a06a3b7cfc34f663269e7d4d06698975c6f17a2a
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext4_jbd2.h>
29 #include <linux/jbd2.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "xattr.h"
40 #include "acl.h"
41
42 /*
43 * Test whether an inode is a fast symlink.
44 */
45 static int ext4_inode_is_fast_symlink(struct inode *inode)
46 {
47 int ea_blocks = EXT4_I(inode)->i_file_acl ?
48 (inode->i_sb->s_blocksize >> 9) : 0;
49
50 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
51 }
52
53 /*
54 * The ext4 forget function must perform a revoke if we are freeing data
55 * which has been journaled. Metadata (eg. indirect blocks) must be
56 * revoked in all cases.
57 *
58 * "bh" may be NULL: a metadata block may have been freed from memory
59 * but there may still be a record of it in the journal, and that record
60 * still needs to be revoked.
61 */
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63 struct buffer_head *bh, ext4_fsblk_t blocknr)
64 {
65 int err;
66
67 might_sleep();
68
69 BUFFER_TRACE(bh, "enter");
70
71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72 "data mode %lx\n",
73 bh, is_metadata, inode->i_mode,
74 test_opt(inode->i_sb, DATA_FLAGS));
75
76 /* Never use the revoke function if we are doing full data
77 * journaling: there is no need to, and a V1 superblock won't
78 * support it. Otherwise, only skip the revoke on un-journaled
79 * data blocks. */
80
81 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82 (!is_metadata && !ext4_should_journal_data(inode))) {
83 if (bh) {
84 BUFFER_TRACE(bh, "call jbd2_journal_forget");
85 return ext4_journal_forget(handle, bh);
86 }
87 return 0;
88 }
89
90 /*
91 * data!=journal && (is_metadata || should_journal_data(inode))
92 */
93 BUFFER_TRACE(bh, "call ext4_journal_revoke");
94 err = ext4_journal_revoke(handle, blocknr, bh);
95 if (err)
96 ext4_abort(inode->i_sb, __FUNCTION__,
97 "error %d when attempting revoke", err);
98 BUFFER_TRACE(bh, "exit");
99 return err;
100 }
101
102 /*
103 * Work out how many blocks we need to proceed with the next chunk of a
104 * truncate transaction.
105 */
106 static unsigned long blocks_for_truncate(struct inode *inode)
107 {
108 ext4_lblk_t needed;
109
110 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
111
112 /* Give ourselves just enough room to cope with inodes in which
113 * i_blocks is corrupt: we've seen disk corruptions in the past
114 * which resulted in random data in an inode which looked enough
115 * like a regular file for ext4 to try to delete it. Things
116 * will go a bit crazy if that happens, but at least we should
117 * try not to panic the whole kernel. */
118 if (needed < 2)
119 needed = 2;
120
121 /* But we need to bound the transaction so we don't overflow the
122 * journal. */
123 if (needed > EXT4_MAX_TRANS_DATA)
124 needed = EXT4_MAX_TRANS_DATA;
125
126 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
127 }
128
129 /*
130 * Truncate transactions can be complex and absolutely huge. So we need to
131 * be able to restart the transaction at a conventient checkpoint to make
132 * sure we don't overflow the journal.
133 *
134 * start_transaction gets us a new handle for a truncate transaction,
135 * and extend_transaction tries to extend the existing one a bit. If
136 * extend fails, we need to propagate the failure up and restart the
137 * transaction in the top-level truncate loop. --sct
138 */
139 static handle_t *start_transaction(struct inode *inode)
140 {
141 handle_t *result;
142
143 result = ext4_journal_start(inode, blocks_for_truncate(inode));
144 if (!IS_ERR(result))
145 return result;
146
147 ext4_std_error(inode->i_sb, PTR_ERR(result));
148 return result;
149 }
150
151 /*
152 * Try to extend this transaction for the purposes of truncation.
153 *
154 * Returns 0 if we managed to create more room. If we can't create more
155 * room, and the transaction must be restarted we return 1.
156 */
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
158 {
159 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160 return 0;
161 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162 return 0;
163 return 1;
164 }
165
166 /*
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
170 */
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
172 {
173 jbd_debug(2, "restarting handle %p\n", handle);
174 return ext4_journal_restart(handle, blocks_for_truncate(inode));
175 }
176
177 /*
178 * Called at the last iput() if i_nlink is zero.
179 */
180 void ext4_delete_inode (struct inode * inode)
181 {
182 handle_t *handle;
183
184 truncate_inode_pages(&inode->i_data, 0);
185
186 if (is_bad_inode(inode))
187 goto no_delete;
188
189 handle = start_transaction(inode);
190 if (IS_ERR(handle)) {
191 /*
192 * If we're going to skip the normal cleanup, we still need to
193 * make sure that the in-core orphan linked list is properly
194 * cleaned up.
195 */
196 ext4_orphan_del(NULL, inode);
197 goto no_delete;
198 }
199
200 if (IS_SYNC(inode))
201 handle->h_sync = 1;
202 inode->i_size = 0;
203 if (inode->i_blocks)
204 ext4_truncate(inode);
205 /*
206 * Kill off the orphan record which ext4_truncate created.
207 * AKPM: I think this can be inside the above `if'.
208 * Note that ext4_orphan_del() has to be able to cope with the
209 * deletion of a non-existent orphan - this is because we don't
210 * know if ext4_truncate() actually created an orphan record.
211 * (Well, we could do this if we need to, but heck - it works)
212 */
213 ext4_orphan_del(handle, inode);
214 EXT4_I(inode)->i_dtime = get_seconds();
215
216 /*
217 * One subtle ordering requirement: if anything has gone wrong
218 * (transaction abort, IO errors, whatever), then we can still
219 * do these next steps (the fs will already have been marked as
220 * having errors), but we can't free the inode if the mark_dirty
221 * fails.
222 */
223 if (ext4_mark_inode_dirty(handle, inode))
224 /* If that failed, just do the required in-core inode clear. */
225 clear_inode(inode);
226 else
227 ext4_free_inode(handle, inode);
228 ext4_journal_stop(handle);
229 return;
230 no_delete:
231 clear_inode(inode); /* We must guarantee clearing of inode... */
232 }
233
234 typedef struct {
235 __le32 *p;
236 __le32 key;
237 struct buffer_head *bh;
238 } Indirect;
239
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
241 {
242 p->key = *(p->p = v);
243 p->bh = bh;
244 }
245
246 /**
247 * ext4_block_to_path - parse the block number into array of offsets
248 * @inode: inode in question (we are only interested in its superblock)
249 * @i_block: block number to be parsed
250 * @offsets: array to store the offsets in
251 * @boundary: set this non-zero if the referred-to block is likely to be
252 * followed (on disk) by an indirect block.
253 *
254 * To store the locations of file's data ext4 uses a data structure common
255 * for UNIX filesystems - tree of pointers anchored in the inode, with
256 * data blocks at leaves and indirect blocks in intermediate nodes.
257 * This function translates the block number into path in that tree -
258 * return value is the path length and @offsets[n] is the offset of
259 * pointer to (n+1)th node in the nth one. If @block is out of range
260 * (negative or too large) warning is printed and zero returned.
261 *
262 * Note: function doesn't find node addresses, so no IO is needed. All
263 * we need to know is the capacity of indirect blocks (taken from the
264 * inode->i_sb).
265 */
266
267 /*
268 * Portability note: the last comparison (check that we fit into triple
269 * indirect block) is spelled differently, because otherwise on an
270 * architecture with 32-bit longs and 8Kb pages we might get into trouble
271 * if our filesystem had 8Kb blocks. We might use long long, but that would
272 * kill us on x86. Oh, well, at least the sign propagation does not matter -
273 * i_block would have to be negative in the very beginning, so we would not
274 * get there at all.
275 */
276
277 static int ext4_block_to_path(struct inode *inode,
278 ext4_lblk_t i_block,
279 ext4_lblk_t offsets[4], int *boundary)
280 {
281 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283 const long direct_blocks = EXT4_NDIR_BLOCKS,
284 indirect_blocks = ptrs,
285 double_blocks = (1 << (ptrs_bits * 2));
286 int n = 0;
287 int final = 0;
288
289 if (i_block < 0) {
290 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
291 } else if (i_block < direct_blocks) {
292 offsets[n++] = i_block;
293 final = direct_blocks;
294 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
295 offsets[n++] = EXT4_IND_BLOCK;
296 offsets[n++] = i_block;
297 final = ptrs;
298 } else if ((i_block -= indirect_blocks) < double_blocks) {
299 offsets[n++] = EXT4_DIND_BLOCK;
300 offsets[n++] = i_block >> ptrs_bits;
301 offsets[n++] = i_block & (ptrs - 1);
302 final = ptrs;
303 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
304 offsets[n++] = EXT4_TIND_BLOCK;
305 offsets[n++] = i_block >> (ptrs_bits * 2);
306 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307 offsets[n++] = i_block & (ptrs - 1);
308 final = ptrs;
309 } else {
310 ext4_warning(inode->i_sb, "ext4_block_to_path",
311 "block %lu > max",
312 i_block + direct_blocks +
313 indirect_blocks + double_blocks);
314 }
315 if (boundary)
316 *boundary = final - 1 - (i_block & (ptrs - 1));
317 return n;
318 }
319
320 /**
321 * ext4_get_branch - read the chain of indirect blocks leading to data
322 * @inode: inode in question
323 * @depth: depth of the chain (1 - direct pointer, etc.)
324 * @offsets: offsets of pointers in inode/indirect blocks
325 * @chain: place to store the result
326 * @err: here we store the error value
327 *
328 * Function fills the array of triples <key, p, bh> and returns %NULL
329 * if everything went OK or the pointer to the last filled triple
330 * (incomplete one) otherwise. Upon the return chain[i].key contains
331 * the number of (i+1)-th block in the chain (as it is stored in memory,
332 * i.e. little-endian 32-bit), chain[i].p contains the address of that
333 * number (it points into struct inode for i==0 and into the bh->b_data
334 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335 * block for i>0 and NULL for i==0. In other words, it holds the block
336 * numbers of the chain, addresses they were taken from (and where we can
337 * verify that chain did not change) and buffer_heads hosting these
338 * numbers.
339 *
340 * Function stops when it stumbles upon zero pointer (absent block)
341 * (pointer to last triple returned, *@err == 0)
342 * or when it gets an IO error reading an indirect block
343 * (ditto, *@err == -EIO)
344 * or when it reads all @depth-1 indirect blocks successfully and finds
345 * the whole chain, all way to the data (returns %NULL, *err == 0).
346 *
347 * Need to be called with
348 * down_read(&EXT4_I(inode)->i_data_sem)
349 */
350 static Indirect *ext4_get_branch(struct inode *inode, int depth,
351 ext4_lblk_t *offsets,
352 Indirect chain[4], int *err)
353 {
354 struct super_block *sb = inode->i_sb;
355 Indirect *p = chain;
356 struct buffer_head *bh;
357
358 *err = 0;
359 /* i_data is not going away, no lock needed */
360 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
361 if (!p->key)
362 goto no_block;
363 while (--depth) {
364 bh = sb_bread(sb, le32_to_cpu(p->key));
365 if (!bh)
366 goto failure;
367 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368 /* Reader: end */
369 if (!p->key)
370 goto no_block;
371 }
372 return NULL;
373
374 failure:
375 *err = -EIO;
376 no_block:
377 return p;
378 }
379
380 /**
381 * ext4_find_near - find a place for allocation with sufficient locality
382 * @inode: owner
383 * @ind: descriptor of indirect block.
384 *
385 * This function returns the prefered place for block allocation.
386 * It is used when heuristic for sequential allocation fails.
387 * Rules are:
388 * + if there is a block to the left of our position - allocate near it.
389 * + if pointer will live in indirect block - allocate near that block.
390 * + if pointer will live in inode - allocate in the same
391 * cylinder group.
392 *
393 * In the latter case we colour the starting block by the callers PID to
394 * prevent it from clashing with concurrent allocations for a different inode
395 * in the same block group. The PID is used here so that functionally related
396 * files will be close-by on-disk.
397 *
398 * Caller must make sure that @ind is valid and will stay that way.
399 */
400 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
401 {
402 struct ext4_inode_info *ei = EXT4_I(inode);
403 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404 __le32 *p;
405 ext4_fsblk_t bg_start;
406 ext4_grpblk_t colour;
407
408 /* Try to find previous block */
409 for (p = ind->p - 1; p >= start; p--) {
410 if (*p)
411 return le32_to_cpu(*p);
412 }
413
414 /* No such thing, so let's try location of indirect block */
415 if (ind->bh)
416 return ind->bh->b_blocknr;
417
418 /*
419 * It is going to be referred to from the inode itself? OK, just put it
420 * into the same cylinder group then.
421 */
422 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
423 colour = (current->pid % 16) *
424 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
425 return bg_start + colour;
426 }
427
428 /**
429 * ext4_find_goal - find a prefered place for allocation.
430 * @inode: owner
431 * @block: block we want
432 * @chain: chain of indirect blocks
433 * @partial: pointer to the last triple within a chain
434 * @goal: place to store the result.
435 *
436 * Normally this function find the prefered place for block allocation,
437 * stores it in *@goal and returns zero.
438 */
439
440 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
441 Indirect chain[4], Indirect *partial)
442 {
443 struct ext4_block_alloc_info *block_i;
444
445 block_i = EXT4_I(inode)->i_block_alloc_info;
446
447 /*
448 * try the heuristic for sequential allocation,
449 * failing that at least try to get decent locality.
450 */
451 if (block_i && (block == block_i->last_alloc_logical_block + 1)
452 && (block_i->last_alloc_physical_block != 0)) {
453 return block_i->last_alloc_physical_block + 1;
454 }
455
456 return ext4_find_near(inode, partial);
457 }
458
459 /**
460 * ext4_blks_to_allocate: Look up the block map and count the number
461 * of direct blocks need to be allocated for the given branch.
462 *
463 * @branch: chain of indirect blocks
464 * @k: number of blocks need for indirect blocks
465 * @blks: number of data blocks to be mapped.
466 * @blocks_to_boundary: the offset in the indirect block
467 *
468 * return the total number of blocks to be allocate, including the
469 * direct and indirect blocks.
470 */
471 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
472 int blocks_to_boundary)
473 {
474 unsigned long count = 0;
475
476 /*
477 * Simple case, [t,d]Indirect block(s) has not allocated yet
478 * then it's clear blocks on that path have not allocated
479 */
480 if (k > 0) {
481 /* right now we don't handle cross boundary allocation */
482 if (blks < blocks_to_boundary + 1)
483 count += blks;
484 else
485 count += blocks_to_boundary + 1;
486 return count;
487 }
488
489 count++;
490 while (count < blks && count <= blocks_to_boundary &&
491 le32_to_cpu(*(branch[0].p + count)) == 0) {
492 count++;
493 }
494 return count;
495 }
496
497 /**
498 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
499 * @indirect_blks: the number of blocks need to allocate for indirect
500 * blocks
501 *
502 * @new_blocks: on return it will store the new block numbers for
503 * the indirect blocks(if needed) and the first direct block,
504 * @blks: on return it will store the total number of allocated
505 * direct blocks
506 */
507 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
508 ext4_fsblk_t goal, int indirect_blks, int blks,
509 ext4_fsblk_t new_blocks[4], int *err)
510 {
511 int target, i;
512 unsigned long count = 0;
513 int index = 0;
514 ext4_fsblk_t current_block = 0;
515 int ret = 0;
516
517 /*
518 * Here we try to allocate the requested multiple blocks at once,
519 * on a best-effort basis.
520 * To build a branch, we should allocate blocks for
521 * the indirect blocks(if not allocated yet), and at least
522 * the first direct block of this branch. That's the
523 * minimum number of blocks need to allocate(required)
524 */
525 target = blks + indirect_blks;
526
527 while (1) {
528 count = target;
529 /* allocating blocks for indirect blocks and direct blocks */
530 current_block = ext4_new_blocks(handle,inode,goal,&count,err);
531 if (*err)
532 goto failed_out;
533
534 target -= count;
535 /* allocate blocks for indirect blocks */
536 while (index < indirect_blks && count) {
537 new_blocks[index++] = current_block++;
538 count--;
539 }
540
541 if (count > 0)
542 break;
543 }
544
545 /* save the new block number for the first direct block */
546 new_blocks[index] = current_block;
547
548 /* total number of blocks allocated for direct blocks */
549 ret = count;
550 *err = 0;
551 return ret;
552 failed_out:
553 for (i = 0; i <index; i++)
554 ext4_free_blocks(handle, inode, new_blocks[i], 1);
555 return ret;
556 }
557
558 /**
559 * ext4_alloc_branch - allocate and set up a chain of blocks.
560 * @inode: owner
561 * @indirect_blks: number of allocated indirect blocks
562 * @blks: number of allocated direct blocks
563 * @offsets: offsets (in the blocks) to store the pointers to next.
564 * @branch: place to store the chain in.
565 *
566 * This function allocates blocks, zeroes out all but the last one,
567 * links them into chain and (if we are synchronous) writes them to disk.
568 * In other words, it prepares a branch that can be spliced onto the
569 * inode. It stores the information about that chain in the branch[], in
570 * the same format as ext4_get_branch() would do. We are calling it after
571 * we had read the existing part of chain and partial points to the last
572 * triple of that (one with zero ->key). Upon the exit we have the same
573 * picture as after the successful ext4_get_block(), except that in one
574 * place chain is disconnected - *branch->p is still zero (we did not
575 * set the last link), but branch->key contains the number that should
576 * be placed into *branch->p to fill that gap.
577 *
578 * If allocation fails we free all blocks we've allocated (and forget
579 * their buffer_heads) and return the error value the from failed
580 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
581 * as described above and return 0.
582 */
583 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
584 int indirect_blks, int *blks, ext4_fsblk_t goal,
585 ext4_lblk_t *offsets, Indirect *branch)
586 {
587 int blocksize = inode->i_sb->s_blocksize;
588 int i, n = 0;
589 int err = 0;
590 struct buffer_head *bh;
591 int num;
592 ext4_fsblk_t new_blocks[4];
593 ext4_fsblk_t current_block;
594
595 num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
596 *blks, new_blocks, &err);
597 if (err)
598 return err;
599
600 branch[0].key = cpu_to_le32(new_blocks[0]);
601 /*
602 * metadata blocks and data blocks are allocated.
603 */
604 for (n = 1; n <= indirect_blks; n++) {
605 /*
606 * Get buffer_head for parent block, zero it out
607 * and set the pointer to new one, then send
608 * parent to disk.
609 */
610 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
611 branch[n].bh = bh;
612 lock_buffer(bh);
613 BUFFER_TRACE(bh, "call get_create_access");
614 err = ext4_journal_get_create_access(handle, bh);
615 if (err) {
616 unlock_buffer(bh);
617 brelse(bh);
618 goto failed;
619 }
620
621 memset(bh->b_data, 0, blocksize);
622 branch[n].p = (__le32 *) bh->b_data + offsets[n];
623 branch[n].key = cpu_to_le32(new_blocks[n]);
624 *branch[n].p = branch[n].key;
625 if ( n == indirect_blks) {
626 current_block = new_blocks[n];
627 /*
628 * End of chain, update the last new metablock of
629 * the chain to point to the new allocated
630 * data blocks numbers
631 */
632 for (i=1; i < num; i++)
633 *(branch[n].p + i) = cpu_to_le32(++current_block);
634 }
635 BUFFER_TRACE(bh, "marking uptodate");
636 set_buffer_uptodate(bh);
637 unlock_buffer(bh);
638
639 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
640 err = ext4_journal_dirty_metadata(handle, bh);
641 if (err)
642 goto failed;
643 }
644 *blks = num;
645 return err;
646 failed:
647 /* Allocation failed, free what we already allocated */
648 for (i = 1; i <= n ; i++) {
649 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
650 ext4_journal_forget(handle, branch[i].bh);
651 }
652 for (i = 0; i <indirect_blks; i++)
653 ext4_free_blocks(handle, inode, new_blocks[i], 1);
654
655 ext4_free_blocks(handle, inode, new_blocks[i], num);
656
657 return err;
658 }
659
660 /**
661 * ext4_splice_branch - splice the allocated branch onto inode.
662 * @inode: owner
663 * @block: (logical) number of block we are adding
664 * @chain: chain of indirect blocks (with a missing link - see
665 * ext4_alloc_branch)
666 * @where: location of missing link
667 * @num: number of indirect blocks we are adding
668 * @blks: number of direct blocks we are adding
669 *
670 * This function fills the missing link and does all housekeeping needed in
671 * inode (->i_blocks, etc.). In case of success we end up with the full
672 * chain to new block and return 0.
673 */
674 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
675 ext4_lblk_t block, Indirect *where, int num, int blks)
676 {
677 int i;
678 int err = 0;
679 struct ext4_block_alloc_info *block_i;
680 ext4_fsblk_t current_block;
681
682 block_i = EXT4_I(inode)->i_block_alloc_info;
683 /*
684 * If we're splicing into a [td]indirect block (as opposed to the
685 * inode) then we need to get write access to the [td]indirect block
686 * before the splice.
687 */
688 if (where->bh) {
689 BUFFER_TRACE(where->bh, "get_write_access");
690 err = ext4_journal_get_write_access(handle, where->bh);
691 if (err)
692 goto err_out;
693 }
694 /* That's it */
695
696 *where->p = where->key;
697
698 /*
699 * Update the host buffer_head or inode to point to more just allocated
700 * direct blocks blocks
701 */
702 if (num == 0 && blks > 1) {
703 current_block = le32_to_cpu(where->key) + 1;
704 for (i = 1; i < blks; i++)
705 *(where->p + i ) = cpu_to_le32(current_block++);
706 }
707
708 /*
709 * update the most recently allocated logical & physical block
710 * in i_block_alloc_info, to assist find the proper goal block for next
711 * allocation
712 */
713 if (block_i) {
714 block_i->last_alloc_logical_block = block + blks - 1;
715 block_i->last_alloc_physical_block =
716 le32_to_cpu(where[num].key) + blks - 1;
717 }
718
719 /* We are done with atomic stuff, now do the rest of housekeeping */
720
721 inode->i_ctime = ext4_current_time(inode);
722 ext4_mark_inode_dirty(handle, inode);
723
724 /* had we spliced it onto indirect block? */
725 if (where->bh) {
726 /*
727 * If we spliced it onto an indirect block, we haven't
728 * altered the inode. Note however that if it is being spliced
729 * onto an indirect block at the very end of the file (the
730 * file is growing) then we *will* alter the inode to reflect
731 * the new i_size. But that is not done here - it is done in
732 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
733 */
734 jbd_debug(5, "splicing indirect only\n");
735 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
736 err = ext4_journal_dirty_metadata(handle, where->bh);
737 if (err)
738 goto err_out;
739 } else {
740 /*
741 * OK, we spliced it into the inode itself on a direct block.
742 * Inode was dirtied above.
743 */
744 jbd_debug(5, "splicing direct\n");
745 }
746 return err;
747
748 err_out:
749 for (i = 1; i <= num; i++) {
750 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
751 ext4_journal_forget(handle, where[i].bh);
752 ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
753 }
754 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
755
756 return err;
757 }
758
759 /*
760 * Allocation strategy is simple: if we have to allocate something, we will
761 * have to go the whole way to leaf. So let's do it before attaching anything
762 * to tree, set linkage between the newborn blocks, write them if sync is
763 * required, recheck the path, free and repeat if check fails, otherwise
764 * set the last missing link (that will protect us from any truncate-generated
765 * removals - all blocks on the path are immune now) and possibly force the
766 * write on the parent block.
767 * That has a nice additional property: no special recovery from the failed
768 * allocations is needed - we simply release blocks and do not touch anything
769 * reachable from inode.
770 *
771 * `handle' can be NULL if create == 0.
772 *
773 * The BKL may not be held on entry here. Be sure to take it early.
774 * return > 0, # of blocks mapped or allocated.
775 * return = 0, if plain lookup failed.
776 * return < 0, error case.
777 *
778 *
779 * Need to be called with
780 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
781 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
782 */
783 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
784 ext4_lblk_t iblock, unsigned long maxblocks,
785 struct buffer_head *bh_result,
786 int create, int extend_disksize)
787 {
788 int err = -EIO;
789 ext4_lblk_t offsets[4];
790 Indirect chain[4];
791 Indirect *partial;
792 ext4_fsblk_t goal;
793 int indirect_blks;
794 int blocks_to_boundary = 0;
795 int depth;
796 struct ext4_inode_info *ei = EXT4_I(inode);
797 int count = 0;
798 ext4_fsblk_t first_block = 0;
799
800
801 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
802 J_ASSERT(handle != NULL || create == 0);
803 depth = ext4_block_to_path(inode, iblock, offsets,
804 &blocks_to_boundary);
805
806 if (depth == 0)
807 goto out;
808
809 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
810
811 /* Simplest case - block found, no allocation needed */
812 if (!partial) {
813 first_block = le32_to_cpu(chain[depth - 1].key);
814 clear_buffer_new(bh_result);
815 count++;
816 /*map more blocks*/
817 while (count < maxblocks && count <= blocks_to_boundary) {
818 ext4_fsblk_t blk;
819
820 blk = le32_to_cpu(*(chain[depth-1].p + count));
821
822 if (blk == first_block + count)
823 count++;
824 else
825 break;
826 }
827 goto got_it;
828 }
829
830 /* Next simple case - plain lookup or failed read of indirect block */
831 if (!create || err == -EIO)
832 goto cleanup;
833
834 /*
835 * Okay, we need to do block allocation. Lazily initialize the block
836 * allocation info here if necessary
837 */
838 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
839 ext4_init_block_alloc_info(inode);
840
841 goal = ext4_find_goal(inode, iblock, chain, partial);
842
843 /* the number of blocks need to allocate for [d,t]indirect blocks */
844 indirect_blks = (chain + depth) - partial - 1;
845
846 /*
847 * Next look up the indirect map to count the totoal number of
848 * direct blocks to allocate for this branch.
849 */
850 count = ext4_blks_to_allocate(partial, indirect_blks,
851 maxblocks, blocks_to_boundary);
852 /*
853 * Block out ext4_truncate while we alter the tree
854 */
855 err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
856 offsets + (partial - chain), partial);
857
858 /*
859 * The ext4_splice_branch call will free and forget any buffers
860 * on the new chain if there is a failure, but that risks using
861 * up transaction credits, especially for bitmaps where the
862 * credits cannot be returned. Can we handle this somehow? We
863 * may need to return -EAGAIN upwards in the worst case. --sct
864 */
865 if (!err)
866 err = ext4_splice_branch(handle, inode, iblock,
867 partial, indirect_blks, count);
868 /*
869 * i_disksize growing is protected by i_data_sem. Don't forget to
870 * protect it if you're about to implement concurrent
871 * ext4_get_block() -bzzz
872 */
873 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
874 ei->i_disksize = inode->i_size;
875 if (err)
876 goto cleanup;
877
878 set_buffer_new(bh_result);
879 got_it:
880 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
881 if (count > blocks_to_boundary)
882 set_buffer_boundary(bh_result);
883 err = count;
884 /* Clean up and exit */
885 partial = chain + depth - 1; /* the whole chain */
886 cleanup:
887 while (partial > chain) {
888 BUFFER_TRACE(partial->bh, "call brelse");
889 brelse(partial->bh);
890 partial--;
891 }
892 BUFFER_TRACE(bh_result, "returned");
893 out:
894 return err;
895 }
896
897 #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
898
899 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
900 unsigned long max_blocks, struct buffer_head *bh,
901 int create, int extend_disksize)
902 {
903 int retval;
904 /*
905 * Try to see if we can get the block without requesting
906 * for new file system block.
907 */
908 down_read((&EXT4_I(inode)->i_data_sem));
909 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
910 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
911 bh, 0, 0);
912 } else {
913 retval = ext4_get_blocks_handle(handle,
914 inode, block, max_blocks, bh, 0, 0);
915 }
916 up_read((&EXT4_I(inode)->i_data_sem));
917 if (!create || (retval > 0))
918 return retval;
919
920 /*
921 * We need to allocate new blocks which will result
922 * in i_data update
923 */
924 down_write((&EXT4_I(inode)->i_data_sem));
925 /*
926 * We need to check for EXT4 here because migrate
927 * could have changed the inode type in between
928 */
929 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
930 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
931 bh, create, extend_disksize);
932 } else {
933 retval = ext4_get_blocks_handle(handle, inode, block,
934 max_blocks, bh, create, extend_disksize);
935 }
936 up_write((&EXT4_I(inode)->i_data_sem));
937 return retval;
938 }
939
940 static int ext4_get_block(struct inode *inode, sector_t iblock,
941 struct buffer_head *bh_result, int create)
942 {
943 handle_t *handle = ext4_journal_current_handle();
944 int ret = 0;
945 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
946
947 if (!create)
948 goto get_block; /* A read */
949
950 if (max_blocks == 1)
951 goto get_block; /* A single block get */
952
953 if (handle->h_transaction->t_state == T_LOCKED) {
954 /*
955 * Huge direct-io writes can hold off commits for long
956 * periods of time. Let this commit run.
957 */
958 ext4_journal_stop(handle);
959 handle = ext4_journal_start(inode, DIO_CREDITS);
960 if (IS_ERR(handle))
961 ret = PTR_ERR(handle);
962 goto get_block;
963 }
964
965 if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
966 /*
967 * Getting low on buffer credits...
968 */
969 ret = ext4_journal_extend(handle, DIO_CREDITS);
970 if (ret > 0) {
971 /*
972 * Couldn't extend the transaction. Start a new one.
973 */
974 ret = ext4_journal_restart(handle, DIO_CREDITS);
975 }
976 }
977
978 get_block:
979 if (ret == 0) {
980 ret = ext4_get_blocks_wrap(handle, inode, iblock,
981 max_blocks, bh_result, create, 0);
982 if (ret > 0) {
983 bh_result->b_size = (ret << inode->i_blkbits);
984 ret = 0;
985 }
986 }
987 return ret;
988 }
989
990 /*
991 * `handle' can be NULL if create is zero
992 */
993 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
994 ext4_lblk_t block, int create, int *errp)
995 {
996 struct buffer_head dummy;
997 int fatal = 0, err;
998
999 J_ASSERT(handle != NULL || create == 0);
1000
1001 dummy.b_state = 0;
1002 dummy.b_blocknr = -1000;
1003 buffer_trace_init(&dummy.b_history);
1004 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1005 &dummy, create, 1);
1006 /*
1007 * ext4_get_blocks_handle() returns number of blocks
1008 * mapped. 0 in case of a HOLE.
1009 */
1010 if (err > 0) {
1011 if (err > 1)
1012 WARN_ON(1);
1013 err = 0;
1014 }
1015 *errp = err;
1016 if (!err && buffer_mapped(&dummy)) {
1017 struct buffer_head *bh;
1018 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1019 if (!bh) {
1020 *errp = -EIO;
1021 goto err;
1022 }
1023 if (buffer_new(&dummy)) {
1024 J_ASSERT(create != 0);
1025 J_ASSERT(handle != NULL);
1026
1027 /*
1028 * Now that we do not always journal data, we should
1029 * keep in mind whether this should always journal the
1030 * new buffer as metadata. For now, regular file
1031 * writes use ext4_get_block instead, so it's not a
1032 * problem.
1033 */
1034 lock_buffer(bh);
1035 BUFFER_TRACE(bh, "call get_create_access");
1036 fatal = ext4_journal_get_create_access(handle, bh);
1037 if (!fatal && !buffer_uptodate(bh)) {
1038 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1039 set_buffer_uptodate(bh);
1040 }
1041 unlock_buffer(bh);
1042 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1043 err = ext4_journal_dirty_metadata(handle, bh);
1044 if (!fatal)
1045 fatal = err;
1046 } else {
1047 BUFFER_TRACE(bh, "not a new buffer");
1048 }
1049 if (fatal) {
1050 *errp = fatal;
1051 brelse(bh);
1052 bh = NULL;
1053 }
1054 return bh;
1055 }
1056 err:
1057 return NULL;
1058 }
1059
1060 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1061 ext4_lblk_t block, int create, int *err)
1062 {
1063 struct buffer_head * bh;
1064
1065 bh = ext4_getblk(handle, inode, block, create, err);
1066 if (!bh)
1067 return bh;
1068 if (buffer_uptodate(bh))
1069 return bh;
1070 ll_rw_block(READ_META, 1, &bh);
1071 wait_on_buffer(bh);
1072 if (buffer_uptodate(bh))
1073 return bh;
1074 put_bh(bh);
1075 *err = -EIO;
1076 return NULL;
1077 }
1078
1079 static int walk_page_buffers( handle_t *handle,
1080 struct buffer_head *head,
1081 unsigned from,
1082 unsigned to,
1083 int *partial,
1084 int (*fn)( handle_t *handle,
1085 struct buffer_head *bh))
1086 {
1087 struct buffer_head *bh;
1088 unsigned block_start, block_end;
1089 unsigned blocksize = head->b_size;
1090 int err, ret = 0;
1091 struct buffer_head *next;
1092
1093 for ( bh = head, block_start = 0;
1094 ret == 0 && (bh != head || !block_start);
1095 block_start = block_end, bh = next)
1096 {
1097 next = bh->b_this_page;
1098 block_end = block_start + blocksize;
1099 if (block_end <= from || block_start >= to) {
1100 if (partial && !buffer_uptodate(bh))
1101 *partial = 1;
1102 continue;
1103 }
1104 err = (*fn)(handle, bh);
1105 if (!ret)
1106 ret = err;
1107 }
1108 return ret;
1109 }
1110
1111 /*
1112 * To preserve ordering, it is essential that the hole instantiation and
1113 * the data write be encapsulated in a single transaction. We cannot
1114 * close off a transaction and start a new one between the ext4_get_block()
1115 * and the commit_write(). So doing the jbd2_journal_start at the start of
1116 * prepare_write() is the right place.
1117 *
1118 * Also, this function can nest inside ext4_writepage() ->
1119 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1120 * has generated enough buffer credits to do the whole page. So we won't
1121 * block on the journal in that case, which is good, because the caller may
1122 * be PF_MEMALLOC.
1123 *
1124 * By accident, ext4 can be reentered when a transaction is open via
1125 * quota file writes. If we were to commit the transaction while thus
1126 * reentered, there can be a deadlock - we would be holding a quota
1127 * lock, and the commit would never complete if another thread had a
1128 * transaction open and was blocking on the quota lock - a ranking
1129 * violation.
1130 *
1131 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1132 * will _not_ run commit under these circumstances because handle->h_ref
1133 * is elevated. We'll still have enough credits for the tiny quotafile
1134 * write.
1135 */
1136 static int do_journal_get_write_access(handle_t *handle,
1137 struct buffer_head *bh)
1138 {
1139 if (!buffer_mapped(bh) || buffer_freed(bh))
1140 return 0;
1141 return ext4_journal_get_write_access(handle, bh);
1142 }
1143
1144 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1145 loff_t pos, unsigned len, unsigned flags,
1146 struct page **pagep, void **fsdata)
1147 {
1148 struct inode *inode = mapping->host;
1149 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1150 handle_t *handle;
1151 int retries = 0;
1152 struct page *page;
1153 pgoff_t index;
1154 unsigned from, to;
1155
1156 index = pos >> PAGE_CACHE_SHIFT;
1157 from = pos & (PAGE_CACHE_SIZE - 1);
1158 to = from + len;
1159
1160 retry:
1161 page = __grab_cache_page(mapping, index);
1162 if (!page)
1163 return -ENOMEM;
1164 *pagep = page;
1165
1166 handle = ext4_journal_start(inode, needed_blocks);
1167 if (IS_ERR(handle)) {
1168 unlock_page(page);
1169 page_cache_release(page);
1170 ret = PTR_ERR(handle);
1171 goto out;
1172 }
1173
1174 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1175 ext4_get_block);
1176
1177 if (!ret && ext4_should_journal_data(inode)) {
1178 ret = walk_page_buffers(handle, page_buffers(page),
1179 from, to, NULL, do_journal_get_write_access);
1180 }
1181
1182 if (ret) {
1183 ext4_journal_stop(handle);
1184 unlock_page(page);
1185 page_cache_release(page);
1186 }
1187
1188 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1189 goto retry;
1190 out:
1191 return ret;
1192 }
1193
1194 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1195 {
1196 int err = jbd2_journal_dirty_data(handle, bh);
1197 if (err)
1198 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1199 bh, handle, err);
1200 return err;
1201 }
1202
1203 /* For write_end() in data=journal mode */
1204 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1205 {
1206 if (!buffer_mapped(bh) || buffer_freed(bh))
1207 return 0;
1208 set_buffer_uptodate(bh);
1209 return ext4_journal_dirty_metadata(handle, bh);
1210 }
1211
1212 /*
1213 * Generic write_end handler for ordered and writeback ext4 journal modes.
1214 * We can't use generic_write_end, because that unlocks the page and we need to
1215 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1216 * after block_write_end.
1217 */
1218 static int ext4_generic_write_end(struct file *file,
1219 struct address_space *mapping,
1220 loff_t pos, unsigned len, unsigned copied,
1221 struct page *page, void *fsdata)
1222 {
1223 struct inode *inode = file->f_mapping->host;
1224
1225 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1226
1227 if (pos+copied > inode->i_size) {
1228 i_size_write(inode, pos+copied);
1229 mark_inode_dirty(inode);
1230 }
1231
1232 return copied;
1233 }
1234
1235 /*
1236 * We need to pick up the new inode size which generic_commit_write gave us
1237 * `file' can be NULL - eg, when called from page_symlink().
1238 *
1239 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1240 * buffers are managed internally.
1241 */
1242 static int ext4_ordered_write_end(struct file *file,
1243 struct address_space *mapping,
1244 loff_t pos, unsigned len, unsigned copied,
1245 struct page *page, void *fsdata)
1246 {
1247 handle_t *handle = ext4_journal_current_handle();
1248 struct inode *inode = file->f_mapping->host;
1249 unsigned from, to;
1250 int ret = 0, ret2;
1251
1252 from = pos & (PAGE_CACHE_SIZE - 1);
1253 to = from + len;
1254
1255 ret = walk_page_buffers(handle, page_buffers(page),
1256 from, to, NULL, ext4_journal_dirty_data);
1257
1258 if (ret == 0) {
1259 /*
1260 * generic_write_end() will run mark_inode_dirty() if i_size
1261 * changes. So let's piggyback the i_disksize mark_inode_dirty
1262 * into that.
1263 */
1264 loff_t new_i_size;
1265
1266 new_i_size = pos + copied;
1267 if (new_i_size > EXT4_I(inode)->i_disksize)
1268 EXT4_I(inode)->i_disksize = new_i_size;
1269 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1270 page, fsdata);
1271 if (copied < 0)
1272 ret = copied;
1273 }
1274 ret2 = ext4_journal_stop(handle);
1275 if (!ret)
1276 ret = ret2;
1277 unlock_page(page);
1278 page_cache_release(page);
1279
1280 return ret ? ret : copied;
1281 }
1282
1283 static int ext4_writeback_write_end(struct file *file,
1284 struct address_space *mapping,
1285 loff_t pos, unsigned len, unsigned copied,
1286 struct page *page, void *fsdata)
1287 {
1288 handle_t *handle = ext4_journal_current_handle();
1289 struct inode *inode = file->f_mapping->host;
1290 int ret = 0, ret2;
1291 loff_t new_i_size;
1292
1293 new_i_size = pos + copied;
1294 if (new_i_size > EXT4_I(inode)->i_disksize)
1295 EXT4_I(inode)->i_disksize = new_i_size;
1296
1297 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1298 page, fsdata);
1299 if (copied < 0)
1300 ret = copied;
1301
1302 ret2 = ext4_journal_stop(handle);
1303 if (!ret)
1304 ret = ret2;
1305 unlock_page(page);
1306 page_cache_release(page);
1307
1308 return ret ? ret : copied;
1309 }
1310
1311 static int ext4_journalled_write_end(struct file *file,
1312 struct address_space *mapping,
1313 loff_t pos, unsigned len, unsigned copied,
1314 struct page *page, void *fsdata)
1315 {
1316 handle_t *handle = ext4_journal_current_handle();
1317 struct inode *inode = mapping->host;
1318 int ret = 0, ret2;
1319 int partial = 0;
1320 unsigned from, to;
1321
1322 from = pos & (PAGE_CACHE_SIZE - 1);
1323 to = from + len;
1324
1325 if (copied < len) {
1326 if (!PageUptodate(page))
1327 copied = 0;
1328 page_zero_new_buffers(page, from+copied, to);
1329 }
1330
1331 ret = walk_page_buffers(handle, page_buffers(page), from,
1332 to, &partial, write_end_fn);
1333 if (!partial)
1334 SetPageUptodate(page);
1335 if (pos+copied > inode->i_size)
1336 i_size_write(inode, pos+copied);
1337 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1338 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1339 EXT4_I(inode)->i_disksize = inode->i_size;
1340 ret2 = ext4_mark_inode_dirty(handle, inode);
1341 if (!ret)
1342 ret = ret2;
1343 }
1344
1345 ret2 = ext4_journal_stop(handle);
1346 if (!ret)
1347 ret = ret2;
1348 unlock_page(page);
1349 page_cache_release(page);
1350
1351 return ret ? ret : copied;
1352 }
1353
1354 /*
1355 * bmap() is special. It gets used by applications such as lilo and by
1356 * the swapper to find the on-disk block of a specific piece of data.
1357 *
1358 * Naturally, this is dangerous if the block concerned is still in the
1359 * journal. If somebody makes a swapfile on an ext4 data-journaling
1360 * filesystem and enables swap, then they may get a nasty shock when the
1361 * data getting swapped to that swapfile suddenly gets overwritten by
1362 * the original zero's written out previously to the journal and
1363 * awaiting writeback in the kernel's buffer cache.
1364 *
1365 * So, if we see any bmap calls here on a modified, data-journaled file,
1366 * take extra steps to flush any blocks which might be in the cache.
1367 */
1368 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1369 {
1370 struct inode *inode = mapping->host;
1371 journal_t *journal;
1372 int err;
1373
1374 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1375 /*
1376 * This is a REALLY heavyweight approach, but the use of
1377 * bmap on dirty files is expected to be extremely rare:
1378 * only if we run lilo or swapon on a freshly made file
1379 * do we expect this to happen.
1380 *
1381 * (bmap requires CAP_SYS_RAWIO so this does not
1382 * represent an unprivileged user DOS attack --- we'd be
1383 * in trouble if mortal users could trigger this path at
1384 * will.)
1385 *
1386 * NB. EXT4_STATE_JDATA is not set on files other than
1387 * regular files. If somebody wants to bmap a directory
1388 * or symlink and gets confused because the buffer
1389 * hasn't yet been flushed to disk, they deserve
1390 * everything they get.
1391 */
1392
1393 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1394 journal = EXT4_JOURNAL(inode);
1395 jbd2_journal_lock_updates(journal);
1396 err = jbd2_journal_flush(journal);
1397 jbd2_journal_unlock_updates(journal);
1398
1399 if (err)
1400 return 0;
1401 }
1402
1403 return generic_block_bmap(mapping,block,ext4_get_block);
1404 }
1405
1406 static int bget_one(handle_t *handle, struct buffer_head *bh)
1407 {
1408 get_bh(bh);
1409 return 0;
1410 }
1411
1412 static int bput_one(handle_t *handle, struct buffer_head *bh)
1413 {
1414 put_bh(bh);
1415 return 0;
1416 }
1417
1418 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1419 {
1420 if (buffer_mapped(bh))
1421 return ext4_journal_dirty_data(handle, bh);
1422 return 0;
1423 }
1424
1425 /*
1426 * Note that we always start a transaction even if we're not journalling
1427 * data. This is to preserve ordering: any hole instantiation within
1428 * __block_write_full_page -> ext4_get_block() should be journalled
1429 * along with the data so we don't crash and then get metadata which
1430 * refers to old data.
1431 *
1432 * In all journalling modes block_write_full_page() will start the I/O.
1433 *
1434 * Problem:
1435 *
1436 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1437 * ext4_writepage()
1438 *
1439 * Similar for:
1440 *
1441 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1442 *
1443 * Same applies to ext4_get_block(). We will deadlock on various things like
1444 * lock_journal and i_data_sem
1445 *
1446 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1447 * allocations fail.
1448 *
1449 * 16May01: If we're reentered then journal_current_handle() will be
1450 * non-zero. We simply *return*.
1451 *
1452 * 1 July 2001: @@@ FIXME:
1453 * In journalled data mode, a data buffer may be metadata against the
1454 * current transaction. But the same file is part of a shared mapping
1455 * and someone does a writepage() on it.
1456 *
1457 * We will move the buffer onto the async_data list, but *after* it has
1458 * been dirtied. So there's a small window where we have dirty data on
1459 * BJ_Metadata.
1460 *
1461 * Note that this only applies to the last partial page in the file. The
1462 * bit which block_write_full_page() uses prepare/commit for. (That's
1463 * broken code anyway: it's wrong for msync()).
1464 *
1465 * It's a rare case: affects the final partial page, for journalled data
1466 * where the file is subject to bith write() and writepage() in the same
1467 * transction. To fix it we'll need a custom block_write_full_page().
1468 * We'll probably need that anyway for journalling writepage() output.
1469 *
1470 * We don't honour synchronous mounts for writepage(). That would be
1471 * disastrous. Any write() or metadata operation will sync the fs for
1472 * us.
1473 *
1474 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1475 * we don't need to open a transaction here.
1476 */
1477 static int ext4_ordered_writepage(struct page *page,
1478 struct writeback_control *wbc)
1479 {
1480 struct inode *inode = page->mapping->host;
1481 struct buffer_head *page_bufs;
1482 handle_t *handle = NULL;
1483 int ret = 0;
1484 int err;
1485
1486 J_ASSERT(PageLocked(page));
1487
1488 /*
1489 * We give up here if we're reentered, because it might be for a
1490 * different filesystem.
1491 */
1492 if (ext4_journal_current_handle())
1493 goto out_fail;
1494
1495 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1496
1497 if (IS_ERR(handle)) {
1498 ret = PTR_ERR(handle);
1499 goto out_fail;
1500 }
1501
1502 if (!page_has_buffers(page)) {
1503 create_empty_buffers(page, inode->i_sb->s_blocksize,
1504 (1 << BH_Dirty)|(1 << BH_Uptodate));
1505 }
1506 page_bufs = page_buffers(page);
1507 walk_page_buffers(handle, page_bufs, 0,
1508 PAGE_CACHE_SIZE, NULL, bget_one);
1509
1510 ret = block_write_full_page(page, ext4_get_block, wbc);
1511
1512 /*
1513 * The page can become unlocked at any point now, and
1514 * truncate can then come in and change things. So we
1515 * can't touch *page from now on. But *page_bufs is
1516 * safe due to elevated refcount.
1517 */
1518
1519 /*
1520 * And attach them to the current transaction. But only if
1521 * block_write_full_page() succeeded. Otherwise they are unmapped,
1522 * and generally junk.
1523 */
1524 if (ret == 0) {
1525 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1526 NULL, jbd2_journal_dirty_data_fn);
1527 if (!ret)
1528 ret = err;
1529 }
1530 walk_page_buffers(handle, page_bufs, 0,
1531 PAGE_CACHE_SIZE, NULL, bput_one);
1532 err = ext4_journal_stop(handle);
1533 if (!ret)
1534 ret = err;
1535 return ret;
1536
1537 out_fail:
1538 redirty_page_for_writepage(wbc, page);
1539 unlock_page(page);
1540 return ret;
1541 }
1542
1543 static int ext4_writeback_writepage(struct page *page,
1544 struct writeback_control *wbc)
1545 {
1546 struct inode *inode = page->mapping->host;
1547 handle_t *handle = NULL;
1548 int ret = 0;
1549 int err;
1550
1551 if (ext4_journal_current_handle())
1552 goto out_fail;
1553
1554 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1555 if (IS_ERR(handle)) {
1556 ret = PTR_ERR(handle);
1557 goto out_fail;
1558 }
1559
1560 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1561 ret = nobh_writepage(page, ext4_get_block, wbc);
1562 else
1563 ret = block_write_full_page(page, ext4_get_block, wbc);
1564
1565 err = ext4_journal_stop(handle);
1566 if (!ret)
1567 ret = err;
1568 return ret;
1569
1570 out_fail:
1571 redirty_page_for_writepage(wbc, page);
1572 unlock_page(page);
1573 return ret;
1574 }
1575
1576 static int ext4_journalled_writepage(struct page *page,
1577 struct writeback_control *wbc)
1578 {
1579 struct inode *inode = page->mapping->host;
1580 handle_t *handle = NULL;
1581 int ret = 0;
1582 int err;
1583
1584 if (ext4_journal_current_handle())
1585 goto no_write;
1586
1587 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1588 if (IS_ERR(handle)) {
1589 ret = PTR_ERR(handle);
1590 goto no_write;
1591 }
1592
1593 if (!page_has_buffers(page) || PageChecked(page)) {
1594 /*
1595 * It's mmapped pagecache. Add buffers and journal it. There
1596 * doesn't seem much point in redirtying the page here.
1597 */
1598 ClearPageChecked(page);
1599 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1600 ext4_get_block);
1601 if (ret != 0) {
1602 ext4_journal_stop(handle);
1603 goto out_unlock;
1604 }
1605 ret = walk_page_buffers(handle, page_buffers(page), 0,
1606 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1607
1608 err = walk_page_buffers(handle, page_buffers(page), 0,
1609 PAGE_CACHE_SIZE, NULL, write_end_fn);
1610 if (ret == 0)
1611 ret = err;
1612 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1613 unlock_page(page);
1614 } else {
1615 /*
1616 * It may be a page full of checkpoint-mode buffers. We don't
1617 * really know unless we go poke around in the buffer_heads.
1618 * But block_write_full_page will do the right thing.
1619 */
1620 ret = block_write_full_page(page, ext4_get_block, wbc);
1621 }
1622 err = ext4_journal_stop(handle);
1623 if (!ret)
1624 ret = err;
1625 out:
1626 return ret;
1627
1628 no_write:
1629 redirty_page_for_writepage(wbc, page);
1630 out_unlock:
1631 unlock_page(page);
1632 goto out;
1633 }
1634
1635 static int ext4_readpage(struct file *file, struct page *page)
1636 {
1637 return mpage_readpage(page, ext4_get_block);
1638 }
1639
1640 static int
1641 ext4_readpages(struct file *file, struct address_space *mapping,
1642 struct list_head *pages, unsigned nr_pages)
1643 {
1644 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1645 }
1646
1647 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1648 {
1649 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1650
1651 /*
1652 * If it's a full truncate we just forget about the pending dirtying
1653 */
1654 if (offset == 0)
1655 ClearPageChecked(page);
1656
1657 jbd2_journal_invalidatepage(journal, page, offset);
1658 }
1659
1660 static int ext4_releasepage(struct page *page, gfp_t wait)
1661 {
1662 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1663
1664 WARN_ON(PageChecked(page));
1665 if (!page_has_buffers(page))
1666 return 0;
1667 return jbd2_journal_try_to_free_buffers(journal, page, wait);
1668 }
1669
1670 /*
1671 * If the O_DIRECT write will extend the file then add this inode to the
1672 * orphan list. So recovery will truncate it back to the original size
1673 * if the machine crashes during the write.
1674 *
1675 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1676 * crashes then stale disk data _may_ be exposed inside the file.
1677 */
1678 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1679 const struct iovec *iov, loff_t offset,
1680 unsigned long nr_segs)
1681 {
1682 struct file *file = iocb->ki_filp;
1683 struct inode *inode = file->f_mapping->host;
1684 struct ext4_inode_info *ei = EXT4_I(inode);
1685 handle_t *handle = NULL;
1686 ssize_t ret;
1687 int orphan = 0;
1688 size_t count = iov_length(iov, nr_segs);
1689
1690 if (rw == WRITE) {
1691 loff_t final_size = offset + count;
1692
1693 handle = ext4_journal_start(inode, DIO_CREDITS);
1694 if (IS_ERR(handle)) {
1695 ret = PTR_ERR(handle);
1696 goto out;
1697 }
1698 if (final_size > inode->i_size) {
1699 ret = ext4_orphan_add(handle, inode);
1700 if (ret)
1701 goto out_stop;
1702 orphan = 1;
1703 ei->i_disksize = inode->i_size;
1704 }
1705 }
1706
1707 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1708 offset, nr_segs,
1709 ext4_get_block, NULL);
1710
1711 /*
1712 * Reacquire the handle: ext4_get_block() can restart the transaction
1713 */
1714 handle = ext4_journal_current_handle();
1715
1716 out_stop:
1717 if (handle) {
1718 int err;
1719
1720 if (orphan && inode->i_nlink)
1721 ext4_orphan_del(handle, inode);
1722 if (orphan && ret > 0) {
1723 loff_t end = offset + ret;
1724 if (end > inode->i_size) {
1725 ei->i_disksize = end;
1726 i_size_write(inode, end);
1727 /*
1728 * We're going to return a positive `ret'
1729 * here due to non-zero-length I/O, so there's
1730 * no way of reporting error returns from
1731 * ext4_mark_inode_dirty() to userspace. So
1732 * ignore it.
1733 */
1734 ext4_mark_inode_dirty(handle, inode);
1735 }
1736 }
1737 err = ext4_journal_stop(handle);
1738 if (ret == 0)
1739 ret = err;
1740 }
1741 out:
1742 return ret;
1743 }
1744
1745 /*
1746 * Pages can be marked dirty completely asynchronously from ext4's journalling
1747 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1748 * much here because ->set_page_dirty is called under VFS locks. The page is
1749 * not necessarily locked.
1750 *
1751 * We cannot just dirty the page and leave attached buffers clean, because the
1752 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1753 * or jbddirty because all the journalling code will explode.
1754 *
1755 * So what we do is to mark the page "pending dirty" and next time writepage
1756 * is called, propagate that into the buffers appropriately.
1757 */
1758 static int ext4_journalled_set_page_dirty(struct page *page)
1759 {
1760 SetPageChecked(page);
1761 return __set_page_dirty_nobuffers(page);
1762 }
1763
1764 static const struct address_space_operations ext4_ordered_aops = {
1765 .readpage = ext4_readpage,
1766 .readpages = ext4_readpages,
1767 .writepage = ext4_ordered_writepage,
1768 .sync_page = block_sync_page,
1769 .write_begin = ext4_write_begin,
1770 .write_end = ext4_ordered_write_end,
1771 .bmap = ext4_bmap,
1772 .invalidatepage = ext4_invalidatepage,
1773 .releasepage = ext4_releasepage,
1774 .direct_IO = ext4_direct_IO,
1775 .migratepage = buffer_migrate_page,
1776 };
1777
1778 static const struct address_space_operations ext4_writeback_aops = {
1779 .readpage = ext4_readpage,
1780 .readpages = ext4_readpages,
1781 .writepage = ext4_writeback_writepage,
1782 .sync_page = block_sync_page,
1783 .write_begin = ext4_write_begin,
1784 .write_end = ext4_writeback_write_end,
1785 .bmap = ext4_bmap,
1786 .invalidatepage = ext4_invalidatepage,
1787 .releasepage = ext4_releasepage,
1788 .direct_IO = ext4_direct_IO,
1789 .migratepage = buffer_migrate_page,
1790 };
1791
1792 static const struct address_space_operations ext4_journalled_aops = {
1793 .readpage = ext4_readpage,
1794 .readpages = ext4_readpages,
1795 .writepage = ext4_journalled_writepage,
1796 .sync_page = block_sync_page,
1797 .write_begin = ext4_write_begin,
1798 .write_end = ext4_journalled_write_end,
1799 .set_page_dirty = ext4_journalled_set_page_dirty,
1800 .bmap = ext4_bmap,
1801 .invalidatepage = ext4_invalidatepage,
1802 .releasepage = ext4_releasepage,
1803 };
1804
1805 void ext4_set_aops(struct inode *inode)
1806 {
1807 if (ext4_should_order_data(inode))
1808 inode->i_mapping->a_ops = &ext4_ordered_aops;
1809 else if (ext4_should_writeback_data(inode))
1810 inode->i_mapping->a_ops = &ext4_writeback_aops;
1811 else
1812 inode->i_mapping->a_ops = &ext4_journalled_aops;
1813 }
1814
1815 /*
1816 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1817 * up to the end of the block which corresponds to `from'.
1818 * This required during truncate. We need to physically zero the tail end
1819 * of that block so it doesn't yield old data if the file is later grown.
1820 */
1821 int ext4_block_truncate_page(handle_t *handle, struct page *page,
1822 struct address_space *mapping, loff_t from)
1823 {
1824 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1825 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1826 unsigned blocksize, length, pos;
1827 ext4_lblk_t iblock;
1828 struct inode *inode = mapping->host;
1829 struct buffer_head *bh;
1830 int err = 0;
1831
1832 blocksize = inode->i_sb->s_blocksize;
1833 length = blocksize - (offset & (blocksize - 1));
1834 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1835
1836 /*
1837 * For "nobh" option, we can only work if we don't need to
1838 * read-in the page - otherwise we create buffers to do the IO.
1839 */
1840 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1841 ext4_should_writeback_data(inode) && PageUptodate(page)) {
1842 zero_user_page(page, offset, length, KM_USER0);
1843 set_page_dirty(page);
1844 goto unlock;
1845 }
1846
1847 if (!page_has_buffers(page))
1848 create_empty_buffers(page, blocksize, 0);
1849
1850 /* Find the buffer that contains "offset" */
1851 bh = page_buffers(page);
1852 pos = blocksize;
1853 while (offset >= pos) {
1854 bh = bh->b_this_page;
1855 iblock++;
1856 pos += blocksize;
1857 }
1858
1859 err = 0;
1860 if (buffer_freed(bh)) {
1861 BUFFER_TRACE(bh, "freed: skip");
1862 goto unlock;
1863 }
1864
1865 if (!buffer_mapped(bh)) {
1866 BUFFER_TRACE(bh, "unmapped");
1867 ext4_get_block(inode, iblock, bh, 0);
1868 /* unmapped? It's a hole - nothing to do */
1869 if (!buffer_mapped(bh)) {
1870 BUFFER_TRACE(bh, "still unmapped");
1871 goto unlock;
1872 }
1873 }
1874
1875 /* Ok, it's mapped. Make sure it's up-to-date */
1876 if (PageUptodate(page))
1877 set_buffer_uptodate(bh);
1878
1879 if (!buffer_uptodate(bh)) {
1880 err = -EIO;
1881 ll_rw_block(READ, 1, &bh);
1882 wait_on_buffer(bh);
1883 /* Uhhuh. Read error. Complain and punt. */
1884 if (!buffer_uptodate(bh))
1885 goto unlock;
1886 }
1887
1888 if (ext4_should_journal_data(inode)) {
1889 BUFFER_TRACE(bh, "get write access");
1890 err = ext4_journal_get_write_access(handle, bh);
1891 if (err)
1892 goto unlock;
1893 }
1894
1895 zero_user_page(page, offset, length, KM_USER0);
1896
1897 BUFFER_TRACE(bh, "zeroed end of block");
1898
1899 err = 0;
1900 if (ext4_should_journal_data(inode)) {
1901 err = ext4_journal_dirty_metadata(handle, bh);
1902 } else {
1903 if (ext4_should_order_data(inode))
1904 err = ext4_journal_dirty_data(handle, bh);
1905 mark_buffer_dirty(bh);
1906 }
1907
1908 unlock:
1909 unlock_page(page);
1910 page_cache_release(page);
1911 return err;
1912 }
1913
1914 /*
1915 * Probably it should be a library function... search for first non-zero word
1916 * or memcmp with zero_page, whatever is better for particular architecture.
1917 * Linus?
1918 */
1919 static inline int all_zeroes(__le32 *p, __le32 *q)
1920 {
1921 while (p < q)
1922 if (*p++)
1923 return 0;
1924 return 1;
1925 }
1926
1927 /**
1928 * ext4_find_shared - find the indirect blocks for partial truncation.
1929 * @inode: inode in question
1930 * @depth: depth of the affected branch
1931 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
1932 * @chain: place to store the pointers to partial indirect blocks
1933 * @top: place to the (detached) top of branch
1934 *
1935 * This is a helper function used by ext4_truncate().
1936 *
1937 * When we do truncate() we may have to clean the ends of several
1938 * indirect blocks but leave the blocks themselves alive. Block is
1939 * partially truncated if some data below the new i_size is refered
1940 * from it (and it is on the path to the first completely truncated
1941 * data block, indeed). We have to free the top of that path along
1942 * with everything to the right of the path. Since no allocation
1943 * past the truncation point is possible until ext4_truncate()
1944 * finishes, we may safely do the latter, but top of branch may
1945 * require special attention - pageout below the truncation point
1946 * might try to populate it.
1947 *
1948 * We atomically detach the top of branch from the tree, store the
1949 * block number of its root in *@top, pointers to buffer_heads of
1950 * partially truncated blocks - in @chain[].bh and pointers to
1951 * their last elements that should not be removed - in
1952 * @chain[].p. Return value is the pointer to last filled element
1953 * of @chain.
1954 *
1955 * The work left to caller to do the actual freeing of subtrees:
1956 * a) free the subtree starting from *@top
1957 * b) free the subtrees whose roots are stored in
1958 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1959 * c) free the subtrees growing from the inode past the @chain[0].
1960 * (no partially truncated stuff there). */
1961
1962 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1963 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
1964 {
1965 Indirect *partial, *p;
1966 int k, err;
1967
1968 *top = 0;
1969 /* Make k index the deepest non-null offest + 1 */
1970 for (k = depth; k > 1 && !offsets[k-1]; k--)
1971 ;
1972 partial = ext4_get_branch(inode, k, offsets, chain, &err);
1973 /* Writer: pointers */
1974 if (!partial)
1975 partial = chain + k-1;
1976 /*
1977 * If the branch acquired continuation since we've looked at it -
1978 * fine, it should all survive and (new) top doesn't belong to us.
1979 */
1980 if (!partial->key && *partial->p)
1981 /* Writer: end */
1982 goto no_top;
1983 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1984 ;
1985 /*
1986 * OK, we've found the last block that must survive. The rest of our
1987 * branch should be detached before unlocking. However, if that rest
1988 * of branch is all ours and does not grow immediately from the inode
1989 * it's easier to cheat and just decrement partial->p.
1990 */
1991 if (p == chain + k - 1 && p > chain) {
1992 p->p--;
1993 } else {
1994 *top = *p->p;
1995 /* Nope, don't do this in ext4. Must leave the tree intact */
1996 #if 0
1997 *p->p = 0;
1998 #endif
1999 }
2000 /* Writer: end */
2001
2002 while(partial > p) {
2003 brelse(partial->bh);
2004 partial--;
2005 }
2006 no_top:
2007 return partial;
2008 }
2009
2010 /*
2011 * Zero a number of block pointers in either an inode or an indirect block.
2012 * If we restart the transaction we must again get write access to the
2013 * indirect block for further modification.
2014 *
2015 * We release `count' blocks on disk, but (last - first) may be greater
2016 * than `count' because there can be holes in there.
2017 */
2018 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2019 struct buffer_head *bh, ext4_fsblk_t block_to_free,
2020 unsigned long count, __le32 *first, __le32 *last)
2021 {
2022 __le32 *p;
2023 if (try_to_extend_transaction(handle, inode)) {
2024 if (bh) {
2025 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2026 ext4_journal_dirty_metadata(handle, bh);
2027 }
2028 ext4_mark_inode_dirty(handle, inode);
2029 ext4_journal_test_restart(handle, inode);
2030 if (bh) {
2031 BUFFER_TRACE(bh, "retaking write access");
2032 ext4_journal_get_write_access(handle, bh);
2033 }
2034 }
2035
2036 /*
2037 * Any buffers which are on the journal will be in memory. We find
2038 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2039 * on them. We've already detached each block from the file, so
2040 * bforget() in jbd2_journal_forget() should be safe.
2041 *
2042 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2043 */
2044 for (p = first; p < last; p++) {
2045 u32 nr = le32_to_cpu(*p);
2046 if (nr) {
2047 struct buffer_head *tbh;
2048
2049 *p = 0;
2050 tbh = sb_find_get_block(inode->i_sb, nr);
2051 ext4_forget(handle, 0, inode, tbh, nr);
2052 }
2053 }
2054
2055 ext4_free_blocks(handle, inode, block_to_free, count);
2056 }
2057
2058 /**
2059 * ext4_free_data - free a list of data blocks
2060 * @handle: handle for this transaction
2061 * @inode: inode we are dealing with
2062 * @this_bh: indirect buffer_head which contains *@first and *@last
2063 * @first: array of block numbers
2064 * @last: points immediately past the end of array
2065 *
2066 * We are freeing all blocks refered from that array (numbers are stored as
2067 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2068 *
2069 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2070 * blocks are contiguous then releasing them at one time will only affect one
2071 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2072 * actually use a lot of journal space.
2073 *
2074 * @this_bh will be %NULL if @first and @last point into the inode's direct
2075 * block pointers.
2076 */
2077 static void ext4_free_data(handle_t *handle, struct inode *inode,
2078 struct buffer_head *this_bh,
2079 __le32 *first, __le32 *last)
2080 {
2081 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
2082 unsigned long count = 0; /* Number of blocks in the run */
2083 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2084 corresponding to
2085 block_to_free */
2086 ext4_fsblk_t nr; /* Current block # */
2087 __le32 *p; /* Pointer into inode/ind
2088 for current block */
2089 int err;
2090
2091 if (this_bh) { /* For indirect block */
2092 BUFFER_TRACE(this_bh, "get_write_access");
2093 err = ext4_journal_get_write_access(handle, this_bh);
2094 /* Important: if we can't update the indirect pointers
2095 * to the blocks, we can't free them. */
2096 if (err)
2097 return;
2098 }
2099
2100 for (p = first; p < last; p++) {
2101 nr = le32_to_cpu(*p);
2102 if (nr) {
2103 /* accumulate blocks to free if they're contiguous */
2104 if (count == 0) {
2105 block_to_free = nr;
2106 block_to_free_p = p;
2107 count = 1;
2108 } else if (nr == block_to_free + count) {
2109 count++;
2110 } else {
2111 ext4_clear_blocks(handle, inode, this_bh,
2112 block_to_free,
2113 count, block_to_free_p, p);
2114 block_to_free = nr;
2115 block_to_free_p = p;
2116 count = 1;
2117 }
2118 }
2119 }
2120
2121 if (count > 0)
2122 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2123 count, block_to_free_p, p);
2124
2125 if (this_bh) {
2126 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2127 ext4_journal_dirty_metadata(handle, this_bh);
2128 }
2129 }
2130
2131 /**
2132 * ext4_free_branches - free an array of branches
2133 * @handle: JBD handle for this transaction
2134 * @inode: inode we are dealing with
2135 * @parent_bh: the buffer_head which contains *@first and *@last
2136 * @first: array of block numbers
2137 * @last: pointer immediately past the end of array
2138 * @depth: depth of the branches to free
2139 *
2140 * We are freeing all blocks refered from these branches (numbers are
2141 * stored as little-endian 32-bit) and updating @inode->i_blocks
2142 * appropriately.
2143 */
2144 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2145 struct buffer_head *parent_bh,
2146 __le32 *first, __le32 *last, int depth)
2147 {
2148 ext4_fsblk_t nr;
2149 __le32 *p;
2150
2151 if (is_handle_aborted(handle))
2152 return;
2153
2154 if (depth--) {
2155 struct buffer_head *bh;
2156 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2157 p = last;
2158 while (--p >= first) {
2159 nr = le32_to_cpu(*p);
2160 if (!nr)
2161 continue; /* A hole */
2162
2163 /* Go read the buffer for the next level down */
2164 bh = sb_bread(inode->i_sb, nr);
2165
2166 /*
2167 * A read failure? Report error and clear slot
2168 * (should be rare).
2169 */
2170 if (!bh) {
2171 ext4_error(inode->i_sb, "ext4_free_branches",
2172 "Read failure, inode=%lu, block=%llu",
2173 inode->i_ino, nr);
2174 continue;
2175 }
2176
2177 /* This zaps the entire block. Bottom up. */
2178 BUFFER_TRACE(bh, "free child branches");
2179 ext4_free_branches(handle, inode, bh,
2180 (__le32*)bh->b_data,
2181 (__le32*)bh->b_data + addr_per_block,
2182 depth);
2183
2184 /*
2185 * We've probably journalled the indirect block several
2186 * times during the truncate. But it's no longer
2187 * needed and we now drop it from the transaction via
2188 * jbd2_journal_revoke().
2189 *
2190 * That's easy if it's exclusively part of this
2191 * transaction. But if it's part of the committing
2192 * transaction then jbd2_journal_forget() will simply
2193 * brelse() it. That means that if the underlying
2194 * block is reallocated in ext4_get_block(),
2195 * unmap_underlying_metadata() will find this block
2196 * and will try to get rid of it. damn, damn.
2197 *
2198 * If this block has already been committed to the
2199 * journal, a revoke record will be written. And
2200 * revoke records must be emitted *before* clearing
2201 * this block's bit in the bitmaps.
2202 */
2203 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2204
2205 /*
2206 * Everything below this this pointer has been
2207 * released. Now let this top-of-subtree go.
2208 *
2209 * We want the freeing of this indirect block to be
2210 * atomic in the journal with the updating of the
2211 * bitmap block which owns it. So make some room in
2212 * the journal.
2213 *
2214 * We zero the parent pointer *after* freeing its
2215 * pointee in the bitmaps, so if extend_transaction()
2216 * for some reason fails to put the bitmap changes and
2217 * the release into the same transaction, recovery
2218 * will merely complain about releasing a free block,
2219 * rather than leaking blocks.
2220 */
2221 if (is_handle_aborted(handle))
2222 return;
2223 if (try_to_extend_transaction(handle, inode)) {
2224 ext4_mark_inode_dirty(handle, inode);
2225 ext4_journal_test_restart(handle, inode);
2226 }
2227
2228 ext4_free_blocks(handle, inode, nr, 1);
2229
2230 if (parent_bh) {
2231 /*
2232 * The block which we have just freed is
2233 * pointed to by an indirect block: journal it
2234 */
2235 BUFFER_TRACE(parent_bh, "get_write_access");
2236 if (!ext4_journal_get_write_access(handle,
2237 parent_bh)){
2238 *p = 0;
2239 BUFFER_TRACE(parent_bh,
2240 "call ext4_journal_dirty_metadata");
2241 ext4_journal_dirty_metadata(handle,
2242 parent_bh);
2243 }
2244 }
2245 }
2246 } else {
2247 /* We have reached the bottom of the tree. */
2248 BUFFER_TRACE(parent_bh, "free data blocks");
2249 ext4_free_data(handle, inode, parent_bh, first, last);
2250 }
2251 }
2252
2253 /*
2254 * ext4_truncate()
2255 *
2256 * We block out ext4_get_block() block instantiations across the entire
2257 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2258 * simultaneously on behalf of the same inode.
2259 *
2260 * As we work through the truncate and commmit bits of it to the journal there
2261 * is one core, guiding principle: the file's tree must always be consistent on
2262 * disk. We must be able to restart the truncate after a crash.
2263 *
2264 * The file's tree may be transiently inconsistent in memory (although it
2265 * probably isn't), but whenever we close off and commit a journal transaction,
2266 * the contents of (the filesystem + the journal) must be consistent and
2267 * restartable. It's pretty simple, really: bottom up, right to left (although
2268 * left-to-right works OK too).
2269 *
2270 * Note that at recovery time, journal replay occurs *before* the restart of
2271 * truncate against the orphan inode list.
2272 *
2273 * The committed inode has the new, desired i_size (which is the same as
2274 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
2275 * that this inode's truncate did not complete and it will again call
2276 * ext4_truncate() to have another go. So there will be instantiated blocks
2277 * to the right of the truncation point in a crashed ext4 filesystem. But
2278 * that's fine - as long as they are linked from the inode, the post-crash
2279 * ext4_truncate() run will find them and release them.
2280 */
2281 void ext4_truncate(struct inode *inode)
2282 {
2283 handle_t *handle;
2284 struct ext4_inode_info *ei = EXT4_I(inode);
2285 __le32 *i_data = ei->i_data;
2286 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2287 struct address_space *mapping = inode->i_mapping;
2288 ext4_lblk_t offsets[4];
2289 Indirect chain[4];
2290 Indirect *partial;
2291 __le32 nr = 0;
2292 int n;
2293 ext4_lblk_t last_block;
2294 unsigned blocksize = inode->i_sb->s_blocksize;
2295 struct page *page;
2296
2297 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2298 S_ISLNK(inode->i_mode)))
2299 return;
2300 if (ext4_inode_is_fast_symlink(inode))
2301 return;
2302 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2303 return;
2304
2305 /*
2306 * We have to lock the EOF page here, because lock_page() nests
2307 * outside jbd2_journal_start().
2308 */
2309 if ((inode->i_size & (blocksize - 1)) == 0) {
2310 /* Block boundary? Nothing to do */
2311 page = NULL;
2312 } else {
2313 page = grab_cache_page(mapping,
2314 inode->i_size >> PAGE_CACHE_SHIFT);
2315 if (!page)
2316 return;
2317 }
2318
2319 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2320 ext4_ext_truncate(inode, page);
2321 return;
2322 }
2323
2324 handle = start_transaction(inode);
2325 if (IS_ERR(handle)) {
2326 if (page) {
2327 clear_highpage(page);
2328 flush_dcache_page(page);
2329 unlock_page(page);
2330 page_cache_release(page);
2331 }
2332 return; /* AKPM: return what? */
2333 }
2334
2335 last_block = (inode->i_size + blocksize-1)
2336 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2337
2338 if (page)
2339 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2340
2341 n = ext4_block_to_path(inode, last_block, offsets, NULL);
2342 if (n == 0)
2343 goto out_stop; /* error */
2344
2345 /*
2346 * OK. This truncate is going to happen. We add the inode to the
2347 * orphan list, so that if this truncate spans multiple transactions,
2348 * and we crash, we will resume the truncate when the filesystem
2349 * recovers. It also marks the inode dirty, to catch the new size.
2350 *
2351 * Implication: the file must always be in a sane, consistent
2352 * truncatable state while each transaction commits.
2353 */
2354 if (ext4_orphan_add(handle, inode))
2355 goto out_stop;
2356
2357 /*
2358 * The orphan list entry will now protect us from any crash which
2359 * occurs before the truncate completes, so it is now safe to propagate
2360 * the new, shorter inode size (held for now in i_size) into the
2361 * on-disk inode. We do this via i_disksize, which is the value which
2362 * ext4 *really* writes onto the disk inode.
2363 */
2364 ei->i_disksize = inode->i_size;
2365
2366 /*
2367 * From here we block out all ext4_get_block() callers who want to
2368 * modify the block allocation tree.
2369 */
2370 down_write(&ei->i_data_sem);
2371
2372 if (n == 1) { /* direct blocks */
2373 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2374 i_data + EXT4_NDIR_BLOCKS);
2375 goto do_indirects;
2376 }
2377
2378 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2379 /* Kill the top of shared branch (not detached) */
2380 if (nr) {
2381 if (partial == chain) {
2382 /* Shared branch grows from the inode */
2383 ext4_free_branches(handle, inode, NULL,
2384 &nr, &nr+1, (chain+n-1) - partial);
2385 *partial->p = 0;
2386 /*
2387 * We mark the inode dirty prior to restart,
2388 * and prior to stop. No need for it here.
2389 */
2390 } else {
2391 /* Shared branch grows from an indirect block */
2392 BUFFER_TRACE(partial->bh, "get_write_access");
2393 ext4_free_branches(handle, inode, partial->bh,
2394 partial->p,
2395 partial->p+1, (chain+n-1) - partial);
2396 }
2397 }
2398 /* Clear the ends of indirect blocks on the shared branch */
2399 while (partial > chain) {
2400 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2401 (__le32*)partial->bh->b_data+addr_per_block,
2402 (chain+n-1) - partial);
2403 BUFFER_TRACE(partial->bh, "call brelse");
2404 brelse (partial->bh);
2405 partial--;
2406 }
2407 do_indirects:
2408 /* Kill the remaining (whole) subtrees */
2409 switch (offsets[0]) {
2410 default:
2411 nr = i_data[EXT4_IND_BLOCK];
2412 if (nr) {
2413 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2414 i_data[EXT4_IND_BLOCK] = 0;
2415 }
2416 case EXT4_IND_BLOCK:
2417 nr = i_data[EXT4_DIND_BLOCK];
2418 if (nr) {
2419 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2420 i_data[EXT4_DIND_BLOCK] = 0;
2421 }
2422 case EXT4_DIND_BLOCK:
2423 nr = i_data[EXT4_TIND_BLOCK];
2424 if (nr) {
2425 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2426 i_data[EXT4_TIND_BLOCK] = 0;
2427 }
2428 case EXT4_TIND_BLOCK:
2429 ;
2430 }
2431
2432 ext4_discard_reservation(inode);
2433
2434 up_write(&ei->i_data_sem);
2435 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2436 ext4_mark_inode_dirty(handle, inode);
2437
2438 /*
2439 * In a multi-transaction truncate, we only make the final transaction
2440 * synchronous
2441 */
2442 if (IS_SYNC(inode))
2443 handle->h_sync = 1;
2444 out_stop:
2445 /*
2446 * If this was a simple ftruncate(), and the file will remain alive
2447 * then we need to clear up the orphan record which we created above.
2448 * However, if this was a real unlink then we were called by
2449 * ext4_delete_inode(), and we allow that function to clean up the
2450 * orphan info for us.
2451 */
2452 if (inode->i_nlink)
2453 ext4_orphan_del(handle, inode);
2454
2455 ext4_journal_stop(handle);
2456 }
2457
2458 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2459 unsigned long ino, struct ext4_iloc *iloc)
2460 {
2461 unsigned long desc, group_desc;
2462 ext4_group_t block_group;
2463 unsigned long offset;
2464 ext4_fsblk_t block;
2465 struct buffer_head *bh;
2466 struct ext4_group_desc * gdp;
2467
2468 if (!ext4_valid_inum(sb, ino)) {
2469 /*
2470 * This error is already checked for in namei.c unless we are
2471 * looking at an NFS filehandle, in which case no error
2472 * report is needed
2473 */
2474 return 0;
2475 }
2476
2477 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2478 if (block_group >= EXT4_SB(sb)->s_groups_count) {
2479 ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2480 return 0;
2481 }
2482 smp_rmb();
2483 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2484 desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2485 bh = EXT4_SB(sb)->s_group_desc[group_desc];
2486 if (!bh) {
2487 ext4_error (sb, "ext4_get_inode_block",
2488 "Descriptor not loaded");
2489 return 0;
2490 }
2491
2492 gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2493 desc * EXT4_DESC_SIZE(sb));
2494 /*
2495 * Figure out the offset within the block group inode table
2496 */
2497 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2498 EXT4_INODE_SIZE(sb);
2499 block = ext4_inode_table(sb, gdp) +
2500 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
2501
2502 iloc->block_group = block_group;
2503 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2504 return block;
2505 }
2506
2507 /*
2508 * ext4_get_inode_loc returns with an extra refcount against the inode's
2509 * underlying buffer_head on success. If 'in_mem' is true, we have all
2510 * data in memory that is needed to recreate the on-disk version of this
2511 * inode.
2512 */
2513 static int __ext4_get_inode_loc(struct inode *inode,
2514 struct ext4_iloc *iloc, int in_mem)
2515 {
2516 ext4_fsblk_t block;
2517 struct buffer_head *bh;
2518
2519 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2520 if (!block)
2521 return -EIO;
2522
2523 bh = sb_getblk(inode->i_sb, block);
2524 if (!bh) {
2525 ext4_error (inode->i_sb, "ext4_get_inode_loc",
2526 "unable to read inode block - "
2527 "inode=%lu, block=%llu",
2528 inode->i_ino, block);
2529 return -EIO;
2530 }
2531 if (!buffer_uptodate(bh)) {
2532 lock_buffer(bh);
2533 if (buffer_uptodate(bh)) {
2534 /* someone brought it uptodate while we waited */
2535 unlock_buffer(bh);
2536 goto has_buffer;
2537 }
2538
2539 /*
2540 * If we have all information of the inode in memory and this
2541 * is the only valid inode in the block, we need not read the
2542 * block.
2543 */
2544 if (in_mem) {
2545 struct buffer_head *bitmap_bh;
2546 struct ext4_group_desc *desc;
2547 int inodes_per_buffer;
2548 int inode_offset, i;
2549 ext4_group_t block_group;
2550 int start;
2551
2552 block_group = (inode->i_ino - 1) /
2553 EXT4_INODES_PER_GROUP(inode->i_sb);
2554 inodes_per_buffer = bh->b_size /
2555 EXT4_INODE_SIZE(inode->i_sb);
2556 inode_offset = ((inode->i_ino - 1) %
2557 EXT4_INODES_PER_GROUP(inode->i_sb));
2558 start = inode_offset & ~(inodes_per_buffer - 1);
2559
2560 /* Is the inode bitmap in cache? */
2561 desc = ext4_get_group_desc(inode->i_sb,
2562 block_group, NULL);
2563 if (!desc)
2564 goto make_io;
2565
2566 bitmap_bh = sb_getblk(inode->i_sb,
2567 ext4_inode_bitmap(inode->i_sb, desc));
2568 if (!bitmap_bh)
2569 goto make_io;
2570
2571 /*
2572 * If the inode bitmap isn't in cache then the
2573 * optimisation may end up performing two reads instead
2574 * of one, so skip it.
2575 */
2576 if (!buffer_uptodate(bitmap_bh)) {
2577 brelse(bitmap_bh);
2578 goto make_io;
2579 }
2580 for (i = start; i < start + inodes_per_buffer; i++) {
2581 if (i == inode_offset)
2582 continue;
2583 if (ext4_test_bit(i, bitmap_bh->b_data))
2584 break;
2585 }
2586 brelse(bitmap_bh);
2587 if (i == start + inodes_per_buffer) {
2588 /* all other inodes are free, so skip I/O */
2589 memset(bh->b_data, 0, bh->b_size);
2590 set_buffer_uptodate(bh);
2591 unlock_buffer(bh);
2592 goto has_buffer;
2593 }
2594 }
2595
2596 make_io:
2597 /*
2598 * There are other valid inodes in the buffer, this inode
2599 * has in-inode xattrs, or we don't have this inode in memory.
2600 * Read the block from disk.
2601 */
2602 get_bh(bh);
2603 bh->b_end_io = end_buffer_read_sync;
2604 submit_bh(READ_META, bh);
2605 wait_on_buffer(bh);
2606 if (!buffer_uptodate(bh)) {
2607 ext4_error(inode->i_sb, "ext4_get_inode_loc",
2608 "unable to read inode block - "
2609 "inode=%lu, block=%llu",
2610 inode->i_ino, block);
2611 brelse(bh);
2612 return -EIO;
2613 }
2614 }
2615 has_buffer:
2616 iloc->bh = bh;
2617 return 0;
2618 }
2619
2620 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2621 {
2622 /* We have all inode data except xattrs in memory here. */
2623 return __ext4_get_inode_loc(inode, iloc,
2624 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2625 }
2626
2627 void ext4_set_inode_flags(struct inode *inode)
2628 {
2629 unsigned int flags = EXT4_I(inode)->i_flags;
2630
2631 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2632 if (flags & EXT4_SYNC_FL)
2633 inode->i_flags |= S_SYNC;
2634 if (flags & EXT4_APPEND_FL)
2635 inode->i_flags |= S_APPEND;
2636 if (flags & EXT4_IMMUTABLE_FL)
2637 inode->i_flags |= S_IMMUTABLE;
2638 if (flags & EXT4_NOATIME_FL)
2639 inode->i_flags |= S_NOATIME;
2640 if (flags & EXT4_DIRSYNC_FL)
2641 inode->i_flags |= S_DIRSYNC;
2642 }
2643
2644 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2645 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2646 {
2647 unsigned int flags = ei->vfs_inode.i_flags;
2648
2649 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2650 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2651 if (flags & S_SYNC)
2652 ei->i_flags |= EXT4_SYNC_FL;
2653 if (flags & S_APPEND)
2654 ei->i_flags |= EXT4_APPEND_FL;
2655 if (flags & S_IMMUTABLE)
2656 ei->i_flags |= EXT4_IMMUTABLE_FL;
2657 if (flags & S_NOATIME)
2658 ei->i_flags |= EXT4_NOATIME_FL;
2659 if (flags & S_DIRSYNC)
2660 ei->i_flags |= EXT4_DIRSYNC_FL;
2661 }
2662 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2663 struct ext4_inode_info *ei)
2664 {
2665 blkcnt_t i_blocks ;
2666 struct inode *inode = &(ei->vfs_inode);
2667 struct super_block *sb = inode->i_sb;
2668
2669 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2670 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2671 /* we are using combined 48 bit field */
2672 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2673 le32_to_cpu(raw_inode->i_blocks_lo);
2674 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2675 /* i_blocks represent file system block size */
2676 return i_blocks << (inode->i_blkbits - 9);
2677 } else {
2678 return i_blocks;
2679 }
2680 } else {
2681 return le32_to_cpu(raw_inode->i_blocks_lo);
2682 }
2683 }
2684
2685 void ext4_read_inode(struct inode * inode)
2686 {
2687 struct ext4_iloc iloc;
2688 struct ext4_inode *raw_inode;
2689 struct ext4_inode_info *ei = EXT4_I(inode);
2690 struct buffer_head *bh;
2691 int block;
2692
2693 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2694 ei->i_acl = EXT4_ACL_NOT_CACHED;
2695 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2696 #endif
2697 ei->i_block_alloc_info = NULL;
2698
2699 if (__ext4_get_inode_loc(inode, &iloc, 0))
2700 goto bad_inode;
2701 bh = iloc.bh;
2702 raw_inode = ext4_raw_inode(&iloc);
2703 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2704 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2705 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2706 if(!(test_opt (inode->i_sb, NO_UID32))) {
2707 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2708 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2709 }
2710 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2711
2712 ei->i_state = 0;
2713 ei->i_dir_start_lookup = 0;
2714 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2715 /* We now have enough fields to check if the inode was active or not.
2716 * This is needed because nfsd might try to access dead inodes
2717 * the test is that same one that e2fsck uses
2718 * NeilBrown 1999oct15
2719 */
2720 if (inode->i_nlink == 0) {
2721 if (inode->i_mode == 0 ||
2722 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2723 /* this inode is deleted */
2724 brelse (bh);
2725 goto bad_inode;
2726 }
2727 /* The only unlinked inodes we let through here have
2728 * valid i_mode and are being read by the orphan
2729 * recovery code: that's fine, we're about to complete
2730 * the process of deleting those. */
2731 }
2732 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2733 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
2734 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
2735 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2736 cpu_to_le32(EXT4_OS_HURD)) {
2737 ei->i_file_acl |=
2738 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2739 }
2740 inode->i_size = ext4_isize(raw_inode);
2741 ei->i_disksize = inode->i_size;
2742 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2743 ei->i_block_group = iloc.block_group;
2744 /*
2745 * NOTE! The in-memory inode i_data array is in little-endian order
2746 * even on big-endian machines: we do NOT byteswap the block numbers!
2747 */
2748 for (block = 0; block < EXT4_N_BLOCKS; block++)
2749 ei->i_data[block] = raw_inode->i_block[block];
2750 INIT_LIST_HEAD(&ei->i_orphan);
2751
2752 if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
2753 EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2754 /*
2755 * When mke2fs creates big inodes it does not zero out
2756 * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
2757 * so ignore those first few inodes.
2758 */
2759 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2760 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2761 EXT4_INODE_SIZE(inode->i_sb)) {
2762 brelse (bh);
2763 goto bad_inode;
2764 }
2765 if (ei->i_extra_isize == 0) {
2766 /* The extra space is currently unused. Use it. */
2767 ei->i_extra_isize = sizeof(struct ext4_inode) -
2768 EXT4_GOOD_OLD_INODE_SIZE;
2769 } else {
2770 __le32 *magic = (void *)raw_inode +
2771 EXT4_GOOD_OLD_INODE_SIZE +
2772 ei->i_extra_isize;
2773 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2774 ei->i_state |= EXT4_STATE_XATTR;
2775 }
2776 } else
2777 ei->i_extra_isize = 0;
2778
2779 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2780 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2781 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2782 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2783
2784 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
2785 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2786 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2787 inode->i_version |=
2788 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
2789 }
2790
2791 if (S_ISREG(inode->i_mode)) {
2792 inode->i_op = &ext4_file_inode_operations;
2793 inode->i_fop = &ext4_file_operations;
2794 ext4_set_aops(inode);
2795 } else if (S_ISDIR(inode->i_mode)) {
2796 inode->i_op = &ext4_dir_inode_operations;
2797 inode->i_fop = &ext4_dir_operations;
2798 } else if (S_ISLNK(inode->i_mode)) {
2799 if (ext4_inode_is_fast_symlink(inode))
2800 inode->i_op = &ext4_fast_symlink_inode_operations;
2801 else {
2802 inode->i_op = &ext4_symlink_inode_operations;
2803 ext4_set_aops(inode);
2804 }
2805 } else {
2806 inode->i_op = &ext4_special_inode_operations;
2807 if (raw_inode->i_block[0])
2808 init_special_inode(inode, inode->i_mode,
2809 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2810 else
2811 init_special_inode(inode, inode->i_mode,
2812 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2813 }
2814 brelse (iloc.bh);
2815 ext4_set_inode_flags(inode);
2816 return;
2817
2818 bad_inode:
2819 make_bad_inode(inode);
2820 return;
2821 }
2822
2823 static int ext4_inode_blocks_set(handle_t *handle,
2824 struct ext4_inode *raw_inode,
2825 struct ext4_inode_info *ei)
2826 {
2827 struct inode *inode = &(ei->vfs_inode);
2828 u64 i_blocks = inode->i_blocks;
2829 struct super_block *sb = inode->i_sb;
2830 int err = 0;
2831
2832 if (i_blocks <= ~0U) {
2833 /*
2834 * i_blocks can be represnted in a 32 bit variable
2835 * as multiple of 512 bytes
2836 */
2837 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2838 raw_inode->i_blocks_high = 0;
2839 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2840 } else if (i_blocks <= 0xffffffffffffULL) {
2841 /*
2842 * i_blocks can be represented in a 48 bit variable
2843 * as multiple of 512 bytes
2844 */
2845 err = ext4_update_rocompat_feature(handle, sb,
2846 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2847 if (err)
2848 goto err_out;
2849 /* i_block is stored in the split 48 bit fields */
2850 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2851 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2852 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
2853 } else {
2854 /*
2855 * i_blocks should be represented in a 48 bit variable
2856 * as multiple of file system block size
2857 */
2858 err = ext4_update_rocompat_feature(handle, sb,
2859 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2860 if (err)
2861 goto err_out;
2862 ei->i_flags |= EXT4_HUGE_FILE_FL;
2863 /* i_block is stored in file system block size */
2864 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2865 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2866 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
2867 }
2868 err_out:
2869 return err;
2870 }
2871
2872 /*
2873 * Post the struct inode info into an on-disk inode location in the
2874 * buffer-cache. This gobbles the caller's reference to the
2875 * buffer_head in the inode location struct.
2876 *
2877 * The caller must have write access to iloc->bh.
2878 */
2879 static int ext4_do_update_inode(handle_t *handle,
2880 struct inode *inode,
2881 struct ext4_iloc *iloc)
2882 {
2883 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2884 struct ext4_inode_info *ei = EXT4_I(inode);
2885 struct buffer_head *bh = iloc->bh;
2886 int err = 0, rc, block;
2887
2888 /* For fields not not tracking in the in-memory inode,
2889 * initialise them to zero for new inodes. */
2890 if (ei->i_state & EXT4_STATE_NEW)
2891 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2892
2893 ext4_get_inode_flags(ei);
2894 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2895 if(!(test_opt(inode->i_sb, NO_UID32))) {
2896 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2897 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2898 /*
2899 * Fix up interoperability with old kernels. Otherwise, old inodes get
2900 * re-used with the upper 16 bits of the uid/gid intact
2901 */
2902 if(!ei->i_dtime) {
2903 raw_inode->i_uid_high =
2904 cpu_to_le16(high_16_bits(inode->i_uid));
2905 raw_inode->i_gid_high =
2906 cpu_to_le16(high_16_bits(inode->i_gid));
2907 } else {
2908 raw_inode->i_uid_high = 0;
2909 raw_inode->i_gid_high = 0;
2910 }
2911 } else {
2912 raw_inode->i_uid_low =
2913 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2914 raw_inode->i_gid_low =
2915 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2916 raw_inode->i_uid_high = 0;
2917 raw_inode->i_gid_high = 0;
2918 }
2919 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2920
2921 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2922 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2923 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2924 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2925
2926 if (ext4_inode_blocks_set(handle, raw_inode, ei))
2927 goto out_brelse;
2928 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2929 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2930 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2931 cpu_to_le32(EXT4_OS_HURD))
2932 raw_inode->i_file_acl_high =
2933 cpu_to_le16(ei->i_file_acl >> 32);
2934 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
2935 ext4_isize_set(raw_inode, ei->i_disksize);
2936 if (ei->i_disksize > 0x7fffffffULL) {
2937 struct super_block *sb = inode->i_sb;
2938 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2939 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2940 EXT4_SB(sb)->s_es->s_rev_level ==
2941 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2942 /* If this is the first large file
2943 * created, add a flag to the superblock.
2944 */
2945 err = ext4_journal_get_write_access(handle,
2946 EXT4_SB(sb)->s_sbh);
2947 if (err)
2948 goto out_brelse;
2949 ext4_update_dynamic_rev(sb);
2950 EXT4_SET_RO_COMPAT_FEATURE(sb,
2951 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2952 sb->s_dirt = 1;
2953 handle->h_sync = 1;
2954 err = ext4_journal_dirty_metadata(handle,
2955 EXT4_SB(sb)->s_sbh);
2956 }
2957 }
2958 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2959 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2960 if (old_valid_dev(inode->i_rdev)) {
2961 raw_inode->i_block[0] =
2962 cpu_to_le32(old_encode_dev(inode->i_rdev));
2963 raw_inode->i_block[1] = 0;
2964 } else {
2965 raw_inode->i_block[0] = 0;
2966 raw_inode->i_block[1] =
2967 cpu_to_le32(new_encode_dev(inode->i_rdev));
2968 raw_inode->i_block[2] = 0;
2969 }
2970 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
2971 raw_inode->i_block[block] = ei->i_data[block];
2972
2973 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
2974 if (ei->i_extra_isize) {
2975 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2976 raw_inode->i_version_hi =
2977 cpu_to_le32(inode->i_version >> 32);
2978 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2979 }
2980
2981
2982 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2983 rc = ext4_journal_dirty_metadata(handle, bh);
2984 if (!err)
2985 err = rc;
2986 ei->i_state &= ~EXT4_STATE_NEW;
2987
2988 out_brelse:
2989 brelse (bh);
2990 ext4_std_error(inode->i_sb, err);
2991 return err;
2992 }
2993
2994 /*
2995 * ext4_write_inode()
2996 *
2997 * We are called from a few places:
2998 *
2999 * - Within generic_file_write() for O_SYNC files.
3000 * Here, there will be no transaction running. We wait for any running
3001 * trasnaction to commit.
3002 *
3003 * - Within sys_sync(), kupdate and such.
3004 * We wait on commit, if tol to.
3005 *
3006 * - Within prune_icache() (PF_MEMALLOC == true)
3007 * Here we simply return. We can't afford to block kswapd on the
3008 * journal commit.
3009 *
3010 * In all cases it is actually safe for us to return without doing anything,
3011 * because the inode has been copied into a raw inode buffer in
3012 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3013 * knfsd.
3014 *
3015 * Note that we are absolutely dependent upon all inode dirtiers doing the
3016 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3017 * which we are interested.
3018 *
3019 * It would be a bug for them to not do this. The code:
3020 *
3021 * mark_inode_dirty(inode)
3022 * stuff();
3023 * inode->i_size = expr;
3024 *
3025 * is in error because a kswapd-driven write_inode() could occur while
3026 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3027 * will no longer be on the superblock's dirty inode list.
3028 */
3029 int ext4_write_inode(struct inode *inode, int wait)
3030 {
3031 if (current->flags & PF_MEMALLOC)
3032 return 0;
3033
3034 if (ext4_journal_current_handle()) {
3035 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3036 dump_stack();
3037 return -EIO;
3038 }
3039
3040 if (!wait)
3041 return 0;
3042
3043 return ext4_force_commit(inode->i_sb);
3044 }
3045
3046 /*
3047 * ext4_setattr()
3048 *
3049 * Called from notify_change.
3050 *
3051 * We want to trap VFS attempts to truncate the file as soon as
3052 * possible. In particular, we want to make sure that when the VFS
3053 * shrinks i_size, we put the inode on the orphan list and modify
3054 * i_disksize immediately, so that during the subsequent flushing of
3055 * dirty pages and freeing of disk blocks, we can guarantee that any
3056 * commit will leave the blocks being flushed in an unused state on
3057 * disk. (On recovery, the inode will get truncated and the blocks will
3058 * be freed, so we have a strong guarantee that no future commit will
3059 * leave these blocks visible to the user.)
3060 *
3061 * Called with inode->sem down.
3062 */
3063 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3064 {
3065 struct inode *inode = dentry->d_inode;
3066 int error, rc = 0;
3067 const unsigned int ia_valid = attr->ia_valid;
3068
3069 error = inode_change_ok(inode, attr);
3070 if (error)
3071 return error;
3072
3073 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3074 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3075 handle_t *handle;
3076
3077 /* (user+group)*(old+new) structure, inode write (sb,
3078 * inode block, ? - but truncate inode update has it) */
3079 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3080 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3081 if (IS_ERR(handle)) {
3082 error = PTR_ERR(handle);
3083 goto err_out;
3084 }
3085 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3086 if (error) {
3087 ext4_journal_stop(handle);
3088 return error;
3089 }
3090 /* Update corresponding info in inode so that everything is in
3091 * one transaction */
3092 if (attr->ia_valid & ATTR_UID)
3093 inode->i_uid = attr->ia_uid;
3094 if (attr->ia_valid & ATTR_GID)
3095 inode->i_gid = attr->ia_gid;
3096 error = ext4_mark_inode_dirty(handle, inode);
3097 ext4_journal_stop(handle);
3098 }
3099
3100 if (attr->ia_valid & ATTR_SIZE) {
3101 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3102 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3103
3104 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3105 error = -EFBIG;
3106 goto err_out;
3107 }
3108 }
3109 }
3110
3111 if (S_ISREG(inode->i_mode) &&
3112 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3113 handle_t *handle;
3114
3115 handle = ext4_journal_start(inode, 3);
3116 if (IS_ERR(handle)) {
3117 error = PTR_ERR(handle);
3118 goto err_out;
3119 }
3120
3121 error = ext4_orphan_add(handle, inode);
3122 EXT4_I(inode)->i_disksize = attr->ia_size;
3123 rc = ext4_mark_inode_dirty(handle, inode);
3124 if (!error)
3125 error = rc;
3126 ext4_journal_stop(handle);
3127 }
3128
3129 rc = inode_setattr(inode, attr);
3130
3131 /* If inode_setattr's call to ext4_truncate failed to get a
3132 * transaction handle at all, we need to clean up the in-core
3133 * orphan list manually. */
3134 if (inode->i_nlink)
3135 ext4_orphan_del(NULL, inode);
3136
3137 if (!rc && (ia_valid & ATTR_MODE))
3138 rc = ext4_acl_chmod(inode);
3139
3140 err_out:
3141 ext4_std_error(inode->i_sb, error);
3142 if (!error)
3143 error = rc;
3144 return error;
3145 }
3146
3147
3148 /*
3149 * How many blocks doth make a writepage()?
3150 *
3151 * With N blocks per page, it may be:
3152 * N data blocks
3153 * 2 indirect block
3154 * 2 dindirect
3155 * 1 tindirect
3156 * N+5 bitmap blocks (from the above)
3157 * N+5 group descriptor summary blocks
3158 * 1 inode block
3159 * 1 superblock.
3160 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3161 *
3162 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3163 *
3164 * With ordered or writeback data it's the same, less the N data blocks.
3165 *
3166 * If the inode's direct blocks can hold an integral number of pages then a
3167 * page cannot straddle two indirect blocks, and we can only touch one indirect
3168 * and dindirect block, and the "5" above becomes "3".
3169 *
3170 * This still overestimates under most circumstances. If we were to pass the
3171 * start and end offsets in here as well we could do block_to_path() on each
3172 * block and work out the exact number of indirects which are touched. Pah.
3173 */
3174
3175 int ext4_writepage_trans_blocks(struct inode *inode)
3176 {
3177 int bpp = ext4_journal_blocks_per_page(inode);
3178 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3179 int ret;
3180
3181 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3182 return ext4_ext_writepage_trans_blocks(inode, bpp);
3183
3184 if (ext4_should_journal_data(inode))
3185 ret = 3 * (bpp + indirects) + 2;
3186 else
3187 ret = 2 * (bpp + indirects) + 2;
3188
3189 #ifdef CONFIG_QUOTA
3190 /* We know that structure was already allocated during DQUOT_INIT so
3191 * we will be updating only the data blocks + inodes */
3192 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3193 #endif
3194
3195 return ret;
3196 }
3197
3198 /*
3199 * The caller must have previously called ext4_reserve_inode_write().
3200 * Give this, we know that the caller already has write access to iloc->bh.
3201 */
3202 int ext4_mark_iloc_dirty(handle_t *handle,
3203 struct inode *inode, struct ext4_iloc *iloc)
3204 {
3205 int err = 0;
3206
3207 if (test_opt(inode->i_sb, I_VERSION))
3208 inode_inc_iversion(inode);
3209
3210 /* the do_update_inode consumes one bh->b_count */
3211 get_bh(iloc->bh);
3212
3213 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3214 err = ext4_do_update_inode(handle, inode, iloc);
3215 put_bh(iloc->bh);
3216 return err;
3217 }
3218
3219 /*
3220 * On success, We end up with an outstanding reference count against
3221 * iloc->bh. This _must_ be cleaned up later.
3222 */
3223
3224 int
3225 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3226 struct ext4_iloc *iloc)
3227 {
3228 int err = 0;
3229 if (handle) {
3230 err = ext4_get_inode_loc(inode, iloc);
3231 if (!err) {
3232 BUFFER_TRACE(iloc->bh, "get_write_access");
3233 err = ext4_journal_get_write_access(handle, iloc->bh);
3234 if (err) {
3235 brelse(iloc->bh);
3236 iloc->bh = NULL;
3237 }
3238 }
3239 }
3240 ext4_std_error(inode->i_sb, err);
3241 return err;
3242 }
3243
3244 /*
3245 * Expand an inode by new_extra_isize bytes.
3246 * Returns 0 on success or negative error number on failure.
3247 */
3248 static int ext4_expand_extra_isize(struct inode *inode,
3249 unsigned int new_extra_isize,
3250 struct ext4_iloc iloc,
3251 handle_t *handle)
3252 {
3253 struct ext4_inode *raw_inode;
3254 struct ext4_xattr_ibody_header *header;
3255 struct ext4_xattr_entry *entry;
3256
3257 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3258 return 0;
3259
3260 raw_inode = ext4_raw_inode(&iloc);
3261
3262 header = IHDR(inode, raw_inode);
3263 entry = IFIRST(header);
3264
3265 /* No extended attributes present */
3266 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3267 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3268 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3269 new_extra_isize);
3270 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3271 return 0;
3272 }
3273
3274 /* try to expand with EAs present */
3275 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3276 raw_inode, handle);
3277 }
3278
3279 /*
3280 * What we do here is to mark the in-core inode as clean with respect to inode
3281 * dirtiness (it may still be data-dirty).
3282 * This means that the in-core inode may be reaped by prune_icache
3283 * without having to perform any I/O. This is a very good thing,
3284 * because *any* task may call prune_icache - even ones which
3285 * have a transaction open against a different journal.
3286 *
3287 * Is this cheating? Not really. Sure, we haven't written the
3288 * inode out, but prune_icache isn't a user-visible syncing function.
3289 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3290 * we start and wait on commits.
3291 *
3292 * Is this efficient/effective? Well, we're being nice to the system
3293 * by cleaning up our inodes proactively so they can be reaped
3294 * without I/O. But we are potentially leaving up to five seconds'
3295 * worth of inodes floating about which prune_icache wants us to
3296 * write out. One way to fix that would be to get prune_icache()
3297 * to do a write_super() to free up some memory. It has the desired
3298 * effect.
3299 */
3300 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3301 {
3302 struct ext4_iloc iloc;
3303 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3304 static unsigned int mnt_count;
3305 int err, ret;
3306
3307 might_sleep();
3308 err = ext4_reserve_inode_write(handle, inode, &iloc);
3309 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3310 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3311 /*
3312 * We need extra buffer credits since we may write into EA block
3313 * with this same handle. If journal_extend fails, then it will
3314 * only result in a minor loss of functionality for that inode.
3315 * If this is felt to be critical, then e2fsck should be run to
3316 * force a large enough s_min_extra_isize.
3317 */
3318 if ((jbd2_journal_extend(handle,
3319 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3320 ret = ext4_expand_extra_isize(inode,
3321 sbi->s_want_extra_isize,
3322 iloc, handle);
3323 if (ret) {
3324 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3325 if (mnt_count !=
3326 le16_to_cpu(sbi->s_es->s_mnt_count)) {
3327 ext4_warning(inode->i_sb, __FUNCTION__,
3328 "Unable to expand inode %lu. Delete"
3329 " some EAs or run e2fsck.",
3330 inode->i_ino);
3331 mnt_count =
3332 le16_to_cpu(sbi->s_es->s_mnt_count);
3333 }
3334 }
3335 }
3336 }
3337 if (!err)
3338 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3339 return err;
3340 }
3341
3342 /*
3343 * ext4_dirty_inode() is called from __mark_inode_dirty()
3344 *
3345 * We're really interested in the case where a file is being extended.
3346 * i_size has been changed by generic_commit_write() and we thus need
3347 * to include the updated inode in the current transaction.
3348 *
3349 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3350 * are allocated to the file.
3351 *
3352 * If the inode is marked synchronous, we don't honour that here - doing
3353 * so would cause a commit on atime updates, which we don't bother doing.
3354 * We handle synchronous inodes at the highest possible level.
3355 */
3356 void ext4_dirty_inode(struct inode *inode)
3357 {
3358 handle_t *current_handle = ext4_journal_current_handle();
3359 handle_t *handle;
3360
3361 handle = ext4_journal_start(inode, 2);
3362 if (IS_ERR(handle))
3363 goto out;
3364 if (current_handle &&
3365 current_handle->h_transaction != handle->h_transaction) {
3366 /* This task has a transaction open against a different fs */
3367 printk(KERN_EMERG "%s: transactions do not match!\n",
3368 __FUNCTION__);
3369 } else {
3370 jbd_debug(5, "marking dirty. outer handle=%p\n",
3371 current_handle);
3372 ext4_mark_inode_dirty(handle, inode);
3373 }
3374 ext4_journal_stop(handle);
3375 out:
3376 return;
3377 }
3378
3379 #if 0
3380 /*
3381 * Bind an inode's backing buffer_head into this transaction, to prevent
3382 * it from being flushed to disk early. Unlike
3383 * ext4_reserve_inode_write, this leaves behind no bh reference and
3384 * returns no iloc structure, so the caller needs to repeat the iloc
3385 * lookup to mark the inode dirty later.
3386 */
3387 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3388 {
3389 struct ext4_iloc iloc;
3390
3391 int err = 0;
3392 if (handle) {
3393 err = ext4_get_inode_loc(inode, &iloc);
3394 if (!err) {
3395 BUFFER_TRACE(iloc.bh, "get_write_access");
3396 err = jbd2_journal_get_write_access(handle, iloc.bh);
3397 if (!err)
3398 err = ext4_journal_dirty_metadata(handle,
3399 iloc.bh);
3400 brelse(iloc.bh);
3401 }
3402 }
3403 ext4_std_error(inode->i_sb, err);
3404 return err;
3405 }
3406 #endif
3407
3408 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3409 {
3410 journal_t *journal;
3411 handle_t *handle;
3412 int err;
3413
3414 /*
3415 * We have to be very careful here: changing a data block's
3416 * journaling status dynamically is dangerous. If we write a
3417 * data block to the journal, change the status and then delete
3418 * that block, we risk forgetting to revoke the old log record
3419 * from the journal and so a subsequent replay can corrupt data.
3420 * So, first we make sure that the journal is empty and that
3421 * nobody is changing anything.
3422 */
3423
3424 journal = EXT4_JOURNAL(inode);
3425 if (is_journal_aborted(journal))
3426 return -EROFS;
3427
3428 jbd2_journal_lock_updates(journal);
3429 jbd2_journal_flush(journal);
3430
3431 /*
3432 * OK, there are no updates running now, and all cached data is
3433 * synced to disk. We are now in a completely consistent state
3434 * which doesn't have anything in the journal, and we know that
3435 * no filesystem updates are running, so it is safe to modify
3436 * the inode's in-core data-journaling state flag now.
3437 */
3438
3439 if (val)
3440 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3441 else
3442 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3443 ext4_set_aops(inode);
3444
3445 jbd2_journal_unlock_updates(journal);
3446
3447 /* Finally we can mark the inode as dirty. */
3448
3449 handle = ext4_journal_start(inode, 1);
3450 if (IS_ERR(handle))
3451 return PTR_ERR(handle);
3452
3453 err = ext4_mark_inode_dirty(handle, inode);
3454 handle->h_sync = 1;
3455 ext4_journal_stop(handle);
3456 ext4_std_error(inode->i_sb, err);
3457
3458 return err;
3459 }
This page took 0.133092 seconds and 4 git commands to generate.