lblk_t lblk, ext4_lblk_t end,
249 struct extent_status *es)
250 {
251 struct ext4_es_tree *tree = NULL;
252 struct extent_status *es1 = NULL;
253 struct rb_node *node;
254
255 BUG_ON(es == NULL);
256 BUG_ON(end < lblk);
257 trace_ext4_es_find_delayed_extent_range_enter(inode, lblk);
258
259 read_lock(&EXT4_I(inode)->i_es_lock);
260 tree = &EXT4_I(inode)->i_es_tree;
261
262 /* find extent in cache firstly */
263 es->es_lblk = es->es_len = es->es_pblk = 0;
264 if (tree->cache_es) {
265 es1 = tree->cache_es;
266 if (in_range(lblk, es1->es_lblk, es1->es_len)) {
267 es_debug("%u cached by [%u/%u) %llu %x\n",
268 lblk, es1->es_lblk, es1->es_len,
269 ext4_es_pblock(es1), ext4_es_status(es1));
270 goto out;
271 }
272 }
273
274 es1 = __es_tree_search(&tree->root, lblk);
275
276 out:
277 if (es1 && !ext4_es_is_delayed(es1)) {
278 while ((node = rb_next(&es1->rb_node)) != NULL) {
279 es1 = rb_entry(node, struct extent_status, rb_node);
280 if (es1->es_lblk > end) {
281 es1 = NULL;
282 break;
283 }
284 if (ext4_es_is_delayed(es1))
285 break;
286 }
287 }
288
289 if (es1 && ext4_es_is_delayed(es1)) {
290 tree->cache_es = es1;
291 es->es_lblk = es1->es_lblk;
292 es->es_len = es1->es_len;
293 es->es_pblk = es1->es_pblk;
294 }
295
296 read_unlock(&EXT4_I(inode)->i_es_lock);
297
298 trace_ext4_es_find_delayed_extent_range_exit(inode, es);
299 }
300
301 void ext4_es_list_add(struct inode *inode)
302 {
303 struct ext4_inode_info *ei = EXT4_I(inode);
304 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
305
306 if (!list_empty(&ei->i_es_list))
307 return;
308
309 spin_lock(&sbi->s_es_lock);
310 if (list_empty(&ei->i_es_list)) {
311 list_add_tail(&ei->i_es_list, &sbi->s_es_list);
312 sbi->s_es_nr_inode++;
313 }
314 spin_unlock(&sbi->s_es_lock);
315 }
316
317 void ext4_es_list_del(struct inode *inode)
318 {
319 struct ext4_inode_info *ei = EXT4_I(inode);
320 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
321
322 spin_lock(&sbi->s_es_lock);
323 if (!list_empty(&ei->i_es_list)) {
324 list_del_init(&ei->i_es_list);
325 sbi->s_es_nr_inode--;
326 WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
327 }
328 spin_unlock(&sbi->s_es_lock);
329 }
330
331 static struct extent_status *
332 ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
333 ext4_fsblk_t pblk)
334 {
335 struct extent_status *es;
336 es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
337 if (es == NULL)
338 return NULL;
339 es->es_lblk = lblk;
340 es->es_len = len;
341 es->es_pblk = pblk;
342
343 /*
344 * We don't count delayed extent because we never try to reclaim them
345 */
346 if (!ext4_es_is_delayed(es)) {
347 EXT4_I(inode)->i_es_shk_nr++;
348 percpu_counter_inc(&EXT4_SB(inode->i_sb)->
349 s_es_stats.es_stats_shk_cnt);
350 }
351
352 EXT4_I(inode)->i_es_all_nr++;
353 percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
354
355 return es;
356 }
357
358 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
359 {
360 EXT4_I(inode)->i_es_all_nr--;
361 percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
362
363 /* Decrease the shrink counter when this es is not delayed */
364 if (!ext4_es_is_delayed(es)) {
365 BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
366 EXT4_I(inode)->i_es_shk_nr--;
367 percpu_counter_dec(&EXT4_SB(inode->i_sb)->
368 s_es_stats.es_stats_shk_cnt);
369 }
370
371 kmem_cache_free(ext4_es_cachep, es);
372 }
373
374 /*
375 * Check whether or not two extents can be merged
376 * Condition:
377 * - logical block number is contiguous
378 * - physical block number is contiguous
379 * - status is equal
380 */
381 static int ext4_es_can_be_merged(struct extent_status *es1,
382 struct extent_status *es2)
383 {
384 if (ext4_es_status(es1) != ext4_es_status(es2))
385 return 0;
386
387 if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
388 pr_warn("ES assertion failed when merging extents. "
389 "The sum of lengths of es1 (%d) and es2 (%d) "
390 "is bigger than allowed file size (%d)\n",
391 es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
392 WARN_ON(1);
393 return 0;
394 }
395
396 if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
397 return 0;
398
399 if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
400 (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
401 return 1;
402
403 if (ext4_es_is_hole(es1))
404 return 1;
405
406 /* we need to check delayed extent is without unwritten status */
407 if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
408 return 1;
409
410 return 0;
411 }
412
413 static struct extent_status *
414 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
415 {
416 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
417 struct extent_status *es1;
418 struct rb_node *node;
419
420 node = rb_prev(&es->rb_node);
421 if (!node)
422 return es;
423
424 es1 = rb_entry(node, struct extent_status, rb_node);
425 if (ext4_es_can_be_merged(es1, es)) {
426 es1->es_len += es->es_len;
427 rb_erase(&es->rb_node, &tree->root);
428 ext4_es_free_extent(inode, es);
429 es = es1;
430 }
431
432 return es;
433 }
434
435 static struct extent_status *
436 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
437 {
438 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
439 struct extent_status *es1;
440 struct rb_node *node;
441
442 node = rb_next(&es->rb_node);
443 if (!node)
444 return es;
445
446 es1 = rb_entry(node, struct extent_status, rb_node);
447 if (ext4_es_can_be_merged(es, es1)) {
448 es->es_len += es1->es_len;
449 rb_erase(node, &tree->root);
450 ext4_es_free_extent(inode, es1);
451 }
452
453 return es;
454 }
455
456 #ifdef ES_AGGRESSIVE_TEST
457 #include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */
458
459 static void ext4_es_insert_extent_ext_check(struct inode *inode,
460 struct extent_status *es)
461 {
462 struct ext4_ext_path *path = NULL;
463 struct ext4_extent *ex;
464 ext4_lblk_t ee_block;
465 ext4_fsblk_t ee_start;
466 unsigned short ee_len;
467 int depth, ee_status, es_status;
468
469 path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
470 if (IS_ERR(path))
471 return;
472
473 depth = ext_depth(inode);
474 ex = path[depth].p_ext;
475
476 if (ex) {
477
478 ee_block = le32_to_cpu(ex->ee_block);
479 ee_start = ext4_ext_pblock(ex);
480 ee_len = ext4_ext_get_actual_len(ex);
481
482 ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
483 es_status = ext4_es_is_unwritten(es) ? 1 : 0;
484
485 /*
486 * Make sure ex and es are not overlap when we try to insert
487 * a delayed/hole extent.
488 */
489 if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
490 if (in_range(es->es_lblk, ee_block, ee_len)) {
491 pr_warn("ES insert assertion failed for "
492 "inode: %lu we can find an extent "
493 "at block [%d/%d/%llu/%c], but we "
494 "want to add a delayed/hole extent "
495 "[%d/%d/%llu/%x]\n",
496 inode->i_ino, ee_block, ee_len,
497 ee_start, ee_status ? 'u' : 'w',
498 es->es_lblk, es->es_len,
499 ext4_es_pblock(es), ext4_es_status(es));
500 }
501 goto out;
502 }
503
504 /*
505 * We don't check ee_block == es->es_lblk, etc. because es
506 * might be a part of whole extent, vice versa.
507 */
508 if (es->es_lblk < ee_block ||
509 ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
510 pr_warn("ES insert assertion failed for inode: %lu "
511 "ex_status [%d/%d/%llu/%c] != "
512 "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
513 ee_block, ee_len, ee_start,
514 ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
515 ext4_es_pblock(es), es_status ? 'u' : 'w');
516 goto out;
517 }
518
519 if (ee_status ^ es_status) {
520 pr_warn("ES insert assertion failed for inode: %lu "
521 "ex_status [%d/%d/%llu/%c] != "
522 "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
523 ee_block, ee_len, ee_start,
524 ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
525 ext4_es_pblock(es), es_status ? 'u' : 'w');
526 }
527 } else {
528 /*
529 * We can't find an extent on disk. So we need to make sure
530 * that we don't want to add an written/unwritten extent.
531 */
532 if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
533 pr_warn("ES insert assertion failed for inode: %lu "
534 "can't find an extent at block %d but we want "
535 "to add a written/unwritten extent "
536 "[%d/%d/%llu/%x]\n", inode->i_ino,
537 es->es_lblk, es->es_lblk, es->es_len,
538 ext4_es_pblock(es), ext4_es_status(es));
539 }
540 }
541 out:
542 ext4_ext_drop_refs(path);
543 kfree(path);
544 }
545
546 static void ext4_es_insert_extent_ind_check(struct inode *inode,
547 struct extent_status *es)
548 {
549 struct ext4_map_blocks map;
550 int retval;
551
552 /*
553 * Here we call ext4_ind_map_blocks to lookup a block mapping because
554 * 'Indirect' structure is defined in indirect.c. So we couldn't
555 * access direct/indirect tree from outside. It is too dirty to define
556 * this function in indirect.c file.
557 */
558
559 map.m_lblk = es->es_lblk;
560 map.m_len = es->es_len;
561
562 retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
563 if (retval > 0) {
564 if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
565 /*
566 * We want to add a delayed/hole extent but this
567 * block has been allocated.
568 */
569 pr_warn("ES insert assertion failed for inode: %lu "
570 "We can find blocks but we want to add a "
571 "delayed/hole extent [%d/%d/%llu/%x]\n",
572 inode->i_ino, es->es_lblk, es->es_len,
573 ext4_es_pblock(es), ext4_es_status(es));
574 return;
575 } else if (ext4_es_is_written(es)) {
576 if (retval != es->es_len) {
577 pr_warn("ES insert assertion failed for "
578 "inode: %lu retval %d != es_len %d\n",
579 inode->i_ino, retval, es->es_len);
580 return;
581 }
582 if (map.m_pblk != ext4_es_pblock(es)) {
583 pr_warn("ES insert assertion failed for "
584 "inode: %lu m_pblk %llu != "
585 "es_pblk %llu\n",
586 inode->i_ino, map.m_pblk,
587 ext4_es_pblock(es));
588 return;
589 }
590 } else {
591 /*
592 * We don't need to check unwritten extent because
593 * indirect-based file doesn't have it.
594 */
595 BUG_ON(1);
596 }
597 } else if (retval == 0) {
598 if (ext4_es_is_written(es)) {
599 pr_warn("ES insert assertion failed for inode: %lu "
600 "We can't find the block but we want to add "
601 "a written extent [%d/%d/%llu/%x]\n",
602 inode->i_ino, es->es_lblk, es->es_len,
603 ext4_es_pblock(es), ext4_es_status(es));
604 return;
605 }
606 }
607 }
608
609 static inline void ext4_es_insert_extent_check(struct inode *inode,
610 struct extent_status *es)
611 {
612 /*
613 * We don't need to worry about the race condition because
614 * caller takes i_data_sem locking.
615 */
616 BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
617 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
618 ext4_es_insert_extent_ext_check(inode, es);
619 else
620 ext4_es_insert_extent_ind_check(inode, es);
621 }
622 #else
623 static inline void ext4_es_insert_extent_check(struct inode *inode,
624 struct extent_status *es)
625 {
626 }
627 #endif
628
629 static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
630 {
631 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
632 struct rb_node **p = &tree->root.rb_node;
633 struct rb_node *parent = NULL;
634 struct extent_status *es;
635
636 while (*p) {
637 parent = *p;
638 es = rb_entry(parent, struct extent_status, rb_node);
639
640 if (newes->es_lblk < es->es_lblk) {
641 if (ext4_es_can_be_merged(newes, es)) {
642 /*
643 * Here we can modify es_lblk directly
644 * because it isn't overlapped.
645 */
646 es->es_lblk = newes->es_lblk;
647 es->es_len += newes->es_len;
648 if (ext4_es_is_written(es) ||
649 ext4_es_is_unwritten(es))
650 ext4_es_store_pblock(es,
651 newes->es_pblk);
652 es = ext4_es_try_to_merge_left(inode, es);
653 goto out;
654 }
655 p = &(*p)->rb_left;
656 } else if (newes->es_lblk > ext4_es_end(es)) {
657 if (ext4_es_can_be_merged(es, newes)) {
658 es->es_len += newes->es_len;
659 es = ext4_es_try_to_merge_right(inode, es);
660 goto out;
661 }
662 p = &(*p)->rb_right;
663 } else {
664 BUG_ON(1);
665 return -EINVAL;
666 }
667 }
668
669 es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
670 newes->es_pblk);
671 if (!es)
672 return -ENOMEM;
673 rb_link_node(&es->rb_node, parent, p);
674 rb_insert_color(&es->rb_node, &tree->root);
675
676 out:
677 tree->cache_es = es;
678 return 0;
679 }
680
681 /*
682 * ext4_es_insert_extent() adds information to an inode's extent
683 * status tree.
684 *
685 * Return 0 on success, error code on failure.
686 */
687 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
688 ext4_lblk_t len, ext4_fsblk_t pblk,
689 unsigned int status)
690 {
691 struct extent_status newes;
692 ext4_lblk_t end = lblk + len - 1;
693 int err = 0;
694
695 es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
696 lblk, len, pblk, status, inode->i_ino);
697
698 if (!len)
699 return 0;
700
701 BUG_ON(end < lblk);
702
703 newes.es_lblk = lblk;
704 newes.es_len = len;
705 ext4_es_store_pblock_status(&newes, pblk, status);
706 trace_ext4_es_insert_extent(inode, &newes);
707
708 ext4_es_insert_extent_check(inode, &newes);
709
710 write_lock(&EXT4_I(inode)->i_es_lock);
711 err = __es_remove_extent(inode, lblk, end);
712 if (err != 0)
713 goto error;
714 retry:
715 err = __es_insert_extent(inode, &newes);
716 if (err == -ENOMEM && __es_shrink(EXT4_SB(inode->i_sb),
717 1, EXT4_I(inode)))
718 goto retry;
719 if (err == -ENOMEM && !ext4_es_is_delayed(&newes))
720 err = 0;
721
722 error:
723 write_unlock(&EXT4_I(inode)->i_es_lock);
724
725 ext4_es_print_tree(inode);
726
727 return err;
728 }
729
730 /*
731 * ext4_es_cache_extent() inserts information into the extent status
732 * tree if and only if there isn't information about the range in
733 * question already.
734 */
735 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
736 ext4_lblk_t len, ext4_fsblk_t pblk,
737 unsigned int status)
738 {
739 struct extent_status *es;
740 struct extent_status newes;
741 ext4_lblk_t end = lblk + len - 1;
742
743 newes.es_lblk = lblk;
744 newes.es_len = len;
745 ext4_es_store_pblock_status(&newes, pblk, status);
746 trace_ext4_es_cache_extent(inode, &newes);
747
748 if (!len)
749 return;
750
751 BUG_ON(end < lblk);
752
753 write_lock(&EXT4_I(inode)->i_es_lock);
754
755 es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
756 if (!es || es->es_lblk > end)
757 __es_insert_extent(inode, &newes);
758 write_unlock(&EXT4_I(inode)->i_es_lock);
759 }
760
761 /*
762 * ext4_es_lookup_extent() looks up an extent in extent status tree.
763 *
764 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
765 *
766 * Return: 1 on found, 0 on not
767 */
768 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
769 struct extent_status *es)
770 {
771 struct ext4_es_tree *tree;
772 struct ext4_es_stats *stats;
773 struct extent_status *es1 = NULL;
774 struct rb_node *node;
775 int found = 0;
776
777 trace_ext4_es_lookup_extent_enter(inode, lblk);
778 es_debug("lookup extent in block %u\n", lblk);
779
780 tree = &EXT4_I(inode)->i_es_tree;
781 read_lock(&EXT4_I(inode)->i_es_lock);
782
783 /* find extent in cache firstly */
784 es->es_lblk = es->es_len = es->es_pblk = 0;
785 if (tree->cache_es) {
786 es1 = tree->cache_es;
787 if (in_range(lblk, es1->es_lblk, es1->es_len)) {
788 es_debug("%u cached by [%u/%u)\n",
789 lblk, es1->es_lblk, es1->es_len);
790 found = 1;
791 goto out;
792 }
793 }
794
795 node = tree->root.rb_node;
796 while (node) {
797 es1 = rb_entry(node, struct extent_status, rb_node);
798 if (lblk < es1->es_lblk)
799 node = node->rb_left;
800 else if (lblk > ext4_es_end(es1))
801 node = node->rb_right;
802 else {
803 found = 1;
804 break;
805 }
806 }
807
808 out:
809 stats = &EXT4_SB(inode->i_sb)->s_es_stats;
810 if (found) {
811 BUG_ON(!es1);
812 es->es_lblk = es1->es_lblk;
813 es->es_len = es1->es_len;
814 es->es_pblk = es1->es_pblk;
815 stats->es_stats_cache_hits++;
816 } else {
817 stats->es_stats_cache_misses++;
818 }
819
820 read_unlock(&EXT4_I(inode)->i_es_lock);
821
822 trace_ext4_es_lookup_extent_exit(inode, es, found);
823 return found;
824 }
825
826 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
827 ext4_lblk_t end)
828 {
829 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
830 struct rb_node *node;
831 struct extent_status *es;
832 struct extent_status orig_es;
833 ext4_lblk_t len1, len2;
834 ext4_fsblk_t block;
835 int err;
836
837 retry:
838 err = 0;
839 es = __es_tree_search(&tree->root, lblk);
840 if (!es)
841 goto out;
842 if (es->es_lblk > end)
843 goto out;
844
845 /* Simply invalidate cache_es. */
846 tree->cache_es = NULL;
847
848 orig_es.es_lblk = es->es_lblk;
849 orig_es.es_len = es->es_len;
850 orig_es.es_pblk = es->es_pblk;
851
852 len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
853 len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
854 if (len1 > 0)
855 es->es_len = len1;
856 if (len2 > 0) {
857 if (len1 > 0) {
858 struct extent_status newes;
859
860 newes.es_lblk = end + 1;
861 newes.es_len = len2;
862 block = 0x7FDEADBEEFULL;
863 if (ext4_es_is_written(&orig_es) ||
864 ext4_es_is_unwritten(&orig_es))
865 block = ext4_es_pblock(&orig_es) +
866 orig_es.es_len - len2;
867 ext4_es_store_pblock_status(&newes, block,
868 ext4_es_status(&orig_es));
869 err = __es_insert_extent(inode, &newes);
870 if (err) {
871 es->es_lblk = orig_es.es_lblk;
872 es->es_len = orig_es.es_len;
873 if ((err == -ENOMEM) &&
874 __es_shrink(EXT4_SB(inode->i_sb),
875 1, EXT4_I(inode)))
876 goto retry;
877 goto out;
878 }
879 } else {
880 es->es_lblk = end + 1;
881 es->es_len = len2;
882 if (ext4_es_is_written(es) ||
883 ext4_es_is_unwritten(es)) {
884 block = orig_es.es_pblk + orig_es.es_len - len2;
885 ext4_es_store_pblock(es, block);
886 }
887 }
888 goto out;
889 }
890
891 if (len1 > 0) {
892 node = rb_next(&es->rb_node);
893 if (node)
894 es = rb_entry(node, struct extent_status, rb_node);
895 else
896 es = NULL;
897 }
898
899 while (es && ext4_es_end(es) <= end) {
900 node = rb_next(&es->rb_node);
901 rb_erase(&es->rb_node, &tree->root);
902 ext4_es_free_extent(inode, es);
903 if (!node) {
904 es = NULL;
905 break;
906 }
907 es = rb_entry(node, struct extent_status, rb_node);
908 }
909
910 if (es && es->es_lblk < end + 1) {
911 ext4_lblk_t orig_len = es->es_len;
912
913 len1 = ext4_es_end(es) - end;
914 es->es_lblk = end + 1;
915 es->es_len = len1;
916 if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
917 block = es->es_pblk + orig_len - len1;
918 ext4_es_store_pblock(es, block);
919 }
920 }
921
922 out:
923 return err;
924 }
925
926 /*
927 * ext4_es_remove_extent() removes a space from a extent status tree.
928 *
929 * Return 0 on success, error code on failure.
930 */
931 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
932 ext4_lblk_t len)
933 {
934 ext4_lblk_t end;
935 int err = 0;
936
937 trace_ext4_es_remove_extent(inode, lblk, len);
938 es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
939 lblk, len, inode->i_ino);
940
941 if (!len)
942 return err;
943
944 end = lblk + len - 1;
945 BUG_ON(end < lblk);
946
947 /*
948 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
949 * so that we are sure __es_shrink() is done with the inode before it
950 * is reclaimed.
951 */
952 write_lock(&EXT4_I(inode)->i_es_lock);
953 err = __es_remove_extent(inode, lblk, end);
954 write_unlock(&EXT4_I(inode)->i_es_lock);
955 ext4_es_print_tree(inode);
956 return err;
957 }
958
959 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
960 struct ext4_inode_info *locked_ei)
961 {
962 struct ext4_inode_info *ei;
963 struct ext4_es_stats *es_stats;
964 ktime_t start_time;
965 u64 scan_time;
966 int nr_to_walk;
967 int nr_shrunk = 0;
968 int retried = 0, nr_skipped = 0;
969
970 es_stats = &sbi->s_es_stats;
971 start_time = ktime_get();
972
973 retry:
974 spin_lock(&sbi->s_es_lock);
975 nr_to_walk = sbi->s_es_nr_inode;
976 while (nr_to_walk-- > 0) {
977 int shrunk;
978
979 if (list_empty(&sbi->s_es_list)) {
980 spin_unlock(&sbi->s_es_lock);
981 goto out;
982 }
983 ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
984 i_es_list);
985 /* Move the inode to the tail */
986 list_move(&ei->i_es_list, sbi->s_es_list.prev);
987
988 /*
989 * Normally we try hard to avoid shrinking precached inodes,
990 * but we will as a last resort.
991 */
992 if (!retried && ext4_test_inode_state(&ei->vfs_inode,
993 EXT4_STATE_EXT_PRECACHED)) {
994 nr_skipped++;
995 continue;
996 }
997
998 if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
999 nr_skipped++;
1000 continue;
1001 }
1002 /*
1003 * Now we hold i_es_lock which protects us from inode reclaim
1004 * freeing inode under us
1005 */
1006 spin_unlock(&sbi->s_es_lock);
1007
1008 shrunk = __es_try_to_reclaim_extents(ei, nr_to_scan);
1009 write_unlock(&ei->i_es_lock);
1010
1011 nr_shrunk += shrunk;
1012 nr_to_scan -= shrunk;
1013
1014 if (nr_to_scan == 0)
1015 goto out;
1016 spin_lock(&sbi->s_es_lock);
1017 }
1018 spin_unlock(&sbi->s_es_lock);
1019
1020 /*
1021 * If we skipped any inodes, and we weren't able to make any
1022 * forward progress, try again to scan precached inodes.
1023 */
1024 if ((nr_shrunk == 0) && nr_skipped && !retried) {
1025 retried++;
1026 goto retry;
1027 }
1028
1029 if (locked_ei && nr_shrunk == 0)
1030 nr_shrunk = __es_try_to_reclaim_extents(locked_ei, nr_to_scan);
1031
1032 out:
1033 scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1034 if (likely(es_stats->es_stats_scan_time))
1035 es_stats->es_stats_scan_time = (scan_time +
1036 es_stats->es_stats_scan_time*3) / 4;
1037 else
1038 es_stats->es_stats_scan_time = scan_time;
1039 if (scan_time > es_stats->es_stats_max_scan_time)
1040 es_stats->es_stats_max_scan_time = scan_time;
1041 if (likely(es_stats->es_stats_shrunk))
1042 es_stats->es_stats_shrunk = (nr_shrunk +
1043 es_stats->es_stats_shrunk*3) / 4;
1044 else
1045 es_stats->es_stats_shrunk = nr_shrunk;
1046
1047 trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1048 nr_skipped, retried);
1049 return nr_shrunk;
1050 }
1051
1052 static unsigned long ext4_es_count(struct shrinker *shrink,
1053 struct shrink_control *sc)
1054 {
1055 unsigned long nr;
1056 struct ext4_sb_info *sbi;
1057
1058 sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1059 nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1060 trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1061 return nr;
1062 }
1063
1064 static unsigned long ext4_es_scan(struct shrinker *shrink,
1065 struct shrink_control *sc)
1066 {
1067 struct ext4_sb_info *sbi = container_of(shrink,
1068 struct ext4_sb_info, s_es_shrinker);
1069 int nr_to_scan = sc->nr_to_scan;
1070 int ret, nr_shrunk;
1071
1072 ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1073 trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1074
1075 if (!nr_to_scan)
1076 return ret;
1077
1078 nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1079
1080 trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1081 return nr_shrunk;
1082 }
1083
1084 static void *ext4_es_seq_shrinker_info_start(struct seq_file *seq, loff_t *pos)
1085 {
1086 return *pos ? NULL : SEQ_START_TOKEN;
1087 }
1088
1089 static void *
1090 ext4_es_seq_shrinker_info_next(struct seq_file *seq, void *v, loff_t *pos)
1091 {
1092 return NULL;
1093 }
1094
1095 static int ext4_es_seq_shrinker_info_show(struct seq_file *seq, void *v)
1096 {
1097 struct ext4_sb_info *sbi = seq->private;
1098 struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1099 struct ext4_inode_info *ei, *max = NULL;
1100 unsigned int inode_cnt = 0;
1101
1102 if (v != SEQ_START_TOKEN)
1103 return 0;
1104
1105 /* here we just find an inode that has the max nr. of objects */
1106 spin_lock(&sbi->s_es_lock);
1107 list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1108 inode_cnt++;
1109 if (max && max->i_es_all_nr < ei->i_es_all_nr)
1110 max = ei;
1111 else if (!max)
1112 max = ei;
1113 }
1114 spin_unlock(&sbi->s_es_lock);
1115
1116 seq_printf(seq, "stats:\n %lld objects\n %lld reclaimable objects\n",
1117 percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1118 percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1119 seq_printf(seq, " %lu/%lu cache hits/misses\n",
1120 es_stats->es_stats_cache_hits,
1121 es_stats->es_stats_cache_misses);
1122 if (inode_cnt)
1123 seq_printf(seq, " %d inodes on list\n", inode_cnt);
1124
1125 seq_printf(seq, "average:\n %llu us scan time\n",
1126 div_u64(es_stats->es_stats_scan_time, 1000));
1127 seq_printf(seq, " %lu shrunk objects\n", es_stats->es_stats_shrunk);
1128 if (inode_cnt)
1129 seq_printf(seq,
1130 "maximum:\n %lu inode (%u objects, %u reclaimable)\n"
1131 " %llu us max scan time\n",
1132 max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1133 div_u64(es_stats->es_stats_max_scan_time, 1000));
1134
1135 return 0;
1136 }
1137
1138 static void ext4_es_seq_shrinker_info_stop(struct seq_file *seq, void *v)
1139 {
1140 }
1141
1142 static const struct seq_operations ext4_es_seq_shrinker_info_ops = {
1143 .start = ext4_es_seq_shrinker_info_start,
1144 .next = ext4_es_seq_shrinker_info_next,
1145 .stop = ext4_es_seq_shrinker_info_stop,
1146 .show = ext4_es_seq_shrinker_info_show,
1147 };
1148
1149 static int
1150 ext4_es_seq_shrinker_info_open(struct inode *inode, struct file *file)
1151 {
1152 int ret;
1153
1154 ret = seq_open(file, &ext4_es_seq_shrinker_info_ops);
1155 if (!ret) {
1156 struct seq_file *m = file->private_data;
1157 m->private = PDE_DATA(inode);
1158 }
1159
1160 return ret;
1161 }
1162
1163 static int
1164 ext4_es_seq_shrinker_info_release(struct inode *inode, struct file *file)
1165 {
1166 return seq_release(inode, file);
1167 }
1168
1169 static const struct file_operations ext4_es_seq_shrinker_info_fops = {
1170 .owner = THIS_MODULE,
1171 .open = ext4_es_seq_shrinker_info_open,
1172 .read = seq_read,
1173 .llseek = seq_lseek,
1174 .release = ext4_es_seq_shrinker_info_release,
1175 };
1176
1177 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1178 {
1179 int err;
1180
1181 INIT_LIST_HEAD(&sbi->s_es_list);
1182 sbi->s_es_nr_inode = 0;
1183 spin_lock_init(&sbi->s_es_lock);
1184 sbi->s_es_stats.es_stats_shrunk = 0;
1185 sbi->s_es_stats.es_stats_cache_hits = 0;
1186 sbi->s_es_stats.es_stats_cache_misses = 0;
1187 sbi->s_es_stats.es_stats_scan_time = 0;
1188 sbi->s_es_stats.es_stats_max_scan_time = 0;
1189 err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1190 if (err)
1191 return err;
1192 err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1193 if (err)
1194 goto err1;
1195
1196 sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1197 sbi->s_es_shrinker.count_objects = ext4_es_count;
1198 sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1199 err = register_shrinker(&sbi->s_es_shrinker);
1200 if (err)
1201 goto err2;
1202
1203 if (sbi->s_proc)
1204 proc_create_data("es_shrinker_info", S_IRUGO, sbi->s_proc,
1205 &ext4_es_seq_shrinker_info_fops, sbi);
1206
1207 return 0;
1208
1209 err2:
1210 percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1211 err1:
1212 percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1213 return err;
1214 }
1215
1216 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1217 {
1218 if (sbi->s_proc)
1219 remove_proc_entry("es_shrinker_info", sbi->s_proc);
1220 percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1221 percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1222 unregister_shrinker(&sbi->s_es_shrinker);
1223 }
1224
1225 static int __es_try_to_reclaim_extents(struct ext4_inode_info *ei,
1226 int nr_to_scan)
1227 {
1228 struct inode *inode = &ei->vfs_inode;
1229 struct ext4_es_tree *tree = &ei->i_es_tree;
1230 struct rb_node *node;
1231 struct extent_status *es;
1232 unsigned long nr_shrunk = 0;
1233 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1234 DEFAULT_RATELIMIT_BURST);
1235
1236 if (ei->i_es_shk_nr == 0)
1237 return 0;
1238
1239 if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1240 __ratelimit(&_rs))
1241 ext4_warning(inode->i_sb, "forced shrink of precached extents");
1242
1243 node = rb_first(&tree->root);
1244 while (node != NULL) {
1245 es = rb_entry(node, struct extent_status, rb_node);
1246 node = rb_next(&es->rb_node);
1247 /*
1248 * We can't reclaim delayed extent from status tree because
1249 * fiemap, bigallic, and seek_data/hole need to use it.
1250 */
1251 if (!ext4_es_is_delayed(es)) {
1252 rb_erase(&es->rb_node, &tree->root);
1253 ext4_es_free_extent(inode, es);
1254 nr_shrunk++;
1255 if (--nr_to_scan == 0)
1256 break;
1257 }
1258 }
1259 tree->cache_es = NULL;
1260 return nr_shrunk;
1261 }
This page took 0.093576 seconds and 5 git commands to generate.