ext4: change LRU to round-robin in extent status tree shrinker
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54 {
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u16 csum_lo;
57 __u16 csum_hi = 0;
58 __u32 csum;
59
60 csum_lo = le16_to_cpu(raw->i_checksum_lo);
61 raw->i_checksum_lo = 0;
62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65 raw->i_checksum_hi = 0;
66 }
67
68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 EXT4_INODE_SIZE(inode->i_sb));
70
71 raw->i_checksum_lo = cpu_to_le16(csum_lo);
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76 return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 struct ext4_inode_info *ei)
81 {
82 __u32 provided, calculated;
83
84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 cpu_to_le32(EXT4_OS_LINUX) ||
86 !ext4_has_metadata_csum(inode->i_sb))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102 {
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !ext4_has_metadata_csum(inode->i_sb))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119 {
120 trace_ext4_begin_ordered_truncate(inode, new_size);
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned int offset,
135 unsigned int length);
136 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
138 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
139 int pextents);
140
141 /*
142 * Test whether an inode is a fast symlink.
143 */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146 int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
148
149 if (ext4_has_inline_data(inode))
150 return 0;
151
152 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153 }
154
155 /*
156 * Restart the transaction associated with *handle. This does a commit,
157 * so before we call here everything must be consistently dirtied against
158 * this transaction.
159 */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161 int nblocks)
162 {
163 int ret;
164
165 /*
166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
167 * moment, get_block can be called only for blocks inside i_size since
168 * page cache has been already dropped and writes are blocked by
169 * i_mutex. So we can safely drop the i_data_sem here.
170 */
171 BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 jbd_debug(2, "restarting handle %p\n", handle);
173 up_write(&EXT4_I(inode)->i_data_sem);
174 ret = ext4_journal_restart(handle, nblocks);
175 down_write(&EXT4_I(inode)->i_data_sem);
176 ext4_discard_preallocations(inode);
177
178 return ret;
179 }
180
181 /*
182 * Called at the last iput() if i_nlink is zero.
183 */
184 void ext4_evict_inode(struct inode *inode)
185 {
186 handle_t *handle;
187 int err;
188
189 trace_ext4_evict_inode(inode);
190
191 if (inode->i_nlink) {
192 /*
193 * When journalling data dirty buffers are tracked only in the
194 * journal. So although mm thinks everything is clean and
195 * ready for reaping the inode might still have some pages to
196 * write in the running transaction or waiting to be
197 * checkpointed. Thus calling jbd2_journal_invalidatepage()
198 * (via truncate_inode_pages()) to discard these buffers can
199 * cause data loss. Also even if we did not discard these
200 * buffers, we would have no way to find them after the inode
201 * is reaped and thus user could see stale data if he tries to
202 * read them before the transaction is checkpointed. So be
203 * careful and force everything to disk here... We use
204 * ei->i_datasync_tid to store the newest transaction
205 * containing inode's data.
206 *
207 * Note that directories do not have this problem because they
208 * don't use page cache.
209 */
210 if (ext4_should_journal_data(inode) &&
211 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
212 inode->i_ino != EXT4_JOURNAL_INO) {
213 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
214 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
215
216 jbd2_complete_transaction(journal, commit_tid);
217 filemap_write_and_wait(&inode->i_data);
218 }
219 truncate_inode_pages_final(&inode->i_data);
220
221 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
222 goto no_delete;
223 }
224
225 if (is_bad_inode(inode))
226 goto no_delete;
227 dquot_initialize(inode);
228
229 if (ext4_should_order_data(inode))
230 ext4_begin_ordered_truncate(inode, 0);
231 truncate_inode_pages_final(&inode->i_data);
232
233 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
234
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
238 */
239 sb_start_intwrite(inode->i_sb);
240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241 ext4_blocks_for_truncate(inode)+3);
242 if (IS_ERR(handle)) {
243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
249 ext4_orphan_del(NULL, inode);
250 sb_end_intwrite(inode->i_sb);
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
255 ext4_handle_sync(handle);
256 inode->i_size = 0;
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
259 ext4_warning(inode->i_sb,
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
263 if (inode->i_blocks)
264 ext4_truncate(inode);
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
272 if (!ext4_handle_has_enough_credits(handle, 3)) {
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
277 ext4_warning(inode->i_sb,
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
281 ext4_orphan_del(NULL, inode);
282 sb_end_intwrite(inode->i_sb);
283 goto no_delete;
284 }
285 }
286
287 /*
288 * Kill off the orphan record which ext4_truncate created.
289 * AKPM: I think this can be inside the above `if'.
290 * Note that ext4_orphan_del() has to be able to cope with the
291 * deletion of a non-existent orphan - this is because we don't
292 * know if ext4_truncate() actually created an orphan record.
293 * (Well, we could do this if we need to, but heck - it works)
294 */
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
305 if (ext4_mark_inode_dirty(handle, inode))
306 /* If that failed, just do the required in-core inode clear. */
307 ext4_clear_inode(inode);
308 else
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
311 sb_end_intwrite(inode->i_sb);
312 return;
313 no_delete:
314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320 return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325 * Called with i_data_sem down, which is important since we can call
326 * ext4_discard_preallocations() from here.
327 */
328 void ext4_da_update_reserve_space(struct inode *inode,
329 int used, int quota_claim)
330 {
331 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
332 struct ext4_inode_info *ei = EXT4_I(inode);
333
334 spin_lock(&ei->i_block_reservation_lock);
335 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
336 if (unlikely(used > ei->i_reserved_data_blocks)) {
337 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
338 "with only %d reserved data blocks",
339 __func__, inode->i_ino, used,
340 ei->i_reserved_data_blocks);
341 WARN_ON(1);
342 used = ei->i_reserved_data_blocks;
343 }
344
345 /* Update per-inode reservations */
346 ei->i_reserved_data_blocks -= used;
347 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
348
349 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
350
351 /* Update quota subsystem for data blocks */
352 if (quota_claim)
353 dquot_claim_block(inode, EXT4_C2B(sbi, used));
354 else {
355 /*
356 * We did fallocate with an offset that is already delayed
357 * allocated. So on delayed allocated writeback we should
358 * not re-claim the quota for fallocated blocks.
359 */
360 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
361 }
362
363 /*
364 * If we have done all the pending block allocations and if
365 * there aren't any writers on the inode, we can discard the
366 * inode's preallocations.
367 */
368 if ((ei->i_reserved_data_blocks == 0) &&
369 (atomic_read(&inode->i_writecount) == 0))
370 ext4_discard_preallocations(inode);
371 }
372
373 static int __check_block_validity(struct inode *inode, const char *func,
374 unsigned int line,
375 struct ext4_map_blocks *map)
376 {
377 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
378 map->m_len)) {
379 ext4_error_inode(inode, func, line, map->m_pblk,
380 "lblock %lu mapped to illegal pblock "
381 "(length %d)", (unsigned long) map->m_lblk,
382 map->m_len);
383 return -EIO;
384 }
385 return 0;
386 }
387
388 #define check_block_validity(inode, map) \
389 __check_block_validity((inode), __func__, __LINE__, (map))
390
391 #ifdef ES_AGGRESSIVE_TEST
392 static void ext4_map_blocks_es_recheck(handle_t *handle,
393 struct inode *inode,
394 struct ext4_map_blocks *es_map,
395 struct ext4_map_blocks *map,
396 int flags)
397 {
398 int retval;
399
400 map->m_flags = 0;
401 /*
402 * There is a race window that the result is not the same.
403 * e.g. xfstests #223 when dioread_nolock enables. The reason
404 * is that we lookup a block mapping in extent status tree with
405 * out taking i_data_sem. So at the time the unwritten extent
406 * could be converted.
407 */
408 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
409 down_read(&EXT4_I(inode)->i_data_sem);
410 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
411 retval = ext4_ext_map_blocks(handle, inode, map, flags &
412 EXT4_GET_BLOCKS_KEEP_SIZE);
413 } else {
414 retval = ext4_ind_map_blocks(handle, inode, map, flags &
415 EXT4_GET_BLOCKS_KEEP_SIZE);
416 }
417 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
418 up_read((&EXT4_I(inode)->i_data_sem));
419
420 /*
421 * We don't check m_len because extent will be collpased in status
422 * tree. So the m_len might not equal.
423 */
424 if (es_map->m_lblk != map->m_lblk ||
425 es_map->m_flags != map->m_flags ||
426 es_map->m_pblk != map->m_pblk) {
427 printk("ES cache assertion failed for inode: %lu "
428 "es_cached ex [%d/%d/%llu/%x] != "
429 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
430 inode->i_ino, es_map->m_lblk, es_map->m_len,
431 es_map->m_pblk, es_map->m_flags, map->m_lblk,
432 map->m_len, map->m_pblk, map->m_flags,
433 retval, flags);
434 }
435 }
436 #endif /* ES_AGGRESSIVE_TEST */
437
438 /*
439 * The ext4_map_blocks() function tries to look up the requested blocks,
440 * and returns if the blocks are already mapped.
441 *
442 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
443 * and store the allocated blocks in the result buffer head and mark it
444 * mapped.
445 *
446 * If file type is extents based, it will call ext4_ext_map_blocks(),
447 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
448 * based files
449 *
450 * On success, it returns the number of blocks being mapped or allocated.
451 * if create==0 and the blocks are pre-allocated and unwritten block,
452 * the result buffer head is unmapped. If the create ==1, it will make sure
453 * the buffer head is mapped.
454 *
455 * It returns 0 if plain look up failed (blocks have not been allocated), in
456 * that case, buffer head is unmapped
457 *
458 * It returns the error in case of allocation failure.
459 */
460 int ext4_map_blocks(handle_t *handle, struct inode *inode,
461 struct ext4_map_blocks *map, int flags)
462 {
463 struct extent_status es;
464 int retval;
465 int ret = 0;
466 #ifdef ES_AGGRESSIVE_TEST
467 struct ext4_map_blocks orig_map;
468
469 memcpy(&orig_map, map, sizeof(*map));
470 #endif
471
472 map->m_flags = 0;
473 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
474 "logical block %lu\n", inode->i_ino, flags, map->m_len,
475 (unsigned long) map->m_lblk);
476
477 /*
478 * ext4_map_blocks returns an int, and m_len is an unsigned int
479 */
480 if (unlikely(map->m_len > INT_MAX))
481 map->m_len = INT_MAX;
482
483 /* We can handle the block number less than EXT_MAX_BLOCKS */
484 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
485 return -EIO;
486
487 /* Lookup extent status tree firstly */
488 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
489 ext4_es_list_add(inode);
490 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
491 map->m_pblk = ext4_es_pblock(&es) +
492 map->m_lblk - es.es_lblk;
493 map->m_flags |= ext4_es_is_written(&es) ?
494 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
495 retval = es.es_len - (map->m_lblk - es.es_lblk);
496 if (retval > map->m_len)
497 retval = map->m_len;
498 map->m_len = retval;
499 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
500 retval = 0;
501 } else {
502 BUG_ON(1);
503 }
504 #ifdef ES_AGGRESSIVE_TEST
505 ext4_map_blocks_es_recheck(handle, inode, map,
506 &orig_map, flags);
507 #endif
508 goto found;
509 }
510
511 /*
512 * Try to see if we can get the block without requesting a new
513 * file system block.
514 */
515 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
516 down_read(&EXT4_I(inode)->i_data_sem);
517 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
518 retval = ext4_ext_map_blocks(handle, inode, map, flags &
519 EXT4_GET_BLOCKS_KEEP_SIZE);
520 } else {
521 retval = ext4_ind_map_blocks(handle, inode, map, flags &
522 EXT4_GET_BLOCKS_KEEP_SIZE);
523 }
524 if (retval > 0) {
525 unsigned int status;
526
527 if (unlikely(retval != map->m_len)) {
528 ext4_warning(inode->i_sb,
529 "ES len assertion failed for inode "
530 "%lu: retval %d != map->m_len %d",
531 inode->i_ino, retval, map->m_len);
532 WARN_ON(1);
533 }
534
535 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
536 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
537 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
538 ext4_find_delalloc_range(inode, map->m_lblk,
539 map->m_lblk + map->m_len - 1))
540 status |= EXTENT_STATUS_DELAYED;
541 ret = ext4_es_insert_extent(inode, map->m_lblk,
542 map->m_len, map->m_pblk, status);
543 if (ret < 0)
544 retval = ret;
545 }
546 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
547 up_read((&EXT4_I(inode)->i_data_sem));
548
549 found:
550 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
551 ret = check_block_validity(inode, map);
552 if (ret != 0)
553 return ret;
554 }
555
556 /* If it is only a block(s) look up */
557 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
558 return retval;
559
560 /*
561 * Returns if the blocks have already allocated
562 *
563 * Note that if blocks have been preallocated
564 * ext4_ext_get_block() returns the create = 0
565 * with buffer head unmapped.
566 */
567 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
568 /*
569 * If we need to convert extent to unwritten
570 * we continue and do the actual work in
571 * ext4_ext_map_blocks()
572 */
573 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
574 return retval;
575
576 /*
577 * Here we clear m_flags because after allocating an new extent,
578 * it will be set again.
579 */
580 map->m_flags &= ~EXT4_MAP_FLAGS;
581
582 /*
583 * New blocks allocate and/or writing to unwritten extent
584 * will possibly result in updating i_data, so we take
585 * the write lock of i_data_sem, and call get_block()
586 * with create == 1 flag.
587 */
588 down_write(&EXT4_I(inode)->i_data_sem);
589
590 /*
591 * We need to check for EXT4 here because migrate
592 * could have changed the inode type in between
593 */
594 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
595 retval = ext4_ext_map_blocks(handle, inode, map, flags);
596 } else {
597 retval = ext4_ind_map_blocks(handle, inode, map, flags);
598
599 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
600 /*
601 * We allocated new blocks which will result in
602 * i_data's format changing. Force the migrate
603 * to fail by clearing migrate flags
604 */
605 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
606 }
607
608 /*
609 * Update reserved blocks/metadata blocks after successful
610 * block allocation which had been deferred till now. We don't
611 * support fallocate for non extent files. So we can update
612 * reserve space here.
613 */
614 if ((retval > 0) &&
615 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
616 ext4_da_update_reserve_space(inode, retval, 1);
617 }
618
619 if (retval > 0) {
620 unsigned int status;
621
622 if (unlikely(retval != map->m_len)) {
623 ext4_warning(inode->i_sb,
624 "ES len assertion failed for inode "
625 "%lu: retval %d != map->m_len %d",
626 inode->i_ino, retval, map->m_len);
627 WARN_ON(1);
628 }
629
630 /*
631 * If the extent has been zeroed out, we don't need to update
632 * extent status tree.
633 */
634 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
635 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
636 if (ext4_es_is_written(&es))
637 goto has_zeroout;
638 }
639 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
640 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
641 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
642 ext4_find_delalloc_range(inode, map->m_lblk,
643 map->m_lblk + map->m_len - 1))
644 status |= EXTENT_STATUS_DELAYED;
645 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
646 map->m_pblk, status);
647 if (ret < 0)
648 retval = ret;
649 }
650
651 has_zeroout:
652 up_write((&EXT4_I(inode)->i_data_sem));
653 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
654 ret = check_block_validity(inode, map);
655 if (ret != 0)
656 return ret;
657 }
658 return retval;
659 }
660
661 /* Maximum number of blocks we map for direct IO at once. */
662 #define DIO_MAX_BLOCKS 4096
663
664 static int _ext4_get_block(struct inode *inode, sector_t iblock,
665 struct buffer_head *bh, int flags)
666 {
667 handle_t *handle = ext4_journal_current_handle();
668 struct ext4_map_blocks map;
669 int ret = 0, started = 0;
670 int dio_credits;
671
672 if (ext4_has_inline_data(inode))
673 return -ERANGE;
674
675 map.m_lblk = iblock;
676 map.m_len = bh->b_size >> inode->i_blkbits;
677
678 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
679 /* Direct IO write... */
680 if (map.m_len > DIO_MAX_BLOCKS)
681 map.m_len = DIO_MAX_BLOCKS;
682 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
683 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
684 dio_credits);
685 if (IS_ERR(handle)) {
686 ret = PTR_ERR(handle);
687 return ret;
688 }
689 started = 1;
690 }
691
692 ret = ext4_map_blocks(handle, inode, &map, flags);
693 if (ret > 0) {
694 ext4_io_end_t *io_end = ext4_inode_aio(inode);
695
696 map_bh(bh, inode->i_sb, map.m_pblk);
697 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
698 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
699 set_buffer_defer_completion(bh);
700 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
701 ret = 0;
702 }
703 if (started)
704 ext4_journal_stop(handle);
705 return ret;
706 }
707
708 int ext4_get_block(struct inode *inode, sector_t iblock,
709 struct buffer_head *bh, int create)
710 {
711 return _ext4_get_block(inode, iblock, bh,
712 create ? EXT4_GET_BLOCKS_CREATE : 0);
713 }
714
715 /*
716 * `handle' can be NULL if create is zero
717 */
718 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
719 ext4_lblk_t block, int create)
720 {
721 struct ext4_map_blocks map;
722 struct buffer_head *bh;
723 int err;
724
725 J_ASSERT(handle != NULL || create == 0);
726
727 map.m_lblk = block;
728 map.m_len = 1;
729 err = ext4_map_blocks(handle, inode, &map,
730 create ? EXT4_GET_BLOCKS_CREATE : 0);
731
732 if (err == 0)
733 return create ? ERR_PTR(-ENOSPC) : NULL;
734 if (err < 0)
735 return ERR_PTR(err);
736
737 bh = sb_getblk(inode->i_sb, map.m_pblk);
738 if (unlikely(!bh))
739 return ERR_PTR(-ENOMEM);
740 if (map.m_flags & EXT4_MAP_NEW) {
741 J_ASSERT(create != 0);
742 J_ASSERT(handle != NULL);
743
744 /*
745 * Now that we do not always journal data, we should
746 * keep in mind whether this should always journal the
747 * new buffer as metadata. For now, regular file
748 * writes use ext4_get_block instead, so it's not a
749 * problem.
750 */
751 lock_buffer(bh);
752 BUFFER_TRACE(bh, "call get_create_access");
753 err = ext4_journal_get_create_access(handle, bh);
754 if (unlikely(err)) {
755 unlock_buffer(bh);
756 goto errout;
757 }
758 if (!buffer_uptodate(bh)) {
759 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
760 set_buffer_uptodate(bh);
761 }
762 unlock_buffer(bh);
763 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
764 err = ext4_handle_dirty_metadata(handle, inode, bh);
765 if (unlikely(err))
766 goto errout;
767 } else
768 BUFFER_TRACE(bh, "not a new buffer");
769 return bh;
770 errout:
771 brelse(bh);
772 return ERR_PTR(err);
773 }
774
775 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
776 ext4_lblk_t block, int create)
777 {
778 struct buffer_head *bh;
779
780 bh = ext4_getblk(handle, inode, block, create);
781 if (IS_ERR(bh))
782 return bh;
783 if (!bh || buffer_uptodate(bh))
784 return bh;
785 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
786 wait_on_buffer(bh);
787 if (buffer_uptodate(bh))
788 return bh;
789 put_bh(bh);
790 return ERR_PTR(-EIO);
791 }
792
793 int ext4_walk_page_buffers(handle_t *handle,
794 struct buffer_head *head,
795 unsigned from,
796 unsigned to,
797 int *partial,
798 int (*fn)(handle_t *handle,
799 struct buffer_head *bh))
800 {
801 struct buffer_head *bh;
802 unsigned block_start, block_end;
803 unsigned blocksize = head->b_size;
804 int err, ret = 0;
805 struct buffer_head *next;
806
807 for (bh = head, block_start = 0;
808 ret == 0 && (bh != head || !block_start);
809 block_start = block_end, bh = next) {
810 next = bh->b_this_page;
811 block_end = block_start + blocksize;
812 if (block_end <= from || block_start >= to) {
813 if (partial && !buffer_uptodate(bh))
814 *partial = 1;
815 continue;
816 }
817 err = (*fn)(handle, bh);
818 if (!ret)
819 ret = err;
820 }
821 return ret;
822 }
823
824 /*
825 * To preserve ordering, it is essential that the hole instantiation and
826 * the data write be encapsulated in a single transaction. We cannot
827 * close off a transaction and start a new one between the ext4_get_block()
828 * and the commit_write(). So doing the jbd2_journal_start at the start of
829 * prepare_write() is the right place.
830 *
831 * Also, this function can nest inside ext4_writepage(). In that case, we
832 * *know* that ext4_writepage() has generated enough buffer credits to do the
833 * whole page. So we won't block on the journal in that case, which is good,
834 * because the caller may be PF_MEMALLOC.
835 *
836 * By accident, ext4 can be reentered when a transaction is open via
837 * quota file writes. If we were to commit the transaction while thus
838 * reentered, there can be a deadlock - we would be holding a quota
839 * lock, and the commit would never complete if another thread had a
840 * transaction open and was blocking on the quota lock - a ranking
841 * violation.
842 *
843 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
844 * will _not_ run commit under these circumstances because handle->h_ref
845 * is elevated. We'll still have enough credits for the tiny quotafile
846 * write.
847 */
848 int do_journal_get_write_access(handle_t *handle,
849 struct buffer_head *bh)
850 {
851 int dirty = buffer_dirty(bh);
852 int ret;
853
854 if (!buffer_mapped(bh) || buffer_freed(bh))
855 return 0;
856 /*
857 * __block_write_begin() could have dirtied some buffers. Clean
858 * the dirty bit as jbd2_journal_get_write_access() could complain
859 * otherwise about fs integrity issues. Setting of the dirty bit
860 * by __block_write_begin() isn't a real problem here as we clear
861 * the bit before releasing a page lock and thus writeback cannot
862 * ever write the buffer.
863 */
864 if (dirty)
865 clear_buffer_dirty(bh);
866 BUFFER_TRACE(bh, "get write access");
867 ret = ext4_journal_get_write_access(handle, bh);
868 if (!ret && dirty)
869 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
870 return ret;
871 }
872
873 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
874 struct buffer_head *bh_result, int create);
875 static int ext4_write_begin(struct file *file, struct address_space *mapping,
876 loff_t pos, unsigned len, unsigned flags,
877 struct page **pagep, void **fsdata)
878 {
879 struct inode *inode = mapping->host;
880 int ret, needed_blocks;
881 handle_t *handle;
882 int retries = 0;
883 struct page *page;
884 pgoff_t index;
885 unsigned from, to;
886
887 trace_ext4_write_begin(inode, pos, len, flags);
888 /*
889 * Reserve one block more for addition to orphan list in case
890 * we allocate blocks but write fails for some reason
891 */
892 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
893 index = pos >> PAGE_CACHE_SHIFT;
894 from = pos & (PAGE_CACHE_SIZE - 1);
895 to = from + len;
896
897 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
898 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
899 flags, pagep);
900 if (ret < 0)
901 return ret;
902 if (ret == 1)
903 return 0;
904 }
905
906 /*
907 * grab_cache_page_write_begin() can take a long time if the
908 * system is thrashing due to memory pressure, or if the page
909 * is being written back. So grab it first before we start
910 * the transaction handle. This also allows us to allocate
911 * the page (if needed) without using GFP_NOFS.
912 */
913 retry_grab:
914 page = grab_cache_page_write_begin(mapping, index, flags);
915 if (!page)
916 return -ENOMEM;
917 unlock_page(page);
918
919 retry_journal:
920 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
921 if (IS_ERR(handle)) {
922 page_cache_release(page);
923 return PTR_ERR(handle);
924 }
925
926 lock_page(page);
927 if (page->mapping != mapping) {
928 /* The page got truncated from under us */
929 unlock_page(page);
930 page_cache_release(page);
931 ext4_journal_stop(handle);
932 goto retry_grab;
933 }
934 /* In case writeback began while the page was unlocked */
935 wait_for_stable_page(page);
936
937 if (ext4_should_dioread_nolock(inode))
938 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
939 else
940 ret = __block_write_begin(page, pos, len, ext4_get_block);
941
942 if (!ret && ext4_should_journal_data(inode)) {
943 ret = ext4_walk_page_buffers(handle, page_buffers(page),
944 from, to, NULL,
945 do_journal_get_write_access);
946 }
947
948 if (ret) {
949 unlock_page(page);
950 /*
951 * __block_write_begin may have instantiated a few blocks
952 * outside i_size. Trim these off again. Don't need
953 * i_size_read because we hold i_mutex.
954 *
955 * Add inode to orphan list in case we crash before
956 * truncate finishes
957 */
958 if (pos + len > inode->i_size && ext4_can_truncate(inode))
959 ext4_orphan_add(handle, inode);
960
961 ext4_journal_stop(handle);
962 if (pos + len > inode->i_size) {
963 ext4_truncate_failed_write(inode);
964 /*
965 * If truncate failed early the inode might
966 * still be on the orphan list; we need to
967 * make sure the inode is removed from the
968 * orphan list in that case.
969 */
970 if (inode->i_nlink)
971 ext4_orphan_del(NULL, inode);
972 }
973
974 if (ret == -ENOSPC &&
975 ext4_should_retry_alloc(inode->i_sb, &retries))
976 goto retry_journal;
977 page_cache_release(page);
978 return ret;
979 }
980 *pagep = page;
981 return ret;
982 }
983
984 /* For write_end() in data=journal mode */
985 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
986 {
987 int ret;
988 if (!buffer_mapped(bh) || buffer_freed(bh))
989 return 0;
990 set_buffer_uptodate(bh);
991 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
992 clear_buffer_meta(bh);
993 clear_buffer_prio(bh);
994 return ret;
995 }
996
997 /*
998 * We need to pick up the new inode size which generic_commit_write gave us
999 * `file' can be NULL - eg, when called from page_symlink().
1000 *
1001 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1002 * buffers are managed internally.
1003 */
1004 static int ext4_write_end(struct file *file,
1005 struct address_space *mapping,
1006 loff_t pos, unsigned len, unsigned copied,
1007 struct page *page, void *fsdata)
1008 {
1009 handle_t *handle = ext4_journal_current_handle();
1010 struct inode *inode = mapping->host;
1011 int ret = 0, ret2;
1012 int i_size_changed = 0;
1013
1014 trace_ext4_write_end(inode, pos, len, copied);
1015 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1016 ret = ext4_jbd2_file_inode(handle, inode);
1017 if (ret) {
1018 unlock_page(page);
1019 page_cache_release(page);
1020 goto errout;
1021 }
1022 }
1023
1024 if (ext4_has_inline_data(inode)) {
1025 ret = ext4_write_inline_data_end(inode, pos, len,
1026 copied, page);
1027 if (ret < 0)
1028 goto errout;
1029 copied = ret;
1030 } else
1031 copied = block_write_end(file, mapping, pos,
1032 len, copied, page, fsdata);
1033 /*
1034 * it's important to update i_size while still holding page lock:
1035 * page writeout could otherwise come in and zero beyond i_size.
1036 */
1037 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1038 unlock_page(page);
1039 page_cache_release(page);
1040
1041 /*
1042 * Don't mark the inode dirty under page lock. First, it unnecessarily
1043 * makes the holding time of page lock longer. Second, it forces lock
1044 * ordering of page lock and transaction start for journaling
1045 * filesystems.
1046 */
1047 if (i_size_changed)
1048 ext4_mark_inode_dirty(handle, inode);
1049
1050 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1051 /* if we have allocated more blocks and copied
1052 * less. We will have blocks allocated outside
1053 * inode->i_size. So truncate them
1054 */
1055 ext4_orphan_add(handle, inode);
1056 errout:
1057 ret2 = ext4_journal_stop(handle);
1058 if (!ret)
1059 ret = ret2;
1060
1061 if (pos + len > inode->i_size) {
1062 ext4_truncate_failed_write(inode);
1063 /*
1064 * If truncate failed early the inode might still be
1065 * on the orphan list; we need to make sure the inode
1066 * is removed from the orphan list in that case.
1067 */
1068 if (inode->i_nlink)
1069 ext4_orphan_del(NULL, inode);
1070 }
1071
1072 return ret ? ret : copied;
1073 }
1074
1075 static int ext4_journalled_write_end(struct file *file,
1076 struct address_space *mapping,
1077 loff_t pos, unsigned len, unsigned copied,
1078 struct page *page, void *fsdata)
1079 {
1080 handle_t *handle = ext4_journal_current_handle();
1081 struct inode *inode = mapping->host;
1082 int ret = 0, ret2;
1083 int partial = 0;
1084 unsigned from, to;
1085 int size_changed = 0;
1086
1087 trace_ext4_journalled_write_end(inode, pos, len, copied);
1088 from = pos & (PAGE_CACHE_SIZE - 1);
1089 to = from + len;
1090
1091 BUG_ON(!ext4_handle_valid(handle));
1092
1093 if (ext4_has_inline_data(inode))
1094 copied = ext4_write_inline_data_end(inode, pos, len,
1095 copied, page);
1096 else {
1097 if (copied < len) {
1098 if (!PageUptodate(page))
1099 copied = 0;
1100 page_zero_new_buffers(page, from+copied, to);
1101 }
1102
1103 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1104 to, &partial, write_end_fn);
1105 if (!partial)
1106 SetPageUptodate(page);
1107 }
1108 size_changed = ext4_update_inode_size(inode, pos + copied);
1109 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1110 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1111 unlock_page(page);
1112 page_cache_release(page);
1113
1114 if (size_changed) {
1115 ret2 = ext4_mark_inode_dirty(handle, inode);
1116 if (!ret)
1117 ret = ret2;
1118 }
1119
1120 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1121 /* if we have allocated more blocks and copied
1122 * less. We will have blocks allocated outside
1123 * inode->i_size. So truncate them
1124 */
1125 ext4_orphan_add(handle, inode);
1126
1127 ret2 = ext4_journal_stop(handle);
1128 if (!ret)
1129 ret = ret2;
1130 if (pos + len > inode->i_size) {
1131 ext4_truncate_failed_write(inode);
1132 /*
1133 * If truncate failed early the inode might still be
1134 * on the orphan list; we need to make sure the inode
1135 * is removed from the orphan list in that case.
1136 */
1137 if (inode->i_nlink)
1138 ext4_orphan_del(NULL, inode);
1139 }
1140
1141 return ret ? ret : copied;
1142 }
1143
1144 /*
1145 * Reserve a single cluster located at lblock
1146 */
1147 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1148 {
1149 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1150 struct ext4_inode_info *ei = EXT4_I(inode);
1151 unsigned int md_needed;
1152 int ret;
1153
1154 /*
1155 * We will charge metadata quota at writeout time; this saves
1156 * us from metadata over-estimation, though we may go over by
1157 * a small amount in the end. Here we just reserve for data.
1158 */
1159 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1160 if (ret)
1161 return ret;
1162
1163 /*
1164 * recalculate the amount of metadata blocks to reserve
1165 * in order to allocate nrblocks
1166 * worse case is one extent per block
1167 */
1168 spin_lock(&ei->i_block_reservation_lock);
1169 /*
1170 * ext4_calc_metadata_amount() has side effects, which we have
1171 * to be prepared undo if we fail to claim space.
1172 */
1173 md_needed = 0;
1174 trace_ext4_da_reserve_space(inode, 0);
1175
1176 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1177 spin_unlock(&ei->i_block_reservation_lock);
1178 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1179 return -ENOSPC;
1180 }
1181 ei->i_reserved_data_blocks++;
1182 spin_unlock(&ei->i_block_reservation_lock);
1183
1184 return 0; /* success */
1185 }
1186
1187 static void ext4_da_release_space(struct inode *inode, int to_free)
1188 {
1189 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1190 struct ext4_inode_info *ei = EXT4_I(inode);
1191
1192 if (!to_free)
1193 return; /* Nothing to release, exit */
1194
1195 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1196
1197 trace_ext4_da_release_space(inode, to_free);
1198 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1199 /*
1200 * if there aren't enough reserved blocks, then the
1201 * counter is messed up somewhere. Since this
1202 * function is called from invalidate page, it's
1203 * harmless to return without any action.
1204 */
1205 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1206 "ino %lu, to_free %d with only %d reserved "
1207 "data blocks", inode->i_ino, to_free,
1208 ei->i_reserved_data_blocks);
1209 WARN_ON(1);
1210 to_free = ei->i_reserved_data_blocks;
1211 }
1212 ei->i_reserved_data_blocks -= to_free;
1213
1214 /* update fs dirty data blocks counter */
1215 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1216
1217 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1218
1219 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1220 }
1221
1222 static void ext4_da_page_release_reservation(struct page *page,
1223 unsigned int offset,
1224 unsigned int length)
1225 {
1226 int to_release = 0;
1227 struct buffer_head *head, *bh;
1228 unsigned int curr_off = 0;
1229 struct inode *inode = page->mapping->host;
1230 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1231 unsigned int stop = offset + length;
1232 int num_clusters;
1233 ext4_fsblk_t lblk;
1234
1235 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1236
1237 head = page_buffers(page);
1238 bh = head;
1239 do {
1240 unsigned int next_off = curr_off + bh->b_size;
1241
1242 if (next_off > stop)
1243 break;
1244
1245 if ((offset <= curr_off) && (buffer_delay(bh))) {
1246 to_release++;
1247 clear_buffer_delay(bh);
1248 }
1249 curr_off = next_off;
1250 } while ((bh = bh->b_this_page) != head);
1251
1252 if (to_release) {
1253 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1254 ext4_es_remove_extent(inode, lblk, to_release);
1255 }
1256
1257 /* If we have released all the blocks belonging to a cluster, then we
1258 * need to release the reserved space for that cluster. */
1259 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1260 while (num_clusters > 0) {
1261 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1262 ((num_clusters - 1) << sbi->s_cluster_bits);
1263 if (sbi->s_cluster_ratio == 1 ||
1264 !ext4_find_delalloc_cluster(inode, lblk))
1265 ext4_da_release_space(inode, 1);
1266
1267 num_clusters--;
1268 }
1269 }
1270
1271 /*
1272 * Delayed allocation stuff
1273 */
1274
1275 struct mpage_da_data {
1276 struct inode *inode;
1277 struct writeback_control *wbc;
1278
1279 pgoff_t first_page; /* The first page to write */
1280 pgoff_t next_page; /* Current page to examine */
1281 pgoff_t last_page; /* Last page to examine */
1282 /*
1283 * Extent to map - this can be after first_page because that can be
1284 * fully mapped. We somewhat abuse m_flags to store whether the extent
1285 * is delalloc or unwritten.
1286 */
1287 struct ext4_map_blocks map;
1288 struct ext4_io_submit io_submit; /* IO submission data */
1289 };
1290
1291 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1292 bool invalidate)
1293 {
1294 int nr_pages, i;
1295 pgoff_t index, end;
1296 struct pagevec pvec;
1297 struct inode *inode = mpd->inode;
1298 struct address_space *mapping = inode->i_mapping;
1299
1300 /* This is necessary when next_page == 0. */
1301 if (mpd->first_page >= mpd->next_page)
1302 return;
1303
1304 index = mpd->first_page;
1305 end = mpd->next_page - 1;
1306 if (invalidate) {
1307 ext4_lblk_t start, last;
1308 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1309 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1310 ext4_es_remove_extent(inode, start, last - start + 1);
1311 }
1312
1313 pagevec_init(&pvec, 0);
1314 while (index <= end) {
1315 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1316 if (nr_pages == 0)
1317 break;
1318 for (i = 0; i < nr_pages; i++) {
1319 struct page *page = pvec.pages[i];
1320 if (page->index > end)
1321 break;
1322 BUG_ON(!PageLocked(page));
1323 BUG_ON(PageWriteback(page));
1324 if (invalidate) {
1325 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1326 ClearPageUptodate(page);
1327 }
1328 unlock_page(page);
1329 }
1330 index = pvec.pages[nr_pages - 1]->index + 1;
1331 pagevec_release(&pvec);
1332 }
1333 }
1334
1335 static void ext4_print_free_blocks(struct inode *inode)
1336 {
1337 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1338 struct super_block *sb = inode->i_sb;
1339 struct ext4_inode_info *ei = EXT4_I(inode);
1340
1341 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1342 EXT4_C2B(EXT4_SB(inode->i_sb),
1343 ext4_count_free_clusters(sb)));
1344 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1345 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1346 (long long) EXT4_C2B(EXT4_SB(sb),
1347 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1348 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1349 (long long) EXT4_C2B(EXT4_SB(sb),
1350 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1351 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1352 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1353 ei->i_reserved_data_blocks);
1354 return;
1355 }
1356
1357 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1358 {
1359 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1360 }
1361
1362 /*
1363 * This function is grabs code from the very beginning of
1364 * ext4_map_blocks, but assumes that the caller is from delayed write
1365 * time. This function looks up the requested blocks and sets the
1366 * buffer delay bit under the protection of i_data_sem.
1367 */
1368 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1369 struct ext4_map_blocks *map,
1370 struct buffer_head *bh)
1371 {
1372 struct extent_status es;
1373 int retval;
1374 sector_t invalid_block = ~((sector_t) 0xffff);
1375 #ifdef ES_AGGRESSIVE_TEST
1376 struct ext4_map_blocks orig_map;
1377
1378 memcpy(&orig_map, map, sizeof(*map));
1379 #endif
1380
1381 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1382 invalid_block = ~0;
1383
1384 map->m_flags = 0;
1385 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1386 "logical block %lu\n", inode->i_ino, map->m_len,
1387 (unsigned long) map->m_lblk);
1388
1389 /* Lookup extent status tree firstly */
1390 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1391 ext4_es_list_add(inode);
1392 if (ext4_es_is_hole(&es)) {
1393 retval = 0;
1394 down_read(&EXT4_I(inode)->i_data_sem);
1395 goto add_delayed;
1396 }
1397
1398 /*
1399 * Delayed extent could be allocated by fallocate.
1400 * So we need to check it.
1401 */
1402 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1403 map_bh(bh, inode->i_sb, invalid_block);
1404 set_buffer_new(bh);
1405 set_buffer_delay(bh);
1406 return 0;
1407 }
1408
1409 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1410 retval = es.es_len - (iblock - es.es_lblk);
1411 if (retval > map->m_len)
1412 retval = map->m_len;
1413 map->m_len = retval;
1414 if (ext4_es_is_written(&es))
1415 map->m_flags |= EXT4_MAP_MAPPED;
1416 else if (ext4_es_is_unwritten(&es))
1417 map->m_flags |= EXT4_MAP_UNWRITTEN;
1418 else
1419 BUG_ON(1);
1420
1421 #ifdef ES_AGGRESSIVE_TEST
1422 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1423 #endif
1424 return retval;
1425 }
1426
1427 /*
1428 * Try to see if we can get the block without requesting a new
1429 * file system block.
1430 */
1431 down_read(&EXT4_I(inode)->i_data_sem);
1432 if (ext4_has_inline_data(inode))
1433 retval = 0;
1434 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1435 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1436 else
1437 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1438
1439 add_delayed:
1440 if (retval == 0) {
1441 int ret;
1442 /*
1443 * XXX: __block_prepare_write() unmaps passed block,
1444 * is it OK?
1445 */
1446 /*
1447 * If the block was allocated from previously allocated cluster,
1448 * then we don't need to reserve it again. However we still need
1449 * to reserve metadata for every block we're going to write.
1450 */
1451 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1452 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1453 ret = ext4_da_reserve_space(inode, iblock);
1454 if (ret) {
1455 /* not enough space to reserve */
1456 retval = ret;
1457 goto out_unlock;
1458 }
1459 }
1460
1461 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1462 ~0, EXTENT_STATUS_DELAYED);
1463 if (ret) {
1464 retval = ret;
1465 goto out_unlock;
1466 }
1467
1468 map_bh(bh, inode->i_sb, invalid_block);
1469 set_buffer_new(bh);
1470 set_buffer_delay(bh);
1471 } else if (retval > 0) {
1472 int ret;
1473 unsigned int status;
1474
1475 if (unlikely(retval != map->m_len)) {
1476 ext4_warning(inode->i_sb,
1477 "ES len assertion failed for inode "
1478 "%lu: retval %d != map->m_len %d",
1479 inode->i_ino, retval, map->m_len);
1480 WARN_ON(1);
1481 }
1482
1483 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1484 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1485 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1486 map->m_pblk, status);
1487 if (ret != 0)
1488 retval = ret;
1489 }
1490
1491 out_unlock:
1492 up_read((&EXT4_I(inode)->i_data_sem));
1493
1494 return retval;
1495 }
1496
1497 /*
1498 * This is a special get_block_t callback which is used by
1499 * ext4_da_write_begin(). It will either return mapped block or
1500 * reserve space for a single block.
1501 *
1502 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1503 * We also have b_blocknr = -1 and b_bdev initialized properly
1504 *
1505 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1506 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1507 * initialized properly.
1508 */
1509 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1510 struct buffer_head *bh, int create)
1511 {
1512 struct ext4_map_blocks map;
1513 int ret = 0;
1514
1515 BUG_ON(create == 0);
1516 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1517
1518 map.m_lblk = iblock;
1519 map.m_len = 1;
1520
1521 /*
1522 * first, we need to know whether the block is allocated already
1523 * preallocated blocks are unmapped but should treated
1524 * the same as allocated blocks.
1525 */
1526 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1527 if (ret <= 0)
1528 return ret;
1529
1530 map_bh(bh, inode->i_sb, map.m_pblk);
1531 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1532
1533 if (buffer_unwritten(bh)) {
1534 /* A delayed write to unwritten bh should be marked
1535 * new and mapped. Mapped ensures that we don't do
1536 * get_block multiple times when we write to the same
1537 * offset and new ensures that we do proper zero out
1538 * for partial write.
1539 */
1540 set_buffer_new(bh);
1541 set_buffer_mapped(bh);
1542 }
1543 return 0;
1544 }
1545
1546 static int bget_one(handle_t *handle, struct buffer_head *bh)
1547 {
1548 get_bh(bh);
1549 return 0;
1550 }
1551
1552 static int bput_one(handle_t *handle, struct buffer_head *bh)
1553 {
1554 put_bh(bh);
1555 return 0;
1556 }
1557
1558 static int __ext4_journalled_writepage(struct page *page,
1559 unsigned int len)
1560 {
1561 struct address_space *mapping = page->mapping;
1562 struct inode *inode = mapping->host;
1563 struct buffer_head *page_bufs = NULL;
1564 handle_t *handle = NULL;
1565 int ret = 0, err = 0;
1566 int inline_data = ext4_has_inline_data(inode);
1567 struct buffer_head *inode_bh = NULL;
1568
1569 ClearPageChecked(page);
1570
1571 if (inline_data) {
1572 BUG_ON(page->index != 0);
1573 BUG_ON(len > ext4_get_max_inline_size(inode));
1574 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1575 if (inode_bh == NULL)
1576 goto out;
1577 } else {
1578 page_bufs = page_buffers(page);
1579 if (!page_bufs) {
1580 BUG();
1581 goto out;
1582 }
1583 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1584 NULL, bget_one);
1585 }
1586 /* As soon as we unlock the page, it can go away, but we have
1587 * references to buffers so we are safe */
1588 unlock_page(page);
1589
1590 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1591 ext4_writepage_trans_blocks(inode));
1592 if (IS_ERR(handle)) {
1593 ret = PTR_ERR(handle);
1594 goto out;
1595 }
1596
1597 BUG_ON(!ext4_handle_valid(handle));
1598
1599 if (inline_data) {
1600 BUFFER_TRACE(inode_bh, "get write access");
1601 ret = ext4_journal_get_write_access(handle, inode_bh);
1602
1603 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1604
1605 } else {
1606 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1607 do_journal_get_write_access);
1608
1609 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1610 write_end_fn);
1611 }
1612 if (ret == 0)
1613 ret = err;
1614 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1615 err = ext4_journal_stop(handle);
1616 if (!ret)
1617 ret = err;
1618
1619 if (!ext4_has_inline_data(inode))
1620 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1621 NULL, bput_one);
1622 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1623 out:
1624 brelse(inode_bh);
1625 return ret;
1626 }
1627
1628 /*
1629 * Note that we don't need to start a transaction unless we're journaling data
1630 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1631 * need to file the inode to the transaction's list in ordered mode because if
1632 * we are writing back data added by write(), the inode is already there and if
1633 * we are writing back data modified via mmap(), no one guarantees in which
1634 * transaction the data will hit the disk. In case we are journaling data, we
1635 * cannot start transaction directly because transaction start ranks above page
1636 * lock so we have to do some magic.
1637 *
1638 * This function can get called via...
1639 * - ext4_writepages after taking page lock (have journal handle)
1640 * - journal_submit_inode_data_buffers (no journal handle)
1641 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1642 * - grab_page_cache when doing write_begin (have journal handle)
1643 *
1644 * We don't do any block allocation in this function. If we have page with
1645 * multiple blocks we need to write those buffer_heads that are mapped. This
1646 * is important for mmaped based write. So if we do with blocksize 1K
1647 * truncate(f, 1024);
1648 * a = mmap(f, 0, 4096);
1649 * a[0] = 'a';
1650 * truncate(f, 4096);
1651 * we have in the page first buffer_head mapped via page_mkwrite call back
1652 * but other buffer_heads would be unmapped but dirty (dirty done via the
1653 * do_wp_page). So writepage should write the first block. If we modify
1654 * the mmap area beyond 1024 we will again get a page_fault and the
1655 * page_mkwrite callback will do the block allocation and mark the
1656 * buffer_heads mapped.
1657 *
1658 * We redirty the page if we have any buffer_heads that is either delay or
1659 * unwritten in the page.
1660 *
1661 * We can get recursively called as show below.
1662 *
1663 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1664 * ext4_writepage()
1665 *
1666 * But since we don't do any block allocation we should not deadlock.
1667 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1668 */
1669 static int ext4_writepage(struct page *page,
1670 struct writeback_control *wbc)
1671 {
1672 int ret = 0;
1673 loff_t size;
1674 unsigned int len;
1675 struct buffer_head *page_bufs = NULL;
1676 struct inode *inode = page->mapping->host;
1677 struct ext4_io_submit io_submit;
1678 bool keep_towrite = false;
1679
1680 trace_ext4_writepage(page);
1681 size = i_size_read(inode);
1682 if (page->index == size >> PAGE_CACHE_SHIFT)
1683 len = size & ~PAGE_CACHE_MASK;
1684 else
1685 len = PAGE_CACHE_SIZE;
1686
1687 page_bufs = page_buffers(page);
1688 /*
1689 * We cannot do block allocation or other extent handling in this
1690 * function. If there are buffers needing that, we have to redirty
1691 * the page. But we may reach here when we do a journal commit via
1692 * journal_submit_inode_data_buffers() and in that case we must write
1693 * allocated buffers to achieve data=ordered mode guarantees.
1694 */
1695 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1696 ext4_bh_delay_or_unwritten)) {
1697 redirty_page_for_writepage(wbc, page);
1698 if (current->flags & PF_MEMALLOC) {
1699 /*
1700 * For memory cleaning there's no point in writing only
1701 * some buffers. So just bail out. Warn if we came here
1702 * from direct reclaim.
1703 */
1704 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1705 == PF_MEMALLOC);
1706 unlock_page(page);
1707 return 0;
1708 }
1709 keep_towrite = true;
1710 }
1711
1712 if (PageChecked(page) && ext4_should_journal_data(inode))
1713 /*
1714 * It's mmapped pagecache. Add buffers and journal it. There
1715 * doesn't seem much point in redirtying the page here.
1716 */
1717 return __ext4_journalled_writepage(page, len);
1718
1719 ext4_io_submit_init(&io_submit, wbc);
1720 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1721 if (!io_submit.io_end) {
1722 redirty_page_for_writepage(wbc, page);
1723 unlock_page(page);
1724 return -ENOMEM;
1725 }
1726 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1727 ext4_io_submit(&io_submit);
1728 /* Drop io_end reference we got from init */
1729 ext4_put_io_end_defer(io_submit.io_end);
1730 return ret;
1731 }
1732
1733 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1734 {
1735 int len;
1736 loff_t size = i_size_read(mpd->inode);
1737 int err;
1738
1739 BUG_ON(page->index != mpd->first_page);
1740 if (page->index == size >> PAGE_CACHE_SHIFT)
1741 len = size & ~PAGE_CACHE_MASK;
1742 else
1743 len = PAGE_CACHE_SIZE;
1744 clear_page_dirty_for_io(page);
1745 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1746 if (!err)
1747 mpd->wbc->nr_to_write--;
1748 mpd->first_page++;
1749
1750 return err;
1751 }
1752
1753 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1754
1755 /*
1756 * mballoc gives us at most this number of blocks...
1757 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1758 * The rest of mballoc seems to handle chunks up to full group size.
1759 */
1760 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1761
1762 /*
1763 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1764 *
1765 * @mpd - extent of blocks
1766 * @lblk - logical number of the block in the file
1767 * @bh - buffer head we want to add to the extent
1768 *
1769 * The function is used to collect contig. blocks in the same state. If the
1770 * buffer doesn't require mapping for writeback and we haven't started the
1771 * extent of buffers to map yet, the function returns 'true' immediately - the
1772 * caller can write the buffer right away. Otherwise the function returns true
1773 * if the block has been added to the extent, false if the block couldn't be
1774 * added.
1775 */
1776 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1777 struct buffer_head *bh)
1778 {
1779 struct ext4_map_blocks *map = &mpd->map;
1780
1781 /* Buffer that doesn't need mapping for writeback? */
1782 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1783 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1784 /* So far no extent to map => we write the buffer right away */
1785 if (map->m_len == 0)
1786 return true;
1787 return false;
1788 }
1789
1790 /* First block in the extent? */
1791 if (map->m_len == 0) {
1792 map->m_lblk = lblk;
1793 map->m_len = 1;
1794 map->m_flags = bh->b_state & BH_FLAGS;
1795 return true;
1796 }
1797
1798 /* Don't go larger than mballoc is willing to allocate */
1799 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1800 return false;
1801
1802 /* Can we merge the block to our big extent? */
1803 if (lblk == map->m_lblk + map->m_len &&
1804 (bh->b_state & BH_FLAGS) == map->m_flags) {
1805 map->m_len++;
1806 return true;
1807 }
1808 return false;
1809 }
1810
1811 /*
1812 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1813 *
1814 * @mpd - extent of blocks for mapping
1815 * @head - the first buffer in the page
1816 * @bh - buffer we should start processing from
1817 * @lblk - logical number of the block in the file corresponding to @bh
1818 *
1819 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1820 * the page for IO if all buffers in this page were mapped and there's no
1821 * accumulated extent of buffers to map or add buffers in the page to the
1822 * extent of buffers to map. The function returns 1 if the caller can continue
1823 * by processing the next page, 0 if it should stop adding buffers to the
1824 * extent to map because we cannot extend it anymore. It can also return value
1825 * < 0 in case of error during IO submission.
1826 */
1827 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1828 struct buffer_head *head,
1829 struct buffer_head *bh,
1830 ext4_lblk_t lblk)
1831 {
1832 struct inode *inode = mpd->inode;
1833 int err;
1834 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1835 >> inode->i_blkbits;
1836
1837 do {
1838 BUG_ON(buffer_locked(bh));
1839
1840 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1841 /* Found extent to map? */
1842 if (mpd->map.m_len)
1843 return 0;
1844 /* Everything mapped so far and we hit EOF */
1845 break;
1846 }
1847 } while (lblk++, (bh = bh->b_this_page) != head);
1848 /* So far everything mapped? Submit the page for IO. */
1849 if (mpd->map.m_len == 0) {
1850 err = mpage_submit_page(mpd, head->b_page);
1851 if (err < 0)
1852 return err;
1853 }
1854 return lblk < blocks;
1855 }
1856
1857 /*
1858 * mpage_map_buffers - update buffers corresponding to changed extent and
1859 * submit fully mapped pages for IO
1860 *
1861 * @mpd - description of extent to map, on return next extent to map
1862 *
1863 * Scan buffers corresponding to changed extent (we expect corresponding pages
1864 * to be already locked) and update buffer state according to new extent state.
1865 * We map delalloc buffers to their physical location, clear unwritten bits,
1866 * and mark buffers as uninit when we perform writes to unwritten extents
1867 * and do extent conversion after IO is finished. If the last page is not fully
1868 * mapped, we update @map to the next extent in the last page that needs
1869 * mapping. Otherwise we submit the page for IO.
1870 */
1871 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1872 {
1873 struct pagevec pvec;
1874 int nr_pages, i;
1875 struct inode *inode = mpd->inode;
1876 struct buffer_head *head, *bh;
1877 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1878 pgoff_t start, end;
1879 ext4_lblk_t lblk;
1880 sector_t pblock;
1881 int err;
1882
1883 start = mpd->map.m_lblk >> bpp_bits;
1884 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1885 lblk = start << bpp_bits;
1886 pblock = mpd->map.m_pblk;
1887
1888 pagevec_init(&pvec, 0);
1889 while (start <= end) {
1890 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1891 PAGEVEC_SIZE);
1892 if (nr_pages == 0)
1893 break;
1894 for (i = 0; i < nr_pages; i++) {
1895 struct page *page = pvec.pages[i];
1896
1897 if (page->index > end)
1898 break;
1899 /* Up to 'end' pages must be contiguous */
1900 BUG_ON(page->index != start);
1901 bh = head = page_buffers(page);
1902 do {
1903 if (lblk < mpd->map.m_lblk)
1904 continue;
1905 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1906 /*
1907 * Buffer after end of mapped extent.
1908 * Find next buffer in the page to map.
1909 */
1910 mpd->map.m_len = 0;
1911 mpd->map.m_flags = 0;
1912 /*
1913 * FIXME: If dioread_nolock supports
1914 * blocksize < pagesize, we need to make
1915 * sure we add size mapped so far to
1916 * io_end->size as the following call
1917 * can submit the page for IO.
1918 */
1919 err = mpage_process_page_bufs(mpd, head,
1920 bh, lblk);
1921 pagevec_release(&pvec);
1922 if (err > 0)
1923 err = 0;
1924 return err;
1925 }
1926 if (buffer_delay(bh)) {
1927 clear_buffer_delay(bh);
1928 bh->b_blocknr = pblock++;
1929 }
1930 clear_buffer_unwritten(bh);
1931 } while (lblk++, (bh = bh->b_this_page) != head);
1932
1933 /*
1934 * FIXME: This is going to break if dioread_nolock
1935 * supports blocksize < pagesize as we will try to
1936 * convert potentially unmapped parts of inode.
1937 */
1938 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1939 /* Page fully mapped - let IO run! */
1940 err = mpage_submit_page(mpd, page);
1941 if (err < 0) {
1942 pagevec_release(&pvec);
1943 return err;
1944 }
1945 start++;
1946 }
1947 pagevec_release(&pvec);
1948 }
1949 /* Extent fully mapped and matches with page boundary. We are done. */
1950 mpd->map.m_len = 0;
1951 mpd->map.m_flags = 0;
1952 return 0;
1953 }
1954
1955 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1956 {
1957 struct inode *inode = mpd->inode;
1958 struct ext4_map_blocks *map = &mpd->map;
1959 int get_blocks_flags;
1960 int err, dioread_nolock;
1961
1962 trace_ext4_da_write_pages_extent(inode, map);
1963 /*
1964 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1965 * to convert an unwritten extent to be initialized (in the case
1966 * where we have written into one or more preallocated blocks). It is
1967 * possible that we're going to need more metadata blocks than
1968 * previously reserved. However we must not fail because we're in
1969 * writeback and there is nothing we can do about it so it might result
1970 * in data loss. So use reserved blocks to allocate metadata if
1971 * possible.
1972 *
1973 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1974 * the blocks in question are delalloc blocks. This indicates
1975 * that the blocks and quotas has already been checked when
1976 * the data was copied into the page cache.
1977 */
1978 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1979 EXT4_GET_BLOCKS_METADATA_NOFAIL;
1980 dioread_nolock = ext4_should_dioread_nolock(inode);
1981 if (dioread_nolock)
1982 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1983 if (map->m_flags & (1 << BH_Delay))
1984 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1985
1986 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
1987 if (err < 0)
1988 return err;
1989 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
1990 if (!mpd->io_submit.io_end->handle &&
1991 ext4_handle_valid(handle)) {
1992 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
1993 handle->h_rsv_handle = NULL;
1994 }
1995 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
1996 }
1997
1998 BUG_ON(map->m_len == 0);
1999 if (map->m_flags & EXT4_MAP_NEW) {
2000 struct block_device *bdev = inode->i_sb->s_bdev;
2001 int i;
2002
2003 for (i = 0; i < map->m_len; i++)
2004 unmap_underlying_metadata(bdev, map->m_pblk + i);
2005 }
2006 return 0;
2007 }
2008
2009 /*
2010 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2011 * mpd->len and submit pages underlying it for IO
2012 *
2013 * @handle - handle for journal operations
2014 * @mpd - extent to map
2015 * @give_up_on_write - we set this to true iff there is a fatal error and there
2016 * is no hope of writing the data. The caller should discard
2017 * dirty pages to avoid infinite loops.
2018 *
2019 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2020 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2021 * them to initialized or split the described range from larger unwritten
2022 * extent. Note that we need not map all the described range since allocation
2023 * can return less blocks or the range is covered by more unwritten extents. We
2024 * cannot map more because we are limited by reserved transaction credits. On
2025 * the other hand we always make sure that the last touched page is fully
2026 * mapped so that it can be written out (and thus forward progress is
2027 * guaranteed). After mapping we submit all mapped pages for IO.
2028 */
2029 static int mpage_map_and_submit_extent(handle_t *handle,
2030 struct mpage_da_data *mpd,
2031 bool *give_up_on_write)
2032 {
2033 struct inode *inode = mpd->inode;
2034 struct ext4_map_blocks *map = &mpd->map;
2035 int err;
2036 loff_t disksize;
2037 int progress = 0;
2038
2039 mpd->io_submit.io_end->offset =
2040 ((loff_t)map->m_lblk) << inode->i_blkbits;
2041 do {
2042 err = mpage_map_one_extent(handle, mpd);
2043 if (err < 0) {
2044 struct super_block *sb = inode->i_sb;
2045
2046 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2047 goto invalidate_dirty_pages;
2048 /*
2049 * Let the uper layers retry transient errors.
2050 * In the case of ENOSPC, if ext4_count_free_blocks()
2051 * is non-zero, a commit should free up blocks.
2052 */
2053 if ((err == -ENOMEM) ||
2054 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2055 if (progress)
2056 goto update_disksize;
2057 return err;
2058 }
2059 ext4_msg(sb, KERN_CRIT,
2060 "Delayed block allocation failed for "
2061 "inode %lu at logical offset %llu with"
2062 " max blocks %u with error %d",
2063 inode->i_ino,
2064 (unsigned long long)map->m_lblk,
2065 (unsigned)map->m_len, -err);
2066 ext4_msg(sb, KERN_CRIT,
2067 "This should not happen!! Data will "
2068 "be lost\n");
2069 if (err == -ENOSPC)
2070 ext4_print_free_blocks(inode);
2071 invalidate_dirty_pages:
2072 *give_up_on_write = true;
2073 return err;
2074 }
2075 progress = 1;
2076 /*
2077 * Update buffer state, submit mapped pages, and get us new
2078 * extent to map
2079 */
2080 err = mpage_map_and_submit_buffers(mpd);
2081 if (err < 0)
2082 goto update_disksize;
2083 } while (map->m_len);
2084
2085 update_disksize:
2086 /*
2087 * Update on-disk size after IO is submitted. Races with
2088 * truncate are avoided by checking i_size under i_data_sem.
2089 */
2090 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2091 if (disksize > EXT4_I(inode)->i_disksize) {
2092 int err2;
2093 loff_t i_size;
2094
2095 down_write(&EXT4_I(inode)->i_data_sem);
2096 i_size = i_size_read(inode);
2097 if (disksize > i_size)
2098 disksize = i_size;
2099 if (disksize > EXT4_I(inode)->i_disksize)
2100 EXT4_I(inode)->i_disksize = disksize;
2101 err2 = ext4_mark_inode_dirty(handle, inode);
2102 up_write(&EXT4_I(inode)->i_data_sem);
2103 if (err2)
2104 ext4_error(inode->i_sb,
2105 "Failed to mark inode %lu dirty",
2106 inode->i_ino);
2107 if (!err)
2108 err = err2;
2109 }
2110 return err;
2111 }
2112
2113 /*
2114 * Calculate the total number of credits to reserve for one writepages
2115 * iteration. This is called from ext4_writepages(). We map an extent of
2116 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2117 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2118 * bpp - 1 blocks in bpp different extents.
2119 */
2120 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2121 {
2122 int bpp = ext4_journal_blocks_per_page(inode);
2123
2124 return ext4_meta_trans_blocks(inode,
2125 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2126 }
2127
2128 /*
2129 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2130 * and underlying extent to map
2131 *
2132 * @mpd - where to look for pages
2133 *
2134 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2135 * IO immediately. When we find a page which isn't mapped we start accumulating
2136 * extent of buffers underlying these pages that needs mapping (formed by
2137 * either delayed or unwritten buffers). We also lock the pages containing
2138 * these buffers. The extent found is returned in @mpd structure (starting at
2139 * mpd->lblk with length mpd->len blocks).
2140 *
2141 * Note that this function can attach bios to one io_end structure which are
2142 * neither logically nor physically contiguous. Although it may seem as an
2143 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2144 * case as we need to track IO to all buffers underlying a page in one io_end.
2145 */
2146 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2147 {
2148 struct address_space *mapping = mpd->inode->i_mapping;
2149 struct pagevec pvec;
2150 unsigned int nr_pages;
2151 long left = mpd->wbc->nr_to_write;
2152 pgoff_t index = mpd->first_page;
2153 pgoff_t end = mpd->last_page;
2154 int tag;
2155 int i, err = 0;
2156 int blkbits = mpd->inode->i_blkbits;
2157 ext4_lblk_t lblk;
2158 struct buffer_head *head;
2159
2160 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2161 tag = PAGECACHE_TAG_TOWRITE;
2162 else
2163 tag = PAGECACHE_TAG_DIRTY;
2164
2165 pagevec_init(&pvec, 0);
2166 mpd->map.m_len = 0;
2167 mpd->next_page = index;
2168 while (index <= end) {
2169 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2170 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2171 if (nr_pages == 0)
2172 goto out;
2173
2174 for (i = 0; i < nr_pages; i++) {
2175 struct page *page = pvec.pages[i];
2176
2177 /*
2178 * At this point, the page may be truncated or
2179 * invalidated (changing page->mapping to NULL), or
2180 * even swizzled back from swapper_space to tmpfs file
2181 * mapping. However, page->index will not change
2182 * because we have a reference on the page.
2183 */
2184 if (page->index > end)
2185 goto out;
2186
2187 /*
2188 * Accumulated enough dirty pages? This doesn't apply
2189 * to WB_SYNC_ALL mode. For integrity sync we have to
2190 * keep going because someone may be concurrently
2191 * dirtying pages, and we might have synced a lot of
2192 * newly appeared dirty pages, but have not synced all
2193 * of the old dirty pages.
2194 */
2195 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2196 goto out;
2197
2198 /* If we can't merge this page, we are done. */
2199 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2200 goto out;
2201
2202 lock_page(page);
2203 /*
2204 * If the page is no longer dirty, or its mapping no
2205 * longer corresponds to inode we are writing (which
2206 * means it has been truncated or invalidated), or the
2207 * page is already under writeback and we are not doing
2208 * a data integrity writeback, skip the page
2209 */
2210 if (!PageDirty(page) ||
2211 (PageWriteback(page) &&
2212 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2213 unlikely(page->mapping != mapping)) {
2214 unlock_page(page);
2215 continue;
2216 }
2217
2218 wait_on_page_writeback(page);
2219 BUG_ON(PageWriteback(page));
2220
2221 if (mpd->map.m_len == 0)
2222 mpd->first_page = page->index;
2223 mpd->next_page = page->index + 1;
2224 /* Add all dirty buffers to mpd */
2225 lblk = ((ext4_lblk_t)page->index) <<
2226 (PAGE_CACHE_SHIFT - blkbits);
2227 head = page_buffers(page);
2228 err = mpage_process_page_bufs(mpd, head, head, lblk);
2229 if (err <= 0)
2230 goto out;
2231 err = 0;
2232 left--;
2233 }
2234 pagevec_release(&pvec);
2235 cond_resched();
2236 }
2237 return 0;
2238 out:
2239 pagevec_release(&pvec);
2240 return err;
2241 }
2242
2243 static int __writepage(struct page *page, struct writeback_control *wbc,
2244 void *data)
2245 {
2246 struct address_space *mapping = data;
2247 int ret = ext4_writepage(page, wbc);
2248 mapping_set_error(mapping, ret);
2249 return ret;
2250 }
2251
2252 static int ext4_writepages(struct address_space *mapping,
2253 struct writeback_control *wbc)
2254 {
2255 pgoff_t writeback_index = 0;
2256 long nr_to_write = wbc->nr_to_write;
2257 int range_whole = 0;
2258 int cycled = 1;
2259 handle_t *handle = NULL;
2260 struct mpage_da_data mpd;
2261 struct inode *inode = mapping->host;
2262 int needed_blocks, rsv_blocks = 0, ret = 0;
2263 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2264 bool done;
2265 struct blk_plug plug;
2266 bool give_up_on_write = false;
2267
2268 trace_ext4_writepages(inode, wbc);
2269
2270 /*
2271 * No pages to write? This is mainly a kludge to avoid starting
2272 * a transaction for special inodes like journal inode on last iput()
2273 * because that could violate lock ordering on umount
2274 */
2275 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2276 goto out_writepages;
2277
2278 if (ext4_should_journal_data(inode)) {
2279 struct blk_plug plug;
2280
2281 blk_start_plug(&plug);
2282 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2283 blk_finish_plug(&plug);
2284 goto out_writepages;
2285 }
2286
2287 /*
2288 * If the filesystem has aborted, it is read-only, so return
2289 * right away instead of dumping stack traces later on that
2290 * will obscure the real source of the problem. We test
2291 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2292 * the latter could be true if the filesystem is mounted
2293 * read-only, and in that case, ext4_writepages should
2294 * *never* be called, so if that ever happens, we would want
2295 * the stack trace.
2296 */
2297 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2298 ret = -EROFS;
2299 goto out_writepages;
2300 }
2301
2302 if (ext4_should_dioread_nolock(inode)) {
2303 /*
2304 * We may need to convert up to one extent per block in
2305 * the page and we may dirty the inode.
2306 */
2307 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2308 }
2309
2310 /*
2311 * If we have inline data and arrive here, it means that
2312 * we will soon create the block for the 1st page, so
2313 * we'd better clear the inline data here.
2314 */
2315 if (ext4_has_inline_data(inode)) {
2316 /* Just inode will be modified... */
2317 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2318 if (IS_ERR(handle)) {
2319 ret = PTR_ERR(handle);
2320 goto out_writepages;
2321 }
2322 BUG_ON(ext4_test_inode_state(inode,
2323 EXT4_STATE_MAY_INLINE_DATA));
2324 ext4_destroy_inline_data(handle, inode);
2325 ext4_journal_stop(handle);
2326 }
2327
2328 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2329 range_whole = 1;
2330
2331 if (wbc->range_cyclic) {
2332 writeback_index = mapping->writeback_index;
2333 if (writeback_index)
2334 cycled = 0;
2335 mpd.first_page = writeback_index;
2336 mpd.last_page = -1;
2337 } else {
2338 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2339 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2340 }
2341
2342 mpd.inode = inode;
2343 mpd.wbc = wbc;
2344 ext4_io_submit_init(&mpd.io_submit, wbc);
2345 retry:
2346 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2347 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2348 done = false;
2349 blk_start_plug(&plug);
2350 while (!done && mpd.first_page <= mpd.last_page) {
2351 /* For each extent of pages we use new io_end */
2352 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2353 if (!mpd.io_submit.io_end) {
2354 ret = -ENOMEM;
2355 break;
2356 }
2357
2358 /*
2359 * We have two constraints: We find one extent to map and we
2360 * must always write out whole page (makes a difference when
2361 * blocksize < pagesize) so that we don't block on IO when we
2362 * try to write out the rest of the page. Journalled mode is
2363 * not supported by delalloc.
2364 */
2365 BUG_ON(ext4_should_journal_data(inode));
2366 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2367
2368 /* start a new transaction */
2369 handle = ext4_journal_start_with_reserve(inode,
2370 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2371 if (IS_ERR(handle)) {
2372 ret = PTR_ERR(handle);
2373 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2374 "%ld pages, ino %lu; err %d", __func__,
2375 wbc->nr_to_write, inode->i_ino, ret);
2376 /* Release allocated io_end */
2377 ext4_put_io_end(mpd.io_submit.io_end);
2378 break;
2379 }
2380
2381 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2382 ret = mpage_prepare_extent_to_map(&mpd);
2383 if (!ret) {
2384 if (mpd.map.m_len)
2385 ret = mpage_map_and_submit_extent(handle, &mpd,
2386 &give_up_on_write);
2387 else {
2388 /*
2389 * We scanned the whole range (or exhausted
2390 * nr_to_write), submitted what was mapped and
2391 * didn't find anything needing mapping. We are
2392 * done.
2393 */
2394 done = true;
2395 }
2396 }
2397 ext4_journal_stop(handle);
2398 /* Submit prepared bio */
2399 ext4_io_submit(&mpd.io_submit);
2400 /* Unlock pages we didn't use */
2401 mpage_release_unused_pages(&mpd, give_up_on_write);
2402 /* Drop our io_end reference we got from init */
2403 ext4_put_io_end(mpd.io_submit.io_end);
2404
2405 if (ret == -ENOSPC && sbi->s_journal) {
2406 /*
2407 * Commit the transaction which would
2408 * free blocks released in the transaction
2409 * and try again
2410 */
2411 jbd2_journal_force_commit_nested(sbi->s_journal);
2412 ret = 0;
2413 continue;
2414 }
2415 /* Fatal error - ENOMEM, EIO... */
2416 if (ret)
2417 break;
2418 }
2419 blk_finish_plug(&plug);
2420 if (!ret && !cycled && wbc->nr_to_write > 0) {
2421 cycled = 1;
2422 mpd.last_page = writeback_index - 1;
2423 mpd.first_page = 0;
2424 goto retry;
2425 }
2426
2427 /* Update index */
2428 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2429 /*
2430 * Set the writeback_index so that range_cyclic
2431 * mode will write it back later
2432 */
2433 mapping->writeback_index = mpd.first_page;
2434
2435 out_writepages:
2436 trace_ext4_writepages_result(inode, wbc, ret,
2437 nr_to_write - wbc->nr_to_write);
2438 return ret;
2439 }
2440
2441 static int ext4_nonda_switch(struct super_block *sb)
2442 {
2443 s64 free_clusters, dirty_clusters;
2444 struct ext4_sb_info *sbi = EXT4_SB(sb);
2445
2446 /*
2447 * switch to non delalloc mode if we are running low
2448 * on free block. The free block accounting via percpu
2449 * counters can get slightly wrong with percpu_counter_batch getting
2450 * accumulated on each CPU without updating global counters
2451 * Delalloc need an accurate free block accounting. So switch
2452 * to non delalloc when we are near to error range.
2453 */
2454 free_clusters =
2455 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2456 dirty_clusters =
2457 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2458 /*
2459 * Start pushing delalloc when 1/2 of free blocks are dirty.
2460 */
2461 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2462 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2463
2464 if (2 * free_clusters < 3 * dirty_clusters ||
2465 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2466 /*
2467 * free block count is less than 150% of dirty blocks
2468 * or free blocks is less than watermark
2469 */
2470 return 1;
2471 }
2472 return 0;
2473 }
2474
2475 /* We always reserve for an inode update; the superblock could be there too */
2476 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2477 {
2478 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2479 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2480 return 1;
2481
2482 if (pos + len <= 0x7fffffffULL)
2483 return 1;
2484
2485 /* We might need to update the superblock to set LARGE_FILE */
2486 return 2;
2487 }
2488
2489 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2490 loff_t pos, unsigned len, unsigned flags,
2491 struct page **pagep, void **fsdata)
2492 {
2493 int ret, retries = 0;
2494 struct page *page;
2495 pgoff_t index;
2496 struct inode *inode = mapping->host;
2497 handle_t *handle;
2498
2499 index = pos >> PAGE_CACHE_SHIFT;
2500
2501 if (ext4_nonda_switch(inode->i_sb)) {
2502 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2503 return ext4_write_begin(file, mapping, pos,
2504 len, flags, pagep, fsdata);
2505 }
2506 *fsdata = (void *)0;
2507 trace_ext4_da_write_begin(inode, pos, len, flags);
2508
2509 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2510 ret = ext4_da_write_inline_data_begin(mapping, inode,
2511 pos, len, flags,
2512 pagep, fsdata);
2513 if (ret < 0)
2514 return ret;
2515 if (ret == 1)
2516 return 0;
2517 }
2518
2519 /*
2520 * grab_cache_page_write_begin() can take a long time if the
2521 * system is thrashing due to memory pressure, or if the page
2522 * is being written back. So grab it first before we start
2523 * the transaction handle. This also allows us to allocate
2524 * the page (if needed) without using GFP_NOFS.
2525 */
2526 retry_grab:
2527 page = grab_cache_page_write_begin(mapping, index, flags);
2528 if (!page)
2529 return -ENOMEM;
2530 unlock_page(page);
2531
2532 /*
2533 * With delayed allocation, we don't log the i_disksize update
2534 * if there is delayed block allocation. But we still need
2535 * to journalling the i_disksize update if writes to the end
2536 * of file which has an already mapped buffer.
2537 */
2538 retry_journal:
2539 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2540 ext4_da_write_credits(inode, pos, len));
2541 if (IS_ERR(handle)) {
2542 page_cache_release(page);
2543 return PTR_ERR(handle);
2544 }
2545
2546 lock_page(page);
2547 if (page->mapping != mapping) {
2548 /* The page got truncated from under us */
2549 unlock_page(page);
2550 page_cache_release(page);
2551 ext4_journal_stop(handle);
2552 goto retry_grab;
2553 }
2554 /* In case writeback began while the page was unlocked */
2555 wait_for_stable_page(page);
2556
2557 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2558 if (ret < 0) {
2559 unlock_page(page);
2560 ext4_journal_stop(handle);
2561 /*
2562 * block_write_begin may have instantiated a few blocks
2563 * outside i_size. Trim these off again. Don't need
2564 * i_size_read because we hold i_mutex.
2565 */
2566 if (pos + len > inode->i_size)
2567 ext4_truncate_failed_write(inode);
2568
2569 if (ret == -ENOSPC &&
2570 ext4_should_retry_alloc(inode->i_sb, &retries))
2571 goto retry_journal;
2572
2573 page_cache_release(page);
2574 return ret;
2575 }
2576
2577 *pagep = page;
2578 return ret;
2579 }
2580
2581 /*
2582 * Check if we should update i_disksize
2583 * when write to the end of file but not require block allocation
2584 */
2585 static int ext4_da_should_update_i_disksize(struct page *page,
2586 unsigned long offset)
2587 {
2588 struct buffer_head *bh;
2589 struct inode *inode = page->mapping->host;
2590 unsigned int idx;
2591 int i;
2592
2593 bh = page_buffers(page);
2594 idx = offset >> inode->i_blkbits;
2595
2596 for (i = 0; i < idx; i++)
2597 bh = bh->b_this_page;
2598
2599 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2600 return 0;
2601 return 1;
2602 }
2603
2604 static int ext4_da_write_end(struct file *file,
2605 struct address_space *mapping,
2606 loff_t pos, unsigned len, unsigned copied,
2607 struct page *page, void *fsdata)
2608 {
2609 struct inode *inode = mapping->host;
2610 int ret = 0, ret2;
2611 handle_t *handle = ext4_journal_current_handle();
2612 loff_t new_i_size;
2613 unsigned long start, end;
2614 int write_mode = (int)(unsigned long)fsdata;
2615
2616 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2617 return ext4_write_end(file, mapping, pos,
2618 len, copied, page, fsdata);
2619
2620 trace_ext4_da_write_end(inode, pos, len, copied);
2621 start = pos & (PAGE_CACHE_SIZE - 1);
2622 end = start + copied - 1;
2623
2624 /*
2625 * generic_write_end() will run mark_inode_dirty() if i_size
2626 * changes. So let's piggyback the i_disksize mark_inode_dirty
2627 * into that.
2628 */
2629 new_i_size = pos + copied;
2630 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2631 if (ext4_has_inline_data(inode) ||
2632 ext4_da_should_update_i_disksize(page, end)) {
2633 ext4_update_i_disksize(inode, new_i_size);
2634 /* We need to mark inode dirty even if
2635 * new_i_size is less that inode->i_size
2636 * bu greater than i_disksize.(hint delalloc)
2637 */
2638 ext4_mark_inode_dirty(handle, inode);
2639 }
2640 }
2641
2642 if (write_mode != CONVERT_INLINE_DATA &&
2643 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2644 ext4_has_inline_data(inode))
2645 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2646 page);
2647 else
2648 ret2 = generic_write_end(file, mapping, pos, len, copied,
2649 page, fsdata);
2650
2651 copied = ret2;
2652 if (ret2 < 0)
2653 ret = ret2;
2654 ret2 = ext4_journal_stop(handle);
2655 if (!ret)
2656 ret = ret2;
2657
2658 return ret ? ret : copied;
2659 }
2660
2661 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2662 unsigned int length)
2663 {
2664 /*
2665 * Drop reserved blocks
2666 */
2667 BUG_ON(!PageLocked(page));
2668 if (!page_has_buffers(page))
2669 goto out;
2670
2671 ext4_da_page_release_reservation(page, offset, length);
2672
2673 out:
2674 ext4_invalidatepage(page, offset, length);
2675
2676 return;
2677 }
2678
2679 /*
2680 * Force all delayed allocation blocks to be allocated for a given inode.
2681 */
2682 int ext4_alloc_da_blocks(struct inode *inode)
2683 {
2684 trace_ext4_alloc_da_blocks(inode);
2685
2686 if (!EXT4_I(inode)->i_reserved_data_blocks)
2687 return 0;
2688
2689 /*
2690 * We do something simple for now. The filemap_flush() will
2691 * also start triggering a write of the data blocks, which is
2692 * not strictly speaking necessary (and for users of
2693 * laptop_mode, not even desirable). However, to do otherwise
2694 * would require replicating code paths in:
2695 *
2696 * ext4_writepages() ->
2697 * write_cache_pages() ---> (via passed in callback function)
2698 * __mpage_da_writepage() -->
2699 * mpage_add_bh_to_extent()
2700 * mpage_da_map_blocks()
2701 *
2702 * The problem is that write_cache_pages(), located in
2703 * mm/page-writeback.c, marks pages clean in preparation for
2704 * doing I/O, which is not desirable if we're not planning on
2705 * doing I/O at all.
2706 *
2707 * We could call write_cache_pages(), and then redirty all of
2708 * the pages by calling redirty_page_for_writepage() but that
2709 * would be ugly in the extreme. So instead we would need to
2710 * replicate parts of the code in the above functions,
2711 * simplifying them because we wouldn't actually intend to
2712 * write out the pages, but rather only collect contiguous
2713 * logical block extents, call the multi-block allocator, and
2714 * then update the buffer heads with the block allocations.
2715 *
2716 * For now, though, we'll cheat by calling filemap_flush(),
2717 * which will map the blocks, and start the I/O, but not
2718 * actually wait for the I/O to complete.
2719 */
2720 return filemap_flush(inode->i_mapping);
2721 }
2722
2723 /*
2724 * bmap() is special. It gets used by applications such as lilo and by
2725 * the swapper to find the on-disk block of a specific piece of data.
2726 *
2727 * Naturally, this is dangerous if the block concerned is still in the
2728 * journal. If somebody makes a swapfile on an ext4 data-journaling
2729 * filesystem and enables swap, then they may get a nasty shock when the
2730 * data getting swapped to that swapfile suddenly gets overwritten by
2731 * the original zero's written out previously to the journal and
2732 * awaiting writeback in the kernel's buffer cache.
2733 *
2734 * So, if we see any bmap calls here on a modified, data-journaled file,
2735 * take extra steps to flush any blocks which might be in the cache.
2736 */
2737 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2738 {
2739 struct inode *inode = mapping->host;
2740 journal_t *journal;
2741 int err;
2742
2743 /*
2744 * We can get here for an inline file via the FIBMAP ioctl
2745 */
2746 if (ext4_has_inline_data(inode))
2747 return 0;
2748
2749 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2750 test_opt(inode->i_sb, DELALLOC)) {
2751 /*
2752 * With delalloc we want to sync the file
2753 * so that we can make sure we allocate
2754 * blocks for file
2755 */
2756 filemap_write_and_wait(mapping);
2757 }
2758
2759 if (EXT4_JOURNAL(inode) &&
2760 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2761 /*
2762 * This is a REALLY heavyweight approach, but the use of
2763 * bmap on dirty files is expected to be extremely rare:
2764 * only if we run lilo or swapon on a freshly made file
2765 * do we expect this to happen.
2766 *
2767 * (bmap requires CAP_SYS_RAWIO so this does not
2768 * represent an unprivileged user DOS attack --- we'd be
2769 * in trouble if mortal users could trigger this path at
2770 * will.)
2771 *
2772 * NB. EXT4_STATE_JDATA is not set on files other than
2773 * regular files. If somebody wants to bmap a directory
2774 * or symlink and gets confused because the buffer
2775 * hasn't yet been flushed to disk, they deserve
2776 * everything they get.
2777 */
2778
2779 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2780 journal = EXT4_JOURNAL(inode);
2781 jbd2_journal_lock_updates(journal);
2782 err = jbd2_journal_flush(journal);
2783 jbd2_journal_unlock_updates(journal);
2784
2785 if (err)
2786 return 0;
2787 }
2788
2789 return generic_block_bmap(mapping, block, ext4_get_block);
2790 }
2791
2792 static int ext4_readpage(struct file *file, struct page *page)
2793 {
2794 int ret = -EAGAIN;
2795 struct inode *inode = page->mapping->host;
2796
2797 trace_ext4_readpage(page);
2798
2799 if (ext4_has_inline_data(inode))
2800 ret = ext4_readpage_inline(inode, page);
2801
2802 if (ret == -EAGAIN)
2803 return mpage_readpage(page, ext4_get_block);
2804
2805 return ret;
2806 }
2807
2808 static int
2809 ext4_readpages(struct file *file, struct address_space *mapping,
2810 struct list_head *pages, unsigned nr_pages)
2811 {
2812 struct inode *inode = mapping->host;
2813
2814 /* If the file has inline data, no need to do readpages. */
2815 if (ext4_has_inline_data(inode))
2816 return 0;
2817
2818 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2819 }
2820
2821 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2822 unsigned int length)
2823 {
2824 trace_ext4_invalidatepage(page, offset, length);
2825
2826 /* No journalling happens on data buffers when this function is used */
2827 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2828
2829 block_invalidatepage(page, offset, length);
2830 }
2831
2832 static int __ext4_journalled_invalidatepage(struct page *page,
2833 unsigned int offset,
2834 unsigned int length)
2835 {
2836 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2837
2838 trace_ext4_journalled_invalidatepage(page, offset, length);
2839
2840 /*
2841 * If it's a full truncate we just forget about the pending dirtying
2842 */
2843 if (offset == 0 && length == PAGE_CACHE_SIZE)
2844 ClearPageChecked(page);
2845
2846 return jbd2_journal_invalidatepage(journal, page, offset, length);
2847 }
2848
2849 /* Wrapper for aops... */
2850 static void ext4_journalled_invalidatepage(struct page *page,
2851 unsigned int offset,
2852 unsigned int length)
2853 {
2854 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2855 }
2856
2857 static int ext4_releasepage(struct page *page, gfp_t wait)
2858 {
2859 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2860
2861 trace_ext4_releasepage(page);
2862
2863 /* Page has dirty journalled data -> cannot release */
2864 if (PageChecked(page))
2865 return 0;
2866 if (journal)
2867 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2868 else
2869 return try_to_free_buffers(page);
2870 }
2871
2872 /*
2873 * ext4_get_block used when preparing for a DIO write or buffer write.
2874 * We allocate an uinitialized extent if blocks haven't been allocated.
2875 * The extent will be converted to initialized after the IO is complete.
2876 */
2877 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2878 struct buffer_head *bh_result, int create)
2879 {
2880 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2881 inode->i_ino, create);
2882 return _ext4_get_block(inode, iblock, bh_result,
2883 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2884 }
2885
2886 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2887 struct buffer_head *bh_result, int create)
2888 {
2889 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2890 inode->i_ino, create);
2891 return _ext4_get_block(inode, iblock, bh_result,
2892 EXT4_GET_BLOCKS_NO_LOCK);
2893 }
2894
2895 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2896 ssize_t size, void *private)
2897 {
2898 ext4_io_end_t *io_end = iocb->private;
2899
2900 /* if not async direct IO just return */
2901 if (!io_end)
2902 return;
2903
2904 ext_debug("ext4_end_io_dio(): io_end 0x%p "
2905 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2906 iocb->private, io_end->inode->i_ino, iocb, offset,
2907 size);
2908
2909 iocb->private = NULL;
2910 io_end->offset = offset;
2911 io_end->size = size;
2912 ext4_put_io_end(io_end);
2913 }
2914
2915 /*
2916 * For ext4 extent files, ext4 will do direct-io write to holes,
2917 * preallocated extents, and those write extend the file, no need to
2918 * fall back to buffered IO.
2919 *
2920 * For holes, we fallocate those blocks, mark them as unwritten
2921 * If those blocks were preallocated, we mark sure they are split, but
2922 * still keep the range to write as unwritten.
2923 *
2924 * The unwritten extents will be converted to written when DIO is completed.
2925 * For async direct IO, since the IO may still pending when return, we
2926 * set up an end_io call back function, which will do the conversion
2927 * when async direct IO completed.
2928 *
2929 * If the O_DIRECT write will extend the file then add this inode to the
2930 * orphan list. So recovery will truncate it back to the original size
2931 * if the machine crashes during the write.
2932 *
2933 */
2934 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2935 struct iov_iter *iter, loff_t offset)
2936 {
2937 struct file *file = iocb->ki_filp;
2938 struct inode *inode = file->f_mapping->host;
2939 ssize_t ret;
2940 size_t count = iov_iter_count(iter);
2941 int overwrite = 0;
2942 get_block_t *get_block_func = NULL;
2943 int dio_flags = 0;
2944 loff_t final_size = offset + count;
2945 ext4_io_end_t *io_end = NULL;
2946
2947 /* Use the old path for reads and writes beyond i_size. */
2948 if (rw != WRITE || final_size > inode->i_size)
2949 return ext4_ind_direct_IO(rw, iocb, iter, offset);
2950
2951 BUG_ON(iocb->private == NULL);
2952
2953 /*
2954 * Make all waiters for direct IO properly wait also for extent
2955 * conversion. This also disallows race between truncate() and
2956 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2957 */
2958 if (rw == WRITE)
2959 atomic_inc(&inode->i_dio_count);
2960
2961 /* If we do a overwrite dio, i_mutex locking can be released */
2962 overwrite = *((int *)iocb->private);
2963
2964 if (overwrite) {
2965 down_read(&EXT4_I(inode)->i_data_sem);
2966 mutex_unlock(&inode->i_mutex);
2967 }
2968
2969 /*
2970 * We could direct write to holes and fallocate.
2971 *
2972 * Allocated blocks to fill the hole are marked as
2973 * unwritten to prevent parallel buffered read to expose
2974 * the stale data before DIO complete the data IO.
2975 *
2976 * As to previously fallocated extents, ext4 get_block will
2977 * just simply mark the buffer mapped but still keep the
2978 * extents unwritten.
2979 *
2980 * For non AIO case, we will convert those unwritten extents
2981 * to written after return back from blockdev_direct_IO.
2982 *
2983 * For async DIO, the conversion needs to be deferred when the
2984 * IO is completed. The ext4 end_io callback function will be
2985 * called to take care of the conversion work. Here for async
2986 * case, we allocate an io_end structure to hook to the iocb.
2987 */
2988 iocb->private = NULL;
2989 ext4_inode_aio_set(inode, NULL);
2990 if (!is_sync_kiocb(iocb)) {
2991 io_end = ext4_init_io_end(inode, GFP_NOFS);
2992 if (!io_end) {
2993 ret = -ENOMEM;
2994 goto retake_lock;
2995 }
2996 /*
2997 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
2998 */
2999 iocb->private = ext4_get_io_end(io_end);
3000 /*
3001 * we save the io structure for current async direct
3002 * IO, so that later ext4_map_blocks() could flag the
3003 * io structure whether there is a unwritten extents
3004 * needs to be converted when IO is completed.
3005 */
3006 ext4_inode_aio_set(inode, io_end);
3007 }
3008
3009 if (overwrite) {
3010 get_block_func = ext4_get_block_write_nolock;
3011 } else {
3012 get_block_func = ext4_get_block_write;
3013 dio_flags = DIO_LOCKING;
3014 }
3015 ret = __blockdev_direct_IO(rw, iocb, inode,
3016 inode->i_sb->s_bdev, iter,
3017 offset,
3018 get_block_func,
3019 ext4_end_io_dio,
3020 NULL,
3021 dio_flags);
3022
3023 /*
3024 * Put our reference to io_end. This can free the io_end structure e.g.
3025 * in sync IO case or in case of error. It can even perform extent
3026 * conversion if all bios we submitted finished before we got here.
3027 * Note that in that case iocb->private can be already set to NULL
3028 * here.
3029 */
3030 if (io_end) {
3031 ext4_inode_aio_set(inode, NULL);
3032 ext4_put_io_end(io_end);
3033 /*
3034 * When no IO was submitted ext4_end_io_dio() was not
3035 * called so we have to put iocb's reference.
3036 */
3037 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3038 WARN_ON(iocb->private != io_end);
3039 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3040 ext4_put_io_end(io_end);
3041 iocb->private = NULL;
3042 }
3043 }
3044 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3045 EXT4_STATE_DIO_UNWRITTEN)) {
3046 int err;
3047 /*
3048 * for non AIO case, since the IO is already
3049 * completed, we could do the conversion right here
3050 */
3051 err = ext4_convert_unwritten_extents(NULL, inode,
3052 offset, ret);
3053 if (err < 0)
3054 ret = err;
3055 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3056 }
3057
3058 retake_lock:
3059 if (rw == WRITE)
3060 inode_dio_done(inode);
3061 /* take i_mutex locking again if we do a ovewrite dio */
3062 if (overwrite) {
3063 up_read(&EXT4_I(inode)->i_data_sem);
3064 mutex_lock(&inode->i_mutex);
3065 }
3066
3067 return ret;
3068 }
3069
3070 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3071 struct iov_iter *iter, loff_t offset)
3072 {
3073 struct file *file = iocb->ki_filp;
3074 struct inode *inode = file->f_mapping->host;
3075 size_t count = iov_iter_count(iter);
3076 ssize_t ret;
3077
3078 /*
3079 * If we are doing data journalling we don't support O_DIRECT
3080 */
3081 if (ext4_should_journal_data(inode))
3082 return 0;
3083
3084 /* Let buffer I/O handle the inline data case. */
3085 if (ext4_has_inline_data(inode))
3086 return 0;
3087
3088 trace_ext4_direct_IO_enter(inode, offset, count, rw);
3089 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3090 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3091 else
3092 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3093 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3094 return ret;
3095 }
3096
3097 /*
3098 * Pages can be marked dirty completely asynchronously from ext4's journalling
3099 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3100 * much here because ->set_page_dirty is called under VFS locks. The page is
3101 * not necessarily locked.
3102 *
3103 * We cannot just dirty the page and leave attached buffers clean, because the
3104 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3105 * or jbddirty because all the journalling code will explode.
3106 *
3107 * So what we do is to mark the page "pending dirty" and next time writepage
3108 * is called, propagate that into the buffers appropriately.
3109 */
3110 static int ext4_journalled_set_page_dirty(struct page *page)
3111 {
3112 SetPageChecked(page);
3113 return __set_page_dirty_nobuffers(page);
3114 }
3115
3116 static const struct address_space_operations ext4_aops = {
3117 .readpage = ext4_readpage,
3118 .readpages = ext4_readpages,
3119 .writepage = ext4_writepage,
3120 .writepages = ext4_writepages,
3121 .write_begin = ext4_write_begin,
3122 .write_end = ext4_write_end,
3123 .bmap = ext4_bmap,
3124 .invalidatepage = ext4_invalidatepage,
3125 .releasepage = ext4_releasepage,
3126 .direct_IO = ext4_direct_IO,
3127 .migratepage = buffer_migrate_page,
3128 .is_partially_uptodate = block_is_partially_uptodate,
3129 .error_remove_page = generic_error_remove_page,
3130 };
3131
3132 static const struct address_space_operations ext4_journalled_aops = {
3133 .readpage = ext4_readpage,
3134 .readpages = ext4_readpages,
3135 .writepage = ext4_writepage,
3136 .writepages = ext4_writepages,
3137 .write_begin = ext4_write_begin,
3138 .write_end = ext4_journalled_write_end,
3139 .set_page_dirty = ext4_journalled_set_page_dirty,
3140 .bmap = ext4_bmap,
3141 .invalidatepage = ext4_journalled_invalidatepage,
3142 .releasepage = ext4_releasepage,
3143 .direct_IO = ext4_direct_IO,
3144 .is_partially_uptodate = block_is_partially_uptodate,
3145 .error_remove_page = generic_error_remove_page,
3146 };
3147
3148 static const struct address_space_operations ext4_da_aops = {
3149 .readpage = ext4_readpage,
3150 .readpages = ext4_readpages,
3151 .writepage = ext4_writepage,
3152 .writepages = ext4_writepages,
3153 .write_begin = ext4_da_write_begin,
3154 .write_end = ext4_da_write_end,
3155 .bmap = ext4_bmap,
3156 .invalidatepage = ext4_da_invalidatepage,
3157 .releasepage = ext4_releasepage,
3158 .direct_IO = ext4_direct_IO,
3159 .migratepage = buffer_migrate_page,
3160 .is_partially_uptodate = block_is_partially_uptodate,
3161 .error_remove_page = generic_error_remove_page,
3162 };
3163
3164 void ext4_set_aops(struct inode *inode)
3165 {
3166 switch (ext4_inode_journal_mode(inode)) {
3167 case EXT4_INODE_ORDERED_DATA_MODE:
3168 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3169 break;
3170 case EXT4_INODE_WRITEBACK_DATA_MODE:
3171 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3172 break;
3173 case EXT4_INODE_JOURNAL_DATA_MODE:
3174 inode->i_mapping->a_ops = &ext4_journalled_aops;
3175 return;
3176 default:
3177 BUG();
3178 }
3179 if (test_opt(inode->i_sb, DELALLOC))
3180 inode->i_mapping->a_ops = &ext4_da_aops;
3181 else
3182 inode->i_mapping->a_ops = &ext4_aops;
3183 }
3184
3185 /*
3186 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3187 * starting from file offset 'from'. The range to be zero'd must
3188 * be contained with in one block. If the specified range exceeds
3189 * the end of the block it will be shortened to end of the block
3190 * that cooresponds to 'from'
3191 */
3192 static int ext4_block_zero_page_range(handle_t *handle,
3193 struct address_space *mapping, loff_t from, loff_t length)
3194 {
3195 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3196 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3197 unsigned blocksize, max, pos;
3198 ext4_lblk_t iblock;
3199 struct inode *inode = mapping->host;
3200 struct buffer_head *bh;
3201 struct page *page;
3202 int err = 0;
3203
3204 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3205 mapping_gfp_mask(mapping) & ~__GFP_FS);
3206 if (!page)
3207 return -ENOMEM;
3208
3209 blocksize = inode->i_sb->s_blocksize;
3210 max = blocksize - (offset & (blocksize - 1));
3211
3212 /*
3213 * correct length if it does not fall between
3214 * 'from' and the end of the block
3215 */
3216 if (length > max || length < 0)
3217 length = max;
3218
3219 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3220
3221 if (!page_has_buffers(page))
3222 create_empty_buffers(page, blocksize, 0);
3223
3224 /* Find the buffer that contains "offset" */
3225 bh = page_buffers(page);
3226 pos = blocksize;
3227 while (offset >= pos) {
3228 bh = bh->b_this_page;
3229 iblock++;
3230 pos += blocksize;
3231 }
3232 if (buffer_freed(bh)) {
3233 BUFFER_TRACE(bh, "freed: skip");
3234 goto unlock;
3235 }
3236 if (!buffer_mapped(bh)) {
3237 BUFFER_TRACE(bh, "unmapped");
3238 ext4_get_block(inode, iblock, bh, 0);
3239 /* unmapped? It's a hole - nothing to do */
3240 if (!buffer_mapped(bh)) {
3241 BUFFER_TRACE(bh, "still unmapped");
3242 goto unlock;
3243 }
3244 }
3245
3246 /* Ok, it's mapped. Make sure it's up-to-date */
3247 if (PageUptodate(page))
3248 set_buffer_uptodate(bh);
3249
3250 if (!buffer_uptodate(bh)) {
3251 err = -EIO;
3252 ll_rw_block(READ, 1, &bh);
3253 wait_on_buffer(bh);
3254 /* Uhhuh. Read error. Complain and punt. */
3255 if (!buffer_uptodate(bh))
3256 goto unlock;
3257 }
3258 if (ext4_should_journal_data(inode)) {
3259 BUFFER_TRACE(bh, "get write access");
3260 err = ext4_journal_get_write_access(handle, bh);
3261 if (err)
3262 goto unlock;
3263 }
3264 zero_user(page, offset, length);
3265 BUFFER_TRACE(bh, "zeroed end of block");
3266
3267 if (ext4_should_journal_data(inode)) {
3268 err = ext4_handle_dirty_metadata(handle, inode, bh);
3269 } else {
3270 err = 0;
3271 mark_buffer_dirty(bh);
3272 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3273 err = ext4_jbd2_file_inode(handle, inode);
3274 }
3275
3276 unlock:
3277 unlock_page(page);
3278 page_cache_release(page);
3279 return err;
3280 }
3281
3282 /*
3283 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3284 * up to the end of the block which corresponds to `from'.
3285 * This required during truncate. We need to physically zero the tail end
3286 * of that block so it doesn't yield old data if the file is later grown.
3287 */
3288 static int ext4_block_truncate_page(handle_t *handle,
3289 struct address_space *mapping, loff_t from)
3290 {
3291 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3292 unsigned length;
3293 unsigned blocksize;
3294 struct inode *inode = mapping->host;
3295
3296 blocksize = inode->i_sb->s_blocksize;
3297 length = blocksize - (offset & (blocksize - 1));
3298
3299 return ext4_block_zero_page_range(handle, mapping, from, length);
3300 }
3301
3302 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3303 loff_t lstart, loff_t length)
3304 {
3305 struct super_block *sb = inode->i_sb;
3306 struct address_space *mapping = inode->i_mapping;
3307 unsigned partial_start, partial_end;
3308 ext4_fsblk_t start, end;
3309 loff_t byte_end = (lstart + length - 1);
3310 int err = 0;
3311
3312 partial_start = lstart & (sb->s_blocksize - 1);
3313 partial_end = byte_end & (sb->s_blocksize - 1);
3314
3315 start = lstart >> sb->s_blocksize_bits;
3316 end = byte_end >> sb->s_blocksize_bits;
3317
3318 /* Handle partial zero within the single block */
3319 if (start == end &&
3320 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3321 err = ext4_block_zero_page_range(handle, mapping,
3322 lstart, length);
3323 return err;
3324 }
3325 /* Handle partial zero out on the start of the range */
3326 if (partial_start) {
3327 err = ext4_block_zero_page_range(handle, mapping,
3328 lstart, sb->s_blocksize);
3329 if (err)
3330 return err;
3331 }
3332 /* Handle partial zero out on the end of the range */
3333 if (partial_end != sb->s_blocksize - 1)
3334 err = ext4_block_zero_page_range(handle, mapping,
3335 byte_end - partial_end,
3336 partial_end + 1);
3337 return err;
3338 }
3339
3340 int ext4_can_truncate(struct inode *inode)
3341 {
3342 if (S_ISREG(inode->i_mode))
3343 return 1;
3344 if (S_ISDIR(inode->i_mode))
3345 return 1;
3346 if (S_ISLNK(inode->i_mode))
3347 return !ext4_inode_is_fast_symlink(inode);
3348 return 0;
3349 }
3350
3351 /*
3352 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3353 * associated with the given offset and length
3354 *
3355 * @inode: File inode
3356 * @offset: The offset where the hole will begin
3357 * @len: The length of the hole
3358 *
3359 * Returns: 0 on success or negative on failure
3360 */
3361
3362 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3363 {
3364 struct super_block *sb = inode->i_sb;
3365 ext4_lblk_t first_block, stop_block;
3366 struct address_space *mapping = inode->i_mapping;
3367 loff_t first_block_offset, last_block_offset;
3368 handle_t *handle;
3369 unsigned int credits;
3370 int ret = 0;
3371
3372 if (!S_ISREG(inode->i_mode))
3373 return -EOPNOTSUPP;
3374
3375 trace_ext4_punch_hole(inode, offset, length, 0);
3376
3377 /*
3378 * Write out all dirty pages to avoid race conditions
3379 * Then release them.
3380 */
3381 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3382 ret = filemap_write_and_wait_range(mapping, offset,
3383 offset + length - 1);
3384 if (ret)
3385 return ret;
3386 }
3387
3388 mutex_lock(&inode->i_mutex);
3389
3390 /* No need to punch hole beyond i_size */
3391 if (offset >= inode->i_size)
3392 goto out_mutex;
3393
3394 /*
3395 * If the hole extends beyond i_size, set the hole
3396 * to end after the page that contains i_size
3397 */
3398 if (offset + length > inode->i_size) {
3399 length = inode->i_size +
3400 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3401 offset;
3402 }
3403
3404 if (offset & (sb->s_blocksize - 1) ||
3405 (offset + length) & (sb->s_blocksize - 1)) {
3406 /*
3407 * Attach jinode to inode for jbd2 if we do any zeroing of
3408 * partial block
3409 */
3410 ret = ext4_inode_attach_jinode(inode);
3411 if (ret < 0)
3412 goto out_mutex;
3413
3414 }
3415
3416 first_block_offset = round_up(offset, sb->s_blocksize);
3417 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3418
3419 /* Now release the pages and zero block aligned part of pages*/
3420 if (last_block_offset > first_block_offset)
3421 truncate_pagecache_range(inode, first_block_offset,
3422 last_block_offset);
3423
3424 /* Wait all existing dio workers, newcomers will block on i_mutex */
3425 ext4_inode_block_unlocked_dio(inode);
3426 inode_dio_wait(inode);
3427
3428 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3429 credits = ext4_writepage_trans_blocks(inode);
3430 else
3431 credits = ext4_blocks_for_truncate(inode);
3432 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3433 if (IS_ERR(handle)) {
3434 ret = PTR_ERR(handle);
3435 ext4_std_error(sb, ret);
3436 goto out_dio;
3437 }
3438
3439 ret = ext4_zero_partial_blocks(handle, inode, offset,
3440 length);
3441 if (ret)
3442 goto out_stop;
3443
3444 first_block = (offset + sb->s_blocksize - 1) >>
3445 EXT4_BLOCK_SIZE_BITS(sb);
3446 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3447
3448 /* If there are no blocks to remove, return now */
3449 if (first_block >= stop_block)
3450 goto out_stop;
3451
3452 down_write(&EXT4_I(inode)->i_data_sem);
3453 ext4_discard_preallocations(inode);
3454
3455 ret = ext4_es_remove_extent(inode, first_block,
3456 stop_block - first_block);
3457 if (ret) {
3458 up_write(&EXT4_I(inode)->i_data_sem);
3459 goto out_stop;
3460 }
3461
3462 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3463 ret = ext4_ext_remove_space(inode, first_block,
3464 stop_block - 1);
3465 else
3466 ret = ext4_ind_remove_space(handle, inode, first_block,
3467 stop_block);
3468
3469 up_write(&EXT4_I(inode)->i_data_sem);
3470 if (IS_SYNC(inode))
3471 ext4_handle_sync(handle);
3472
3473 /* Now release the pages again to reduce race window */
3474 if (last_block_offset > first_block_offset)
3475 truncate_pagecache_range(inode, first_block_offset,
3476 last_block_offset);
3477
3478 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3479 ext4_mark_inode_dirty(handle, inode);
3480 out_stop:
3481 ext4_journal_stop(handle);
3482 out_dio:
3483 ext4_inode_resume_unlocked_dio(inode);
3484 out_mutex:
3485 mutex_unlock(&inode->i_mutex);
3486 return ret;
3487 }
3488
3489 int ext4_inode_attach_jinode(struct inode *inode)
3490 {
3491 struct ext4_inode_info *ei = EXT4_I(inode);
3492 struct jbd2_inode *jinode;
3493
3494 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3495 return 0;
3496
3497 jinode = jbd2_alloc_inode(GFP_KERNEL);
3498 spin_lock(&inode->i_lock);
3499 if (!ei->jinode) {
3500 if (!jinode) {
3501 spin_unlock(&inode->i_lock);
3502 return -ENOMEM;
3503 }
3504 ei->jinode = jinode;
3505 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3506 jinode = NULL;
3507 }
3508 spin_unlock(&inode->i_lock);
3509 if (unlikely(jinode != NULL))
3510 jbd2_free_inode(jinode);
3511 return 0;
3512 }
3513
3514 /*
3515 * ext4_truncate()
3516 *
3517 * We block out ext4_get_block() block instantiations across the entire
3518 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3519 * simultaneously on behalf of the same inode.
3520 *
3521 * As we work through the truncate and commit bits of it to the journal there
3522 * is one core, guiding principle: the file's tree must always be consistent on
3523 * disk. We must be able to restart the truncate after a crash.
3524 *
3525 * The file's tree may be transiently inconsistent in memory (although it
3526 * probably isn't), but whenever we close off and commit a journal transaction,
3527 * the contents of (the filesystem + the journal) must be consistent and
3528 * restartable. It's pretty simple, really: bottom up, right to left (although
3529 * left-to-right works OK too).
3530 *
3531 * Note that at recovery time, journal replay occurs *before* the restart of
3532 * truncate against the orphan inode list.
3533 *
3534 * The committed inode has the new, desired i_size (which is the same as
3535 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3536 * that this inode's truncate did not complete and it will again call
3537 * ext4_truncate() to have another go. So there will be instantiated blocks
3538 * to the right of the truncation point in a crashed ext4 filesystem. But
3539 * that's fine - as long as they are linked from the inode, the post-crash
3540 * ext4_truncate() run will find them and release them.
3541 */
3542 void ext4_truncate(struct inode *inode)
3543 {
3544 struct ext4_inode_info *ei = EXT4_I(inode);
3545 unsigned int credits;
3546 handle_t *handle;
3547 struct address_space *mapping = inode->i_mapping;
3548
3549 /*
3550 * There is a possibility that we're either freeing the inode
3551 * or it's a completely new inode. In those cases we might not
3552 * have i_mutex locked because it's not necessary.
3553 */
3554 if (!(inode->i_state & (I_NEW|I_FREEING)))
3555 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3556 trace_ext4_truncate_enter(inode);
3557
3558 if (!ext4_can_truncate(inode))
3559 return;
3560
3561 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3562
3563 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3564 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3565
3566 if (ext4_has_inline_data(inode)) {
3567 int has_inline = 1;
3568
3569 ext4_inline_data_truncate(inode, &has_inline);
3570 if (has_inline)
3571 return;
3572 }
3573
3574 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3575 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3576 if (ext4_inode_attach_jinode(inode) < 0)
3577 return;
3578 }
3579
3580 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3581 credits = ext4_writepage_trans_blocks(inode);
3582 else
3583 credits = ext4_blocks_for_truncate(inode);
3584
3585 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3586 if (IS_ERR(handle)) {
3587 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3588 return;
3589 }
3590
3591 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3592 ext4_block_truncate_page(handle, mapping, inode->i_size);
3593
3594 /*
3595 * We add the inode to the orphan list, so that if this
3596 * truncate spans multiple transactions, and we crash, we will
3597 * resume the truncate when the filesystem recovers. It also
3598 * marks the inode dirty, to catch the new size.
3599 *
3600 * Implication: the file must always be in a sane, consistent
3601 * truncatable state while each transaction commits.
3602 */
3603 if (ext4_orphan_add(handle, inode))
3604 goto out_stop;
3605
3606 down_write(&EXT4_I(inode)->i_data_sem);
3607
3608 ext4_discard_preallocations(inode);
3609
3610 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3611 ext4_ext_truncate(handle, inode);
3612 else
3613 ext4_ind_truncate(handle, inode);
3614
3615 up_write(&ei->i_data_sem);
3616
3617 if (IS_SYNC(inode))
3618 ext4_handle_sync(handle);
3619
3620 out_stop:
3621 /*
3622 * If this was a simple ftruncate() and the file will remain alive,
3623 * then we need to clear up the orphan record which we created above.
3624 * However, if this was a real unlink then we were called by
3625 * ext4_delete_inode(), and we allow that function to clean up the
3626 * orphan info for us.
3627 */
3628 if (inode->i_nlink)
3629 ext4_orphan_del(handle, inode);
3630
3631 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3632 ext4_mark_inode_dirty(handle, inode);
3633 ext4_journal_stop(handle);
3634
3635 trace_ext4_truncate_exit(inode);
3636 }
3637
3638 /*
3639 * ext4_get_inode_loc returns with an extra refcount against the inode's
3640 * underlying buffer_head on success. If 'in_mem' is true, we have all
3641 * data in memory that is needed to recreate the on-disk version of this
3642 * inode.
3643 */
3644 static int __ext4_get_inode_loc(struct inode *inode,
3645 struct ext4_iloc *iloc, int in_mem)
3646 {
3647 struct ext4_group_desc *gdp;
3648 struct buffer_head *bh;
3649 struct super_block *sb = inode->i_sb;
3650 ext4_fsblk_t block;
3651 int inodes_per_block, inode_offset;
3652
3653 iloc->bh = NULL;
3654 if (!ext4_valid_inum(sb, inode->i_ino))
3655 return -EIO;
3656
3657 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3658 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3659 if (!gdp)
3660 return -EIO;
3661
3662 /*
3663 * Figure out the offset within the block group inode table
3664 */
3665 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3666 inode_offset = ((inode->i_ino - 1) %
3667 EXT4_INODES_PER_GROUP(sb));
3668 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3669 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3670
3671 bh = sb_getblk(sb, block);
3672 if (unlikely(!bh))
3673 return -ENOMEM;
3674 if (!buffer_uptodate(bh)) {
3675 lock_buffer(bh);
3676
3677 /*
3678 * If the buffer has the write error flag, we have failed
3679 * to write out another inode in the same block. In this
3680 * case, we don't have to read the block because we may
3681 * read the old inode data successfully.
3682 */
3683 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3684 set_buffer_uptodate(bh);
3685
3686 if (buffer_uptodate(bh)) {
3687 /* someone brought it uptodate while we waited */
3688 unlock_buffer(bh);
3689 goto has_buffer;
3690 }
3691
3692 /*
3693 * If we have all information of the inode in memory and this
3694 * is the only valid inode in the block, we need not read the
3695 * block.
3696 */
3697 if (in_mem) {
3698 struct buffer_head *bitmap_bh;
3699 int i, start;
3700
3701 start = inode_offset & ~(inodes_per_block - 1);
3702
3703 /* Is the inode bitmap in cache? */
3704 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3705 if (unlikely(!bitmap_bh))
3706 goto make_io;
3707
3708 /*
3709 * If the inode bitmap isn't in cache then the
3710 * optimisation may end up performing two reads instead
3711 * of one, so skip it.
3712 */
3713 if (!buffer_uptodate(bitmap_bh)) {
3714 brelse(bitmap_bh);
3715 goto make_io;
3716 }
3717 for (i = start; i < start + inodes_per_block; i++) {
3718 if (i == inode_offset)
3719 continue;
3720 if (ext4_test_bit(i, bitmap_bh->b_data))
3721 break;
3722 }
3723 brelse(bitmap_bh);
3724 if (i == start + inodes_per_block) {
3725 /* all other inodes are free, so skip I/O */
3726 memset(bh->b_data, 0, bh->b_size);
3727 set_buffer_uptodate(bh);
3728 unlock_buffer(bh);
3729 goto has_buffer;
3730 }
3731 }
3732
3733 make_io:
3734 /*
3735 * If we need to do any I/O, try to pre-readahead extra
3736 * blocks from the inode table.
3737 */
3738 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3739 ext4_fsblk_t b, end, table;
3740 unsigned num;
3741 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3742
3743 table = ext4_inode_table(sb, gdp);
3744 /* s_inode_readahead_blks is always a power of 2 */
3745 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3746 if (table > b)
3747 b = table;
3748 end = b + ra_blks;
3749 num = EXT4_INODES_PER_GROUP(sb);
3750 if (ext4_has_group_desc_csum(sb))
3751 num -= ext4_itable_unused_count(sb, gdp);
3752 table += num / inodes_per_block;
3753 if (end > table)
3754 end = table;
3755 while (b <= end)
3756 sb_breadahead(sb, b++);
3757 }
3758
3759 /*
3760 * There are other valid inodes in the buffer, this inode
3761 * has in-inode xattrs, or we don't have this inode in memory.
3762 * Read the block from disk.
3763 */
3764 trace_ext4_load_inode(inode);
3765 get_bh(bh);
3766 bh->b_end_io = end_buffer_read_sync;
3767 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3768 wait_on_buffer(bh);
3769 if (!buffer_uptodate(bh)) {
3770 EXT4_ERROR_INODE_BLOCK(inode, block,
3771 "unable to read itable block");
3772 brelse(bh);
3773 return -EIO;
3774 }
3775 }
3776 has_buffer:
3777 iloc->bh = bh;
3778 return 0;
3779 }
3780
3781 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3782 {
3783 /* We have all inode data except xattrs in memory here. */
3784 return __ext4_get_inode_loc(inode, iloc,
3785 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3786 }
3787
3788 void ext4_set_inode_flags(struct inode *inode)
3789 {
3790 unsigned int flags = EXT4_I(inode)->i_flags;
3791 unsigned int new_fl = 0;
3792
3793 if (flags & EXT4_SYNC_FL)
3794 new_fl |= S_SYNC;
3795 if (flags & EXT4_APPEND_FL)
3796 new_fl |= S_APPEND;
3797 if (flags & EXT4_IMMUTABLE_FL)
3798 new_fl |= S_IMMUTABLE;
3799 if (flags & EXT4_NOATIME_FL)
3800 new_fl |= S_NOATIME;
3801 if (flags & EXT4_DIRSYNC_FL)
3802 new_fl |= S_DIRSYNC;
3803 inode_set_flags(inode, new_fl,
3804 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3805 }
3806
3807 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3808 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3809 {
3810 unsigned int vfs_fl;
3811 unsigned long old_fl, new_fl;
3812
3813 do {
3814 vfs_fl = ei->vfs_inode.i_flags;
3815 old_fl = ei->i_flags;
3816 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3817 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3818 EXT4_DIRSYNC_FL);
3819 if (vfs_fl & S_SYNC)
3820 new_fl |= EXT4_SYNC_FL;
3821 if (vfs_fl & S_APPEND)
3822 new_fl |= EXT4_APPEND_FL;
3823 if (vfs_fl & S_IMMUTABLE)
3824 new_fl |= EXT4_IMMUTABLE_FL;
3825 if (vfs_fl & S_NOATIME)
3826 new_fl |= EXT4_NOATIME_FL;
3827 if (vfs_fl & S_DIRSYNC)
3828 new_fl |= EXT4_DIRSYNC_FL;
3829 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3830 }
3831
3832 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3833 struct ext4_inode_info *ei)
3834 {
3835 blkcnt_t i_blocks ;
3836 struct inode *inode = &(ei->vfs_inode);
3837 struct super_block *sb = inode->i_sb;
3838
3839 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3840 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3841 /* we are using combined 48 bit field */
3842 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3843 le32_to_cpu(raw_inode->i_blocks_lo);
3844 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3845 /* i_blocks represent file system block size */
3846 return i_blocks << (inode->i_blkbits - 9);
3847 } else {
3848 return i_blocks;
3849 }
3850 } else {
3851 return le32_to_cpu(raw_inode->i_blocks_lo);
3852 }
3853 }
3854
3855 static inline void ext4_iget_extra_inode(struct inode *inode,
3856 struct ext4_inode *raw_inode,
3857 struct ext4_inode_info *ei)
3858 {
3859 __le32 *magic = (void *)raw_inode +
3860 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3861 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3862 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3863 ext4_find_inline_data_nolock(inode);
3864 } else
3865 EXT4_I(inode)->i_inline_off = 0;
3866 }
3867
3868 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3869 {
3870 struct ext4_iloc iloc;
3871 struct ext4_inode *raw_inode;
3872 struct ext4_inode_info *ei;
3873 struct inode *inode;
3874 journal_t *journal = EXT4_SB(sb)->s_journal;
3875 long ret;
3876 int block;
3877 uid_t i_uid;
3878 gid_t i_gid;
3879
3880 inode = iget_locked(sb, ino);
3881 if (!inode)
3882 return ERR_PTR(-ENOMEM);
3883 if (!(inode->i_state & I_NEW))
3884 return inode;
3885
3886 ei = EXT4_I(inode);
3887 iloc.bh = NULL;
3888
3889 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3890 if (ret < 0)
3891 goto bad_inode;
3892 raw_inode = ext4_raw_inode(&iloc);
3893
3894 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3895 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3896 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3897 EXT4_INODE_SIZE(inode->i_sb)) {
3898 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3899 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3900 EXT4_INODE_SIZE(inode->i_sb));
3901 ret = -EIO;
3902 goto bad_inode;
3903 }
3904 } else
3905 ei->i_extra_isize = 0;
3906
3907 /* Precompute checksum seed for inode metadata */
3908 if (ext4_has_metadata_csum(sb)) {
3909 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3910 __u32 csum;
3911 __le32 inum = cpu_to_le32(inode->i_ino);
3912 __le32 gen = raw_inode->i_generation;
3913 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3914 sizeof(inum));
3915 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3916 sizeof(gen));
3917 }
3918
3919 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3920 EXT4_ERROR_INODE(inode, "checksum invalid");
3921 ret = -EIO;
3922 goto bad_inode;
3923 }
3924
3925 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3926 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3927 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3928 if (!(test_opt(inode->i_sb, NO_UID32))) {
3929 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3930 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3931 }
3932 i_uid_write(inode, i_uid);
3933 i_gid_write(inode, i_gid);
3934 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3935
3936 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3937 ei->i_inline_off = 0;
3938 ei->i_dir_start_lookup = 0;
3939 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3940 /* We now have enough fields to check if the inode was active or not.
3941 * This is needed because nfsd might try to access dead inodes
3942 * the test is that same one that e2fsck uses
3943 * NeilBrown 1999oct15
3944 */
3945 if (inode->i_nlink == 0) {
3946 if ((inode->i_mode == 0 ||
3947 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3948 ino != EXT4_BOOT_LOADER_INO) {
3949 /* this inode is deleted */
3950 ret = -ESTALE;
3951 goto bad_inode;
3952 }
3953 /* The only unlinked inodes we let through here have
3954 * valid i_mode and are being read by the orphan
3955 * recovery code: that's fine, we're about to complete
3956 * the process of deleting those.
3957 * OR it is the EXT4_BOOT_LOADER_INO which is
3958 * not initialized on a new filesystem. */
3959 }
3960 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3961 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3962 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3963 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3964 ei->i_file_acl |=
3965 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3966 inode->i_size = ext4_isize(raw_inode);
3967 ei->i_disksize = inode->i_size;
3968 #ifdef CONFIG_QUOTA
3969 ei->i_reserved_quota = 0;
3970 #endif
3971 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3972 ei->i_block_group = iloc.block_group;
3973 ei->i_last_alloc_group = ~0;
3974 /*
3975 * NOTE! The in-memory inode i_data array is in little-endian order
3976 * even on big-endian machines: we do NOT byteswap the block numbers!
3977 */
3978 for (block = 0; block < EXT4_N_BLOCKS; block++)
3979 ei->i_data[block] = raw_inode->i_block[block];
3980 INIT_LIST_HEAD(&ei->i_orphan);
3981
3982 /*
3983 * Set transaction id's of transactions that have to be committed
3984 * to finish f[data]sync. We set them to currently running transaction
3985 * as we cannot be sure that the inode or some of its metadata isn't
3986 * part of the transaction - the inode could have been reclaimed and
3987 * now it is reread from disk.
3988 */
3989 if (journal) {
3990 transaction_t *transaction;
3991 tid_t tid;
3992
3993 read_lock(&journal->j_state_lock);
3994 if (journal->j_running_transaction)
3995 transaction = journal->j_running_transaction;
3996 else
3997 transaction = journal->j_committing_transaction;
3998 if (transaction)
3999 tid = transaction->t_tid;
4000 else
4001 tid = journal->j_commit_sequence;
4002 read_unlock(&journal->j_state_lock);
4003 ei->i_sync_tid = tid;
4004 ei->i_datasync_tid = tid;
4005 }
4006
4007 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4008 if (ei->i_extra_isize == 0) {
4009 /* The extra space is currently unused. Use it. */
4010 ei->i_extra_isize = sizeof(struct ext4_inode) -
4011 EXT4_GOOD_OLD_INODE_SIZE;
4012 } else {
4013 ext4_iget_extra_inode(inode, raw_inode, ei);
4014 }
4015 }
4016
4017 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4018 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4019 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4020 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4021
4022 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4023 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4024 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4025 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4026 inode->i_version |=
4027 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4028 }
4029 }
4030
4031 ret = 0;
4032 if (ei->i_file_acl &&
4033 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4034 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4035 ei->i_file_acl);
4036 ret = -EIO;
4037 goto bad_inode;
4038 } else if (!ext4_has_inline_data(inode)) {
4039 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4040 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4041 (S_ISLNK(inode->i_mode) &&
4042 !ext4_inode_is_fast_symlink(inode))))
4043 /* Validate extent which is part of inode */
4044 ret = ext4_ext_check_inode(inode);
4045 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4046 (S_ISLNK(inode->i_mode) &&
4047 !ext4_inode_is_fast_symlink(inode))) {
4048 /* Validate block references which are part of inode */
4049 ret = ext4_ind_check_inode(inode);
4050 }
4051 }
4052 if (ret)
4053 goto bad_inode;
4054
4055 if (S_ISREG(inode->i_mode)) {
4056 inode->i_op = &ext4_file_inode_operations;
4057 inode->i_fop = &ext4_file_operations;
4058 ext4_set_aops(inode);
4059 } else if (S_ISDIR(inode->i_mode)) {
4060 inode->i_op = &ext4_dir_inode_operations;
4061 inode->i_fop = &ext4_dir_operations;
4062 } else if (S_ISLNK(inode->i_mode)) {
4063 if (ext4_inode_is_fast_symlink(inode)) {
4064 inode->i_op = &ext4_fast_symlink_inode_operations;
4065 nd_terminate_link(ei->i_data, inode->i_size,
4066 sizeof(ei->i_data) - 1);
4067 } else {
4068 inode->i_op = &ext4_symlink_inode_operations;
4069 ext4_set_aops(inode);
4070 }
4071 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4072 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4073 inode->i_op = &ext4_special_inode_operations;
4074 if (raw_inode->i_block[0])
4075 init_special_inode(inode, inode->i_mode,
4076 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4077 else
4078 init_special_inode(inode, inode->i_mode,
4079 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4080 } else if (ino == EXT4_BOOT_LOADER_INO) {
4081 make_bad_inode(inode);
4082 } else {
4083 ret = -EIO;
4084 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4085 goto bad_inode;
4086 }
4087 brelse(iloc.bh);
4088 ext4_set_inode_flags(inode);
4089 unlock_new_inode(inode);
4090 return inode;
4091
4092 bad_inode:
4093 brelse(iloc.bh);
4094 iget_failed(inode);
4095 return ERR_PTR(ret);
4096 }
4097
4098 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4099 {
4100 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4101 return ERR_PTR(-EIO);
4102 return ext4_iget(sb, ino);
4103 }
4104
4105 static int ext4_inode_blocks_set(handle_t *handle,
4106 struct ext4_inode *raw_inode,
4107 struct ext4_inode_info *ei)
4108 {
4109 struct inode *inode = &(ei->vfs_inode);
4110 u64 i_blocks = inode->i_blocks;
4111 struct super_block *sb = inode->i_sb;
4112
4113 if (i_blocks <= ~0U) {
4114 /*
4115 * i_blocks can be represented in a 32 bit variable
4116 * as multiple of 512 bytes
4117 */
4118 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4119 raw_inode->i_blocks_high = 0;
4120 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4121 return 0;
4122 }
4123 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4124 return -EFBIG;
4125
4126 if (i_blocks <= 0xffffffffffffULL) {
4127 /*
4128 * i_blocks can be represented in a 48 bit variable
4129 * as multiple of 512 bytes
4130 */
4131 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4132 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4133 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4134 } else {
4135 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4136 /* i_block is stored in file system block size */
4137 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4138 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4139 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4140 }
4141 return 0;
4142 }
4143
4144 /*
4145 * Post the struct inode info into an on-disk inode location in the
4146 * buffer-cache. This gobbles the caller's reference to the
4147 * buffer_head in the inode location struct.
4148 *
4149 * The caller must have write access to iloc->bh.
4150 */
4151 static int ext4_do_update_inode(handle_t *handle,
4152 struct inode *inode,
4153 struct ext4_iloc *iloc)
4154 {
4155 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4156 struct ext4_inode_info *ei = EXT4_I(inode);
4157 struct buffer_head *bh = iloc->bh;
4158 struct super_block *sb = inode->i_sb;
4159 int err = 0, rc, block;
4160 int need_datasync = 0, set_large_file = 0;
4161 uid_t i_uid;
4162 gid_t i_gid;
4163
4164 spin_lock(&ei->i_raw_lock);
4165
4166 /* For fields not tracked in the in-memory inode,
4167 * initialise them to zero for new inodes. */
4168 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4169 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4170
4171 ext4_get_inode_flags(ei);
4172 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4173 i_uid = i_uid_read(inode);
4174 i_gid = i_gid_read(inode);
4175 if (!(test_opt(inode->i_sb, NO_UID32))) {
4176 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4177 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4178 /*
4179 * Fix up interoperability with old kernels. Otherwise, old inodes get
4180 * re-used with the upper 16 bits of the uid/gid intact
4181 */
4182 if (!ei->i_dtime) {
4183 raw_inode->i_uid_high =
4184 cpu_to_le16(high_16_bits(i_uid));
4185 raw_inode->i_gid_high =
4186 cpu_to_le16(high_16_bits(i_gid));
4187 } else {
4188 raw_inode->i_uid_high = 0;
4189 raw_inode->i_gid_high = 0;
4190 }
4191 } else {
4192 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4193 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4194 raw_inode->i_uid_high = 0;
4195 raw_inode->i_gid_high = 0;
4196 }
4197 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4198
4199 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4200 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4201 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4202 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4203
4204 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4205 if (err) {
4206 spin_unlock(&ei->i_raw_lock);
4207 goto out_brelse;
4208 }
4209 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4210 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4211 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4212 raw_inode->i_file_acl_high =
4213 cpu_to_le16(ei->i_file_acl >> 32);
4214 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4215 if (ei->i_disksize != ext4_isize(raw_inode)) {
4216 ext4_isize_set(raw_inode, ei->i_disksize);
4217 need_datasync = 1;
4218 }
4219 if (ei->i_disksize > 0x7fffffffULL) {
4220 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4221 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4222 EXT4_SB(sb)->s_es->s_rev_level ==
4223 cpu_to_le32(EXT4_GOOD_OLD_REV))
4224 set_large_file = 1;
4225 }
4226 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4227 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4228 if (old_valid_dev(inode->i_rdev)) {
4229 raw_inode->i_block[0] =
4230 cpu_to_le32(old_encode_dev(inode->i_rdev));
4231 raw_inode->i_block[1] = 0;
4232 } else {
4233 raw_inode->i_block[0] = 0;
4234 raw_inode->i_block[1] =
4235 cpu_to_le32(new_encode_dev(inode->i_rdev));
4236 raw_inode->i_block[2] = 0;
4237 }
4238 } else if (!ext4_has_inline_data(inode)) {
4239 for (block = 0; block < EXT4_N_BLOCKS; block++)
4240 raw_inode->i_block[block] = ei->i_data[block];
4241 }
4242
4243 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4244 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4245 if (ei->i_extra_isize) {
4246 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4247 raw_inode->i_version_hi =
4248 cpu_to_le32(inode->i_version >> 32);
4249 raw_inode->i_extra_isize =
4250 cpu_to_le16(ei->i_extra_isize);
4251 }
4252 }
4253
4254 ext4_inode_csum_set(inode, raw_inode, ei);
4255
4256 spin_unlock(&ei->i_raw_lock);
4257
4258 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4259 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4260 if (!err)
4261 err = rc;
4262 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4263 if (set_large_file) {
4264 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4265 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4266 if (err)
4267 goto out_brelse;
4268 ext4_update_dynamic_rev(sb);
4269 EXT4_SET_RO_COMPAT_FEATURE(sb,
4270 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4271 ext4_handle_sync(handle);
4272 err = ext4_handle_dirty_super(handle, sb);
4273 }
4274 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4275 out_brelse:
4276 brelse(bh);
4277 ext4_std_error(inode->i_sb, err);
4278 return err;
4279 }
4280
4281 /*
4282 * ext4_write_inode()
4283 *
4284 * We are called from a few places:
4285 *
4286 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4287 * Here, there will be no transaction running. We wait for any running
4288 * transaction to commit.
4289 *
4290 * - Within flush work (sys_sync(), kupdate and such).
4291 * We wait on commit, if told to.
4292 *
4293 * - Within iput_final() -> write_inode_now()
4294 * We wait on commit, if told to.
4295 *
4296 * In all cases it is actually safe for us to return without doing anything,
4297 * because the inode has been copied into a raw inode buffer in
4298 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4299 * writeback.
4300 *
4301 * Note that we are absolutely dependent upon all inode dirtiers doing the
4302 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4303 * which we are interested.
4304 *
4305 * It would be a bug for them to not do this. The code:
4306 *
4307 * mark_inode_dirty(inode)
4308 * stuff();
4309 * inode->i_size = expr;
4310 *
4311 * is in error because write_inode() could occur while `stuff()' is running,
4312 * and the new i_size will be lost. Plus the inode will no longer be on the
4313 * superblock's dirty inode list.
4314 */
4315 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4316 {
4317 int err;
4318
4319 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4320 return 0;
4321
4322 if (EXT4_SB(inode->i_sb)->s_journal) {
4323 if (ext4_journal_current_handle()) {
4324 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4325 dump_stack();
4326 return -EIO;
4327 }
4328
4329 /*
4330 * No need to force transaction in WB_SYNC_NONE mode. Also
4331 * ext4_sync_fs() will force the commit after everything is
4332 * written.
4333 */
4334 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4335 return 0;
4336
4337 err = ext4_force_commit(inode->i_sb);
4338 } else {
4339 struct ext4_iloc iloc;
4340
4341 err = __ext4_get_inode_loc(inode, &iloc, 0);
4342 if (err)
4343 return err;
4344 /*
4345 * sync(2) will flush the whole buffer cache. No need to do
4346 * it here separately for each inode.
4347 */
4348 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4349 sync_dirty_buffer(iloc.bh);
4350 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4351 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4352 "IO error syncing inode");
4353 err = -EIO;
4354 }
4355 brelse(iloc.bh);
4356 }
4357 return err;
4358 }
4359
4360 /*
4361 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4362 * buffers that are attached to a page stradding i_size and are undergoing
4363 * commit. In that case we have to wait for commit to finish and try again.
4364 */
4365 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4366 {
4367 struct page *page;
4368 unsigned offset;
4369 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4370 tid_t commit_tid = 0;
4371 int ret;
4372
4373 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4374 /*
4375 * All buffers in the last page remain valid? Then there's nothing to
4376 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4377 * blocksize case
4378 */
4379 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4380 return;
4381 while (1) {
4382 page = find_lock_page(inode->i_mapping,
4383 inode->i_size >> PAGE_CACHE_SHIFT);
4384 if (!page)
4385 return;
4386 ret = __ext4_journalled_invalidatepage(page, offset,
4387 PAGE_CACHE_SIZE - offset);
4388 unlock_page(page);
4389 page_cache_release(page);
4390 if (ret != -EBUSY)
4391 return;
4392 commit_tid = 0;
4393 read_lock(&journal->j_state_lock);
4394 if (journal->j_committing_transaction)
4395 commit_tid = journal->j_committing_transaction->t_tid;
4396 read_unlock(&journal->j_state_lock);
4397 if (commit_tid)
4398 jbd2_log_wait_commit(journal, commit_tid);
4399 }
4400 }
4401
4402 /*
4403 * ext4_setattr()
4404 *
4405 * Called from notify_change.
4406 *
4407 * We want to trap VFS attempts to truncate the file as soon as
4408 * possible. In particular, we want to make sure that when the VFS
4409 * shrinks i_size, we put the inode on the orphan list and modify
4410 * i_disksize immediately, so that during the subsequent flushing of
4411 * dirty pages and freeing of disk blocks, we can guarantee that any
4412 * commit will leave the blocks being flushed in an unused state on
4413 * disk. (On recovery, the inode will get truncated and the blocks will
4414 * be freed, so we have a strong guarantee that no future commit will
4415 * leave these blocks visible to the user.)
4416 *
4417 * Another thing we have to assure is that if we are in ordered mode
4418 * and inode is still attached to the committing transaction, we must
4419 * we start writeout of all the dirty pages which are being truncated.
4420 * This way we are sure that all the data written in the previous
4421 * transaction are already on disk (truncate waits for pages under
4422 * writeback).
4423 *
4424 * Called with inode->i_mutex down.
4425 */
4426 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4427 {
4428 struct inode *inode = dentry->d_inode;
4429 int error, rc = 0;
4430 int orphan = 0;
4431 const unsigned int ia_valid = attr->ia_valid;
4432
4433 error = inode_change_ok(inode, attr);
4434 if (error)
4435 return error;
4436
4437 if (is_quota_modification(inode, attr))
4438 dquot_initialize(inode);
4439 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4440 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4441 handle_t *handle;
4442
4443 /* (user+group)*(old+new) structure, inode write (sb,
4444 * inode block, ? - but truncate inode update has it) */
4445 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4446 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4447 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4448 if (IS_ERR(handle)) {
4449 error = PTR_ERR(handle);
4450 goto err_out;
4451 }
4452 error = dquot_transfer(inode, attr);
4453 if (error) {
4454 ext4_journal_stop(handle);
4455 return error;
4456 }
4457 /* Update corresponding info in inode so that everything is in
4458 * one transaction */
4459 if (attr->ia_valid & ATTR_UID)
4460 inode->i_uid = attr->ia_uid;
4461 if (attr->ia_valid & ATTR_GID)
4462 inode->i_gid = attr->ia_gid;
4463 error = ext4_mark_inode_dirty(handle, inode);
4464 ext4_journal_stop(handle);
4465 }
4466
4467 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4468 handle_t *handle;
4469
4470 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4471 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4472
4473 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4474 return -EFBIG;
4475 }
4476
4477 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4478 inode_inc_iversion(inode);
4479
4480 if (S_ISREG(inode->i_mode) &&
4481 (attr->ia_size < inode->i_size)) {
4482 if (ext4_should_order_data(inode)) {
4483 error = ext4_begin_ordered_truncate(inode,
4484 attr->ia_size);
4485 if (error)
4486 goto err_out;
4487 }
4488 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4489 if (IS_ERR(handle)) {
4490 error = PTR_ERR(handle);
4491 goto err_out;
4492 }
4493 if (ext4_handle_valid(handle)) {
4494 error = ext4_orphan_add(handle, inode);
4495 orphan = 1;
4496 }
4497 down_write(&EXT4_I(inode)->i_data_sem);
4498 EXT4_I(inode)->i_disksize = attr->ia_size;
4499 rc = ext4_mark_inode_dirty(handle, inode);
4500 if (!error)
4501 error = rc;
4502 /*
4503 * We have to update i_size under i_data_sem together
4504 * with i_disksize to avoid races with writeback code
4505 * running ext4_wb_update_i_disksize().
4506 */
4507 if (!error)
4508 i_size_write(inode, attr->ia_size);
4509 up_write(&EXT4_I(inode)->i_data_sem);
4510 ext4_journal_stop(handle);
4511 if (error) {
4512 ext4_orphan_del(NULL, inode);
4513 goto err_out;
4514 }
4515 } else {
4516 loff_t oldsize = inode->i_size;
4517
4518 i_size_write(inode, attr->ia_size);
4519 pagecache_isize_extended(inode, oldsize, inode->i_size);
4520 }
4521
4522 /*
4523 * Blocks are going to be removed from the inode. Wait
4524 * for dio in flight. Temporarily disable
4525 * dioread_nolock to prevent livelock.
4526 */
4527 if (orphan) {
4528 if (!ext4_should_journal_data(inode)) {
4529 ext4_inode_block_unlocked_dio(inode);
4530 inode_dio_wait(inode);
4531 ext4_inode_resume_unlocked_dio(inode);
4532 } else
4533 ext4_wait_for_tail_page_commit(inode);
4534 }
4535 /*
4536 * Truncate pagecache after we've waited for commit
4537 * in data=journal mode to make pages freeable.
4538 */
4539 truncate_pagecache(inode, inode->i_size);
4540 }
4541 /*
4542 * We want to call ext4_truncate() even if attr->ia_size ==
4543 * inode->i_size for cases like truncation of fallocated space
4544 */
4545 if (attr->ia_valid & ATTR_SIZE)
4546 ext4_truncate(inode);
4547
4548 if (!rc) {
4549 setattr_copy(inode, attr);
4550 mark_inode_dirty(inode);
4551 }
4552
4553 /*
4554 * If the call to ext4_truncate failed to get a transaction handle at
4555 * all, we need to clean up the in-core orphan list manually.
4556 */
4557 if (orphan && inode->i_nlink)
4558 ext4_orphan_del(NULL, inode);
4559
4560 if (!rc && (ia_valid & ATTR_MODE))
4561 rc = posix_acl_chmod(inode, inode->i_mode);
4562
4563 err_out:
4564 ext4_std_error(inode->i_sb, error);
4565 if (!error)
4566 error = rc;
4567 return error;
4568 }
4569
4570 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4571 struct kstat *stat)
4572 {
4573 struct inode *inode;
4574 unsigned long long delalloc_blocks;
4575
4576 inode = dentry->d_inode;
4577 generic_fillattr(inode, stat);
4578
4579 /*
4580 * If there is inline data in the inode, the inode will normally not
4581 * have data blocks allocated (it may have an external xattr block).
4582 * Report at least one sector for such files, so tools like tar, rsync,
4583 * others doen't incorrectly think the file is completely sparse.
4584 */
4585 if (unlikely(ext4_has_inline_data(inode)))
4586 stat->blocks += (stat->size + 511) >> 9;
4587
4588 /*
4589 * We can't update i_blocks if the block allocation is delayed
4590 * otherwise in the case of system crash before the real block
4591 * allocation is done, we will have i_blocks inconsistent with
4592 * on-disk file blocks.
4593 * We always keep i_blocks updated together with real
4594 * allocation. But to not confuse with user, stat
4595 * will return the blocks that include the delayed allocation
4596 * blocks for this file.
4597 */
4598 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4599 EXT4_I(inode)->i_reserved_data_blocks);
4600 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4601 return 0;
4602 }
4603
4604 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4605 int pextents)
4606 {
4607 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4608 return ext4_ind_trans_blocks(inode, lblocks);
4609 return ext4_ext_index_trans_blocks(inode, pextents);
4610 }
4611
4612 /*
4613 * Account for index blocks, block groups bitmaps and block group
4614 * descriptor blocks if modify datablocks and index blocks
4615 * worse case, the indexs blocks spread over different block groups
4616 *
4617 * If datablocks are discontiguous, they are possible to spread over
4618 * different block groups too. If they are contiguous, with flexbg,
4619 * they could still across block group boundary.
4620 *
4621 * Also account for superblock, inode, quota and xattr blocks
4622 */
4623 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4624 int pextents)
4625 {
4626 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4627 int gdpblocks;
4628 int idxblocks;
4629 int ret = 0;
4630
4631 /*
4632 * How many index blocks need to touch to map @lblocks logical blocks
4633 * to @pextents physical extents?
4634 */
4635 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4636
4637 ret = idxblocks;
4638
4639 /*
4640 * Now let's see how many group bitmaps and group descriptors need
4641 * to account
4642 */
4643 groups = idxblocks + pextents;
4644 gdpblocks = groups;
4645 if (groups > ngroups)
4646 groups = ngroups;
4647 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4648 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4649
4650 /* bitmaps and block group descriptor blocks */
4651 ret += groups + gdpblocks;
4652
4653 /* Blocks for super block, inode, quota and xattr blocks */
4654 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4655
4656 return ret;
4657 }
4658
4659 /*
4660 * Calculate the total number of credits to reserve to fit
4661 * the modification of a single pages into a single transaction,
4662 * which may include multiple chunks of block allocations.
4663 *
4664 * This could be called via ext4_write_begin()
4665 *
4666 * We need to consider the worse case, when
4667 * one new block per extent.
4668 */
4669 int ext4_writepage_trans_blocks(struct inode *inode)
4670 {
4671 int bpp = ext4_journal_blocks_per_page(inode);
4672 int ret;
4673
4674 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4675
4676 /* Account for data blocks for journalled mode */
4677 if (ext4_should_journal_data(inode))
4678 ret += bpp;
4679 return ret;
4680 }
4681
4682 /*
4683 * Calculate the journal credits for a chunk of data modification.
4684 *
4685 * This is called from DIO, fallocate or whoever calling
4686 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4687 *
4688 * journal buffers for data blocks are not included here, as DIO
4689 * and fallocate do no need to journal data buffers.
4690 */
4691 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4692 {
4693 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4694 }
4695
4696 /*
4697 * The caller must have previously called ext4_reserve_inode_write().
4698 * Give this, we know that the caller already has write access to iloc->bh.
4699 */
4700 int ext4_mark_iloc_dirty(handle_t *handle,
4701 struct inode *inode, struct ext4_iloc *iloc)
4702 {
4703 int err = 0;
4704
4705 if (IS_I_VERSION(inode))
4706 inode_inc_iversion(inode);
4707
4708 /* the do_update_inode consumes one bh->b_count */
4709 get_bh(iloc->bh);
4710
4711 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4712 err = ext4_do_update_inode(handle, inode, iloc);
4713 put_bh(iloc->bh);
4714 return err;
4715 }
4716
4717 /*
4718 * On success, We end up with an outstanding reference count against
4719 * iloc->bh. This _must_ be cleaned up later.
4720 */
4721
4722 int
4723 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4724 struct ext4_iloc *iloc)
4725 {
4726 int err;
4727
4728 err = ext4_get_inode_loc(inode, iloc);
4729 if (!err) {
4730 BUFFER_TRACE(iloc->bh, "get_write_access");
4731 err = ext4_journal_get_write_access(handle, iloc->bh);
4732 if (err) {
4733 brelse(iloc->bh);
4734 iloc->bh = NULL;
4735 }
4736 }
4737 ext4_std_error(inode->i_sb, err);
4738 return err;
4739 }
4740
4741 /*
4742 * Expand an inode by new_extra_isize bytes.
4743 * Returns 0 on success or negative error number on failure.
4744 */
4745 static int ext4_expand_extra_isize(struct inode *inode,
4746 unsigned int new_extra_isize,
4747 struct ext4_iloc iloc,
4748 handle_t *handle)
4749 {
4750 struct ext4_inode *raw_inode;
4751 struct ext4_xattr_ibody_header *header;
4752
4753 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4754 return 0;
4755
4756 raw_inode = ext4_raw_inode(&iloc);
4757
4758 header = IHDR(inode, raw_inode);
4759
4760 /* No extended attributes present */
4761 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4762 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4763 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4764 new_extra_isize);
4765 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4766 return 0;
4767 }
4768
4769 /* try to expand with EAs present */
4770 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4771 raw_inode, handle);
4772 }
4773
4774 /*
4775 * What we do here is to mark the in-core inode as clean with respect to inode
4776 * dirtiness (it may still be data-dirty).
4777 * This means that the in-core inode may be reaped by prune_icache
4778 * without having to perform any I/O. This is a very good thing,
4779 * because *any* task may call prune_icache - even ones which
4780 * have a transaction open against a different journal.
4781 *
4782 * Is this cheating? Not really. Sure, we haven't written the
4783 * inode out, but prune_icache isn't a user-visible syncing function.
4784 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4785 * we start and wait on commits.
4786 */
4787 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4788 {
4789 struct ext4_iloc iloc;
4790 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4791 static unsigned int mnt_count;
4792 int err, ret;
4793
4794 might_sleep();
4795 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4796 err = ext4_reserve_inode_write(handle, inode, &iloc);
4797 if (ext4_handle_valid(handle) &&
4798 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4799 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4800 /*
4801 * We need extra buffer credits since we may write into EA block
4802 * with this same handle. If journal_extend fails, then it will
4803 * only result in a minor loss of functionality for that inode.
4804 * If this is felt to be critical, then e2fsck should be run to
4805 * force a large enough s_min_extra_isize.
4806 */
4807 if ((jbd2_journal_extend(handle,
4808 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4809 ret = ext4_expand_extra_isize(inode,
4810 sbi->s_want_extra_isize,
4811 iloc, handle);
4812 if (ret) {
4813 ext4_set_inode_state(inode,
4814 EXT4_STATE_NO_EXPAND);
4815 if (mnt_count !=
4816 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4817 ext4_warning(inode->i_sb,
4818 "Unable to expand inode %lu. Delete"
4819 " some EAs or run e2fsck.",
4820 inode->i_ino);
4821 mnt_count =
4822 le16_to_cpu(sbi->s_es->s_mnt_count);
4823 }
4824 }
4825 }
4826 }
4827 if (!err)
4828 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4829 return err;
4830 }
4831
4832 /*
4833 * ext4_dirty_inode() is called from __mark_inode_dirty()
4834 *
4835 * We're really interested in the case where a file is being extended.
4836 * i_size has been changed by generic_commit_write() and we thus need
4837 * to include the updated inode in the current transaction.
4838 *
4839 * Also, dquot_alloc_block() will always dirty the inode when blocks
4840 * are allocated to the file.
4841 *
4842 * If the inode is marked synchronous, we don't honour that here - doing
4843 * so would cause a commit on atime updates, which we don't bother doing.
4844 * We handle synchronous inodes at the highest possible level.
4845 */
4846 void ext4_dirty_inode(struct inode *inode, int flags)
4847 {
4848 handle_t *handle;
4849
4850 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4851 if (IS_ERR(handle))
4852 goto out;
4853
4854 ext4_mark_inode_dirty(handle, inode);
4855
4856 ext4_journal_stop(handle);
4857 out:
4858 return;
4859 }
4860
4861 #if 0
4862 /*
4863 * Bind an inode's backing buffer_head into this transaction, to prevent
4864 * it from being flushed to disk early. Unlike
4865 * ext4_reserve_inode_write, this leaves behind no bh reference and
4866 * returns no iloc structure, so the caller needs to repeat the iloc
4867 * lookup to mark the inode dirty later.
4868 */
4869 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4870 {
4871 struct ext4_iloc iloc;
4872
4873 int err = 0;
4874 if (handle) {
4875 err = ext4_get_inode_loc(inode, &iloc);
4876 if (!err) {
4877 BUFFER_TRACE(iloc.bh, "get_write_access");
4878 err = jbd2_journal_get_write_access(handle, iloc.bh);
4879 if (!err)
4880 err = ext4_handle_dirty_metadata(handle,
4881 NULL,
4882 iloc.bh);
4883 brelse(iloc.bh);
4884 }
4885 }
4886 ext4_std_error(inode->i_sb, err);
4887 return err;
4888 }
4889 #endif
4890
4891 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4892 {
4893 journal_t *journal;
4894 handle_t *handle;
4895 int err;
4896
4897 /*
4898 * We have to be very careful here: changing a data block's
4899 * journaling status dynamically is dangerous. If we write a
4900 * data block to the journal, change the status and then delete
4901 * that block, we risk forgetting to revoke the old log record
4902 * from the journal and so a subsequent replay can corrupt data.
4903 * So, first we make sure that the journal is empty and that
4904 * nobody is changing anything.
4905 */
4906
4907 journal = EXT4_JOURNAL(inode);
4908 if (!journal)
4909 return 0;
4910 if (is_journal_aborted(journal))
4911 return -EROFS;
4912 /* We have to allocate physical blocks for delalloc blocks
4913 * before flushing journal. otherwise delalloc blocks can not
4914 * be allocated any more. even more truncate on delalloc blocks
4915 * could trigger BUG by flushing delalloc blocks in journal.
4916 * There is no delalloc block in non-journal data mode.
4917 */
4918 if (val && test_opt(inode->i_sb, DELALLOC)) {
4919 err = ext4_alloc_da_blocks(inode);
4920 if (err < 0)
4921 return err;
4922 }
4923
4924 /* Wait for all existing dio workers */
4925 ext4_inode_block_unlocked_dio(inode);
4926 inode_dio_wait(inode);
4927
4928 jbd2_journal_lock_updates(journal);
4929
4930 /*
4931 * OK, there are no updates running now, and all cached data is
4932 * synced to disk. We are now in a completely consistent state
4933 * which doesn't have anything in the journal, and we know that
4934 * no filesystem updates are running, so it is safe to modify
4935 * the inode's in-core data-journaling state flag now.
4936 */
4937
4938 if (val)
4939 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4940 else {
4941 err = jbd2_journal_flush(journal);
4942 if (err < 0) {
4943 jbd2_journal_unlock_updates(journal);
4944 ext4_inode_resume_unlocked_dio(inode);
4945 return err;
4946 }
4947 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4948 }
4949 ext4_set_aops(inode);
4950
4951 jbd2_journal_unlock_updates(journal);
4952 ext4_inode_resume_unlocked_dio(inode);
4953
4954 /* Finally we can mark the inode as dirty. */
4955
4956 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4957 if (IS_ERR(handle))
4958 return PTR_ERR(handle);
4959
4960 err = ext4_mark_inode_dirty(handle, inode);
4961 ext4_handle_sync(handle);
4962 ext4_journal_stop(handle);
4963 ext4_std_error(inode->i_sb, err);
4964
4965 return err;
4966 }
4967
4968 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4969 {
4970 return !buffer_mapped(bh);
4971 }
4972
4973 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4974 {
4975 struct page *page = vmf->page;
4976 loff_t size;
4977 unsigned long len;
4978 int ret;
4979 struct file *file = vma->vm_file;
4980 struct inode *inode = file_inode(file);
4981 struct address_space *mapping = inode->i_mapping;
4982 handle_t *handle;
4983 get_block_t *get_block;
4984 int retries = 0;
4985
4986 sb_start_pagefault(inode->i_sb);
4987 file_update_time(vma->vm_file);
4988 /* Delalloc case is easy... */
4989 if (test_opt(inode->i_sb, DELALLOC) &&
4990 !ext4_should_journal_data(inode) &&
4991 !ext4_nonda_switch(inode->i_sb)) {
4992 do {
4993 ret = __block_page_mkwrite(vma, vmf,
4994 ext4_da_get_block_prep);
4995 } while (ret == -ENOSPC &&
4996 ext4_should_retry_alloc(inode->i_sb, &retries));
4997 goto out_ret;
4998 }
4999
5000 lock_page(page);
5001 size = i_size_read(inode);
5002 /* Page got truncated from under us? */
5003 if (page->mapping != mapping || page_offset(page) > size) {
5004 unlock_page(page);
5005 ret = VM_FAULT_NOPAGE;
5006 goto out;
5007 }
5008
5009 if (page->index == size >> PAGE_CACHE_SHIFT)
5010 len = size & ~PAGE_CACHE_MASK;
5011 else
5012 len = PAGE_CACHE_SIZE;
5013 /*
5014 * Return if we have all the buffers mapped. This avoids the need to do
5015 * journal_start/journal_stop which can block and take a long time
5016 */
5017 if (page_has_buffers(page)) {
5018 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5019 0, len, NULL,
5020 ext4_bh_unmapped)) {
5021 /* Wait so that we don't change page under IO */
5022 wait_for_stable_page(page);
5023 ret = VM_FAULT_LOCKED;
5024 goto out;
5025 }
5026 }
5027 unlock_page(page);
5028 /* OK, we need to fill the hole... */
5029 if (ext4_should_dioread_nolock(inode))
5030 get_block = ext4_get_block_write;
5031 else
5032 get_block = ext4_get_block;
5033 retry_alloc:
5034 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5035 ext4_writepage_trans_blocks(inode));
5036 if (IS_ERR(handle)) {
5037 ret = VM_FAULT_SIGBUS;
5038 goto out;
5039 }
5040 ret = __block_page_mkwrite(vma, vmf, get_block);
5041 if (!ret && ext4_should_journal_data(inode)) {
5042 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5043 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5044 unlock_page(page);
5045 ret = VM_FAULT_SIGBUS;
5046 ext4_journal_stop(handle);
5047 goto out;
5048 }
5049 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5050 }
5051 ext4_journal_stop(handle);
5052 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5053 goto retry_alloc;
5054 out_ret:
5055 ret = block_page_mkwrite_return(ret);
5056 out:
5057 sb_end_pagefault(inode->i_sb);
5058 return ret;
5059 }
This page took 0.151817 seconds and 5 git commands to generate.