Merge tag 'writeback-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg...
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52 {
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
73
74 return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79 {
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
87
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
95
96 return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
101 {
102 __u32 csum;
103
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119 {
120 trace_ext4_begin_ordered_truncate(inode, new_size);
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138 struct inode *inode, struct page *page, loff_t from,
139 loff_t length, int flags);
140
141 /*
142 * Test whether an inode is a fast symlink.
143 */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146 int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 (inode->i_sb->s_blocksize >> 9) : 0;
148
149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153 * Restart the transaction associated with *handle. This does a commit,
154 * so before we call here everything must be consistently dirtied against
155 * this transaction.
156 */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158 int nblocks)
159 {
160 int ret;
161
162 /*
163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
164 * moment, get_block can be called only for blocks inside i_size since
165 * page cache has been already dropped and writes are blocked by
166 * i_mutex. So we can safely drop the i_data_sem here.
167 */
168 BUG_ON(EXT4_JOURNAL(inode) == NULL);
169 jbd_debug(2, "restarting handle %p\n", handle);
170 up_write(&EXT4_I(inode)->i_data_sem);
171 ret = ext4_journal_restart(handle, nblocks);
172 down_write(&EXT4_I(inode)->i_data_sem);
173 ext4_discard_preallocations(inode);
174
175 return ret;
176 }
177
178 /*
179 * Called at the last iput() if i_nlink is zero.
180 */
181 void ext4_evict_inode(struct inode *inode)
182 {
183 handle_t *handle;
184 int err;
185
186 trace_ext4_evict_inode(inode);
187
188 ext4_ioend_wait(inode);
189
190 if (inode->i_nlink) {
191 /*
192 * When journalling data dirty buffers are tracked only in the
193 * journal. So although mm thinks everything is clean and
194 * ready for reaping the inode might still have some pages to
195 * write in the running transaction or waiting to be
196 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 * (via truncate_inode_pages()) to discard these buffers can
198 * cause data loss. Also even if we did not discard these
199 * buffers, we would have no way to find them after the inode
200 * is reaped and thus user could see stale data if he tries to
201 * read them before the transaction is checkpointed. So be
202 * careful and force everything to disk here... We use
203 * ei->i_datasync_tid to store the newest transaction
204 * containing inode's data.
205 *
206 * Note that directories do not have this problem because they
207 * don't use page cache.
208 */
209 if (ext4_should_journal_data(inode) &&
210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214 jbd2_log_start_commit(journal, commit_tid);
215 jbd2_log_wait_commit(journal, commit_tid);
216 filemap_write_and_wait(&inode->i_data);
217 }
218 truncate_inode_pages(&inode->i_data, 0);
219 goto no_delete;
220 }
221
222 if (!is_bad_inode(inode))
223 dquot_initialize(inode);
224
225 if (ext4_should_order_data(inode))
226 ext4_begin_ordered_truncate(inode, 0);
227 truncate_inode_pages(&inode->i_data, 0);
228
229 if (is_bad_inode(inode))
230 goto no_delete;
231
232 /*
233 * Protect us against freezing - iput() caller didn't have to have any
234 * protection against it
235 */
236 sb_start_intwrite(inode->i_sb);
237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238 ext4_blocks_for_truncate(inode)+3);
239 if (IS_ERR(handle)) {
240 ext4_std_error(inode->i_sb, PTR_ERR(handle));
241 /*
242 * If we're going to skip the normal cleanup, we still need to
243 * make sure that the in-core orphan linked list is properly
244 * cleaned up.
245 */
246 ext4_orphan_del(NULL, inode);
247 sb_end_intwrite(inode->i_sb);
248 goto no_delete;
249 }
250
251 if (IS_SYNC(inode))
252 ext4_handle_sync(handle);
253 inode->i_size = 0;
254 err = ext4_mark_inode_dirty(handle, inode);
255 if (err) {
256 ext4_warning(inode->i_sb,
257 "couldn't mark inode dirty (err %d)", err);
258 goto stop_handle;
259 }
260 if (inode->i_blocks)
261 ext4_truncate(inode);
262
263 /*
264 * ext4_ext_truncate() doesn't reserve any slop when it
265 * restarts journal transactions; therefore there may not be
266 * enough credits left in the handle to remove the inode from
267 * the orphan list and set the dtime field.
268 */
269 if (!ext4_handle_has_enough_credits(handle, 3)) {
270 err = ext4_journal_extend(handle, 3);
271 if (err > 0)
272 err = ext4_journal_restart(handle, 3);
273 if (err != 0) {
274 ext4_warning(inode->i_sb,
275 "couldn't extend journal (err %d)", err);
276 stop_handle:
277 ext4_journal_stop(handle);
278 ext4_orphan_del(NULL, inode);
279 sb_end_intwrite(inode->i_sb);
280 goto no_delete;
281 }
282 }
283
284 /*
285 * Kill off the orphan record which ext4_truncate created.
286 * AKPM: I think this can be inside the above `if'.
287 * Note that ext4_orphan_del() has to be able to cope with the
288 * deletion of a non-existent orphan - this is because we don't
289 * know if ext4_truncate() actually created an orphan record.
290 * (Well, we could do this if we need to, but heck - it works)
291 */
292 ext4_orphan_del(handle, inode);
293 EXT4_I(inode)->i_dtime = get_seconds();
294
295 /*
296 * One subtle ordering requirement: if anything has gone wrong
297 * (transaction abort, IO errors, whatever), then we can still
298 * do these next steps (the fs will already have been marked as
299 * having errors), but we can't free the inode if the mark_dirty
300 * fails.
301 */
302 if (ext4_mark_inode_dirty(handle, inode))
303 /* If that failed, just do the required in-core inode clear. */
304 ext4_clear_inode(inode);
305 else
306 ext4_free_inode(handle, inode);
307 ext4_journal_stop(handle);
308 sb_end_intwrite(inode->i_sb);
309 return;
310 no_delete:
311 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
312 }
313
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317 return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320
321 /*
322 * Calculate the number of metadata blocks need to reserve
323 * to allocate a block located at @lblock
324 */
325 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326 {
327 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328 return ext4_ext_calc_metadata_amount(inode, lblock);
329
330 return ext4_ind_calc_metadata_amount(inode, lblock);
331 }
332
333 /*
334 * Called with i_data_sem down, which is important since we can call
335 * ext4_discard_preallocations() from here.
336 */
337 void ext4_da_update_reserve_space(struct inode *inode,
338 int used, int quota_claim)
339 {
340 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 struct ext4_inode_info *ei = EXT4_I(inode);
342
343 spin_lock(&ei->i_block_reservation_lock);
344 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345 if (unlikely(used > ei->i_reserved_data_blocks)) {
346 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347 "with only %d reserved data blocks",
348 __func__, inode->i_ino, used,
349 ei->i_reserved_data_blocks);
350 WARN_ON(1);
351 used = ei->i_reserved_data_blocks;
352 }
353
354 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
356 "with only %d reserved metadata blocks "
357 "(releasing %d blocks with reserved %d data blocks)",
358 inode->i_ino, ei->i_allocated_meta_blocks,
359 ei->i_reserved_meta_blocks, used,
360 ei->i_reserved_data_blocks);
361 WARN_ON(1);
362 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
363 }
364
365 /* Update per-inode reservations */
366 ei->i_reserved_data_blocks -= used;
367 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369 used + ei->i_allocated_meta_blocks);
370 ei->i_allocated_meta_blocks = 0;
371
372 if (ei->i_reserved_data_blocks == 0) {
373 /*
374 * We can release all of the reserved metadata blocks
375 * only when we have written all of the delayed
376 * allocation blocks.
377 */
378 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379 ei->i_reserved_meta_blocks);
380 ei->i_reserved_meta_blocks = 0;
381 ei->i_da_metadata_calc_len = 0;
382 }
383 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384
385 /* Update quota subsystem for data blocks */
386 if (quota_claim)
387 dquot_claim_block(inode, EXT4_C2B(sbi, used));
388 else {
389 /*
390 * We did fallocate with an offset that is already delayed
391 * allocated. So on delayed allocated writeback we should
392 * not re-claim the quota for fallocated blocks.
393 */
394 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395 }
396
397 /*
398 * If we have done all the pending block allocations and if
399 * there aren't any writers on the inode, we can discard the
400 * inode's preallocations.
401 */
402 if ((ei->i_reserved_data_blocks == 0) &&
403 (atomic_read(&inode->i_writecount) == 0))
404 ext4_discard_preallocations(inode);
405 }
406
407 static int __check_block_validity(struct inode *inode, const char *func,
408 unsigned int line,
409 struct ext4_map_blocks *map)
410 {
411 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
412 map->m_len)) {
413 ext4_error_inode(inode, func, line, map->m_pblk,
414 "lblock %lu mapped to illegal pblock "
415 "(length %d)", (unsigned long) map->m_lblk,
416 map->m_len);
417 return -EIO;
418 }
419 return 0;
420 }
421
422 #define check_block_validity(inode, map) \
423 __check_block_validity((inode), __func__, __LINE__, (map))
424
425 /*
426 * Return the number of contiguous dirty pages in a given inode
427 * starting at page frame idx.
428 */
429 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
430 unsigned int max_pages)
431 {
432 struct address_space *mapping = inode->i_mapping;
433 pgoff_t index;
434 struct pagevec pvec;
435 pgoff_t num = 0;
436 int i, nr_pages, done = 0;
437
438 if (max_pages == 0)
439 return 0;
440 pagevec_init(&pvec, 0);
441 while (!done) {
442 index = idx;
443 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
444 PAGECACHE_TAG_DIRTY,
445 (pgoff_t)PAGEVEC_SIZE);
446 if (nr_pages == 0)
447 break;
448 for (i = 0; i < nr_pages; i++) {
449 struct page *page = pvec.pages[i];
450 struct buffer_head *bh, *head;
451
452 lock_page(page);
453 if (unlikely(page->mapping != mapping) ||
454 !PageDirty(page) ||
455 PageWriteback(page) ||
456 page->index != idx) {
457 done = 1;
458 unlock_page(page);
459 break;
460 }
461 if (page_has_buffers(page)) {
462 bh = head = page_buffers(page);
463 do {
464 if (!buffer_delay(bh) &&
465 !buffer_unwritten(bh))
466 done = 1;
467 bh = bh->b_this_page;
468 } while (!done && (bh != head));
469 }
470 unlock_page(page);
471 if (done)
472 break;
473 idx++;
474 num++;
475 if (num >= max_pages) {
476 done = 1;
477 break;
478 }
479 }
480 pagevec_release(&pvec);
481 }
482 return num;
483 }
484
485 /*
486 * The ext4_map_blocks() function tries to look up the requested blocks,
487 * and returns if the blocks are already mapped.
488 *
489 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
490 * and store the allocated blocks in the result buffer head and mark it
491 * mapped.
492 *
493 * If file type is extents based, it will call ext4_ext_map_blocks(),
494 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
495 * based files
496 *
497 * On success, it returns the number of blocks being mapped or allocate.
498 * if create==0 and the blocks are pre-allocated and uninitialized block,
499 * the result buffer head is unmapped. If the create ==1, it will make sure
500 * the buffer head is mapped.
501 *
502 * It returns 0 if plain look up failed (blocks have not been allocated), in
503 * that case, buffer head is unmapped
504 *
505 * It returns the error in case of allocation failure.
506 */
507 int ext4_map_blocks(handle_t *handle, struct inode *inode,
508 struct ext4_map_blocks *map, int flags)
509 {
510 struct extent_status es;
511 int retval;
512
513 map->m_flags = 0;
514 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
515 "logical block %lu\n", inode->i_ino, flags, map->m_len,
516 (unsigned long) map->m_lblk);
517
518 /* Lookup extent status tree firstly */
519 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
520 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521 map->m_pblk = ext4_es_pblock(&es) +
522 map->m_lblk - es.es_lblk;
523 map->m_flags |= ext4_es_is_written(&es) ?
524 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525 retval = es.es_len - (map->m_lblk - es.es_lblk);
526 if (retval > map->m_len)
527 retval = map->m_len;
528 map->m_len = retval;
529 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530 retval = 0;
531 } else {
532 BUG_ON(1);
533 }
534 goto found;
535 }
536
537 /*
538 * Try to see if we can get the block without requesting a new
539 * file system block.
540 */
541 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
542 down_read((&EXT4_I(inode)->i_data_sem));
543 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
544 retval = ext4_ext_map_blocks(handle, inode, map, flags &
545 EXT4_GET_BLOCKS_KEEP_SIZE);
546 } else {
547 retval = ext4_ind_map_blocks(handle, inode, map, flags &
548 EXT4_GET_BLOCKS_KEEP_SIZE);
549 }
550 if (retval > 0) {
551 int ret;
552 unsigned long long status;
553
554 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
555 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
556 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
557 ext4_find_delalloc_range(inode, map->m_lblk,
558 map->m_lblk + map->m_len - 1))
559 status |= EXTENT_STATUS_DELAYED;
560 ret = ext4_es_insert_extent(inode, map->m_lblk,
561 map->m_len, map->m_pblk, status);
562 if (ret < 0)
563 retval = ret;
564 }
565 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
566 up_read((&EXT4_I(inode)->i_data_sem));
567
568 found:
569 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
570 int ret = check_block_validity(inode, map);
571 if (ret != 0)
572 return ret;
573 }
574
575 /* If it is only a block(s) look up */
576 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
577 return retval;
578
579 /*
580 * Returns if the blocks have already allocated
581 *
582 * Note that if blocks have been preallocated
583 * ext4_ext_get_block() returns the create = 0
584 * with buffer head unmapped.
585 */
586 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
587 return retval;
588
589 /*
590 * Here we clear m_flags because after allocating an new extent,
591 * it will be set again.
592 */
593 map->m_flags &= ~EXT4_MAP_FLAGS;
594
595 /*
596 * New blocks allocate and/or writing to uninitialized extent
597 * will possibly result in updating i_data, so we take
598 * the write lock of i_data_sem, and call get_blocks()
599 * with create == 1 flag.
600 */
601 down_write((&EXT4_I(inode)->i_data_sem));
602
603 /*
604 * if the caller is from delayed allocation writeout path
605 * we have already reserved fs blocks for allocation
606 * let the underlying get_block() function know to
607 * avoid double accounting
608 */
609 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
610 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
611 /*
612 * We need to check for EXT4 here because migrate
613 * could have changed the inode type in between
614 */
615 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
616 retval = ext4_ext_map_blocks(handle, inode, map, flags);
617 } else {
618 retval = ext4_ind_map_blocks(handle, inode, map, flags);
619
620 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
621 /*
622 * We allocated new blocks which will result in
623 * i_data's format changing. Force the migrate
624 * to fail by clearing migrate flags
625 */
626 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
627 }
628
629 /*
630 * Update reserved blocks/metadata blocks after successful
631 * block allocation which had been deferred till now. We don't
632 * support fallocate for non extent files. So we can update
633 * reserve space here.
634 */
635 if ((retval > 0) &&
636 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
637 ext4_da_update_reserve_space(inode, retval, 1);
638 }
639 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
640 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
641
642 if (retval > 0) {
643 int ret;
644 unsigned long long status;
645
646 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
647 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
648 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
649 ext4_find_delalloc_range(inode, map->m_lblk,
650 map->m_lblk + map->m_len - 1))
651 status |= EXTENT_STATUS_DELAYED;
652 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
653 map->m_pblk, status);
654 if (ret < 0)
655 retval = ret;
656 }
657
658 up_write((&EXT4_I(inode)->i_data_sem));
659 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
660 int ret = check_block_validity(inode, map);
661 if (ret != 0)
662 return ret;
663 }
664 return retval;
665 }
666
667 /* Maximum number of blocks we map for direct IO at once. */
668 #define DIO_MAX_BLOCKS 4096
669
670 static int _ext4_get_block(struct inode *inode, sector_t iblock,
671 struct buffer_head *bh, int flags)
672 {
673 handle_t *handle = ext4_journal_current_handle();
674 struct ext4_map_blocks map;
675 int ret = 0, started = 0;
676 int dio_credits;
677
678 if (ext4_has_inline_data(inode))
679 return -ERANGE;
680
681 map.m_lblk = iblock;
682 map.m_len = bh->b_size >> inode->i_blkbits;
683
684 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
685 /* Direct IO write... */
686 if (map.m_len > DIO_MAX_BLOCKS)
687 map.m_len = DIO_MAX_BLOCKS;
688 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
689 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
690 dio_credits);
691 if (IS_ERR(handle)) {
692 ret = PTR_ERR(handle);
693 return ret;
694 }
695 started = 1;
696 }
697
698 ret = ext4_map_blocks(handle, inode, &map, flags);
699 if (ret > 0) {
700 map_bh(bh, inode->i_sb, map.m_pblk);
701 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
702 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
703 ret = 0;
704 }
705 if (started)
706 ext4_journal_stop(handle);
707 return ret;
708 }
709
710 int ext4_get_block(struct inode *inode, sector_t iblock,
711 struct buffer_head *bh, int create)
712 {
713 return _ext4_get_block(inode, iblock, bh,
714 create ? EXT4_GET_BLOCKS_CREATE : 0);
715 }
716
717 /*
718 * `handle' can be NULL if create is zero
719 */
720 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
721 ext4_lblk_t block, int create, int *errp)
722 {
723 struct ext4_map_blocks map;
724 struct buffer_head *bh;
725 int fatal = 0, err;
726
727 J_ASSERT(handle != NULL || create == 0);
728
729 map.m_lblk = block;
730 map.m_len = 1;
731 err = ext4_map_blocks(handle, inode, &map,
732 create ? EXT4_GET_BLOCKS_CREATE : 0);
733
734 /* ensure we send some value back into *errp */
735 *errp = 0;
736
737 if (create && err == 0)
738 err = -ENOSPC; /* should never happen */
739 if (err < 0)
740 *errp = err;
741 if (err <= 0)
742 return NULL;
743
744 bh = sb_getblk(inode->i_sb, map.m_pblk);
745 if (unlikely(!bh)) {
746 *errp = -ENOMEM;
747 return NULL;
748 }
749 if (map.m_flags & EXT4_MAP_NEW) {
750 J_ASSERT(create != 0);
751 J_ASSERT(handle != NULL);
752
753 /*
754 * Now that we do not always journal data, we should
755 * keep in mind whether this should always journal the
756 * new buffer as metadata. For now, regular file
757 * writes use ext4_get_block instead, so it's not a
758 * problem.
759 */
760 lock_buffer(bh);
761 BUFFER_TRACE(bh, "call get_create_access");
762 fatal = ext4_journal_get_create_access(handle, bh);
763 if (!fatal && !buffer_uptodate(bh)) {
764 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
765 set_buffer_uptodate(bh);
766 }
767 unlock_buffer(bh);
768 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
769 err = ext4_handle_dirty_metadata(handle, inode, bh);
770 if (!fatal)
771 fatal = err;
772 } else {
773 BUFFER_TRACE(bh, "not a new buffer");
774 }
775 if (fatal) {
776 *errp = fatal;
777 brelse(bh);
778 bh = NULL;
779 }
780 return bh;
781 }
782
783 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
784 ext4_lblk_t block, int create, int *err)
785 {
786 struct buffer_head *bh;
787
788 bh = ext4_getblk(handle, inode, block, create, err);
789 if (!bh)
790 return bh;
791 if (buffer_uptodate(bh))
792 return bh;
793 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
794 wait_on_buffer(bh);
795 if (buffer_uptodate(bh))
796 return bh;
797 put_bh(bh);
798 *err = -EIO;
799 return NULL;
800 }
801
802 int ext4_walk_page_buffers(handle_t *handle,
803 struct buffer_head *head,
804 unsigned from,
805 unsigned to,
806 int *partial,
807 int (*fn)(handle_t *handle,
808 struct buffer_head *bh))
809 {
810 struct buffer_head *bh;
811 unsigned block_start, block_end;
812 unsigned blocksize = head->b_size;
813 int err, ret = 0;
814 struct buffer_head *next;
815
816 for (bh = head, block_start = 0;
817 ret == 0 && (bh != head || !block_start);
818 block_start = block_end, bh = next) {
819 next = bh->b_this_page;
820 block_end = block_start + blocksize;
821 if (block_end <= from || block_start >= to) {
822 if (partial && !buffer_uptodate(bh))
823 *partial = 1;
824 continue;
825 }
826 err = (*fn)(handle, bh);
827 if (!ret)
828 ret = err;
829 }
830 return ret;
831 }
832
833 /*
834 * To preserve ordering, it is essential that the hole instantiation and
835 * the data write be encapsulated in a single transaction. We cannot
836 * close off a transaction and start a new one between the ext4_get_block()
837 * and the commit_write(). So doing the jbd2_journal_start at the start of
838 * prepare_write() is the right place.
839 *
840 * Also, this function can nest inside ext4_writepage(). In that case, we
841 * *know* that ext4_writepage() has generated enough buffer credits to do the
842 * whole page. So we won't block on the journal in that case, which is good,
843 * because the caller may be PF_MEMALLOC.
844 *
845 * By accident, ext4 can be reentered when a transaction is open via
846 * quota file writes. If we were to commit the transaction while thus
847 * reentered, there can be a deadlock - we would be holding a quota
848 * lock, and the commit would never complete if another thread had a
849 * transaction open and was blocking on the quota lock - a ranking
850 * violation.
851 *
852 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
853 * will _not_ run commit under these circumstances because handle->h_ref
854 * is elevated. We'll still have enough credits for the tiny quotafile
855 * write.
856 */
857 int do_journal_get_write_access(handle_t *handle,
858 struct buffer_head *bh)
859 {
860 int dirty = buffer_dirty(bh);
861 int ret;
862
863 if (!buffer_mapped(bh) || buffer_freed(bh))
864 return 0;
865 /*
866 * __block_write_begin() could have dirtied some buffers. Clean
867 * the dirty bit as jbd2_journal_get_write_access() could complain
868 * otherwise about fs integrity issues. Setting of the dirty bit
869 * by __block_write_begin() isn't a real problem here as we clear
870 * the bit before releasing a page lock and thus writeback cannot
871 * ever write the buffer.
872 */
873 if (dirty)
874 clear_buffer_dirty(bh);
875 ret = ext4_journal_get_write_access(handle, bh);
876 if (!ret && dirty)
877 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
878 return ret;
879 }
880
881 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
882 struct buffer_head *bh_result, int create);
883 static int ext4_write_begin(struct file *file, struct address_space *mapping,
884 loff_t pos, unsigned len, unsigned flags,
885 struct page **pagep, void **fsdata)
886 {
887 struct inode *inode = mapping->host;
888 int ret, needed_blocks;
889 handle_t *handle;
890 int retries = 0;
891 struct page *page;
892 pgoff_t index;
893 unsigned from, to;
894
895 trace_ext4_write_begin(inode, pos, len, flags);
896 /*
897 * Reserve one block more for addition to orphan list in case
898 * we allocate blocks but write fails for some reason
899 */
900 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
901 index = pos >> PAGE_CACHE_SHIFT;
902 from = pos & (PAGE_CACHE_SIZE - 1);
903 to = from + len;
904
905 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
906 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
907 flags, pagep);
908 if (ret < 0)
909 return ret;
910 if (ret == 1)
911 return 0;
912 }
913
914 /*
915 * grab_cache_page_write_begin() can take a long time if the
916 * system is thrashing due to memory pressure, or if the page
917 * is being written back. So grab it first before we start
918 * the transaction handle. This also allows us to allocate
919 * the page (if needed) without using GFP_NOFS.
920 */
921 retry_grab:
922 page = grab_cache_page_write_begin(mapping, index, flags);
923 if (!page)
924 return -ENOMEM;
925 unlock_page(page);
926
927 retry_journal:
928 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
929 if (IS_ERR(handle)) {
930 page_cache_release(page);
931 return PTR_ERR(handle);
932 }
933
934 lock_page(page);
935 if (page->mapping != mapping) {
936 /* The page got truncated from under us */
937 unlock_page(page);
938 page_cache_release(page);
939 ext4_journal_stop(handle);
940 goto retry_grab;
941 }
942 wait_on_page_writeback(page);
943
944 if (ext4_should_dioread_nolock(inode))
945 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
946 else
947 ret = __block_write_begin(page, pos, len, ext4_get_block);
948
949 if (!ret && ext4_should_journal_data(inode)) {
950 ret = ext4_walk_page_buffers(handle, page_buffers(page),
951 from, to, NULL,
952 do_journal_get_write_access);
953 }
954
955 if (ret) {
956 unlock_page(page);
957 /*
958 * __block_write_begin may have instantiated a few blocks
959 * outside i_size. Trim these off again. Don't need
960 * i_size_read because we hold i_mutex.
961 *
962 * Add inode to orphan list in case we crash before
963 * truncate finishes
964 */
965 if (pos + len > inode->i_size && ext4_can_truncate(inode))
966 ext4_orphan_add(handle, inode);
967
968 ext4_journal_stop(handle);
969 if (pos + len > inode->i_size) {
970 ext4_truncate_failed_write(inode);
971 /*
972 * If truncate failed early the inode might
973 * still be on the orphan list; we need to
974 * make sure the inode is removed from the
975 * orphan list in that case.
976 */
977 if (inode->i_nlink)
978 ext4_orphan_del(NULL, inode);
979 }
980
981 if (ret == -ENOSPC &&
982 ext4_should_retry_alloc(inode->i_sb, &retries))
983 goto retry_journal;
984 page_cache_release(page);
985 return ret;
986 }
987 *pagep = page;
988 return ret;
989 }
990
991 /* For write_end() in data=journal mode */
992 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
993 {
994 if (!buffer_mapped(bh) || buffer_freed(bh))
995 return 0;
996 set_buffer_uptodate(bh);
997 return ext4_handle_dirty_metadata(handle, NULL, bh);
998 }
999
1000 static int ext4_generic_write_end(struct file *file,
1001 struct address_space *mapping,
1002 loff_t pos, unsigned len, unsigned copied,
1003 struct page *page, void *fsdata)
1004 {
1005 int i_size_changed = 0;
1006 struct inode *inode = mapping->host;
1007 handle_t *handle = ext4_journal_current_handle();
1008
1009 if (ext4_has_inline_data(inode))
1010 copied = ext4_write_inline_data_end(inode, pos, len,
1011 copied, page);
1012 else
1013 copied = block_write_end(file, mapping, pos,
1014 len, copied, page, fsdata);
1015
1016 /*
1017 * No need to use i_size_read() here, the i_size
1018 * cannot change under us because we hold i_mutex.
1019 *
1020 * But it's important to update i_size while still holding page lock:
1021 * page writeout could otherwise come in and zero beyond i_size.
1022 */
1023 if (pos + copied > inode->i_size) {
1024 i_size_write(inode, pos + copied);
1025 i_size_changed = 1;
1026 }
1027
1028 if (pos + copied > EXT4_I(inode)->i_disksize) {
1029 /* We need to mark inode dirty even if
1030 * new_i_size is less that inode->i_size
1031 * bu greater than i_disksize.(hint delalloc)
1032 */
1033 ext4_update_i_disksize(inode, (pos + copied));
1034 i_size_changed = 1;
1035 }
1036 unlock_page(page);
1037 page_cache_release(page);
1038
1039 /*
1040 * Don't mark the inode dirty under page lock. First, it unnecessarily
1041 * makes the holding time of page lock longer. Second, it forces lock
1042 * ordering of page lock and transaction start for journaling
1043 * filesystems.
1044 */
1045 if (i_size_changed)
1046 ext4_mark_inode_dirty(handle, inode);
1047
1048 return copied;
1049 }
1050
1051 /*
1052 * We need to pick up the new inode size which generic_commit_write gave us
1053 * `file' can be NULL - eg, when called from page_symlink().
1054 *
1055 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1056 * buffers are managed internally.
1057 */
1058 static int ext4_ordered_write_end(struct file *file,
1059 struct address_space *mapping,
1060 loff_t pos, unsigned len, unsigned copied,
1061 struct page *page, void *fsdata)
1062 {
1063 handle_t *handle = ext4_journal_current_handle();
1064 struct inode *inode = mapping->host;
1065 int ret = 0, ret2;
1066
1067 trace_ext4_ordered_write_end(inode, pos, len, copied);
1068 ret = ext4_jbd2_file_inode(handle, inode);
1069
1070 if (ret == 0) {
1071 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1072 page, fsdata);
1073 copied = ret2;
1074 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1075 /* if we have allocated more blocks and copied
1076 * less. We will have blocks allocated outside
1077 * inode->i_size. So truncate them
1078 */
1079 ext4_orphan_add(handle, inode);
1080 if (ret2 < 0)
1081 ret = ret2;
1082 } else {
1083 unlock_page(page);
1084 page_cache_release(page);
1085 }
1086
1087 ret2 = ext4_journal_stop(handle);
1088 if (!ret)
1089 ret = ret2;
1090
1091 if (pos + len > inode->i_size) {
1092 ext4_truncate_failed_write(inode);
1093 /*
1094 * If truncate failed early the inode might still be
1095 * on the orphan list; we need to make sure the inode
1096 * is removed from the orphan list in that case.
1097 */
1098 if (inode->i_nlink)
1099 ext4_orphan_del(NULL, inode);
1100 }
1101
1102
1103 return ret ? ret : copied;
1104 }
1105
1106 static int ext4_writeback_write_end(struct file *file,
1107 struct address_space *mapping,
1108 loff_t pos, unsigned len, unsigned copied,
1109 struct page *page, void *fsdata)
1110 {
1111 handle_t *handle = ext4_journal_current_handle();
1112 struct inode *inode = mapping->host;
1113 int ret = 0, ret2;
1114
1115 trace_ext4_writeback_write_end(inode, pos, len, copied);
1116 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1117 page, fsdata);
1118 copied = ret2;
1119 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1120 /* if we have allocated more blocks and copied
1121 * less. We will have blocks allocated outside
1122 * inode->i_size. So truncate them
1123 */
1124 ext4_orphan_add(handle, inode);
1125
1126 if (ret2 < 0)
1127 ret = ret2;
1128
1129 ret2 = ext4_journal_stop(handle);
1130 if (!ret)
1131 ret = ret2;
1132
1133 if (pos + len > inode->i_size) {
1134 ext4_truncate_failed_write(inode);
1135 /*
1136 * If truncate failed early the inode might still be
1137 * on the orphan list; we need to make sure the inode
1138 * is removed from the orphan list in that case.
1139 */
1140 if (inode->i_nlink)
1141 ext4_orphan_del(NULL, inode);
1142 }
1143
1144 return ret ? ret : copied;
1145 }
1146
1147 static int ext4_journalled_write_end(struct file *file,
1148 struct address_space *mapping,
1149 loff_t pos, unsigned len, unsigned copied,
1150 struct page *page, void *fsdata)
1151 {
1152 handle_t *handle = ext4_journal_current_handle();
1153 struct inode *inode = mapping->host;
1154 int ret = 0, ret2;
1155 int partial = 0;
1156 unsigned from, to;
1157 loff_t new_i_size;
1158
1159 trace_ext4_journalled_write_end(inode, pos, len, copied);
1160 from = pos & (PAGE_CACHE_SIZE - 1);
1161 to = from + len;
1162
1163 BUG_ON(!ext4_handle_valid(handle));
1164
1165 if (ext4_has_inline_data(inode))
1166 copied = ext4_write_inline_data_end(inode, pos, len,
1167 copied, page);
1168 else {
1169 if (copied < len) {
1170 if (!PageUptodate(page))
1171 copied = 0;
1172 page_zero_new_buffers(page, from+copied, to);
1173 }
1174
1175 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1176 to, &partial, write_end_fn);
1177 if (!partial)
1178 SetPageUptodate(page);
1179 }
1180 new_i_size = pos + copied;
1181 if (new_i_size > inode->i_size)
1182 i_size_write(inode, pos+copied);
1183 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1184 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1185 if (new_i_size > EXT4_I(inode)->i_disksize) {
1186 ext4_update_i_disksize(inode, new_i_size);
1187 ret2 = ext4_mark_inode_dirty(handle, inode);
1188 if (!ret)
1189 ret = ret2;
1190 }
1191
1192 unlock_page(page);
1193 page_cache_release(page);
1194 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1195 /* if we have allocated more blocks and copied
1196 * less. We will have blocks allocated outside
1197 * inode->i_size. So truncate them
1198 */
1199 ext4_orphan_add(handle, inode);
1200
1201 ret2 = ext4_journal_stop(handle);
1202 if (!ret)
1203 ret = ret2;
1204 if (pos + len > inode->i_size) {
1205 ext4_truncate_failed_write(inode);
1206 /*
1207 * If truncate failed early the inode might still be
1208 * on the orphan list; we need to make sure the inode
1209 * is removed from the orphan list in that case.
1210 */
1211 if (inode->i_nlink)
1212 ext4_orphan_del(NULL, inode);
1213 }
1214
1215 return ret ? ret : copied;
1216 }
1217
1218 /*
1219 * Reserve a single cluster located at lblock
1220 */
1221 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1222 {
1223 int retries = 0;
1224 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1225 struct ext4_inode_info *ei = EXT4_I(inode);
1226 unsigned int md_needed;
1227 int ret;
1228 ext4_lblk_t save_last_lblock;
1229 int save_len;
1230
1231 /*
1232 * We will charge metadata quota at writeout time; this saves
1233 * us from metadata over-estimation, though we may go over by
1234 * a small amount in the end. Here we just reserve for data.
1235 */
1236 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1237 if (ret)
1238 return ret;
1239
1240 /*
1241 * recalculate the amount of metadata blocks to reserve
1242 * in order to allocate nrblocks
1243 * worse case is one extent per block
1244 */
1245 repeat:
1246 spin_lock(&ei->i_block_reservation_lock);
1247 /*
1248 * ext4_calc_metadata_amount() has side effects, which we have
1249 * to be prepared undo if we fail to claim space.
1250 */
1251 save_len = ei->i_da_metadata_calc_len;
1252 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1253 md_needed = EXT4_NUM_B2C(sbi,
1254 ext4_calc_metadata_amount(inode, lblock));
1255 trace_ext4_da_reserve_space(inode, md_needed);
1256
1257 /*
1258 * We do still charge estimated metadata to the sb though;
1259 * we cannot afford to run out of free blocks.
1260 */
1261 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1262 ei->i_da_metadata_calc_len = save_len;
1263 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1264 spin_unlock(&ei->i_block_reservation_lock);
1265 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1266 yield();
1267 goto repeat;
1268 }
1269 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1270 return -ENOSPC;
1271 }
1272 ei->i_reserved_data_blocks++;
1273 ei->i_reserved_meta_blocks += md_needed;
1274 spin_unlock(&ei->i_block_reservation_lock);
1275
1276 return 0; /* success */
1277 }
1278
1279 static void ext4_da_release_space(struct inode *inode, int to_free)
1280 {
1281 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1282 struct ext4_inode_info *ei = EXT4_I(inode);
1283
1284 if (!to_free)
1285 return; /* Nothing to release, exit */
1286
1287 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1288
1289 trace_ext4_da_release_space(inode, to_free);
1290 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1291 /*
1292 * if there aren't enough reserved blocks, then the
1293 * counter is messed up somewhere. Since this
1294 * function is called from invalidate page, it's
1295 * harmless to return without any action.
1296 */
1297 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1298 "ino %lu, to_free %d with only %d reserved "
1299 "data blocks", inode->i_ino, to_free,
1300 ei->i_reserved_data_blocks);
1301 WARN_ON(1);
1302 to_free = ei->i_reserved_data_blocks;
1303 }
1304 ei->i_reserved_data_blocks -= to_free;
1305
1306 if (ei->i_reserved_data_blocks == 0) {
1307 /*
1308 * We can release all of the reserved metadata blocks
1309 * only when we have written all of the delayed
1310 * allocation blocks.
1311 * Note that in case of bigalloc, i_reserved_meta_blocks,
1312 * i_reserved_data_blocks, etc. refer to number of clusters.
1313 */
1314 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1315 ei->i_reserved_meta_blocks);
1316 ei->i_reserved_meta_blocks = 0;
1317 ei->i_da_metadata_calc_len = 0;
1318 }
1319
1320 /* update fs dirty data blocks counter */
1321 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1322
1323 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1324
1325 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1326 }
1327
1328 static void ext4_da_page_release_reservation(struct page *page,
1329 unsigned long offset)
1330 {
1331 int to_release = 0;
1332 struct buffer_head *head, *bh;
1333 unsigned int curr_off = 0;
1334 struct inode *inode = page->mapping->host;
1335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1336 int num_clusters;
1337 ext4_fsblk_t lblk;
1338
1339 head = page_buffers(page);
1340 bh = head;
1341 do {
1342 unsigned int next_off = curr_off + bh->b_size;
1343
1344 if ((offset <= curr_off) && (buffer_delay(bh))) {
1345 to_release++;
1346 clear_buffer_delay(bh);
1347 }
1348 curr_off = next_off;
1349 } while ((bh = bh->b_this_page) != head);
1350
1351 if (to_release) {
1352 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1353 ext4_es_remove_extent(inode, lblk, to_release);
1354 }
1355
1356 /* If we have released all the blocks belonging to a cluster, then we
1357 * need to release the reserved space for that cluster. */
1358 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1359 while (num_clusters > 0) {
1360 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1361 ((num_clusters - 1) << sbi->s_cluster_bits);
1362 if (sbi->s_cluster_ratio == 1 ||
1363 !ext4_find_delalloc_cluster(inode, lblk))
1364 ext4_da_release_space(inode, 1);
1365
1366 num_clusters--;
1367 }
1368 }
1369
1370 /*
1371 * Delayed allocation stuff
1372 */
1373
1374 /*
1375 * mpage_da_submit_io - walks through extent of pages and try to write
1376 * them with writepage() call back
1377 *
1378 * @mpd->inode: inode
1379 * @mpd->first_page: first page of the extent
1380 * @mpd->next_page: page after the last page of the extent
1381 *
1382 * By the time mpage_da_submit_io() is called we expect all blocks
1383 * to be allocated. this may be wrong if allocation failed.
1384 *
1385 * As pages are already locked by write_cache_pages(), we can't use it
1386 */
1387 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1388 struct ext4_map_blocks *map)
1389 {
1390 struct pagevec pvec;
1391 unsigned long index, end;
1392 int ret = 0, err, nr_pages, i;
1393 struct inode *inode = mpd->inode;
1394 struct address_space *mapping = inode->i_mapping;
1395 loff_t size = i_size_read(inode);
1396 unsigned int len, block_start;
1397 struct buffer_head *bh, *page_bufs = NULL;
1398 sector_t pblock = 0, cur_logical = 0;
1399 struct ext4_io_submit io_submit;
1400
1401 BUG_ON(mpd->next_page <= mpd->first_page);
1402 memset(&io_submit, 0, sizeof(io_submit));
1403 /*
1404 * We need to start from the first_page to the next_page - 1
1405 * to make sure we also write the mapped dirty buffer_heads.
1406 * If we look at mpd->b_blocknr we would only be looking
1407 * at the currently mapped buffer_heads.
1408 */
1409 index = mpd->first_page;
1410 end = mpd->next_page - 1;
1411
1412 pagevec_init(&pvec, 0);
1413 while (index <= end) {
1414 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1415 if (nr_pages == 0)
1416 break;
1417 for (i = 0; i < nr_pages; i++) {
1418 int skip_page = 0;
1419 struct page *page = pvec.pages[i];
1420
1421 index = page->index;
1422 if (index > end)
1423 break;
1424
1425 if (index == size >> PAGE_CACHE_SHIFT)
1426 len = size & ~PAGE_CACHE_MASK;
1427 else
1428 len = PAGE_CACHE_SIZE;
1429 if (map) {
1430 cur_logical = index << (PAGE_CACHE_SHIFT -
1431 inode->i_blkbits);
1432 pblock = map->m_pblk + (cur_logical -
1433 map->m_lblk);
1434 }
1435 index++;
1436
1437 BUG_ON(!PageLocked(page));
1438 BUG_ON(PageWriteback(page));
1439
1440 bh = page_bufs = page_buffers(page);
1441 block_start = 0;
1442 do {
1443 if (map && (cur_logical >= map->m_lblk) &&
1444 (cur_logical <= (map->m_lblk +
1445 (map->m_len - 1)))) {
1446 if (buffer_delay(bh)) {
1447 clear_buffer_delay(bh);
1448 bh->b_blocknr = pblock;
1449 }
1450 if (buffer_unwritten(bh) ||
1451 buffer_mapped(bh))
1452 BUG_ON(bh->b_blocknr != pblock);
1453 if (map->m_flags & EXT4_MAP_UNINIT)
1454 set_buffer_uninit(bh);
1455 clear_buffer_unwritten(bh);
1456 }
1457
1458 /*
1459 * skip page if block allocation undone and
1460 * block is dirty
1461 */
1462 if (ext4_bh_delay_or_unwritten(NULL, bh))
1463 skip_page = 1;
1464 bh = bh->b_this_page;
1465 block_start += bh->b_size;
1466 cur_logical++;
1467 pblock++;
1468 } while (bh != page_bufs);
1469
1470 if (skip_page) {
1471 unlock_page(page);
1472 continue;
1473 }
1474
1475 clear_page_dirty_for_io(page);
1476 err = ext4_bio_write_page(&io_submit, page, len,
1477 mpd->wbc);
1478 if (!err)
1479 mpd->pages_written++;
1480 /*
1481 * In error case, we have to continue because
1482 * remaining pages are still locked
1483 */
1484 if (ret == 0)
1485 ret = err;
1486 }
1487 pagevec_release(&pvec);
1488 }
1489 ext4_io_submit(&io_submit);
1490 return ret;
1491 }
1492
1493 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1494 {
1495 int nr_pages, i;
1496 pgoff_t index, end;
1497 struct pagevec pvec;
1498 struct inode *inode = mpd->inode;
1499 struct address_space *mapping = inode->i_mapping;
1500 ext4_lblk_t start, last;
1501
1502 index = mpd->first_page;
1503 end = mpd->next_page - 1;
1504
1505 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1506 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1507 ext4_es_remove_extent(inode, start, last - start + 1);
1508
1509 pagevec_init(&pvec, 0);
1510 while (index <= end) {
1511 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1512 if (nr_pages == 0)
1513 break;
1514 for (i = 0; i < nr_pages; i++) {
1515 struct page *page = pvec.pages[i];
1516 if (page->index > end)
1517 break;
1518 BUG_ON(!PageLocked(page));
1519 BUG_ON(PageWriteback(page));
1520 block_invalidatepage(page, 0);
1521 ClearPageUptodate(page);
1522 unlock_page(page);
1523 }
1524 index = pvec.pages[nr_pages - 1]->index + 1;
1525 pagevec_release(&pvec);
1526 }
1527 return;
1528 }
1529
1530 static void ext4_print_free_blocks(struct inode *inode)
1531 {
1532 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1533 struct super_block *sb = inode->i_sb;
1534
1535 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1536 EXT4_C2B(EXT4_SB(inode->i_sb),
1537 ext4_count_free_clusters(inode->i_sb)));
1538 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1539 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1540 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1541 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1542 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1543 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1544 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1545 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1546 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1547 EXT4_I(inode)->i_reserved_data_blocks);
1548 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1549 EXT4_I(inode)->i_reserved_meta_blocks);
1550 return;
1551 }
1552
1553 /*
1554 * mpage_da_map_and_submit - go through given space, map them
1555 * if necessary, and then submit them for I/O
1556 *
1557 * @mpd - bh describing space
1558 *
1559 * The function skips space we know is already mapped to disk blocks.
1560 *
1561 */
1562 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1563 {
1564 int err, blks, get_blocks_flags;
1565 struct ext4_map_blocks map, *mapp = NULL;
1566 sector_t next = mpd->b_blocknr;
1567 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1568 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1569 handle_t *handle = NULL;
1570
1571 /*
1572 * If the blocks are mapped already, or we couldn't accumulate
1573 * any blocks, then proceed immediately to the submission stage.
1574 */
1575 if ((mpd->b_size == 0) ||
1576 ((mpd->b_state & (1 << BH_Mapped)) &&
1577 !(mpd->b_state & (1 << BH_Delay)) &&
1578 !(mpd->b_state & (1 << BH_Unwritten))))
1579 goto submit_io;
1580
1581 handle = ext4_journal_current_handle();
1582 BUG_ON(!handle);
1583
1584 /*
1585 * Call ext4_map_blocks() to allocate any delayed allocation
1586 * blocks, or to convert an uninitialized extent to be
1587 * initialized (in the case where we have written into
1588 * one or more preallocated blocks).
1589 *
1590 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1591 * indicate that we are on the delayed allocation path. This
1592 * affects functions in many different parts of the allocation
1593 * call path. This flag exists primarily because we don't
1594 * want to change *many* call functions, so ext4_map_blocks()
1595 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1596 * inode's allocation semaphore is taken.
1597 *
1598 * If the blocks in questions were delalloc blocks, set
1599 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1600 * variables are updated after the blocks have been allocated.
1601 */
1602 map.m_lblk = next;
1603 map.m_len = max_blocks;
1604 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1605 if (ext4_should_dioread_nolock(mpd->inode))
1606 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1607 if (mpd->b_state & (1 << BH_Delay))
1608 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1609
1610 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1611 if (blks < 0) {
1612 struct super_block *sb = mpd->inode->i_sb;
1613
1614 err = blks;
1615 /*
1616 * If get block returns EAGAIN or ENOSPC and there
1617 * appears to be free blocks we will just let
1618 * mpage_da_submit_io() unlock all of the pages.
1619 */
1620 if (err == -EAGAIN)
1621 goto submit_io;
1622
1623 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1624 mpd->retval = err;
1625 goto submit_io;
1626 }
1627
1628 /*
1629 * get block failure will cause us to loop in
1630 * writepages, because a_ops->writepage won't be able
1631 * to make progress. The page will be redirtied by
1632 * writepage and writepages will again try to write
1633 * the same.
1634 */
1635 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1636 ext4_msg(sb, KERN_CRIT,
1637 "delayed block allocation failed for inode %lu "
1638 "at logical offset %llu with max blocks %zd "
1639 "with error %d", mpd->inode->i_ino,
1640 (unsigned long long) next,
1641 mpd->b_size >> mpd->inode->i_blkbits, err);
1642 ext4_msg(sb, KERN_CRIT,
1643 "This should not happen!! Data will be lost");
1644 if (err == -ENOSPC)
1645 ext4_print_free_blocks(mpd->inode);
1646 }
1647 /* invalidate all the pages */
1648 ext4_da_block_invalidatepages(mpd);
1649
1650 /* Mark this page range as having been completed */
1651 mpd->io_done = 1;
1652 return;
1653 }
1654 BUG_ON(blks == 0);
1655
1656 mapp = &map;
1657 if (map.m_flags & EXT4_MAP_NEW) {
1658 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1659 int i;
1660
1661 for (i = 0; i < map.m_len; i++)
1662 unmap_underlying_metadata(bdev, map.m_pblk + i);
1663 }
1664
1665 /*
1666 * Update on-disk size along with block allocation.
1667 */
1668 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1669 if (disksize > i_size_read(mpd->inode))
1670 disksize = i_size_read(mpd->inode);
1671 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1672 ext4_update_i_disksize(mpd->inode, disksize);
1673 err = ext4_mark_inode_dirty(handle, mpd->inode);
1674 if (err)
1675 ext4_error(mpd->inode->i_sb,
1676 "Failed to mark inode %lu dirty",
1677 mpd->inode->i_ino);
1678 }
1679
1680 submit_io:
1681 mpage_da_submit_io(mpd, mapp);
1682 mpd->io_done = 1;
1683 }
1684
1685 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1686 (1 << BH_Delay) | (1 << BH_Unwritten))
1687
1688 /*
1689 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1690 *
1691 * @mpd->lbh - extent of blocks
1692 * @logical - logical number of the block in the file
1693 * @b_state - b_state of the buffer head added
1694 *
1695 * the function is used to collect contig. blocks in same state
1696 */
1697 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1698 unsigned long b_state)
1699 {
1700 sector_t next;
1701 int blkbits = mpd->inode->i_blkbits;
1702 int nrblocks = mpd->b_size >> blkbits;
1703
1704 /*
1705 * XXX Don't go larger than mballoc is willing to allocate
1706 * This is a stopgap solution. We eventually need to fold
1707 * mpage_da_submit_io() into this function and then call
1708 * ext4_map_blocks() multiple times in a loop
1709 */
1710 if (nrblocks >= (8*1024*1024 >> blkbits))
1711 goto flush_it;
1712
1713 /* check if the reserved journal credits might overflow */
1714 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1715 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1716 /*
1717 * With non-extent format we are limited by the journal
1718 * credit available. Total credit needed to insert
1719 * nrblocks contiguous blocks is dependent on the
1720 * nrblocks. So limit nrblocks.
1721 */
1722 goto flush_it;
1723 }
1724 }
1725 /*
1726 * First block in the extent
1727 */
1728 if (mpd->b_size == 0) {
1729 mpd->b_blocknr = logical;
1730 mpd->b_size = 1 << blkbits;
1731 mpd->b_state = b_state & BH_FLAGS;
1732 return;
1733 }
1734
1735 next = mpd->b_blocknr + nrblocks;
1736 /*
1737 * Can we merge the block to our big extent?
1738 */
1739 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1740 mpd->b_size += 1 << blkbits;
1741 return;
1742 }
1743
1744 flush_it:
1745 /*
1746 * We couldn't merge the block to our extent, so we
1747 * need to flush current extent and start new one
1748 */
1749 mpage_da_map_and_submit(mpd);
1750 return;
1751 }
1752
1753 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1754 {
1755 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1756 }
1757
1758 /*
1759 * This function is grabs code from the very beginning of
1760 * ext4_map_blocks, but assumes that the caller is from delayed write
1761 * time. This function looks up the requested blocks and sets the
1762 * buffer delay bit under the protection of i_data_sem.
1763 */
1764 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1765 struct ext4_map_blocks *map,
1766 struct buffer_head *bh)
1767 {
1768 struct extent_status es;
1769 int retval;
1770 sector_t invalid_block = ~((sector_t) 0xffff);
1771
1772 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1773 invalid_block = ~0;
1774
1775 map->m_flags = 0;
1776 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1777 "logical block %lu\n", inode->i_ino, map->m_len,
1778 (unsigned long) map->m_lblk);
1779
1780 /* Lookup extent status tree firstly */
1781 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1782
1783 if (ext4_es_is_hole(&es)) {
1784 retval = 0;
1785 down_read((&EXT4_I(inode)->i_data_sem));
1786 goto add_delayed;
1787 }
1788
1789 /*
1790 * Delayed extent could be allocated by fallocate.
1791 * So we need to check it.
1792 */
1793 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1794 map_bh(bh, inode->i_sb, invalid_block);
1795 set_buffer_new(bh);
1796 set_buffer_delay(bh);
1797 return 0;
1798 }
1799
1800 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1801 retval = es.es_len - (iblock - es.es_lblk);
1802 if (retval > map->m_len)
1803 retval = map->m_len;
1804 map->m_len = retval;
1805 if (ext4_es_is_written(&es))
1806 map->m_flags |= EXT4_MAP_MAPPED;
1807 else if (ext4_es_is_unwritten(&es))
1808 map->m_flags |= EXT4_MAP_UNWRITTEN;
1809 else
1810 BUG_ON(1);
1811
1812 return retval;
1813 }
1814
1815 /*
1816 * Try to see if we can get the block without requesting a new
1817 * file system block.
1818 */
1819 down_read((&EXT4_I(inode)->i_data_sem));
1820 if (ext4_has_inline_data(inode)) {
1821 /*
1822 * We will soon create blocks for this page, and let
1823 * us pretend as if the blocks aren't allocated yet.
1824 * In case of clusters, we have to handle the work
1825 * of mapping from cluster so that the reserved space
1826 * is calculated properly.
1827 */
1828 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1829 ext4_find_delalloc_cluster(inode, map->m_lblk))
1830 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1831 retval = 0;
1832 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1833 retval = ext4_ext_map_blocks(NULL, inode, map,
1834 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1835 else
1836 retval = ext4_ind_map_blocks(NULL, inode, map,
1837 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1838
1839 add_delayed:
1840 if (retval == 0) {
1841 int ret;
1842 /*
1843 * XXX: __block_prepare_write() unmaps passed block,
1844 * is it OK?
1845 */
1846 /* If the block was allocated from previously allocated cluster,
1847 * then we dont need to reserve it again. */
1848 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1849 ret = ext4_da_reserve_space(inode, iblock);
1850 if (ret) {
1851 /* not enough space to reserve */
1852 retval = ret;
1853 goto out_unlock;
1854 }
1855 }
1856
1857 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1858 ~0, EXTENT_STATUS_DELAYED);
1859 if (ret) {
1860 retval = ret;
1861 goto out_unlock;
1862 }
1863
1864 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1865 * and it should not appear on the bh->b_state.
1866 */
1867 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1868
1869 map_bh(bh, inode->i_sb, invalid_block);
1870 set_buffer_new(bh);
1871 set_buffer_delay(bh);
1872 } else if (retval > 0) {
1873 int ret;
1874 unsigned long long status;
1875
1876 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1877 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1878 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1879 map->m_pblk, status);
1880 if (ret != 0)
1881 retval = ret;
1882 }
1883
1884 out_unlock:
1885 up_read((&EXT4_I(inode)->i_data_sem));
1886
1887 return retval;
1888 }
1889
1890 /*
1891 * This is a special get_blocks_t callback which is used by
1892 * ext4_da_write_begin(). It will either return mapped block or
1893 * reserve space for a single block.
1894 *
1895 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1896 * We also have b_blocknr = -1 and b_bdev initialized properly
1897 *
1898 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1899 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1900 * initialized properly.
1901 */
1902 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1903 struct buffer_head *bh, int create)
1904 {
1905 struct ext4_map_blocks map;
1906 int ret = 0;
1907
1908 BUG_ON(create == 0);
1909 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1910
1911 map.m_lblk = iblock;
1912 map.m_len = 1;
1913
1914 /*
1915 * first, we need to know whether the block is allocated already
1916 * preallocated blocks are unmapped but should treated
1917 * the same as allocated blocks.
1918 */
1919 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1920 if (ret <= 0)
1921 return ret;
1922
1923 map_bh(bh, inode->i_sb, map.m_pblk);
1924 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1925
1926 if (buffer_unwritten(bh)) {
1927 /* A delayed write to unwritten bh should be marked
1928 * new and mapped. Mapped ensures that we don't do
1929 * get_block multiple times when we write to the same
1930 * offset and new ensures that we do proper zero out
1931 * for partial write.
1932 */
1933 set_buffer_new(bh);
1934 set_buffer_mapped(bh);
1935 }
1936 return 0;
1937 }
1938
1939 static int bget_one(handle_t *handle, struct buffer_head *bh)
1940 {
1941 get_bh(bh);
1942 return 0;
1943 }
1944
1945 static int bput_one(handle_t *handle, struct buffer_head *bh)
1946 {
1947 put_bh(bh);
1948 return 0;
1949 }
1950
1951 static int __ext4_journalled_writepage(struct page *page,
1952 unsigned int len)
1953 {
1954 struct address_space *mapping = page->mapping;
1955 struct inode *inode = mapping->host;
1956 struct buffer_head *page_bufs = NULL;
1957 handle_t *handle = NULL;
1958 int ret = 0, err = 0;
1959 int inline_data = ext4_has_inline_data(inode);
1960 struct buffer_head *inode_bh = NULL;
1961
1962 ClearPageChecked(page);
1963
1964 if (inline_data) {
1965 BUG_ON(page->index != 0);
1966 BUG_ON(len > ext4_get_max_inline_size(inode));
1967 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1968 if (inode_bh == NULL)
1969 goto out;
1970 } else {
1971 page_bufs = page_buffers(page);
1972 if (!page_bufs) {
1973 BUG();
1974 goto out;
1975 }
1976 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1977 NULL, bget_one);
1978 }
1979 /* As soon as we unlock the page, it can go away, but we have
1980 * references to buffers so we are safe */
1981 unlock_page(page);
1982
1983 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1984 ext4_writepage_trans_blocks(inode));
1985 if (IS_ERR(handle)) {
1986 ret = PTR_ERR(handle);
1987 goto out;
1988 }
1989
1990 BUG_ON(!ext4_handle_valid(handle));
1991
1992 if (inline_data) {
1993 ret = ext4_journal_get_write_access(handle, inode_bh);
1994
1995 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1996
1997 } else {
1998 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1999 do_journal_get_write_access);
2000
2001 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2002 write_end_fn);
2003 }
2004 if (ret == 0)
2005 ret = err;
2006 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2007 err = ext4_journal_stop(handle);
2008 if (!ret)
2009 ret = err;
2010
2011 if (!ext4_has_inline_data(inode))
2012 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2013 NULL, bput_one);
2014 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2015 out:
2016 brelse(inode_bh);
2017 return ret;
2018 }
2019
2020 /*
2021 * Note that we don't need to start a transaction unless we're journaling data
2022 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2023 * need to file the inode to the transaction's list in ordered mode because if
2024 * we are writing back data added by write(), the inode is already there and if
2025 * we are writing back data modified via mmap(), no one guarantees in which
2026 * transaction the data will hit the disk. In case we are journaling data, we
2027 * cannot start transaction directly because transaction start ranks above page
2028 * lock so we have to do some magic.
2029 *
2030 * This function can get called via...
2031 * - ext4_da_writepages after taking page lock (have journal handle)
2032 * - journal_submit_inode_data_buffers (no journal handle)
2033 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2034 * - grab_page_cache when doing write_begin (have journal handle)
2035 *
2036 * We don't do any block allocation in this function. If we have page with
2037 * multiple blocks we need to write those buffer_heads that are mapped. This
2038 * is important for mmaped based write. So if we do with blocksize 1K
2039 * truncate(f, 1024);
2040 * a = mmap(f, 0, 4096);
2041 * a[0] = 'a';
2042 * truncate(f, 4096);
2043 * we have in the page first buffer_head mapped via page_mkwrite call back
2044 * but other buffer_heads would be unmapped but dirty (dirty done via the
2045 * do_wp_page). So writepage should write the first block. If we modify
2046 * the mmap area beyond 1024 we will again get a page_fault and the
2047 * page_mkwrite callback will do the block allocation and mark the
2048 * buffer_heads mapped.
2049 *
2050 * We redirty the page if we have any buffer_heads that is either delay or
2051 * unwritten in the page.
2052 *
2053 * We can get recursively called as show below.
2054 *
2055 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2056 * ext4_writepage()
2057 *
2058 * But since we don't do any block allocation we should not deadlock.
2059 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2060 */
2061 static int ext4_writepage(struct page *page,
2062 struct writeback_control *wbc)
2063 {
2064 int ret = 0;
2065 loff_t size;
2066 unsigned int len;
2067 struct buffer_head *page_bufs = NULL;
2068 struct inode *inode = page->mapping->host;
2069 struct ext4_io_submit io_submit;
2070
2071 trace_ext4_writepage(page);
2072 size = i_size_read(inode);
2073 if (page->index == size >> PAGE_CACHE_SHIFT)
2074 len = size & ~PAGE_CACHE_MASK;
2075 else
2076 len = PAGE_CACHE_SIZE;
2077
2078 page_bufs = page_buffers(page);
2079 /*
2080 * We cannot do block allocation or other extent handling in this
2081 * function. If there are buffers needing that, we have to redirty
2082 * the page. But we may reach here when we do a journal commit via
2083 * journal_submit_inode_data_buffers() and in that case we must write
2084 * allocated buffers to achieve data=ordered mode guarantees.
2085 */
2086 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2087 ext4_bh_delay_or_unwritten)) {
2088 redirty_page_for_writepage(wbc, page);
2089 if (current->flags & PF_MEMALLOC) {
2090 /*
2091 * For memory cleaning there's no point in writing only
2092 * some buffers. So just bail out. Warn if we came here
2093 * from direct reclaim.
2094 */
2095 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2096 == PF_MEMALLOC);
2097 unlock_page(page);
2098 return 0;
2099 }
2100 }
2101
2102 if (PageChecked(page) && ext4_should_journal_data(inode))
2103 /*
2104 * It's mmapped pagecache. Add buffers and journal it. There
2105 * doesn't seem much point in redirtying the page here.
2106 */
2107 return __ext4_journalled_writepage(page, len);
2108
2109 memset(&io_submit, 0, sizeof(io_submit));
2110 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2111 ext4_io_submit(&io_submit);
2112 return ret;
2113 }
2114
2115 /*
2116 * This is called via ext4_da_writepages() to
2117 * calculate the total number of credits to reserve to fit
2118 * a single extent allocation into a single transaction,
2119 * ext4_da_writpeages() will loop calling this before
2120 * the block allocation.
2121 */
2122
2123 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2124 {
2125 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2126
2127 /*
2128 * With non-extent format the journal credit needed to
2129 * insert nrblocks contiguous block is dependent on
2130 * number of contiguous block. So we will limit
2131 * number of contiguous block to a sane value
2132 */
2133 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2134 (max_blocks > EXT4_MAX_TRANS_DATA))
2135 max_blocks = EXT4_MAX_TRANS_DATA;
2136
2137 return ext4_chunk_trans_blocks(inode, max_blocks);
2138 }
2139
2140 /*
2141 * write_cache_pages_da - walk the list of dirty pages of the given
2142 * address space and accumulate pages that need writing, and call
2143 * mpage_da_map_and_submit to map a single contiguous memory region
2144 * and then write them.
2145 */
2146 static int write_cache_pages_da(handle_t *handle,
2147 struct address_space *mapping,
2148 struct writeback_control *wbc,
2149 struct mpage_da_data *mpd,
2150 pgoff_t *done_index)
2151 {
2152 struct buffer_head *bh, *head;
2153 struct inode *inode = mapping->host;
2154 struct pagevec pvec;
2155 unsigned int nr_pages;
2156 sector_t logical;
2157 pgoff_t index, end;
2158 long nr_to_write = wbc->nr_to_write;
2159 int i, tag, ret = 0;
2160
2161 memset(mpd, 0, sizeof(struct mpage_da_data));
2162 mpd->wbc = wbc;
2163 mpd->inode = inode;
2164 pagevec_init(&pvec, 0);
2165 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2166 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2167
2168 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2169 tag = PAGECACHE_TAG_TOWRITE;
2170 else
2171 tag = PAGECACHE_TAG_DIRTY;
2172
2173 *done_index = index;
2174 while (index <= end) {
2175 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2176 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2177 if (nr_pages == 0)
2178 return 0;
2179
2180 for (i = 0; i < nr_pages; i++) {
2181 struct page *page = pvec.pages[i];
2182
2183 /*
2184 * At this point, the page may be truncated or
2185 * invalidated (changing page->mapping to NULL), or
2186 * even swizzled back from swapper_space to tmpfs file
2187 * mapping. However, page->index will not change
2188 * because we have a reference on the page.
2189 */
2190 if (page->index > end)
2191 goto out;
2192
2193 *done_index = page->index + 1;
2194
2195 /*
2196 * If we can't merge this page, and we have
2197 * accumulated an contiguous region, write it
2198 */
2199 if ((mpd->next_page != page->index) &&
2200 (mpd->next_page != mpd->first_page)) {
2201 mpage_da_map_and_submit(mpd);
2202 goto ret_extent_tail;
2203 }
2204
2205 lock_page(page);
2206
2207 /*
2208 * If the page is no longer dirty, or its
2209 * mapping no longer corresponds to inode we
2210 * are writing (which means it has been
2211 * truncated or invalidated), or the page is
2212 * already under writeback and we are not
2213 * doing a data integrity writeback, skip the page
2214 */
2215 if (!PageDirty(page) ||
2216 (PageWriteback(page) &&
2217 (wbc->sync_mode == WB_SYNC_NONE)) ||
2218 unlikely(page->mapping != mapping)) {
2219 unlock_page(page);
2220 continue;
2221 }
2222
2223 wait_on_page_writeback(page);
2224 BUG_ON(PageWriteback(page));
2225
2226 /*
2227 * If we have inline data and arrive here, it means that
2228 * we will soon create the block for the 1st page, so
2229 * we'd better clear the inline data here.
2230 */
2231 if (ext4_has_inline_data(inode)) {
2232 BUG_ON(ext4_test_inode_state(inode,
2233 EXT4_STATE_MAY_INLINE_DATA));
2234 ext4_destroy_inline_data(handle, inode);
2235 }
2236
2237 if (mpd->next_page != page->index)
2238 mpd->first_page = page->index;
2239 mpd->next_page = page->index + 1;
2240 logical = (sector_t) page->index <<
2241 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2242
2243 /* Add all dirty buffers to mpd */
2244 head = page_buffers(page);
2245 bh = head;
2246 do {
2247 BUG_ON(buffer_locked(bh));
2248 /*
2249 * We need to try to allocate unmapped blocks
2250 * in the same page. Otherwise we won't make
2251 * progress with the page in ext4_writepage
2252 */
2253 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2254 mpage_add_bh_to_extent(mpd, logical,
2255 bh->b_state);
2256 if (mpd->io_done)
2257 goto ret_extent_tail;
2258 } else if (buffer_dirty(bh) &&
2259 buffer_mapped(bh)) {
2260 /*
2261 * mapped dirty buffer. We need to
2262 * update the b_state because we look
2263 * at b_state in mpage_da_map_blocks.
2264 * We don't update b_size because if we
2265 * find an unmapped buffer_head later
2266 * we need to use the b_state flag of
2267 * that buffer_head.
2268 */
2269 if (mpd->b_size == 0)
2270 mpd->b_state =
2271 bh->b_state & BH_FLAGS;
2272 }
2273 logical++;
2274 } while ((bh = bh->b_this_page) != head);
2275
2276 if (nr_to_write > 0) {
2277 nr_to_write--;
2278 if (nr_to_write == 0 &&
2279 wbc->sync_mode == WB_SYNC_NONE)
2280 /*
2281 * We stop writing back only if we are
2282 * not doing integrity sync. In case of
2283 * integrity sync we have to keep going
2284 * because someone may be concurrently
2285 * dirtying pages, and we might have
2286 * synced a lot of newly appeared dirty
2287 * pages, but have not synced all of the
2288 * old dirty pages.
2289 */
2290 goto out;
2291 }
2292 }
2293 pagevec_release(&pvec);
2294 cond_resched();
2295 }
2296 return 0;
2297 ret_extent_tail:
2298 ret = MPAGE_DA_EXTENT_TAIL;
2299 out:
2300 pagevec_release(&pvec);
2301 cond_resched();
2302 return ret;
2303 }
2304
2305
2306 static int ext4_da_writepages(struct address_space *mapping,
2307 struct writeback_control *wbc)
2308 {
2309 pgoff_t index;
2310 int range_whole = 0;
2311 handle_t *handle = NULL;
2312 struct mpage_da_data mpd;
2313 struct inode *inode = mapping->host;
2314 int pages_written = 0;
2315 unsigned int max_pages;
2316 int range_cyclic, cycled = 1, io_done = 0;
2317 int needed_blocks, ret = 0;
2318 long desired_nr_to_write, nr_to_writebump = 0;
2319 loff_t range_start = wbc->range_start;
2320 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2321 pgoff_t done_index = 0;
2322 pgoff_t end;
2323 struct blk_plug plug;
2324
2325 trace_ext4_da_writepages(inode, wbc);
2326
2327 /*
2328 * No pages to write? This is mainly a kludge to avoid starting
2329 * a transaction for special inodes like journal inode on last iput()
2330 * because that could violate lock ordering on umount
2331 */
2332 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2333 return 0;
2334
2335 /*
2336 * If the filesystem has aborted, it is read-only, so return
2337 * right away instead of dumping stack traces later on that
2338 * will obscure the real source of the problem. We test
2339 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2340 * the latter could be true if the filesystem is mounted
2341 * read-only, and in that case, ext4_da_writepages should
2342 * *never* be called, so if that ever happens, we would want
2343 * the stack trace.
2344 */
2345 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2346 return -EROFS;
2347
2348 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2349 range_whole = 1;
2350
2351 range_cyclic = wbc->range_cyclic;
2352 if (wbc->range_cyclic) {
2353 index = mapping->writeback_index;
2354 if (index)
2355 cycled = 0;
2356 wbc->range_start = index << PAGE_CACHE_SHIFT;
2357 wbc->range_end = LLONG_MAX;
2358 wbc->range_cyclic = 0;
2359 end = -1;
2360 } else {
2361 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2362 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2363 }
2364
2365 /*
2366 * This works around two forms of stupidity. The first is in
2367 * the writeback code, which caps the maximum number of pages
2368 * written to be 1024 pages. This is wrong on multiple
2369 * levels; different architectues have a different page size,
2370 * which changes the maximum amount of data which gets
2371 * written. Secondly, 4 megabytes is way too small. XFS
2372 * forces this value to be 16 megabytes by multiplying
2373 * nr_to_write parameter by four, and then relies on its
2374 * allocator to allocate larger extents to make them
2375 * contiguous. Unfortunately this brings us to the second
2376 * stupidity, which is that ext4's mballoc code only allocates
2377 * at most 2048 blocks. So we force contiguous writes up to
2378 * the number of dirty blocks in the inode, or
2379 * sbi->max_writeback_mb_bump whichever is smaller.
2380 */
2381 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2382 if (!range_cyclic && range_whole) {
2383 if (wbc->nr_to_write == LONG_MAX)
2384 desired_nr_to_write = wbc->nr_to_write;
2385 else
2386 desired_nr_to_write = wbc->nr_to_write * 8;
2387 } else
2388 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2389 max_pages);
2390 if (desired_nr_to_write > max_pages)
2391 desired_nr_to_write = max_pages;
2392
2393 if (wbc->nr_to_write < desired_nr_to_write) {
2394 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2395 wbc->nr_to_write = desired_nr_to_write;
2396 }
2397
2398 retry:
2399 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2400 tag_pages_for_writeback(mapping, index, end);
2401
2402 blk_start_plug(&plug);
2403 while (!ret && wbc->nr_to_write > 0) {
2404
2405 /*
2406 * we insert one extent at a time. So we need
2407 * credit needed for single extent allocation.
2408 * journalled mode is currently not supported
2409 * by delalloc
2410 */
2411 BUG_ON(ext4_should_journal_data(inode));
2412 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2413
2414 /* start a new transaction*/
2415 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2416 needed_blocks);
2417 if (IS_ERR(handle)) {
2418 ret = PTR_ERR(handle);
2419 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2420 "%ld pages, ino %lu; err %d", __func__,
2421 wbc->nr_to_write, inode->i_ino, ret);
2422 blk_finish_plug(&plug);
2423 goto out_writepages;
2424 }
2425
2426 /*
2427 * Now call write_cache_pages_da() to find the next
2428 * contiguous region of logical blocks that need
2429 * blocks to be allocated by ext4 and submit them.
2430 */
2431 ret = write_cache_pages_da(handle, mapping,
2432 wbc, &mpd, &done_index);
2433 /*
2434 * If we have a contiguous extent of pages and we
2435 * haven't done the I/O yet, map the blocks and submit
2436 * them for I/O.
2437 */
2438 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2439 mpage_da_map_and_submit(&mpd);
2440 ret = MPAGE_DA_EXTENT_TAIL;
2441 }
2442 trace_ext4_da_write_pages(inode, &mpd);
2443 wbc->nr_to_write -= mpd.pages_written;
2444
2445 ext4_journal_stop(handle);
2446
2447 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2448 /* commit the transaction which would
2449 * free blocks released in the transaction
2450 * and try again
2451 */
2452 jbd2_journal_force_commit_nested(sbi->s_journal);
2453 ret = 0;
2454 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2455 /*
2456 * Got one extent now try with rest of the pages.
2457 * If mpd.retval is set -EIO, journal is aborted.
2458 * So we don't need to write any more.
2459 */
2460 pages_written += mpd.pages_written;
2461 ret = mpd.retval;
2462 io_done = 1;
2463 } else if (wbc->nr_to_write)
2464 /*
2465 * There is no more writeout needed
2466 * or we requested for a noblocking writeout
2467 * and we found the device congested
2468 */
2469 break;
2470 }
2471 blk_finish_plug(&plug);
2472 if (!io_done && !cycled) {
2473 cycled = 1;
2474 index = 0;
2475 wbc->range_start = index << PAGE_CACHE_SHIFT;
2476 wbc->range_end = mapping->writeback_index - 1;
2477 goto retry;
2478 }
2479
2480 /* Update index */
2481 wbc->range_cyclic = range_cyclic;
2482 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2483 /*
2484 * set the writeback_index so that range_cyclic
2485 * mode will write it back later
2486 */
2487 mapping->writeback_index = done_index;
2488
2489 out_writepages:
2490 wbc->nr_to_write -= nr_to_writebump;
2491 wbc->range_start = range_start;
2492 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2493 return ret;
2494 }
2495
2496 static int ext4_nonda_switch(struct super_block *sb)
2497 {
2498 s64 free_blocks, dirty_blocks;
2499 struct ext4_sb_info *sbi = EXT4_SB(sb);
2500
2501 /*
2502 * switch to non delalloc mode if we are running low
2503 * on free block. The free block accounting via percpu
2504 * counters can get slightly wrong with percpu_counter_batch getting
2505 * accumulated on each CPU without updating global counters
2506 * Delalloc need an accurate free block accounting. So switch
2507 * to non delalloc when we are near to error range.
2508 */
2509 free_blocks = EXT4_C2B(sbi,
2510 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2511 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2512 /*
2513 * Start pushing delalloc when 1/2 of free blocks are dirty.
2514 */
2515 if (dirty_blocks && (free_blocks < 2 * dirty_blocks))
2516 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2517
2518 if (2 * free_blocks < 3 * dirty_blocks ||
2519 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2520 /*
2521 * free block count is less than 150% of dirty blocks
2522 * or free blocks is less than watermark
2523 */
2524 return 1;
2525 }
2526 return 0;
2527 }
2528
2529 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2530 loff_t pos, unsigned len, unsigned flags,
2531 struct page **pagep, void **fsdata)
2532 {
2533 int ret, retries = 0;
2534 struct page *page;
2535 pgoff_t index;
2536 struct inode *inode = mapping->host;
2537 handle_t *handle;
2538
2539 index = pos >> PAGE_CACHE_SHIFT;
2540
2541 if (ext4_nonda_switch(inode->i_sb)) {
2542 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2543 return ext4_write_begin(file, mapping, pos,
2544 len, flags, pagep, fsdata);
2545 }
2546 *fsdata = (void *)0;
2547 trace_ext4_da_write_begin(inode, pos, len, flags);
2548
2549 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2550 ret = ext4_da_write_inline_data_begin(mapping, inode,
2551 pos, len, flags,
2552 pagep, fsdata);
2553 if (ret < 0)
2554 return ret;
2555 if (ret == 1)
2556 return 0;
2557 }
2558
2559 /*
2560 * grab_cache_page_write_begin() can take a long time if the
2561 * system is thrashing due to memory pressure, or if the page
2562 * is being written back. So grab it first before we start
2563 * the transaction handle. This also allows us to allocate
2564 * the page (if needed) without using GFP_NOFS.
2565 */
2566 retry_grab:
2567 page = grab_cache_page_write_begin(mapping, index, flags);
2568 if (!page)
2569 return -ENOMEM;
2570 unlock_page(page);
2571
2572 /*
2573 * With delayed allocation, we don't log the i_disksize update
2574 * if there is delayed block allocation. But we still need
2575 * to journalling the i_disksize update if writes to the end
2576 * of file which has an already mapped buffer.
2577 */
2578 retry_journal:
2579 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2580 if (IS_ERR(handle)) {
2581 page_cache_release(page);
2582 return PTR_ERR(handle);
2583 }
2584
2585 lock_page(page);
2586 if (page->mapping != mapping) {
2587 /* The page got truncated from under us */
2588 unlock_page(page);
2589 page_cache_release(page);
2590 ext4_journal_stop(handle);
2591 goto retry_grab;
2592 }
2593 /* In case writeback began while the page was unlocked */
2594 wait_on_page_writeback(page);
2595
2596 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2597 if (ret < 0) {
2598 unlock_page(page);
2599 ext4_journal_stop(handle);
2600 /*
2601 * block_write_begin may have instantiated a few blocks
2602 * outside i_size. Trim these off again. Don't need
2603 * i_size_read because we hold i_mutex.
2604 */
2605 if (pos + len > inode->i_size)
2606 ext4_truncate_failed_write(inode);
2607
2608 if (ret == -ENOSPC &&
2609 ext4_should_retry_alloc(inode->i_sb, &retries))
2610 goto retry_journal;
2611
2612 page_cache_release(page);
2613 return ret;
2614 }
2615
2616 *pagep = page;
2617 return ret;
2618 }
2619
2620 /*
2621 * Check if we should update i_disksize
2622 * when write to the end of file but not require block allocation
2623 */
2624 static int ext4_da_should_update_i_disksize(struct page *page,
2625 unsigned long offset)
2626 {
2627 struct buffer_head *bh;
2628 struct inode *inode = page->mapping->host;
2629 unsigned int idx;
2630 int i;
2631
2632 bh = page_buffers(page);
2633 idx = offset >> inode->i_blkbits;
2634
2635 for (i = 0; i < idx; i++)
2636 bh = bh->b_this_page;
2637
2638 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2639 return 0;
2640 return 1;
2641 }
2642
2643 static int ext4_da_write_end(struct file *file,
2644 struct address_space *mapping,
2645 loff_t pos, unsigned len, unsigned copied,
2646 struct page *page, void *fsdata)
2647 {
2648 struct inode *inode = mapping->host;
2649 int ret = 0, ret2;
2650 handle_t *handle = ext4_journal_current_handle();
2651 loff_t new_i_size;
2652 unsigned long start, end;
2653 int write_mode = (int)(unsigned long)fsdata;
2654
2655 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2656 switch (ext4_inode_journal_mode(inode)) {
2657 case EXT4_INODE_ORDERED_DATA_MODE:
2658 return ext4_ordered_write_end(file, mapping, pos,
2659 len, copied, page, fsdata);
2660 case EXT4_INODE_WRITEBACK_DATA_MODE:
2661 return ext4_writeback_write_end(file, mapping, pos,
2662 len, copied, page, fsdata);
2663 default:
2664 BUG();
2665 }
2666 }
2667
2668 trace_ext4_da_write_end(inode, pos, len, copied);
2669 start = pos & (PAGE_CACHE_SIZE - 1);
2670 end = start + copied - 1;
2671
2672 /*
2673 * generic_write_end() will run mark_inode_dirty() if i_size
2674 * changes. So let's piggyback the i_disksize mark_inode_dirty
2675 * into that.
2676 */
2677 new_i_size = pos + copied;
2678 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2679 if (ext4_has_inline_data(inode) ||
2680 ext4_da_should_update_i_disksize(page, end)) {
2681 down_write(&EXT4_I(inode)->i_data_sem);
2682 if (new_i_size > EXT4_I(inode)->i_disksize)
2683 EXT4_I(inode)->i_disksize = new_i_size;
2684 up_write(&EXT4_I(inode)->i_data_sem);
2685 /* We need to mark inode dirty even if
2686 * new_i_size is less that inode->i_size
2687 * bu greater than i_disksize.(hint delalloc)
2688 */
2689 ext4_mark_inode_dirty(handle, inode);
2690 }
2691 }
2692
2693 if (write_mode != CONVERT_INLINE_DATA &&
2694 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2695 ext4_has_inline_data(inode))
2696 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2697 page);
2698 else
2699 ret2 = generic_write_end(file, mapping, pos, len, copied,
2700 page, fsdata);
2701
2702 copied = ret2;
2703 if (ret2 < 0)
2704 ret = ret2;
2705 ret2 = ext4_journal_stop(handle);
2706 if (!ret)
2707 ret = ret2;
2708
2709 return ret ? ret : copied;
2710 }
2711
2712 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2713 {
2714 /*
2715 * Drop reserved blocks
2716 */
2717 BUG_ON(!PageLocked(page));
2718 if (!page_has_buffers(page))
2719 goto out;
2720
2721 ext4_da_page_release_reservation(page, offset);
2722
2723 out:
2724 ext4_invalidatepage(page, offset);
2725
2726 return;
2727 }
2728
2729 /*
2730 * Force all delayed allocation blocks to be allocated for a given inode.
2731 */
2732 int ext4_alloc_da_blocks(struct inode *inode)
2733 {
2734 trace_ext4_alloc_da_blocks(inode);
2735
2736 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2737 !EXT4_I(inode)->i_reserved_meta_blocks)
2738 return 0;
2739
2740 /*
2741 * We do something simple for now. The filemap_flush() will
2742 * also start triggering a write of the data blocks, which is
2743 * not strictly speaking necessary (and for users of
2744 * laptop_mode, not even desirable). However, to do otherwise
2745 * would require replicating code paths in:
2746 *
2747 * ext4_da_writepages() ->
2748 * write_cache_pages() ---> (via passed in callback function)
2749 * __mpage_da_writepage() -->
2750 * mpage_add_bh_to_extent()
2751 * mpage_da_map_blocks()
2752 *
2753 * The problem is that write_cache_pages(), located in
2754 * mm/page-writeback.c, marks pages clean in preparation for
2755 * doing I/O, which is not desirable if we're not planning on
2756 * doing I/O at all.
2757 *
2758 * We could call write_cache_pages(), and then redirty all of
2759 * the pages by calling redirty_page_for_writepage() but that
2760 * would be ugly in the extreme. So instead we would need to
2761 * replicate parts of the code in the above functions,
2762 * simplifying them because we wouldn't actually intend to
2763 * write out the pages, but rather only collect contiguous
2764 * logical block extents, call the multi-block allocator, and
2765 * then update the buffer heads with the block allocations.
2766 *
2767 * For now, though, we'll cheat by calling filemap_flush(),
2768 * which will map the blocks, and start the I/O, but not
2769 * actually wait for the I/O to complete.
2770 */
2771 return filemap_flush(inode->i_mapping);
2772 }
2773
2774 /*
2775 * bmap() is special. It gets used by applications such as lilo and by
2776 * the swapper to find the on-disk block of a specific piece of data.
2777 *
2778 * Naturally, this is dangerous if the block concerned is still in the
2779 * journal. If somebody makes a swapfile on an ext4 data-journaling
2780 * filesystem and enables swap, then they may get a nasty shock when the
2781 * data getting swapped to that swapfile suddenly gets overwritten by
2782 * the original zero's written out previously to the journal and
2783 * awaiting writeback in the kernel's buffer cache.
2784 *
2785 * So, if we see any bmap calls here on a modified, data-journaled file,
2786 * take extra steps to flush any blocks which might be in the cache.
2787 */
2788 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2789 {
2790 struct inode *inode = mapping->host;
2791 journal_t *journal;
2792 int err;
2793
2794 /*
2795 * We can get here for an inline file via the FIBMAP ioctl
2796 */
2797 if (ext4_has_inline_data(inode))
2798 return 0;
2799
2800 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2801 test_opt(inode->i_sb, DELALLOC)) {
2802 /*
2803 * With delalloc we want to sync the file
2804 * so that we can make sure we allocate
2805 * blocks for file
2806 */
2807 filemap_write_and_wait(mapping);
2808 }
2809
2810 if (EXT4_JOURNAL(inode) &&
2811 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2812 /*
2813 * This is a REALLY heavyweight approach, but the use of
2814 * bmap on dirty files is expected to be extremely rare:
2815 * only if we run lilo or swapon on a freshly made file
2816 * do we expect this to happen.
2817 *
2818 * (bmap requires CAP_SYS_RAWIO so this does not
2819 * represent an unprivileged user DOS attack --- we'd be
2820 * in trouble if mortal users could trigger this path at
2821 * will.)
2822 *
2823 * NB. EXT4_STATE_JDATA is not set on files other than
2824 * regular files. If somebody wants to bmap a directory
2825 * or symlink and gets confused because the buffer
2826 * hasn't yet been flushed to disk, they deserve
2827 * everything they get.
2828 */
2829
2830 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2831 journal = EXT4_JOURNAL(inode);
2832 jbd2_journal_lock_updates(journal);
2833 err = jbd2_journal_flush(journal);
2834 jbd2_journal_unlock_updates(journal);
2835
2836 if (err)
2837 return 0;
2838 }
2839
2840 return generic_block_bmap(mapping, block, ext4_get_block);
2841 }
2842
2843 static int ext4_readpage(struct file *file, struct page *page)
2844 {
2845 int ret = -EAGAIN;
2846 struct inode *inode = page->mapping->host;
2847
2848 trace_ext4_readpage(page);
2849
2850 if (ext4_has_inline_data(inode))
2851 ret = ext4_readpage_inline(inode, page);
2852
2853 if (ret == -EAGAIN)
2854 return mpage_readpage(page, ext4_get_block);
2855
2856 return ret;
2857 }
2858
2859 static int
2860 ext4_readpages(struct file *file, struct address_space *mapping,
2861 struct list_head *pages, unsigned nr_pages)
2862 {
2863 struct inode *inode = mapping->host;
2864
2865 /* If the file has inline data, no need to do readpages. */
2866 if (ext4_has_inline_data(inode))
2867 return 0;
2868
2869 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2870 }
2871
2872 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2873 {
2874 trace_ext4_invalidatepage(page, offset);
2875
2876 /* No journalling happens on data buffers when this function is used */
2877 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2878
2879 block_invalidatepage(page, offset);
2880 }
2881
2882 static int __ext4_journalled_invalidatepage(struct page *page,
2883 unsigned long offset)
2884 {
2885 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2886
2887 trace_ext4_journalled_invalidatepage(page, offset);
2888
2889 /*
2890 * If it's a full truncate we just forget about the pending dirtying
2891 */
2892 if (offset == 0)
2893 ClearPageChecked(page);
2894
2895 return jbd2_journal_invalidatepage(journal, page, offset);
2896 }
2897
2898 /* Wrapper for aops... */
2899 static void ext4_journalled_invalidatepage(struct page *page,
2900 unsigned long offset)
2901 {
2902 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
2903 }
2904
2905 static int ext4_releasepage(struct page *page, gfp_t wait)
2906 {
2907 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2908
2909 trace_ext4_releasepage(page);
2910
2911 WARN_ON(PageChecked(page));
2912 if (!page_has_buffers(page))
2913 return 0;
2914 if (journal)
2915 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2916 else
2917 return try_to_free_buffers(page);
2918 }
2919
2920 /*
2921 * ext4_get_block used when preparing for a DIO write or buffer write.
2922 * We allocate an uinitialized extent if blocks haven't been allocated.
2923 * The extent will be converted to initialized after the IO is complete.
2924 */
2925 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2926 struct buffer_head *bh_result, int create)
2927 {
2928 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2929 inode->i_ino, create);
2930 return _ext4_get_block(inode, iblock, bh_result,
2931 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2932 }
2933
2934 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2935 struct buffer_head *bh_result, int create)
2936 {
2937 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2938 inode->i_ino, create);
2939 return _ext4_get_block(inode, iblock, bh_result,
2940 EXT4_GET_BLOCKS_NO_LOCK);
2941 }
2942
2943 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2944 ssize_t size, void *private, int ret,
2945 bool is_async)
2946 {
2947 struct inode *inode = file_inode(iocb->ki_filp);
2948 ext4_io_end_t *io_end = iocb->private;
2949
2950 /* if not async direct IO or dio with 0 bytes write, just return */
2951 if (!io_end || !size)
2952 goto out;
2953
2954 ext_debug("ext4_end_io_dio(): io_end 0x%p "
2955 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2956 iocb->private, io_end->inode->i_ino, iocb, offset,
2957 size);
2958
2959 iocb->private = NULL;
2960
2961 /* if not aio dio with unwritten extents, just free io and return */
2962 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2963 ext4_free_io_end(io_end);
2964 out:
2965 inode_dio_done(inode);
2966 if (is_async)
2967 aio_complete(iocb, ret, 0);
2968 return;
2969 }
2970
2971 io_end->offset = offset;
2972 io_end->size = size;
2973 if (is_async) {
2974 io_end->iocb = iocb;
2975 io_end->result = ret;
2976 }
2977
2978 ext4_add_complete_io(io_end);
2979 }
2980
2981 /*
2982 * For ext4 extent files, ext4 will do direct-io write to holes,
2983 * preallocated extents, and those write extend the file, no need to
2984 * fall back to buffered IO.
2985 *
2986 * For holes, we fallocate those blocks, mark them as uninitialized
2987 * If those blocks were preallocated, we mark sure they are split, but
2988 * still keep the range to write as uninitialized.
2989 *
2990 * The unwritten extents will be converted to written when DIO is completed.
2991 * For async direct IO, since the IO may still pending when return, we
2992 * set up an end_io call back function, which will do the conversion
2993 * when async direct IO completed.
2994 *
2995 * If the O_DIRECT write will extend the file then add this inode to the
2996 * orphan list. So recovery will truncate it back to the original size
2997 * if the machine crashes during the write.
2998 *
2999 */
3000 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3001 const struct iovec *iov, loff_t offset,
3002 unsigned long nr_segs)
3003 {
3004 struct file *file = iocb->ki_filp;
3005 struct inode *inode = file->f_mapping->host;
3006 ssize_t ret;
3007 size_t count = iov_length(iov, nr_segs);
3008 int overwrite = 0;
3009 get_block_t *get_block_func = NULL;
3010 int dio_flags = 0;
3011 loff_t final_size = offset + count;
3012
3013 /* Use the old path for reads and writes beyond i_size. */
3014 if (rw != WRITE || final_size > inode->i_size)
3015 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3016
3017 BUG_ON(iocb->private == NULL);
3018
3019 /* If we do a overwrite dio, i_mutex locking can be released */
3020 overwrite = *((int *)iocb->private);
3021
3022 if (overwrite) {
3023 atomic_inc(&inode->i_dio_count);
3024 down_read(&EXT4_I(inode)->i_data_sem);
3025 mutex_unlock(&inode->i_mutex);
3026 }
3027
3028 /*
3029 * We could direct write to holes and fallocate.
3030 *
3031 * Allocated blocks to fill the hole are marked as
3032 * uninitialized to prevent parallel buffered read to expose
3033 * the stale data before DIO complete the data IO.
3034 *
3035 * As to previously fallocated extents, ext4 get_block will
3036 * just simply mark the buffer mapped but still keep the
3037 * extents uninitialized.
3038 *
3039 * For non AIO case, we will convert those unwritten extents
3040 * to written after return back from blockdev_direct_IO.
3041 *
3042 * For async DIO, the conversion needs to be deferred when the
3043 * IO is completed. The ext4 end_io callback function will be
3044 * called to take care of the conversion work. Here for async
3045 * case, we allocate an io_end structure to hook to the iocb.
3046 */
3047 iocb->private = NULL;
3048 ext4_inode_aio_set(inode, NULL);
3049 if (!is_sync_kiocb(iocb)) {
3050 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3051 if (!io_end) {
3052 ret = -ENOMEM;
3053 goto retake_lock;
3054 }
3055 io_end->flag |= EXT4_IO_END_DIRECT;
3056 iocb->private = io_end;
3057 /*
3058 * we save the io structure for current async direct
3059 * IO, so that later ext4_map_blocks() could flag the
3060 * io structure whether there is a unwritten extents
3061 * needs to be converted when IO is completed.
3062 */
3063 ext4_inode_aio_set(inode, io_end);
3064 }
3065
3066 if (overwrite) {
3067 get_block_func = ext4_get_block_write_nolock;
3068 } else {
3069 get_block_func = ext4_get_block_write;
3070 dio_flags = DIO_LOCKING;
3071 }
3072 ret = __blockdev_direct_IO(rw, iocb, inode,
3073 inode->i_sb->s_bdev, iov,
3074 offset, nr_segs,
3075 get_block_func,
3076 ext4_end_io_dio,
3077 NULL,
3078 dio_flags);
3079
3080 if (iocb->private)
3081 ext4_inode_aio_set(inode, NULL);
3082 /*
3083 * The io_end structure takes a reference to the inode, that
3084 * structure needs to be destroyed and the reference to the
3085 * inode need to be dropped, when IO is complete, even with 0
3086 * byte write, or failed.
3087 *
3088 * In the successful AIO DIO case, the io_end structure will
3089 * be destroyed and the reference to the inode will be dropped
3090 * after the end_io call back function is called.
3091 *
3092 * In the case there is 0 byte write, or error case, since VFS
3093 * direct IO won't invoke the end_io call back function, we
3094 * need to free the end_io structure here.
3095 */
3096 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3097 ext4_free_io_end(iocb->private);
3098 iocb->private = NULL;
3099 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3100 EXT4_STATE_DIO_UNWRITTEN)) {
3101 int err;
3102 /*
3103 * for non AIO case, since the IO is already
3104 * completed, we could do the conversion right here
3105 */
3106 err = ext4_convert_unwritten_extents(inode,
3107 offset, ret);
3108 if (err < 0)
3109 ret = err;
3110 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3111 }
3112
3113 retake_lock:
3114 /* take i_mutex locking again if we do a ovewrite dio */
3115 if (overwrite) {
3116 inode_dio_done(inode);
3117 up_read(&EXT4_I(inode)->i_data_sem);
3118 mutex_lock(&inode->i_mutex);
3119 }
3120
3121 return ret;
3122 }
3123
3124 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3125 const struct iovec *iov, loff_t offset,
3126 unsigned long nr_segs)
3127 {
3128 struct file *file = iocb->ki_filp;
3129 struct inode *inode = file->f_mapping->host;
3130 ssize_t ret;
3131
3132 /*
3133 * If we are doing data journalling we don't support O_DIRECT
3134 */
3135 if (ext4_should_journal_data(inode))
3136 return 0;
3137
3138 /* Let buffer I/O handle the inline data case. */
3139 if (ext4_has_inline_data(inode))
3140 return 0;
3141
3142 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3143 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3144 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3145 else
3146 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3147 trace_ext4_direct_IO_exit(inode, offset,
3148 iov_length(iov, nr_segs), rw, ret);
3149 return ret;
3150 }
3151
3152 /*
3153 * Pages can be marked dirty completely asynchronously from ext4's journalling
3154 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3155 * much here because ->set_page_dirty is called under VFS locks. The page is
3156 * not necessarily locked.
3157 *
3158 * We cannot just dirty the page and leave attached buffers clean, because the
3159 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3160 * or jbddirty because all the journalling code will explode.
3161 *
3162 * So what we do is to mark the page "pending dirty" and next time writepage
3163 * is called, propagate that into the buffers appropriately.
3164 */
3165 static int ext4_journalled_set_page_dirty(struct page *page)
3166 {
3167 SetPageChecked(page);
3168 return __set_page_dirty_nobuffers(page);
3169 }
3170
3171 static const struct address_space_operations ext4_ordered_aops = {
3172 .readpage = ext4_readpage,
3173 .readpages = ext4_readpages,
3174 .writepage = ext4_writepage,
3175 .write_begin = ext4_write_begin,
3176 .write_end = ext4_ordered_write_end,
3177 .bmap = ext4_bmap,
3178 .invalidatepage = ext4_invalidatepage,
3179 .releasepage = ext4_releasepage,
3180 .direct_IO = ext4_direct_IO,
3181 .migratepage = buffer_migrate_page,
3182 .is_partially_uptodate = block_is_partially_uptodate,
3183 .error_remove_page = generic_error_remove_page,
3184 };
3185
3186 static const struct address_space_operations ext4_writeback_aops = {
3187 .readpage = ext4_readpage,
3188 .readpages = ext4_readpages,
3189 .writepage = ext4_writepage,
3190 .write_begin = ext4_write_begin,
3191 .write_end = ext4_writeback_write_end,
3192 .bmap = ext4_bmap,
3193 .invalidatepage = ext4_invalidatepage,
3194 .releasepage = ext4_releasepage,
3195 .direct_IO = ext4_direct_IO,
3196 .migratepage = buffer_migrate_page,
3197 .is_partially_uptodate = block_is_partially_uptodate,
3198 .error_remove_page = generic_error_remove_page,
3199 };
3200
3201 static const struct address_space_operations ext4_journalled_aops = {
3202 .readpage = ext4_readpage,
3203 .readpages = ext4_readpages,
3204 .writepage = ext4_writepage,
3205 .write_begin = ext4_write_begin,
3206 .write_end = ext4_journalled_write_end,
3207 .set_page_dirty = ext4_journalled_set_page_dirty,
3208 .bmap = ext4_bmap,
3209 .invalidatepage = ext4_journalled_invalidatepage,
3210 .releasepage = ext4_releasepage,
3211 .direct_IO = ext4_direct_IO,
3212 .is_partially_uptodate = block_is_partially_uptodate,
3213 .error_remove_page = generic_error_remove_page,
3214 };
3215
3216 static const struct address_space_operations ext4_da_aops = {
3217 .readpage = ext4_readpage,
3218 .readpages = ext4_readpages,
3219 .writepage = ext4_writepage,
3220 .writepages = ext4_da_writepages,
3221 .write_begin = ext4_da_write_begin,
3222 .write_end = ext4_da_write_end,
3223 .bmap = ext4_bmap,
3224 .invalidatepage = ext4_da_invalidatepage,
3225 .releasepage = ext4_releasepage,
3226 .direct_IO = ext4_direct_IO,
3227 .migratepage = buffer_migrate_page,
3228 .is_partially_uptodate = block_is_partially_uptodate,
3229 .error_remove_page = generic_error_remove_page,
3230 };
3231
3232 void ext4_set_aops(struct inode *inode)
3233 {
3234 switch (ext4_inode_journal_mode(inode)) {
3235 case EXT4_INODE_ORDERED_DATA_MODE:
3236 if (test_opt(inode->i_sb, DELALLOC))
3237 inode->i_mapping->a_ops = &ext4_da_aops;
3238 else
3239 inode->i_mapping->a_ops = &ext4_ordered_aops;
3240 break;
3241 case EXT4_INODE_WRITEBACK_DATA_MODE:
3242 if (test_opt(inode->i_sb, DELALLOC))
3243 inode->i_mapping->a_ops = &ext4_da_aops;
3244 else
3245 inode->i_mapping->a_ops = &ext4_writeback_aops;
3246 break;
3247 case EXT4_INODE_JOURNAL_DATA_MODE:
3248 inode->i_mapping->a_ops = &ext4_journalled_aops;
3249 break;
3250 default:
3251 BUG();
3252 }
3253 }
3254
3255
3256 /*
3257 * ext4_discard_partial_page_buffers()
3258 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3259 * This function finds and locks the page containing the offset
3260 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3261 * Calling functions that already have the page locked should call
3262 * ext4_discard_partial_page_buffers_no_lock directly.
3263 */
3264 int ext4_discard_partial_page_buffers(handle_t *handle,
3265 struct address_space *mapping, loff_t from,
3266 loff_t length, int flags)
3267 {
3268 struct inode *inode = mapping->host;
3269 struct page *page;
3270 int err = 0;
3271
3272 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3273 mapping_gfp_mask(mapping) & ~__GFP_FS);
3274 if (!page)
3275 return -ENOMEM;
3276
3277 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3278 from, length, flags);
3279
3280 unlock_page(page);
3281 page_cache_release(page);
3282 return err;
3283 }
3284
3285 /*
3286 * ext4_discard_partial_page_buffers_no_lock()
3287 * Zeros a page range of length 'length' starting from offset 'from'.
3288 * Buffer heads that correspond to the block aligned regions of the
3289 * zeroed range will be unmapped. Unblock aligned regions
3290 * will have the corresponding buffer head mapped if needed so that
3291 * that region of the page can be updated with the partial zero out.
3292 *
3293 * This function assumes that the page has already been locked. The
3294 * The range to be discarded must be contained with in the given page.
3295 * If the specified range exceeds the end of the page it will be shortened
3296 * to the end of the page that corresponds to 'from'. This function is
3297 * appropriate for updating a page and it buffer heads to be unmapped and
3298 * zeroed for blocks that have been either released, or are going to be
3299 * released.
3300 *
3301 * handle: The journal handle
3302 * inode: The files inode
3303 * page: A locked page that contains the offset "from"
3304 * from: The starting byte offset (from the beginning of the file)
3305 * to begin discarding
3306 * len: The length of bytes to discard
3307 * flags: Optional flags that may be used:
3308 *
3309 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3310 * Only zero the regions of the page whose buffer heads
3311 * have already been unmapped. This flag is appropriate
3312 * for updating the contents of a page whose blocks may
3313 * have already been released, and we only want to zero
3314 * out the regions that correspond to those released blocks.
3315 *
3316 * Returns zero on success or negative on failure.
3317 */
3318 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3319 struct inode *inode, struct page *page, loff_t from,
3320 loff_t length, int flags)
3321 {
3322 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3323 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3324 unsigned int blocksize, max, pos;
3325 ext4_lblk_t iblock;
3326 struct buffer_head *bh;
3327 int err = 0;
3328
3329 blocksize = inode->i_sb->s_blocksize;
3330 max = PAGE_CACHE_SIZE - offset;
3331
3332 if (index != page->index)
3333 return -EINVAL;
3334
3335 /*
3336 * correct length if it does not fall between
3337 * 'from' and the end of the page
3338 */
3339 if (length > max || length < 0)
3340 length = max;
3341
3342 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3343
3344 if (!page_has_buffers(page))
3345 create_empty_buffers(page, blocksize, 0);
3346
3347 /* Find the buffer that contains "offset" */
3348 bh = page_buffers(page);
3349 pos = blocksize;
3350 while (offset >= pos) {
3351 bh = bh->b_this_page;
3352 iblock++;
3353 pos += blocksize;
3354 }
3355
3356 pos = offset;
3357 while (pos < offset + length) {
3358 unsigned int end_of_block, range_to_discard;
3359
3360 err = 0;
3361
3362 /* The length of space left to zero and unmap */
3363 range_to_discard = offset + length - pos;
3364
3365 /* The length of space until the end of the block */
3366 end_of_block = blocksize - (pos & (blocksize-1));
3367
3368 /*
3369 * Do not unmap or zero past end of block
3370 * for this buffer head
3371 */
3372 if (range_to_discard > end_of_block)
3373 range_to_discard = end_of_block;
3374
3375
3376 /*
3377 * Skip this buffer head if we are only zeroing unampped
3378 * regions of the page
3379 */
3380 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3381 buffer_mapped(bh))
3382 goto next;
3383
3384 /* If the range is block aligned, unmap */
3385 if (range_to_discard == blocksize) {
3386 clear_buffer_dirty(bh);
3387 bh->b_bdev = NULL;
3388 clear_buffer_mapped(bh);
3389 clear_buffer_req(bh);
3390 clear_buffer_new(bh);
3391 clear_buffer_delay(bh);
3392 clear_buffer_unwritten(bh);
3393 clear_buffer_uptodate(bh);
3394 zero_user(page, pos, range_to_discard);
3395 BUFFER_TRACE(bh, "Buffer discarded");
3396 goto next;
3397 }
3398
3399 /*
3400 * If this block is not completely contained in the range
3401 * to be discarded, then it is not going to be released. Because
3402 * we need to keep this block, we need to make sure this part
3403 * of the page is uptodate before we modify it by writeing
3404 * partial zeros on it.
3405 */
3406 if (!buffer_mapped(bh)) {
3407 /*
3408 * Buffer head must be mapped before we can read
3409 * from the block
3410 */
3411 BUFFER_TRACE(bh, "unmapped");
3412 ext4_get_block(inode, iblock, bh, 0);
3413 /* unmapped? It's a hole - nothing to do */
3414 if (!buffer_mapped(bh)) {
3415 BUFFER_TRACE(bh, "still unmapped");
3416 goto next;
3417 }
3418 }
3419
3420 /* Ok, it's mapped. Make sure it's up-to-date */
3421 if (PageUptodate(page))
3422 set_buffer_uptodate(bh);
3423
3424 if (!buffer_uptodate(bh)) {
3425 err = -EIO;
3426 ll_rw_block(READ, 1, &bh);
3427 wait_on_buffer(bh);
3428 /* Uhhuh. Read error. Complain and punt.*/
3429 if (!buffer_uptodate(bh))
3430 goto next;
3431 }
3432
3433 if (ext4_should_journal_data(inode)) {
3434 BUFFER_TRACE(bh, "get write access");
3435 err = ext4_journal_get_write_access(handle, bh);
3436 if (err)
3437 goto next;
3438 }
3439
3440 zero_user(page, pos, range_to_discard);
3441
3442 err = 0;
3443 if (ext4_should_journal_data(inode)) {
3444 err = ext4_handle_dirty_metadata(handle, inode, bh);
3445 } else
3446 mark_buffer_dirty(bh);
3447
3448 BUFFER_TRACE(bh, "Partial buffer zeroed");
3449 next:
3450 bh = bh->b_this_page;
3451 iblock++;
3452 pos += range_to_discard;
3453 }
3454
3455 return err;
3456 }
3457
3458 int ext4_can_truncate(struct inode *inode)
3459 {
3460 if (S_ISREG(inode->i_mode))
3461 return 1;
3462 if (S_ISDIR(inode->i_mode))
3463 return 1;
3464 if (S_ISLNK(inode->i_mode))
3465 return !ext4_inode_is_fast_symlink(inode);
3466 return 0;
3467 }
3468
3469 /*
3470 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3471 * associated with the given offset and length
3472 *
3473 * @inode: File inode
3474 * @offset: The offset where the hole will begin
3475 * @len: The length of the hole
3476 *
3477 * Returns: 0 on success or negative on failure
3478 */
3479
3480 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3481 {
3482 struct inode *inode = file_inode(file);
3483 if (!S_ISREG(inode->i_mode))
3484 return -EOPNOTSUPP;
3485
3486 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3487 return ext4_ind_punch_hole(file, offset, length);
3488
3489 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3490 /* TODO: Add support for bigalloc file systems */
3491 return -EOPNOTSUPP;
3492 }
3493
3494 trace_ext4_punch_hole(inode, offset, length);
3495
3496 return ext4_ext_punch_hole(file, offset, length);
3497 }
3498
3499 /*
3500 * ext4_truncate()
3501 *
3502 * We block out ext4_get_block() block instantiations across the entire
3503 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3504 * simultaneously on behalf of the same inode.
3505 *
3506 * As we work through the truncate and commit bits of it to the journal there
3507 * is one core, guiding principle: the file's tree must always be consistent on
3508 * disk. We must be able to restart the truncate after a crash.
3509 *
3510 * The file's tree may be transiently inconsistent in memory (although it
3511 * probably isn't), but whenever we close off and commit a journal transaction,
3512 * the contents of (the filesystem + the journal) must be consistent and
3513 * restartable. It's pretty simple, really: bottom up, right to left (although
3514 * left-to-right works OK too).
3515 *
3516 * Note that at recovery time, journal replay occurs *before* the restart of
3517 * truncate against the orphan inode list.
3518 *
3519 * The committed inode has the new, desired i_size (which is the same as
3520 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3521 * that this inode's truncate did not complete and it will again call
3522 * ext4_truncate() to have another go. So there will be instantiated blocks
3523 * to the right of the truncation point in a crashed ext4 filesystem. But
3524 * that's fine - as long as they are linked from the inode, the post-crash
3525 * ext4_truncate() run will find them and release them.
3526 */
3527 void ext4_truncate(struct inode *inode)
3528 {
3529 trace_ext4_truncate_enter(inode);
3530
3531 if (!ext4_can_truncate(inode))
3532 return;
3533
3534 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3535
3536 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3537 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3538
3539 if (ext4_has_inline_data(inode)) {
3540 int has_inline = 1;
3541
3542 ext4_inline_data_truncate(inode, &has_inline);
3543 if (has_inline)
3544 return;
3545 }
3546
3547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3548 ext4_ext_truncate(inode);
3549 else
3550 ext4_ind_truncate(inode);
3551
3552 trace_ext4_truncate_exit(inode);
3553 }
3554
3555 /*
3556 * ext4_get_inode_loc returns with an extra refcount against the inode's
3557 * underlying buffer_head on success. If 'in_mem' is true, we have all
3558 * data in memory that is needed to recreate the on-disk version of this
3559 * inode.
3560 */
3561 static int __ext4_get_inode_loc(struct inode *inode,
3562 struct ext4_iloc *iloc, int in_mem)
3563 {
3564 struct ext4_group_desc *gdp;
3565 struct buffer_head *bh;
3566 struct super_block *sb = inode->i_sb;
3567 ext4_fsblk_t block;
3568 int inodes_per_block, inode_offset;
3569
3570 iloc->bh = NULL;
3571 if (!ext4_valid_inum(sb, inode->i_ino))
3572 return -EIO;
3573
3574 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3575 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3576 if (!gdp)
3577 return -EIO;
3578
3579 /*
3580 * Figure out the offset within the block group inode table
3581 */
3582 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3583 inode_offset = ((inode->i_ino - 1) %
3584 EXT4_INODES_PER_GROUP(sb));
3585 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3586 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3587
3588 bh = sb_getblk(sb, block);
3589 if (unlikely(!bh))
3590 return -ENOMEM;
3591 if (!buffer_uptodate(bh)) {
3592 lock_buffer(bh);
3593
3594 /*
3595 * If the buffer has the write error flag, we have failed
3596 * to write out another inode in the same block. In this
3597 * case, we don't have to read the block because we may
3598 * read the old inode data successfully.
3599 */
3600 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3601 set_buffer_uptodate(bh);
3602
3603 if (buffer_uptodate(bh)) {
3604 /* someone brought it uptodate while we waited */
3605 unlock_buffer(bh);
3606 goto has_buffer;
3607 }
3608
3609 /*
3610 * If we have all information of the inode in memory and this
3611 * is the only valid inode in the block, we need not read the
3612 * block.
3613 */
3614 if (in_mem) {
3615 struct buffer_head *bitmap_bh;
3616 int i, start;
3617
3618 start = inode_offset & ~(inodes_per_block - 1);
3619
3620 /* Is the inode bitmap in cache? */
3621 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3622 if (unlikely(!bitmap_bh))
3623 goto make_io;
3624
3625 /*
3626 * If the inode bitmap isn't in cache then the
3627 * optimisation may end up performing two reads instead
3628 * of one, so skip it.
3629 */
3630 if (!buffer_uptodate(bitmap_bh)) {
3631 brelse(bitmap_bh);
3632 goto make_io;
3633 }
3634 for (i = start; i < start + inodes_per_block; i++) {
3635 if (i == inode_offset)
3636 continue;
3637 if (ext4_test_bit(i, bitmap_bh->b_data))
3638 break;
3639 }
3640 brelse(bitmap_bh);
3641 if (i == start + inodes_per_block) {
3642 /* all other inodes are free, so skip I/O */
3643 memset(bh->b_data, 0, bh->b_size);
3644 set_buffer_uptodate(bh);
3645 unlock_buffer(bh);
3646 goto has_buffer;
3647 }
3648 }
3649
3650 make_io:
3651 /*
3652 * If we need to do any I/O, try to pre-readahead extra
3653 * blocks from the inode table.
3654 */
3655 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3656 ext4_fsblk_t b, end, table;
3657 unsigned num;
3658
3659 table = ext4_inode_table(sb, gdp);
3660 /* s_inode_readahead_blks is always a power of 2 */
3661 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3662 if (table > b)
3663 b = table;
3664 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3665 num = EXT4_INODES_PER_GROUP(sb);
3666 if (ext4_has_group_desc_csum(sb))
3667 num -= ext4_itable_unused_count(sb, gdp);
3668 table += num / inodes_per_block;
3669 if (end > table)
3670 end = table;
3671 while (b <= end)
3672 sb_breadahead(sb, b++);
3673 }
3674
3675 /*
3676 * There are other valid inodes in the buffer, this inode
3677 * has in-inode xattrs, or we don't have this inode in memory.
3678 * Read the block from disk.
3679 */
3680 trace_ext4_load_inode(inode);
3681 get_bh(bh);
3682 bh->b_end_io = end_buffer_read_sync;
3683 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3684 wait_on_buffer(bh);
3685 if (!buffer_uptodate(bh)) {
3686 EXT4_ERROR_INODE_BLOCK(inode, block,
3687 "unable to read itable block");
3688 brelse(bh);
3689 return -EIO;
3690 }
3691 }
3692 has_buffer:
3693 iloc->bh = bh;
3694 return 0;
3695 }
3696
3697 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3698 {
3699 /* We have all inode data except xattrs in memory here. */
3700 return __ext4_get_inode_loc(inode, iloc,
3701 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3702 }
3703
3704 void ext4_set_inode_flags(struct inode *inode)
3705 {
3706 unsigned int flags = EXT4_I(inode)->i_flags;
3707
3708 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3709 if (flags & EXT4_SYNC_FL)
3710 inode->i_flags |= S_SYNC;
3711 if (flags & EXT4_APPEND_FL)
3712 inode->i_flags |= S_APPEND;
3713 if (flags & EXT4_IMMUTABLE_FL)
3714 inode->i_flags |= S_IMMUTABLE;
3715 if (flags & EXT4_NOATIME_FL)
3716 inode->i_flags |= S_NOATIME;
3717 if (flags & EXT4_DIRSYNC_FL)
3718 inode->i_flags |= S_DIRSYNC;
3719 }
3720
3721 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3722 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3723 {
3724 unsigned int vfs_fl;
3725 unsigned long old_fl, new_fl;
3726
3727 do {
3728 vfs_fl = ei->vfs_inode.i_flags;
3729 old_fl = ei->i_flags;
3730 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3731 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3732 EXT4_DIRSYNC_FL);
3733 if (vfs_fl & S_SYNC)
3734 new_fl |= EXT4_SYNC_FL;
3735 if (vfs_fl & S_APPEND)
3736 new_fl |= EXT4_APPEND_FL;
3737 if (vfs_fl & S_IMMUTABLE)
3738 new_fl |= EXT4_IMMUTABLE_FL;
3739 if (vfs_fl & S_NOATIME)
3740 new_fl |= EXT4_NOATIME_FL;
3741 if (vfs_fl & S_DIRSYNC)
3742 new_fl |= EXT4_DIRSYNC_FL;
3743 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3744 }
3745
3746 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3747 struct ext4_inode_info *ei)
3748 {
3749 blkcnt_t i_blocks ;
3750 struct inode *inode = &(ei->vfs_inode);
3751 struct super_block *sb = inode->i_sb;
3752
3753 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3754 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3755 /* we are using combined 48 bit field */
3756 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3757 le32_to_cpu(raw_inode->i_blocks_lo);
3758 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3759 /* i_blocks represent file system block size */
3760 return i_blocks << (inode->i_blkbits - 9);
3761 } else {
3762 return i_blocks;
3763 }
3764 } else {
3765 return le32_to_cpu(raw_inode->i_blocks_lo);
3766 }
3767 }
3768
3769 static inline void ext4_iget_extra_inode(struct inode *inode,
3770 struct ext4_inode *raw_inode,
3771 struct ext4_inode_info *ei)
3772 {
3773 __le32 *magic = (void *)raw_inode +
3774 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3775 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3776 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3777 ext4_find_inline_data_nolock(inode);
3778 } else
3779 EXT4_I(inode)->i_inline_off = 0;
3780 }
3781
3782 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3783 {
3784 struct ext4_iloc iloc;
3785 struct ext4_inode *raw_inode;
3786 struct ext4_inode_info *ei;
3787 struct inode *inode;
3788 journal_t *journal = EXT4_SB(sb)->s_journal;
3789 long ret;
3790 int block;
3791 uid_t i_uid;
3792 gid_t i_gid;
3793
3794 inode = iget_locked(sb, ino);
3795 if (!inode)
3796 return ERR_PTR(-ENOMEM);
3797 if (!(inode->i_state & I_NEW))
3798 return inode;
3799
3800 ei = EXT4_I(inode);
3801 iloc.bh = NULL;
3802
3803 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3804 if (ret < 0)
3805 goto bad_inode;
3806 raw_inode = ext4_raw_inode(&iloc);
3807
3808 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3809 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3810 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3811 EXT4_INODE_SIZE(inode->i_sb)) {
3812 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3813 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3814 EXT4_INODE_SIZE(inode->i_sb));
3815 ret = -EIO;
3816 goto bad_inode;
3817 }
3818 } else
3819 ei->i_extra_isize = 0;
3820
3821 /* Precompute checksum seed for inode metadata */
3822 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3823 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3824 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3825 __u32 csum;
3826 __le32 inum = cpu_to_le32(inode->i_ino);
3827 __le32 gen = raw_inode->i_generation;
3828 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3829 sizeof(inum));
3830 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3831 sizeof(gen));
3832 }
3833
3834 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3835 EXT4_ERROR_INODE(inode, "checksum invalid");
3836 ret = -EIO;
3837 goto bad_inode;
3838 }
3839
3840 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3841 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3842 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3843 if (!(test_opt(inode->i_sb, NO_UID32))) {
3844 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3845 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3846 }
3847 i_uid_write(inode, i_uid);
3848 i_gid_write(inode, i_gid);
3849 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3850
3851 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3852 ei->i_inline_off = 0;
3853 ei->i_dir_start_lookup = 0;
3854 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3855 /* We now have enough fields to check if the inode was active or not.
3856 * This is needed because nfsd might try to access dead inodes
3857 * the test is that same one that e2fsck uses
3858 * NeilBrown 1999oct15
3859 */
3860 if (inode->i_nlink == 0) {
3861 if (inode->i_mode == 0 ||
3862 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3863 /* this inode is deleted */
3864 ret = -ESTALE;
3865 goto bad_inode;
3866 }
3867 /* The only unlinked inodes we let through here have
3868 * valid i_mode and are being read by the orphan
3869 * recovery code: that's fine, we're about to complete
3870 * the process of deleting those. */
3871 }
3872 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3873 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3874 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3875 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3876 ei->i_file_acl |=
3877 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3878 inode->i_size = ext4_isize(raw_inode);
3879 ei->i_disksize = inode->i_size;
3880 #ifdef CONFIG_QUOTA
3881 ei->i_reserved_quota = 0;
3882 #endif
3883 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3884 ei->i_block_group = iloc.block_group;
3885 ei->i_last_alloc_group = ~0;
3886 /*
3887 * NOTE! The in-memory inode i_data array is in little-endian order
3888 * even on big-endian machines: we do NOT byteswap the block numbers!
3889 */
3890 for (block = 0; block < EXT4_N_BLOCKS; block++)
3891 ei->i_data[block] = raw_inode->i_block[block];
3892 INIT_LIST_HEAD(&ei->i_orphan);
3893
3894 /*
3895 * Set transaction id's of transactions that have to be committed
3896 * to finish f[data]sync. We set them to currently running transaction
3897 * as we cannot be sure that the inode or some of its metadata isn't
3898 * part of the transaction - the inode could have been reclaimed and
3899 * now it is reread from disk.
3900 */
3901 if (journal) {
3902 transaction_t *transaction;
3903 tid_t tid;
3904
3905 read_lock(&journal->j_state_lock);
3906 if (journal->j_running_transaction)
3907 transaction = journal->j_running_transaction;
3908 else
3909 transaction = journal->j_committing_transaction;
3910 if (transaction)
3911 tid = transaction->t_tid;
3912 else
3913 tid = journal->j_commit_sequence;
3914 read_unlock(&journal->j_state_lock);
3915 ei->i_sync_tid = tid;
3916 ei->i_datasync_tid = tid;
3917 }
3918
3919 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3920 if (ei->i_extra_isize == 0) {
3921 /* The extra space is currently unused. Use it. */
3922 ei->i_extra_isize = sizeof(struct ext4_inode) -
3923 EXT4_GOOD_OLD_INODE_SIZE;
3924 } else {
3925 ext4_iget_extra_inode(inode, raw_inode, ei);
3926 }
3927 }
3928
3929 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3930 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3931 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3932 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3933
3934 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3935 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3936 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3937 inode->i_version |=
3938 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3939 }
3940
3941 ret = 0;
3942 if (ei->i_file_acl &&
3943 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3944 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3945 ei->i_file_acl);
3946 ret = -EIO;
3947 goto bad_inode;
3948 } else if (!ext4_has_inline_data(inode)) {
3949 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3950 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3951 (S_ISLNK(inode->i_mode) &&
3952 !ext4_inode_is_fast_symlink(inode))))
3953 /* Validate extent which is part of inode */
3954 ret = ext4_ext_check_inode(inode);
3955 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3956 (S_ISLNK(inode->i_mode) &&
3957 !ext4_inode_is_fast_symlink(inode))) {
3958 /* Validate block references which are part of inode */
3959 ret = ext4_ind_check_inode(inode);
3960 }
3961 }
3962 if (ret)
3963 goto bad_inode;
3964
3965 if (S_ISREG(inode->i_mode)) {
3966 inode->i_op = &ext4_file_inode_operations;
3967 inode->i_fop = &ext4_file_operations;
3968 ext4_set_aops(inode);
3969 } else if (S_ISDIR(inode->i_mode)) {
3970 inode->i_op = &ext4_dir_inode_operations;
3971 inode->i_fop = &ext4_dir_operations;
3972 } else if (S_ISLNK(inode->i_mode)) {
3973 if (ext4_inode_is_fast_symlink(inode)) {
3974 inode->i_op = &ext4_fast_symlink_inode_operations;
3975 nd_terminate_link(ei->i_data, inode->i_size,
3976 sizeof(ei->i_data) - 1);
3977 } else {
3978 inode->i_op = &ext4_symlink_inode_operations;
3979 ext4_set_aops(inode);
3980 }
3981 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3982 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3983 inode->i_op = &ext4_special_inode_operations;
3984 if (raw_inode->i_block[0])
3985 init_special_inode(inode, inode->i_mode,
3986 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3987 else
3988 init_special_inode(inode, inode->i_mode,
3989 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3990 } else {
3991 ret = -EIO;
3992 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3993 goto bad_inode;
3994 }
3995 brelse(iloc.bh);
3996 ext4_set_inode_flags(inode);
3997 unlock_new_inode(inode);
3998 return inode;
3999
4000 bad_inode:
4001 brelse(iloc.bh);
4002 iget_failed(inode);
4003 return ERR_PTR(ret);
4004 }
4005
4006 static int ext4_inode_blocks_set(handle_t *handle,
4007 struct ext4_inode *raw_inode,
4008 struct ext4_inode_info *ei)
4009 {
4010 struct inode *inode = &(ei->vfs_inode);
4011 u64 i_blocks = inode->i_blocks;
4012 struct super_block *sb = inode->i_sb;
4013
4014 if (i_blocks <= ~0U) {
4015 /*
4016 * i_blocks can be represented in a 32 bit variable
4017 * as multiple of 512 bytes
4018 */
4019 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4020 raw_inode->i_blocks_high = 0;
4021 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4022 return 0;
4023 }
4024 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4025 return -EFBIG;
4026
4027 if (i_blocks <= 0xffffffffffffULL) {
4028 /*
4029 * i_blocks can be represented in a 48 bit variable
4030 * as multiple of 512 bytes
4031 */
4032 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4033 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4034 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4035 } else {
4036 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4037 /* i_block is stored in file system block size */
4038 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4039 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4040 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4041 }
4042 return 0;
4043 }
4044
4045 /*
4046 * Post the struct inode info into an on-disk inode location in the
4047 * buffer-cache. This gobbles the caller's reference to the
4048 * buffer_head in the inode location struct.
4049 *
4050 * The caller must have write access to iloc->bh.
4051 */
4052 static int ext4_do_update_inode(handle_t *handle,
4053 struct inode *inode,
4054 struct ext4_iloc *iloc)
4055 {
4056 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4057 struct ext4_inode_info *ei = EXT4_I(inode);
4058 struct buffer_head *bh = iloc->bh;
4059 int err = 0, rc, block;
4060 int need_datasync = 0;
4061 uid_t i_uid;
4062 gid_t i_gid;
4063
4064 /* For fields not not tracking in the in-memory inode,
4065 * initialise them to zero for new inodes. */
4066 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4067 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4068
4069 ext4_get_inode_flags(ei);
4070 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4071 i_uid = i_uid_read(inode);
4072 i_gid = i_gid_read(inode);
4073 if (!(test_opt(inode->i_sb, NO_UID32))) {
4074 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4075 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4076 /*
4077 * Fix up interoperability with old kernels. Otherwise, old inodes get
4078 * re-used with the upper 16 bits of the uid/gid intact
4079 */
4080 if (!ei->i_dtime) {
4081 raw_inode->i_uid_high =
4082 cpu_to_le16(high_16_bits(i_uid));
4083 raw_inode->i_gid_high =
4084 cpu_to_le16(high_16_bits(i_gid));
4085 } else {
4086 raw_inode->i_uid_high = 0;
4087 raw_inode->i_gid_high = 0;
4088 }
4089 } else {
4090 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4091 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4092 raw_inode->i_uid_high = 0;
4093 raw_inode->i_gid_high = 0;
4094 }
4095 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4096
4097 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4098 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4099 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4100 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4101
4102 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4103 goto out_brelse;
4104 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4105 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4107 cpu_to_le32(EXT4_OS_HURD))
4108 raw_inode->i_file_acl_high =
4109 cpu_to_le16(ei->i_file_acl >> 32);
4110 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4111 if (ei->i_disksize != ext4_isize(raw_inode)) {
4112 ext4_isize_set(raw_inode, ei->i_disksize);
4113 need_datasync = 1;
4114 }
4115 if (ei->i_disksize > 0x7fffffffULL) {
4116 struct super_block *sb = inode->i_sb;
4117 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4118 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4119 EXT4_SB(sb)->s_es->s_rev_level ==
4120 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4121 /* If this is the first large file
4122 * created, add a flag to the superblock.
4123 */
4124 err = ext4_journal_get_write_access(handle,
4125 EXT4_SB(sb)->s_sbh);
4126 if (err)
4127 goto out_brelse;
4128 ext4_update_dynamic_rev(sb);
4129 EXT4_SET_RO_COMPAT_FEATURE(sb,
4130 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4131 ext4_handle_sync(handle);
4132 err = ext4_handle_dirty_super(handle, sb);
4133 }
4134 }
4135 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4136 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4137 if (old_valid_dev(inode->i_rdev)) {
4138 raw_inode->i_block[0] =
4139 cpu_to_le32(old_encode_dev(inode->i_rdev));
4140 raw_inode->i_block[1] = 0;
4141 } else {
4142 raw_inode->i_block[0] = 0;
4143 raw_inode->i_block[1] =
4144 cpu_to_le32(new_encode_dev(inode->i_rdev));
4145 raw_inode->i_block[2] = 0;
4146 }
4147 } else if (!ext4_has_inline_data(inode)) {
4148 for (block = 0; block < EXT4_N_BLOCKS; block++)
4149 raw_inode->i_block[block] = ei->i_data[block];
4150 }
4151
4152 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4153 if (ei->i_extra_isize) {
4154 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4155 raw_inode->i_version_hi =
4156 cpu_to_le32(inode->i_version >> 32);
4157 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4158 }
4159
4160 ext4_inode_csum_set(inode, raw_inode, ei);
4161
4162 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4163 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4164 if (!err)
4165 err = rc;
4166 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4167
4168 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4169 out_brelse:
4170 brelse(bh);
4171 ext4_std_error(inode->i_sb, err);
4172 return err;
4173 }
4174
4175 /*
4176 * ext4_write_inode()
4177 *
4178 * We are called from a few places:
4179 *
4180 * - Within generic_file_write() for O_SYNC files.
4181 * Here, there will be no transaction running. We wait for any running
4182 * transaction to commit.
4183 *
4184 * - Within sys_sync(), kupdate and such.
4185 * We wait on commit, if tol to.
4186 *
4187 * - Within prune_icache() (PF_MEMALLOC == true)
4188 * Here we simply return. We can't afford to block kswapd on the
4189 * journal commit.
4190 *
4191 * In all cases it is actually safe for us to return without doing anything,
4192 * because the inode has been copied into a raw inode buffer in
4193 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4194 * knfsd.
4195 *
4196 * Note that we are absolutely dependent upon all inode dirtiers doing the
4197 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4198 * which we are interested.
4199 *
4200 * It would be a bug for them to not do this. The code:
4201 *
4202 * mark_inode_dirty(inode)
4203 * stuff();
4204 * inode->i_size = expr;
4205 *
4206 * is in error because a kswapd-driven write_inode() could occur while
4207 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4208 * will no longer be on the superblock's dirty inode list.
4209 */
4210 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4211 {
4212 int err;
4213
4214 if (current->flags & PF_MEMALLOC)
4215 return 0;
4216
4217 if (EXT4_SB(inode->i_sb)->s_journal) {
4218 if (ext4_journal_current_handle()) {
4219 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4220 dump_stack();
4221 return -EIO;
4222 }
4223
4224 if (wbc->sync_mode != WB_SYNC_ALL)
4225 return 0;
4226
4227 err = ext4_force_commit(inode->i_sb);
4228 } else {
4229 struct ext4_iloc iloc;
4230
4231 err = __ext4_get_inode_loc(inode, &iloc, 0);
4232 if (err)
4233 return err;
4234 if (wbc->sync_mode == WB_SYNC_ALL)
4235 sync_dirty_buffer(iloc.bh);
4236 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4237 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4238 "IO error syncing inode");
4239 err = -EIO;
4240 }
4241 brelse(iloc.bh);
4242 }
4243 return err;
4244 }
4245
4246 /*
4247 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4248 * buffers that are attached to a page stradding i_size and are undergoing
4249 * commit. In that case we have to wait for commit to finish and try again.
4250 */
4251 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4252 {
4253 struct page *page;
4254 unsigned offset;
4255 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4256 tid_t commit_tid = 0;
4257 int ret;
4258
4259 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4260 /*
4261 * All buffers in the last page remain valid? Then there's nothing to
4262 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4263 * blocksize case
4264 */
4265 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4266 return;
4267 while (1) {
4268 page = find_lock_page(inode->i_mapping,
4269 inode->i_size >> PAGE_CACHE_SHIFT);
4270 if (!page)
4271 return;
4272 ret = __ext4_journalled_invalidatepage(page, offset);
4273 unlock_page(page);
4274 page_cache_release(page);
4275 if (ret != -EBUSY)
4276 return;
4277 commit_tid = 0;
4278 read_lock(&journal->j_state_lock);
4279 if (journal->j_committing_transaction)
4280 commit_tid = journal->j_committing_transaction->t_tid;
4281 read_unlock(&journal->j_state_lock);
4282 if (commit_tid)
4283 jbd2_log_wait_commit(journal, commit_tid);
4284 }
4285 }
4286
4287 /*
4288 * ext4_setattr()
4289 *
4290 * Called from notify_change.
4291 *
4292 * We want to trap VFS attempts to truncate the file as soon as
4293 * possible. In particular, we want to make sure that when the VFS
4294 * shrinks i_size, we put the inode on the orphan list and modify
4295 * i_disksize immediately, so that during the subsequent flushing of
4296 * dirty pages and freeing of disk blocks, we can guarantee that any
4297 * commit will leave the blocks being flushed in an unused state on
4298 * disk. (On recovery, the inode will get truncated and the blocks will
4299 * be freed, so we have a strong guarantee that no future commit will
4300 * leave these blocks visible to the user.)
4301 *
4302 * Another thing we have to assure is that if we are in ordered mode
4303 * and inode is still attached to the committing transaction, we must
4304 * we start writeout of all the dirty pages which are being truncated.
4305 * This way we are sure that all the data written in the previous
4306 * transaction are already on disk (truncate waits for pages under
4307 * writeback).
4308 *
4309 * Called with inode->i_mutex down.
4310 */
4311 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4312 {
4313 struct inode *inode = dentry->d_inode;
4314 int error, rc = 0;
4315 int orphan = 0;
4316 const unsigned int ia_valid = attr->ia_valid;
4317
4318 error = inode_change_ok(inode, attr);
4319 if (error)
4320 return error;
4321
4322 if (is_quota_modification(inode, attr))
4323 dquot_initialize(inode);
4324 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4325 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4326 handle_t *handle;
4327
4328 /* (user+group)*(old+new) structure, inode write (sb,
4329 * inode block, ? - but truncate inode update has it) */
4330 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4331 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4332 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4333 if (IS_ERR(handle)) {
4334 error = PTR_ERR(handle);
4335 goto err_out;
4336 }
4337 error = dquot_transfer(inode, attr);
4338 if (error) {
4339 ext4_journal_stop(handle);
4340 return error;
4341 }
4342 /* Update corresponding info in inode so that everything is in
4343 * one transaction */
4344 if (attr->ia_valid & ATTR_UID)
4345 inode->i_uid = attr->ia_uid;
4346 if (attr->ia_valid & ATTR_GID)
4347 inode->i_gid = attr->ia_gid;
4348 error = ext4_mark_inode_dirty(handle, inode);
4349 ext4_journal_stop(handle);
4350 }
4351
4352 if (attr->ia_valid & ATTR_SIZE) {
4353
4354 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4355 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4356
4357 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4358 return -EFBIG;
4359 }
4360 }
4361
4362 if (S_ISREG(inode->i_mode) &&
4363 attr->ia_valid & ATTR_SIZE &&
4364 (attr->ia_size < inode->i_size)) {
4365 handle_t *handle;
4366
4367 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4368 if (IS_ERR(handle)) {
4369 error = PTR_ERR(handle);
4370 goto err_out;
4371 }
4372 if (ext4_handle_valid(handle)) {
4373 error = ext4_orphan_add(handle, inode);
4374 orphan = 1;
4375 }
4376 EXT4_I(inode)->i_disksize = attr->ia_size;
4377 rc = ext4_mark_inode_dirty(handle, inode);
4378 if (!error)
4379 error = rc;
4380 ext4_journal_stop(handle);
4381
4382 if (ext4_should_order_data(inode)) {
4383 error = ext4_begin_ordered_truncate(inode,
4384 attr->ia_size);
4385 if (error) {
4386 /* Do as much error cleanup as possible */
4387 handle = ext4_journal_start(inode,
4388 EXT4_HT_INODE, 3);
4389 if (IS_ERR(handle)) {
4390 ext4_orphan_del(NULL, inode);
4391 goto err_out;
4392 }
4393 ext4_orphan_del(handle, inode);
4394 orphan = 0;
4395 ext4_journal_stop(handle);
4396 goto err_out;
4397 }
4398 }
4399 }
4400
4401 if (attr->ia_valid & ATTR_SIZE) {
4402 if (attr->ia_size != inode->i_size) {
4403 loff_t oldsize = inode->i_size;
4404
4405 i_size_write(inode, attr->ia_size);
4406 /*
4407 * Blocks are going to be removed from the inode. Wait
4408 * for dio in flight. Temporarily disable
4409 * dioread_nolock to prevent livelock.
4410 */
4411 if (orphan) {
4412 if (!ext4_should_journal_data(inode)) {
4413 ext4_inode_block_unlocked_dio(inode);
4414 inode_dio_wait(inode);
4415 ext4_inode_resume_unlocked_dio(inode);
4416 } else
4417 ext4_wait_for_tail_page_commit(inode);
4418 }
4419 /*
4420 * Truncate pagecache after we've waited for commit
4421 * in data=journal mode to make pages freeable.
4422 */
4423 truncate_pagecache(inode, oldsize, inode->i_size);
4424 }
4425 ext4_truncate(inode);
4426 }
4427
4428 if (!rc) {
4429 setattr_copy(inode, attr);
4430 mark_inode_dirty(inode);
4431 }
4432
4433 /*
4434 * If the call to ext4_truncate failed to get a transaction handle at
4435 * all, we need to clean up the in-core orphan list manually.
4436 */
4437 if (orphan && inode->i_nlink)
4438 ext4_orphan_del(NULL, inode);
4439
4440 if (!rc && (ia_valid & ATTR_MODE))
4441 rc = ext4_acl_chmod(inode);
4442
4443 err_out:
4444 ext4_std_error(inode->i_sb, error);
4445 if (!error)
4446 error = rc;
4447 return error;
4448 }
4449
4450 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4451 struct kstat *stat)
4452 {
4453 struct inode *inode;
4454 unsigned long delalloc_blocks;
4455
4456 inode = dentry->d_inode;
4457 generic_fillattr(inode, stat);
4458
4459 /*
4460 * We can't update i_blocks if the block allocation is delayed
4461 * otherwise in the case of system crash before the real block
4462 * allocation is done, we will have i_blocks inconsistent with
4463 * on-disk file blocks.
4464 * We always keep i_blocks updated together with real
4465 * allocation. But to not confuse with user, stat
4466 * will return the blocks that include the delayed allocation
4467 * blocks for this file.
4468 */
4469 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4470 EXT4_I(inode)->i_reserved_data_blocks);
4471
4472 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4473 return 0;
4474 }
4475
4476 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4477 {
4478 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4479 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4480 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4481 }
4482
4483 /*
4484 * Account for index blocks, block groups bitmaps and block group
4485 * descriptor blocks if modify datablocks and index blocks
4486 * worse case, the indexs blocks spread over different block groups
4487 *
4488 * If datablocks are discontiguous, they are possible to spread over
4489 * different block groups too. If they are contiguous, with flexbg,
4490 * they could still across block group boundary.
4491 *
4492 * Also account for superblock, inode, quota and xattr blocks
4493 */
4494 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4495 {
4496 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4497 int gdpblocks;
4498 int idxblocks;
4499 int ret = 0;
4500
4501 /*
4502 * How many index blocks need to touch to modify nrblocks?
4503 * The "Chunk" flag indicating whether the nrblocks is
4504 * physically contiguous on disk
4505 *
4506 * For Direct IO and fallocate, they calls get_block to allocate
4507 * one single extent at a time, so they could set the "Chunk" flag
4508 */
4509 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4510
4511 ret = idxblocks;
4512
4513 /*
4514 * Now let's see how many group bitmaps and group descriptors need
4515 * to account
4516 */
4517 groups = idxblocks;
4518 if (chunk)
4519 groups += 1;
4520 else
4521 groups += nrblocks;
4522
4523 gdpblocks = groups;
4524 if (groups > ngroups)
4525 groups = ngroups;
4526 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4527 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4528
4529 /* bitmaps and block group descriptor blocks */
4530 ret += groups + gdpblocks;
4531
4532 /* Blocks for super block, inode, quota and xattr blocks */
4533 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4534
4535 return ret;
4536 }
4537
4538 /*
4539 * Calculate the total number of credits to reserve to fit
4540 * the modification of a single pages into a single transaction,
4541 * which may include multiple chunks of block allocations.
4542 *
4543 * This could be called via ext4_write_begin()
4544 *
4545 * We need to consider the worse case, when
4546 * one new block per extent.
4547 */
4548 int ext4_writepage_trans_blocks(struct inode *inode)
4549 {
4550 int bpp = ext4_journal_blocks_per_page(inode);
4551 int ret;
4552
4553 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4554
4555 /* Account for data blocks for journalled mode */
4556 if (ext4_should_journal_data(inode))
4557 ret += bpp;
4558 return ret;
4559 }
4560
4561 /*
4562 * Calculate the journal credits for a chunk of data modification.
4563 *
4564 * This is called from DIO, fallocate or whoever calling
4565 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4566 *
4567 * journal buffers for data blocks are not included here, as DIO
4568 * and fallocate do no need to journal data buffers.
4569 */
4570 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4571 {
4572 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4573 }
4574
4575 /*
4576 * The caller must have previously called ext4_reserve_inode_write().
4577 * Give this, we know that the caller already has write access to iloc->bh.
4578 */
4579 int ext4_mark_iloc_dirty(handle_t *handle,
4580 struct inode *inode, struct ext4_iloc *iloc)
4581 {
4582 int err = 0;
4583
4584 if (IS_I_VERSION(inode))
4585 inode_inc_iversion(inode);
4586
4587 /* the do_update_inode consumes one bh->b_count */
4588 get_bh(iloc->bh);
4589
4590 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4591 err = ext4_do_update_inode(handle, inode, iloc);
4592 put_bh(iloc->bh);
4593 return err;
4594 }
4595
4596 /*
4597 * On success, We end up with an outstanding reference count against
4598 * iloc->bh. This _must_ be cleaned up later.
4599 */
4600
4601 int
4602 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4603 struct ext4_iloc *iloc)
4604 {
4605 int err;
4606
4607 err = ext4_get_inode_loc(inode, iloc);
4608 if (!err) {
4609 BUFFER_TRACE(iloc->bh, "get_write_access");
4610 err = ext4_journal_get_write_access(handle, iloc->bh);
4611 if (err) {
4612 brelse(iloc->bh);
4613 iloc->bh = NULL;
4614 }
4615 }
4616 ext4_std_error(inode->i_sb, err);
4617 return err;
4618 }
4619
4620 /*
4621 * Expand an inode by new_extra_isize bytes.
4622 * Returns 0 on success or negative error number on failure.
4623 */
4624 static int ext4_expand_extra_isize(struct inode *inode,
4625 unsigned int new_extra_isize,
4626 struct ext4_iloc iloc,
4627 handle_t *handle)
4628 {
4629 struct ext4_inode *raw_inode;
4630 struct ext4_xattr_ibody_header *header;
4631
4632 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4633 return 0;
4634
4635 raw_inode = ext4_raw_inode(&iloc);
4636
4637 header = IHDR(inode, raw_inode);
4638
4639 /* No extended attributes present */
4640 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4641 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4642 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4643 new_extra_isize);
4644 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4645 return 0;
4646 }
4647
4648 /* try to expand with EAs present */
4649 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4650 raw_inode, handle);
4651 }
4652
4653 /*
4654 * What we do here is to mark the in-core inode as clean with respect to inode
4655 * dirtiness (it may still be data-dirty).
4656 * This means that the in-core inode may be reaped by prune_icache
4657 * without having to perform any I/O. This is a very good thing,
4658 * because *any* task may call prune_icache - even ones which
4659 * have a transaction open against a different journal.
4660 *
4661 * Is this cheating? Not really. Sure, we haven't written the
4662 * inode out, but prune_icache isn't a user-visible syncing function.
4663 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4664 * we start and wait on commits.
4665 */
4666 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4667 {
4668 struct ext4_iloc iloc;
4669 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4670 static unsigned int mnt_count;
4671 int err, ret;
4672
4673 might_sleep();
4674 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4675 err = ext4_reserve_inode_write(handle, inode, &iloc);
4676 if (ext4_handle_valid(handle) &&
4677 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4678 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4679 /*
4680 * We need extra buffer credits since we may write into EA block
4681 * with this same handle. If journal_extend fails, then it will
4682 * only result in a minor loss of functionality for that inode.
4683 * If this is felt to be critical, then e2fsck should be run to
4684 * force a large enough s_min_extra_isize.
4685 */
4686 if ((jbd2_journal_extend(handle,
4687 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4688 ret = ext4_expand_extra_isize(inode,
4689 sbi->s_want_extra_isize,
4690 iloc, handle);
4691 if (ret) {
4692 ext4_set_inode_state(inode,
4693 EXT4_STATE_NO_EXPAND);
4694 if (mnt_count !=
4695 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4696 ext4_warning(inode->i_sb,
4697 "Unable to expand inode %lu. Delete"
4698 " some EAs or run e2fsck.",
4699 inode->i_ino);
4700 mnt_count =
4701 le16_to_cpu(sbi->s_es->s_mnt_count);
4702 }
4703 }
4704 }
4705 }
4706 if (!err)
4707 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4708 return err;
4709 }
4710
4711 /*
4712 * ext4_dirty_inode() is called from __mark_inode_dirty()
4713 *
4714 * We're really interested in the case where a file is being extended.
4715 * i_size has been changed by generic_commit_write() and we thus need
4716 * to include the updated inode in the current transaction.
4717 *
4718 * Also, dquot_alloc_block() will always dirty the inode when blocks
4719 * are allocated to the file.
4720 *
4721 * If the inode is marked synchronous, we don't honour that here - doing
4722 * so would cause a commit on atime updates, which we don't bother doing.
4723 * We handle synchronous inodes at the highest possible level.
4724 */
4725 void ext4_dirty_inode(struct inode *inode, int flags)
4726 {
4727 handle_t *handle;
4728
4729 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4730 if (IS_ERR(handle))
4731 goto out;
4732
4733 ext4_mark_inode_dirty(handle, inode);
4734
4735 ext4_journal_stop(handle);
4736 out:
4737 return;
4738 }
4739
4740 #if 0
4741 /*
4742 * Bind an inode's backing buffer_head into this transaction, to prevent
4743 * it from being flushed to disk early. Unlike
4744 * ext4_reserve_inode_write, this leaves behind no bh reference and
4745 * returns no iloc structure, so the caller needs to repeat the iloc
4746 * lookup to mark the inode dirty later.
4747 */
4748 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4749 {
4750 struct ext4_iloc iloc;
4751
4752 int err = 0;
4753 if (handle) {
4754 err = ext4_get_inode_loc(inode, &iloc);
4755 if (!err) {
4756 BUFFER_TRACE(iloc.bh, "get_write_access");
4757 err = jbd2_journal_get_write_access(handle, iloc.bh);
4758 if (!err)
4759 err = ext4_handle_dirty_metadata(handle,
4760 NULL,
4761 iloc.bh);
4762 brelse(iloc.bh);
4763 }
4764 }
4765 ext4_std_error(inode->i_sb, err);
4766 return err;
4767 }
4768 #endif
4769
4770 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4771 {
4772 journal_t *journal;
4773 handle_t *handle;
4774 int err;
4775
4776 /*
4777 * We have to be very careful here: changing a data block's
4778 * journaling status dynamically is dangerous. If we write a
4779 * data block to the journal, change the status and then delete
4780 * that block, we risk forgetting to revoke the old log record
4781 * from the journal and so a subsequent replay can corrupt data.
4782 * So, first we make sure that the journal is empty and that
4783 * nobody is changing anything.
4784 */
4785
4786 journal = EXT4_JOURNAL(inode);
4787 if (!journal)
4788 return 0;
4789 if (is_journal_aborted(journal))
4790 return -EROFS;
4791 /* We have to allocate physical blocks for delalloc blocks
4792 * before flushing journal. otherwise delalloc blocks can not
4793 * be allocated any more. even more truncate on delalloc blocks
4794 * could trigger BUG by flushing delalloc blocks in journal.
4795 * There is no delalloc block in non-journal data mode.
4796 */
4797 if (val && test_opt(inode->i_sb, DELALLOC)) {
4798 err = ext4_alloc_da_blocks(inode);
4799 if (err < 0)
4800 return err;
4801 }
4802
4803 /* Wait for all existing dio workers */
4804 ext4_inode_block_unlocked_dio(inode);
4805 inode_dio_wait(inode);
4806
4807 jbd2_journal_lock_updates(journal);
4808
4809 /*
4810 * OK, there are no updates running now, and all cached data is
4811 * synced to disk. We are now in a completely consistent state
4812 * which doesn't have anything in the journal, and we know that
4813 * no filesystem updates are running, so it is safe to modify
4814 * the inode's in-core data-journaling state flag now.
4815 */
4816
4817 if (val)
4818 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4819 else {
4820 jbd2_journal_flush(journal);
4821 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4822 }
4823 ext4_set_aops(inode);
4824
4825 jbd2_journal_unlock_updates(journal);
4826 ext4_inode_resume_unlocked_dio(inode);
4827
4828 /* Finally we can mark the inode as dirty. */
4829
4830 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4831 if (IS_ERR(handle))
4832 return PTR_ERR(handle);
4833
4834 err = ext4_mark_inode_dirty(handle, inode);
4835 ext4_handle_sync(handle);
4836 ext4_journal_stop(handle);
4837 ext4_std_error(inode->i_sb, err);
4838
4839 return err;
4840 }
4841
4842 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4843 {
4844 return !buffer_mapped(bh);
4845 }
4846
4847 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4848 {
4849 struct page *page = vmf->page;
4850 loff_t size;
4851 unsigned long len;
4852 int ret;
4853 struct file *file = vma->vm_file;
4854 struct inode *inode = file_inode(file);
4855 struct address_space *mapping = inode->i_mapping;
4856 handle_t *handle;
4857 get_block_t *get_block;
4858 int retries = 0;
4859
4860 sb_start_pagefault(inode->i_sb);
4861 file_update_time(vma->vm_file);
4862 /* Delalloc case is easy... */
4863 if (test_opt(inode->i_sb, DELALLOC) &&
4864 !ext4_should_journal_data(inode) &&
4865 !ext4_nonda_switch(inode->i_sb)) {
4866 do {
4867 ret = __block_page_mkwrite(vma, vmf,
4868 ext4_da_get_block_prep);
4869 } while (ret == -ENOSPC &&
4870 ext4_should_retry_alloc(inode->i_sb, &retries));
4871 goto out_ret;
4872 }
4873
4874 lock_page(page);
4875 size = i_size_read(inode);
4876 /* Page got truncated from under us? */
4877 if (page->mapping != mapping || page_offset(page) > size) {
4878 unlock_page(page);
4879 ret = VM_FAULT_NOPAGE;
4880 goto out;
4881 }
4882
4883 if (page->index == size >> PAGE_CACHE_SHIFT)
4884 len = size & ~PAGE_CACHE_MASK;
4885 else
4886 len = PAGE_CACHE_SIZE;
4887 /*
4888 * Return if we have all the buffers mapped. This avoids the need to do
4889 * journal_start/journal_stop which can block and take a long time
4890 */
4891 if (page_has_buffers(page)) {
4892 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4893 0, len, NULL,
4894 ext4_bh_unmapped)) {
4895 /* Wait so that we don't change page under IO */
4896 wait_for_stable_page(page);
4897 ret = VM_FAULT_LOCKED;
4898 goto out;
4899 }
4900 }
4901 unlock_page(page);
4902 /* OK, we need to fill the hole... */
4903 if (ext4_should_dioread_nolock(inode))
4904 get_block = ext4_get_block_write;
4905 else
4906 get_block = ext4_get_block;
4907 retry_alloc:
4908 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
4909 ext4_writepage_trans_blocks(inode));
4910 if (IS_ERR(handle)) {
4911 ret = VM_FAULT_SIGBUS;
4912 goto out;
4913 }
4914 ret = __block_page_mkwrite(vma, vmf, get_block);
4915 if (!ret && ext4_should_journal_data(inode)) {
4916 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4917 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4918 unlock_page(page);
4919 ret = VM_FAULT_SIGBUS;
4920 ext4_journal_stop(handle);
4921 goto out;
4922 }
4923 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4924 }
4925 ext4_journal_stop(handle);
4926 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4927 goto retry_alloc;
4928 out_ret:
4929 ret = block_page_mkwrite_return(ret);
4930 out:
4931 sb_end_pagefault(inode->i_sb);
4932 return ret;
4933 }
This page took 0.132645 seconds and 5 git commands to generate.