Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52 {
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = le16_to_cpu(raw->i_checksum_lo);
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = cpu_to_le16(csum_lo);
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73
74 return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79 {
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !ext4_has_metadata_csum(inode->i_sb))
85 return 1;
86
87 provided = le16_to_cpu(raw->i_checksum_lo);
88 calculated = ext4_inode_csum(inode, raw, ei);
89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 else
93 calculated &= 0xFFFF;
94
95 return provided == calculated;
96 }
97
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 struct ext4_inode_info *ei)
100 {
101 __u32 csum;
102
103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 cpu_to_le32(EXT4_OS_LINUX) ||
105 !ext4_has_metadata_csum(inode->i_sb))
106 return;
107
108 csum = ext4_inode_csum(inode, raw, ei);
109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 loff_t new_size)
117 {
118 trace_ext4_begin_ordered_truncate(inode, new_size);
119 /*
120 * If jinode is zero, then we never opened the file for
121 * writing, so there's no need to call
122 * jbd2_journal_begin_ordered_truncate() since there's no
123 * outstanding writes we need to flush.
124 */
125 if (!EXT4_I(inode)->jinode)
126 return 0;
127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 EXT4_I(inode)->jinode,
129 new_size);
130 }
131
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 int pextents);
138
139 /*
140 * Test whether an inode is a fast symlink.
141 */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144 int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146
147 if (ext4_has_inline_data(inode))
148 return 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 int nblocks)
160 {
161 int ret;
162
163 /*
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 jbd_debug(2, "restarting handle %p\n", handle);
171 up_write(&EXT4_I(inode)->i_data_sem);
172 ret = ext4_journal_restart(handle, nblocks);
173 down_write(&EXT4_I(inode)->i_data_sem);
174 ext4_discard_preallocations(inode);
175
176 return ret;
177 }
178
179 /*
180 * Called at the last iput() if i_nlink is zero.
181 */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 handle_t *handle;
185 int err;
186
187 trace_ext4_evict_inode(inode);
188
189 if (inode->i_nlink) {
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214 jbd2_complete_transaction(journal, commit_tid);
215 filemap_write_and_wait(&inode->i_data);
216 }
217 truncate_inode_pages_final(&inode->i_data);
218
219 goto no_delete;
220 }
221
222 if (is_bad_inode(inode))
223 goto no_delete;
224 dquot_initialize(inode);
225
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
228 truncate_inode_pages_final(&inode->i_data);
229
230 /*
231 * Protect us against freezing - iput() caller didn't have to have any
232 * protection against it
233 */
234 sb_start_intwrite(inode->i_sb);
235 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
236 ext4_blocks_for_truncate(inode)+3);
237 if (IS_ERR(handle)) {
238 ext4_std_error(inode->i_sb, PTR_ERR(handle));
239 /*
240 * If we're going to skip the normal cleanup, we still need to
241 * make sure that the in-core orphan linked list is properly
242 * cleaned up.
243 */
244 ext4_orphan_del(NULL, inode);
245 sb_end_intwrite(inode->i_sb);
246 goto no_delete;
247 }
248
249 if (IS_SYNC(inode))
250 ext4_handle_sync(handle);
251 inode->i_size = 0;
252 err = ext4_mark_inode_dirty(handle, inode);
253 if (err) {
254 ext4_warning(inode->i_sb,
255 "couldn't mark inode dirty (err %d)", err);
256 goto stop_handle;
257 }
258 if (inode->i_blocks)
259 ext4_truncate(inode);
260
261 /*
262 * ext4_ext_truncate() doesn't reserve any slop when it
263 * restarts journal transactions; therefore there may not be
264 * enough credits left in the handle to remove the inode from
265 * the orphan list and set the dtime field.
266 */
267 if (!ext4_handle_has_enough_credits(handle, 3)) {
268 err = ext4_journal_extend(handle, 3);
269 if (err > 0)
270 err = ext4_journal_restart(handle, 3);
271 if (err != 0) {
272 ext4_warning(inode->i_sb,
273 "couldn't extend journal (err %d)", err);
274 stop_handle:
275 ext4_journal_stop(handle);
276 ext4_orphan_del(NULL, inode);
277 sb_end_intwrite(inode->i_sb);
278 goto no_delete;
279 }
280 }
281
282 /*
283 * Kill off the orphan record which ext4_truncate created.
284 * AKPM: I think this can be inside the above `if'.
285 * Note that ext4_orphan_del() has to be able to cope with the
286 * deletion of a non-existent orphan - this is because we don't
287 * know if ext4_truncate() actually created an orphan record.
288 * (Well, we could do this if we need to, but heck - it works)
289 */
290 ext4_orphan_del(handle, inode);
291 EXT4_I(inode)->i_dtime = get_seconds();
292
293 /*
294 * One subtle ordering requirement: if anything has gone wrong
295 * (transaction abort, IO errors, whatever), then we can still
296 * do these next steps (the fs will already have been marked as
297 * having errors), but we can't free the inode if the mark_dirty
298 * fails.
299 */
300 if (ext4_mark_inode_dirty(handle, inode))
301 /* If that failed, just do the required in-core inode clear. */
302 ext4_clear_inode(inode);
303 else
304 ext4_free_inode(handle, inode);
305 ext4_journal_stop(handle);
306 sb_end_intwrite(inode->i_sb);
307 return;
308 no_delete:
309 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
310 }
311
312 #ifdef CONFIG_QUOTA
313 qsize_t *ext4_get_reserved_space(struct inode *inode)
314 {
315 return &EXT4_I(inode)->i_reserved_quota;
316 }
317 #endif
318
319 /*
320 * Called with i_data_sem down, which is important since we can call
321 * ext4_discard_preallocations() from here.
322 */
323 void ext4_da_update_reserve_space(struct inode *inode,
324 int used, int quota_claim)
325 {
326 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
327 struct ext4_inode_info *ei = EXT4_I(inode);
328
329 spin_lock(&ei->i_block_reservation_lock);
330 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
331 if (unlikely(used > ei->i_reserved_data_blocks)) {
332 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
333 "with only %d reserved data blocks",
334 __func__, inode->i_ino, used,
335 ei->i_reserved_data_blocks);
336 WARN_ON(1);
337 used = ei->i_reserved_data_blocks;
338 }
339
340 /* Update per-inode reservations */
341 ei->i_reserved_data_blocks -= used;
342 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
343
344 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
345
346 /* Update quota subsystem for data blocks */
347 if (quota_claim)
348 dquot_claim_block(inode, EXT4_C2B(sbi, used));
349 else {
350 /*
351 * We did fallocate with an offset that is already delayed
352 * allocated. So on delayed allocated writeback we should
353 * not re-claim the quota for fallocated blocks.
354 */
355 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
356 }
357
358 /*
359 * If we have done all the pending block allocations and if
360 * there aren't any writers on the inode, we can discard the
361 * inode's preallocations.
362 */
363 if ((ei->i_reserved_data_blocks == 0) &&
364 (atomic_read(&inode->i_writecount) == 0))
365 ext4_discard_preallocations(inode);
366 }
367
368 static int __check_block_validity(struct inode *inode, const char *func,
369 unsigned int line,
370 struct ext4_map_blocks *map)
371 {
372 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
373 map->m_len)) {
374 ext4_error_inode(inode, func, line, map->m_pblk,
375 "lblock %lu mapped to illegal pblock "
376 "(length %d)", (unsigned long) map->m_lblk,
377 map->m_len);
378 return -EFSCORRUPTED;
379 }
380 return 0;
381 }
382
383 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
384 ext4_lblk_t len)
385 {
386 int ret;
387
388 if (ext4_encrypted_inode(inode))
389 return ext4_encrypted_zeroout(inode, lblk, pblk, len);
390
391 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
392 if (ret > 0)
393 ret = 0;
394
395 return ret;
396 }
397
398 #define check_block_validity(inode, map) \
399 __check_block_validity((inode), __func__, __LINE__, (map))
400
401 #ifdef ES_AGGRESSIVE_TEST
402 static void ext4_map_blocks_es_recheck(handle_t *handle,
403 struct inode *inode,
404 struct ext4_map_blocks *es_map,
405 struct ext4_map_blocks *map,
406 int flags)
407 {
408 int retval;
409
410 map->m_flags = 0;
411 /*
412 * There is a race window that the result is not the same.
413 * e.g. xfstests #223 when dioread_nolock enables. The reason
414 * is that we lookup a block mapping in extent status tree with
415 * out taking i_data_sem. So at the time the unwritten extent
416 * could be converted.
417 */
418 down_read(&EXT4_I(inode)->i_data_sem);
419 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
420 retval = ext4_ext_map_blocks(handle, inode, map, flags &
421 EXT4_GET_BLOCKS_KEEP_SIZE);
422 } else {
423 retval = ext4_ind_map_blocks(handle, inode, map, flags &
424 EXT4_GET_BLOCKS_KEEP_SIZE);
425 }
426 up_read((&EXT4_I(inode)->i_data_sem));
427
428 /*
429 * We don't check m_len because extent will be collpased in status
430 * tree. So the m_len might not equal.
431 */
432 if (es_map->m_lblk != map->m_lblk ||
433 es_map->m_flags != map->m_flags ||
434 es_map->m_pblk != map->m_pblk) {
435 printk("ES cache assertion failed for inode: %lu "
436 "es_cached ex [%d/%d/%llu/%x] != "
437 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438 inode->i_ino, es_map->m_lblk, es_map->m_len,
439 es_map->m_pblk, es_map->m_flags, map->m_lblk,
440 map->m_len, map->m_pblk, map->m_flags,
441 retval, flags);
442 }
443 }
444 #endif /* ES_AGGRESSIVE_TEST */
445
446 /*
447 * The ext4_map_blocks() function tries to look up the requested blocks,
448 * and returns if the blocks are already mapped.
449 *
450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451 * and store the allocated blocks in the result buffer head and mark it
452 * mapped.
453 *
454 * If file type is extents based, it will call ext4_ext_map_blocks(),
455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
456 * based files
457 *
458 * On success, it returns the number of blocks being mapped or allocated. if
459 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
460 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
461 *
462 * It returns 0 if plain look up failed (blocks have not been allocated), in
463 * that case, @map is returned as unmapped but we still do fill map->m_len to
464 * indicate the length of a hole starting at map->m_lblk.
465 *
466 * It returns the error in case of allocation failure.
467 */
468 int ext4_map_blocks(handle_t *handle, struct inode *inode,
469 struct ext4_map_blocks *map, int flags)
470 {
471 struct extent_status es;
472 int retval;
473 int ret = 0;
474 #ifdef ES_AGGRESSIVE_TEST
475 struct ext4_map_blocks orig_map;
476
477 memcpy(&orig_map, map, sizeof(*map));
478 #endif
479
480 map->m_flags = 0;
481 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482 "logical block %lu\n", inode->i_ino, flags, map->m_len,
483 (unsigned long) map->m_lblk);
484
485 /*
486 * ext4_map_blocks returns an int, and m_len is an unsigned int
487 */
488 if (unlikely(map->m_len > INT_MAX))
489 map->m_len = INT_MAX;
490
491 /* We can handle the block number less than EXT_MAX_BLOCKS */
492 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493 return -EFSCORRUPTED;
494
495 /* Lookup extent status tree firstly */
496 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
498 map->m_pblk = ext4_es_pblock(&es) +
499 map->m_lblk - es.es_lblk;
500 map->m_flags |= ext4_es_is_written(&es) ?
501 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
502 retval = es.es_len - (map->m_lblk - es.es_lblk);
503 if (retval > map->m_len)
504 retval = map->m_len;
505 map->m_len = retval;
506 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
507 map->m_pblk = 0;
508 retval = es.es_len - (map->m_lblk - es.es_lblk);
509 if (retval > map->m_len)
510 retval = map->m_len;
511 map->m_len = retval;
512 retval = 0;
513 } else {
514 BUG_ON(1);
515 }
516 #ifdef ES_AGGRESSIVE_TEST
517 ext4_map_blocks_es_recheck(handle, inode, map,
518 &orig_map, flags);
519 #endif
520 goto found;
521 }
522
523 /*
524 * Try to see if we can get the block without requesting a new
525 * file system block.
526 */
527 down_read(&EXT4_I(inode)->i_data_sem);
528 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
529 retval = ext4_ext_map_blocks(handle, inode, map, flags &
530 EXT4_GET_BLOCKS_KEEP_SIZE);
531 } else {
532 retval = ext4_ind_map_blocks(handle, inode, map, flags &
533 EXT4_GET_BLOCKS_KEEP_SIZE);
534 }
535 if (retval > 0) {
536 unsigned int status;
537
538 if (unlikely(retval != map->m_len)) {
539 ext4_warning(inode->i_sb,
540 "ES len assertion failed for inode "
541 "%lu: retval %d != map->m_len %d",
542 inode->i_ino, retval, map->m_len);
543 WARN_ON(1);
544 }
545
546 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
547 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
548 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
549 !(status & EXTENT_STATUS_WRITTEN) &&
550 ext4_find_delalloc_range(inode, map->m_lblk,
551 map->m_lblk + map->m_len - 1))
552 status |= EXTENT_STATUS_DELAYED;
553 ret = ext4_es_insert_extent(inode, map->m_lblk,
554 map->m_len, map->m_pblk, status);
555 if (ret < 0)
556 retval = ret;
557 }
558 up_read((&EXT4_I(inode)->i_data_sem));
559
560 found:
561 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
562 ret = check_block_validity(inode, map);
563 if (ret != 0)
564 return ret;
565 }
566
567 /* If it is only a block(s) look up */
568 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
569 return retval;
570
571 /*
572 * Returns if the blocks have already allocated
573 *
574 * Note that if blocks have been preallocated
575 * ext4_ext_get_block() returns the create = 0
576 * with buffer head unmapped.
577 */
578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
579 /*
580 * If we need to convert extent to unwritten
581 * we continue and do the actual work in
582 * ext4_ext_map_blocks()
583 */
584 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
585 return retval;
586
587 /*
588 * Here we clear m_flags because after allocating an new extent,
589 * it will be set again.
590 */
591 map->m_flags &= ~EXT4_MAP_FLAGS;
592
593 /*
594 * New blocks allocate and/or writing to unwritten extent
595 * will possibly result in updating i_data, so we take
596 * the write lock of i_data_sem, and call get_block()
597 * with create == 1 flag.
598 */
599 down_write(&EXT4_I(inode)->i_data_sem);
600
601 /*
602 * We need to check for EXT4 here because migrate
603 * could have changed the inode type in between
604 */
605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606 retval = ext4_ext_map_blocks(handle, inode, map, flags);
607 } else {
608 retval = ext4_ind_map_blocks(handle, inode, map, flags);
609
610 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
611 /*
612 * We allocated new blocks which will result in
613 * i_data's format changing. Force the migrate
614 * to fail by clearing migrate flags
615 */
616 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
617 }
618
619 /*
620 * Update reserved blocks/metadata blocks after successful
621 * block allocation which had been deferred till now. We don't
622 * support fallocate for non extent files. So we can update
623 * reserve space here.
624 */
625 if ((retval > 0) &&
626 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
627 ext4_da_update_reserve_space(inode, retval, 1);
628 }
629
630 if (retval > 0) {
631 unsigned int status;
632
633 if (unlikely(retval != map->m_len)) {
634 ext4_warning(inode->i_sb,
635 "ES len assertion failed for inode "
636 "%lu: retval %d != map->m_len %d",
637 inode->i_ino, retval, map->m_len);
638 WARN_ON(1);
639 }
640
641 /*
642 * We have to zeroout blocks before inserting them into extent
643 * status tree. Otherwise someone could look them up there and
644 * use them before they are really zeroed.
645 */
646 if (flags & EXT4_GET_BLOCKS_ZERO &&
647 map->m_flags & EXT4_MAP_MAPPED &&
648 map->m_flags & EXT4_MAP_NEW) {
649 ret = ext4_issue_zeroout(inode, map->m_lblk,
650 map->m_pblk, map->m_len);
651 if (ret) {
652 retval = ret;
653 goto out_sem;
654 }
655 }
656
657 /*
658 * If the extent has been zeroed out, we don't need to update
659 * extent status tree.
660 */
661 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
662 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
663 if (ext4_es_is_written(&es))
664 goto out_sem;
665 }
666 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
667 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
668 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
669 !(status & EXTENT_STATUS_WRITTEN) &&
670 ext4_find_delalloc_range(inode, map->m_lblk,
671 map->m_lblk + map->m_len - 1))
672 status |= EXTENT_STATUS_DELAYED;
673 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
674 map->m_pblk, status);
675 if (ret < 0) {
676 retval = ret;
677 goto out_sem;
678 }
679 }
680
681 out_sem:
682 up_write((&EXT4_I(inode)->i_data_sem));
683 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
684 ret = check_block_validity(inode, map);
685 if (ret != 0)
686 return ret;
687
688 /*
689 * Inodes with freshly allocated blocks where contents will be
690 * visible after transaction commit must be on transaction's
691 * ordered data list.
692 */
693 if (map->m_flags & EXT4_MAP_NEW &&
694 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
695 !(flags & EXT4_GET_BLOCKS_ZERO) &&
696 !IS_NOQUOTA(inode) &&
697 ext4_should_order_data(inode)) {
698 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
699 ret = ext4_jbd2_inode_add_wait(handle, inode);
700 else
701 ret = ext4_jbd2_inode_add_write(handle, inode);
702 if (ret)
703 return ret;
704 }
705 }
706 return retval;
707 }
708
709 /*
710 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
711 * we have to be careful as someone else may be manipulating b_state as well.
712 */
713 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
714 {
715 unsigned long old_state;
716 unsigned long new_state;
717
718 flags &= EXT4_MAP_FLAGS;
719
720 /* Dummy buffer_head? Set non-atomically. */
721 if (!bh->b_page) {
722 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
723 return;
724 }
725 /*
726 * Someone else may be modifying b_state. Be careful! This is ugly but
727 * once we get rid of using bh as a container for mapping information
728 * to pass to / from get_block functions, this can go away.
729 */
730 do {
731 old_state = READ_ONCE(bh->b_state);
732 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
733 } while (unlikely(
734 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
735 }
736
737 static int _ext4_get_block(struct inode *inode, sector_t iblock,
738 struct buffer_head *bh, int flags)
739 {
740 struct ext4_map_blocks map;
741 int ret = 0;
742
743 if (ext4_has_inline_data(inode))
744 return -ERANGE;
745
746 map.m_lblk = iblock;
747 map.m_len = bh->b_size >> inode->i_blkbits;
748
749 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
750 flags);
751 if (ret > 0) {
752 map_bh(bh, inode->i_sb, map.m_pblk);
753 ext4_update_bh_state(bh, map.m_flags);
754 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
755 ret = 0;
756 }
757 return ret;
758 }
759
760 int ext4_get_block(struct inode *inode, sector_t iblock,
761 struct buffer_head *bh, int create)
762 {
763 return _ext4_get_block(inode, iblock, bh,
764 create ? EXT4_GET_BLOCKS_CREATE : 0);
765 }
766
767 /*
768 * Get block function used when preparing for buffered write if we require
769 * creating an unwritten extent if blocks haven't been allocated. The extent
770 * will be converted to written after the IO is complete.
771 */
772 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
773 struct buffer_head *bh_result, int create)
774 {
775 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
776 inode->i_ino, create);
777 return _ext4_get_block(inode, iblock, bh_result,
778 EXT4_GET_BLOCKS_IO_CREATE_EXT);
779 }
780
781 /* Maximum number of blocks we map for direct IO at once. */
782 #define DIO_MAX_BLOCKS 4096
783
784 /*
785 * Get blocks function for the cases that need to start a transaction -
786 * generally difference cases of direct IO and DAX IO. It also handles retries
787 * in case of ENOSPC.
788 */
789 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
790 struct buffer_head *bh_result, int flags)
791 {
792 int dio_credits;
793 handle_t *handle;
794 int retries = 0;
795 int ret;
796
797 /* Trim mapping request to maximum we can map at once for DIO */
798 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
799 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
800 dio_credits = ext4_chunk_trans_blocks(inode,
801 bh_result->b_size >> inode->i_blkbits);
802 retry:
803 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
804 if (IS_ERR(handle))
805 return PTR_ERR(handle);
806
807 ret = _ext4_get_block(inode, iblock, bh_result, flags);
808 ext4_journal_stop(handle);
809
810 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
811 goto retry;
812 return ret;
813 }
814
815 /* Get block function for DIO reads and writes to inodes without extents */
816 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
817 struct buffer_head *bh, int create)
818 {
819 /* We don't expect handle for direct IO */
820 WARN_ON_ONCE(ext4_journal_current_handle());
821
822 if (!create)
823 return _ext4_get_block(inode, iblock, bh, 0);
824 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
825 }
826
827 /*
828 * Get block function for AIO DIO writes when we create unwritten extent if
829 * blocks are not allocated yet. The extent will be converted to written
830 * after IO is complete.
831 */
832 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
833 sector_t iblock, struct buffer_head *bh_result, int create)
834 {
835 int ret;
836
837 /* We don't expect handle for direct IO */
838 WARN_ON_ONCE(ext4_journal_current_handle());
839
840 ret = ext4_get_block_trans(inode, iblock, bh_result,
841 EXT4_GET_BLOCKS_IO_CREATE_EXT);
842
843 /*
844 * When doing DIO using unwritten extents, we need io_end to convert
845 * unwritten extents to written on IO completion. We allocate io_end
846 * once we spot unwritten extent and store it in b_private. Generic
847 * DIO code keeps b_private set and furthermore passes the value to
848 * our completion callback in 'private' argument.
849 */
850 if (!ret && buffer_unwritten(bh_result)) {
851 if (!bh_result->b_private) {
852 ext4_io_end_t *io_end;
853
854 io_end = ext4_init_io_end(inode, GFP_KERNEL);
855 if (!io_end)
856 return -ENOMEM;
857 bh_result->b_private = io_end;
858 ext4_set_io_unwritten_flag(inode, io_end);
859 }
860 set_buffer_defer_completion(bh_result);
861 }
862
863 return ret;
864 }
865
866 /*
867 * Get block function for non-AIO DIO writes when we create unwritten extent if
868 * blocks are not allocated yet. The extent will be converted to written
869 * after IO is complete from ext4_ext_direct_IO() function.
870 */
871 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
872 sector_t iblock, struct buffer_head *bh_result, int create)
873 {
874 int ret;
875
876 /* We don't expect handle for direct IO */
877 WARN_ON_ONCE(ext4_journal_current_handle());
878
879 ret = ext4_get_block_trans(inode, iblock, bh_result,
880 EXT4_GET_BLOCKS_IO_CREATE_EXT);
881
882 /*
883 * Mark inode as having pending DIO writes to unwritten extents.
884 * ext4_ext_direct_IO() checks this flag and converts extents to
885 * written.
886 */
887 if (!ret && buffer_unwritten(bh_result))
888 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
889
890 return ret;
891 }
892
893 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
894 struct buffer_head *bh_result, int create)
895 {
896 int ret;
897
898 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
899 inode->i_ino, create);
900 /* We don't expect handle for direct IO */
901 WARN_ON_ONCE(ext4_journal_current_handle());
902
903 ret = _ext4_get_block(inode, iblock, bh_result, 0);
904 /*
905 * Blocks should have been preallocated! ext4_file_write_iter() checks
906 * that.
907 */
908 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
909
910 return ret;
911 }
912
913
914 /*
915 * `handle' can be NULL if create is zero
916 */
917 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
918 ext4_lblk_t block, int map_flags)
919 {
920 struct ext4_map_blocks map;
921 struct buffer_head *bh;
922 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
923 int err;
924
925 J_ASSERT(handle != NULL || create == 0);
926
927 map.m_lblk = block;
928 map.m_len = 1;
929 err = ext4_map_blocks(handle, inode, &map, map_flags);
930
931 if (err == 0)
932 return create ? ERR_PTR(-ENOSPC) : NULL;
933 if (err < 0)
934 return ERR_PTR(err);
935
936 bh = sb_getblk(inode->i_sb, map.m_pblk);
937 if (unlikely(!bh))
938 return ERR_PTR(-ENOMEM);
939 if (map.m_flags & EXT4_MAP_NEW) {
940 J_ASSERT(create != 0);
941 J_ASSERT(handle != NULL);
942
943 /*
944 * Now that we do not always journal data, we should
945 * keep in mind whether this should always journal the
946 * new buffer as metadata. For now, regular file
947 * writes use ext4_get_block instead, so it's not a
948 * problem.
949 */
950 lock_buffer(bh);
951 BUFFER_TRACE(bh, "call get_create_access");
952 err = ext4_journal_get_create_access(handle, bh);
953 if (unlikely(err)) {
954 unlock_buffer(bh);
955 goto errout;
956 }
957 if (!buffer_uptodate(bh)) {
958 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
959 set_buffer_uptodate(bh);
960 }
961 unlock_buffer(bh);
962 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
963 err = ext4_handle_dirty_metadata(handle, inode, bh);
964 if (unlikely(err))
965 goto errout;
966 } else
967 BUFFER_TRACE(bh, "not a new buffer");
968 return bh;
969 errout:
970 brelse(bh);
971 return ERR_PTR(err);
972 }
973
974 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
975 ext4_lblk_t block, int map_flags)
976 {
977 struct buffer_head *bh;
978
979 bh = ext4_getblk(handle, inode, block, map_flags);
980 if (IS_ERR(bh))
981 return bh;
982 if (!bh || buffer_uptodate(bh))
983 return bh;
984 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
985 wait_on_buffer(bh);
986 if (buffer_uptodate(bh))
987 return bh;
988 put_bh(bh);
989 return ERR_PTR(-EIO);
990 }
991
992 int ext4_walk_page_buffers(handle_t *handle,
993 struct buffer_head *head,
994 unsigned from,
995 unsigned to,
996 int *partial,
997 int (*fn)(handle_t *handle,
998 struct buffer_head *bh))
999 {
1000 struct buffer_head *bh;
1001 unsigned block_start, block_end;
1002 unsigned blocksize = head->b_size;
1003 int err, ret = 0;
1004 struct buffer_head *next;
1005
1006 for (bh = head, block_start = 0;
1007 ret == 0 && (bh != head || !block_start);
1008 block_start = block_end, bh = next) {
1009 next = bh->b_this_page;
1010 block_end = block_start + blocksize;
1011 if (block_end <= from || block_start >= to) {
1012 if (partial && !buffer_uptodate(bh))
1013 *partial = 1;
1014 continue;
1015 }
1016 err = (*fn)(handle, bh);
1017 if (!ret)
1018 ret = err;
1019 }
1020 return ret;
1021 }
1022
1023 /*
1024 * To preserve ordering, it is essential that the hole instantiation and
1025 * the data write be encapsulated in a single transaction. We cannot
1026 * close off a transaction and start a new one between the ext4_get_block()
1027 * and the commit_write(). So doing the jbd2_journal_start at the start of
1028 * prepare_write() is the right place.
1029 *
1030 * Also, this function can nest inside ext4_writepage(). In that case, we
1031 * *know* that ext4_writepage() has generated enough buffer credits to do the
1032 * whole page. So we won't block on the journal in that case, which is good,
1033 * because the caller may be PF_MEMALLOC.
1034 *
1035 * By accident, ext4 can be reentered when a transaction is open via
1036 * quota file writes. If we were to commit the transaction while thus
1037 * reentered, there can be a deadlock - we would be holding a quota
1038 * lock, and the commit would never complete if another thread had a
1039 * transaction open and was blocking on the quota lock - a ranking
1040 * violation.
1041 *
1042 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1043 * will _not_ run commit under these circumstances because handle->h_ref
1044 * is elevated. We'll still have enough credits for the tiny quotafile
1045 * write.
1046 */
1047 int do_journal_get_write_access(handle_t *handle,
1048 struct buffer_head *bh)
1049 {
1050 int dirty = buffer_dirty(bh);
1051 int ret;
1052
1053 if (!buffer_mapped(bh) || buffer_freed(bh))
1054 return 0;
1055 /*
1056 * __block_write_begin() could have dirtied some buffers. Clean
1057 * the dirty bit as jbd2_journal_get_write_access() could complain
1058 * otherwise about fs integrity issues. Setting of the dirty bit
1059 * by __block_write_begin() isn't a real problem here as we clear
1060 * the bit before releasing a page lock and thus writeback cannot
1061 * ever write the buffer.
1062 */
1063 if (dirty)
1064 clear_buffer_dirty(bh);
1065 BUFFER_TRACE(bh, "get write access");
1066 ret = ext4_journal_get_write_access(handle, bh);
1067 if (!ret && dirty)
1068 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1069 return ret;
1070 }
1071
1072 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1073 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1074 get_block_t *get_block)
1075 {
1076 unsigned from = pos & (PAGE_SIZE - 1);
1077 unsigned to = from + len;
1078 struct inode *inode = page->mapping->host;
1079 unsigned block_start, block_end;
1080 sector_t block;
1081 int err = 0;
1082 unsigned blocksize = inode->i_sb->s_blocksize;
1083 unsigned bbits;
1084 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1085 bool decrypt = false;
1086
1087 BUG_ON(!PageLocked(page));
1088 BUG_ON(from > PAGE_SIZE);
1089 BUG_ON(to > PAGE_SIZE);
1090 BUG_ON(from > to);
1091
1092 if (!page_has_buffers(page))
1093 create_empty_buffers(page, blocksize, 0);
1094 head = page_buffers(page);
1095 bbits = ilog2(blocksize);
1096 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1097
1098 for (bh = head, block_start = 0; bh != head || !block_start;
1099 block++, block_start = block_end, bh = bh->b_this_page) {
1100 block_end = block_start + blocksize;
1101 if (block_end <= from || block_start >= to) {
1102 if (PageUptodate(page)) {
1103 if (!buffer_uptodate(bh))
1104 set_buffer_uptodate(bh);
1105 }
1106 continue;
1107 }
1108 if (buffer_new(bh))
1109 clear_buffer_new(bh);
1110 if (!buffer_mapped(bh)) {
1111 WARN_ON(bh->b_size != blocksize);
1112 err = get_block(inode, block, bh, 1);
1113 if (err)
1114 break;
1115 if (buffer_new(bh)) {
1116 unmap_underlying_metadata(bh->b_bdev,
1117 bh->b_blocknr);
1118 if (PageUptodate(page)) {
1119 clear_buffer_new(bh);
1120 set_buffer_uptodate(bh);
1121 mark_buffer_dirty(bh);
1122 continue;
1123 }
1124 if (block_end > to || block_start < from)
1125 zero_user_segments(page, to, block_end,
1126 block_start, from);
1127 continue;
1128 }
1129 }
1130 if (PageUptodate(page)) {
1131 if (!buffer_uptodate(bh))
1132 set_buffer_uptodate(bh);
1133 continue;
1134 }
1135 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1136 !buffer_unwritten(bh) &&
1137 (block_start < from || block_end > to)) {
1138 ll_rw_block(READ, 1, &bh);
1139 *wait_bh++ = bh;
1140 decrypt = ext4_encrypted_inode(inode) &&
1141 S_ISREG(inode->i_mode);
1142 }
1143 }
1144 /*
1145 * If we issued read requests, let them complete.
1146 */
1147 while (wait_bh > wait) {
1148 wait_on_buffer(*--wait_bh);
1149 if (!buffer_uptodate(*wait_bh))
1150 err = -EIO;
1151 }
1152 if (unlikely(err))
1153 page_zero_new_buffers(page, from, to);
1154 else if (decrypt)
1155 err = ext4_decrypt(page);
1156 return err;
1157 }
1158 #endif
1159
1160 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1161 loff_t pos, unsigned len, unsigned flags,
1162 struct page **pagep, void **fsdata)
1163 {
1164 struct inode *inode = mapping->host;
1165 int ret, needed_blocks;
1166 handle_t *handle;
1167 int retries = 0;
1168 struct page *page;
1169 pgoff_t index;
1170 unsigned from, to;
1171
1172 trace_ext4_write_begin(inode, pos, len, flags);
1173 /*
1174 * Reserve one block more for addition to orphan list in case
1175 * we allocate blocks but write fails for some reason
1176 */
1177 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1178 index = pos >> PAGE_SHIFT;
1179 from = pos & (PAGE_SIZE - 1);
1180 to = from + len;
1181
1182 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1183 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1184 flags, pagep);
1185 if (ret < 0)
1186 return ret;
1187 if (ret == 1)
1188 return 0;
1189 }
1190
1191 /*
1192 * grab_cache_page_write_begin() can take a long time if the
1193 * system is thrashing due to memory pressure, or if the page
1194 * is being written back. So grab it first before we start
1195 * the transaction handle. This also allows us to allocate
1196 * the page (if needed) without using GFP_NOFS.
1197 */
1198 retry_grab:
1199 page = grab_cache_page_write_begin(mapping, index, flags);
1200 if (!page)
1201 return -ENOMEM;
1202 unlock_page(page);
1203
1204 retry_journal:
1205 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1206 if (IS_ERR(handle)) {
1207 put_page(page);
1208 return PTR_ERR(handle);
1209 }
1210
1211 lock_page(page);
1212 if (page->mapping != mapping) {
1213 /* The page got truncated from under us */
1214 unlock_page(page);
1215 put_page(page);
1216 ext4_journal_stop(handle);
1217 goto retry_grab;
1218 }
1219 /* In case writeback began while the page was unlocked */
1220 wait_for_stable_page(page);
1221
1222 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1223 if (ext4_should_dioread_nolock(inode))
1224 ret = ext4_block_write_begin(page, pos, len,
1225 ext4_get_block_unwritten);
1226 else
1227 ret = ext4_block_write_begin(page, pos, len,
1228 ext4_get_block);
1229 #else
1230 if (ext4_should_dioread_nolock(inode))
1231 ret = __block_write_begin(page, pos, len,
1232 ext4_get_block_unwritten);
1233 else
1234 ret = __block_write_begin(page, pos, len, ext4_get_block);
1235 #endif
1236 if (!ret && ext4_should_journal_data(inode)) {
1237 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1238 from, to, NULL,
1239 do_journal_get_write_access);
1240 }
1241
1242 if (ret) {
1243 unlock_page(page);
1244 /*
1245 * __block_write_begin may have instantiated a few blocks
1246 * outside i_size. Trim these off again. Don't need
1247 * i_size_read because we hold i_mutex.
1248 *
1249 * Add inode to orphan list in case we crash before
1250 * truncate finishes
1251 */
1252 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1253 ext4_orphan_add(handle, inode);
1254
1255 ext4_journal_stop(handle);
1256 if (pos + len > inode->i_size) {
1257 ext4_truncate_failed_write(inode);
1258 /*
1259 * If truncate failed early the inode might
1260 * still be on the orphan list; we need to
1261 * make sure the inode is removed from the
1262 * orphan list in that case.
1263 */
1264 if (inode->i_nlink)
1265 ext4_orphan_del(NULL, inode);
1266 }
1267
1268 if (ret == -ENOSPC &&
1269 ext4_should_retry_alloc(inode->i_sb, &retries))
1270 goto retry_journal;
1271 put_page(page);
1272 return ret;
1273 }
1274 *pagep = page;
1275 return ret;
1276 }
1277
1278 /* For write_end() in data=journal mode */
1279 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1280 {
1281 int ret;
1282 if (!buffer_mapped(bh) || buffer_freed(bh))
1283 return 0;
1284 set_buffer_uptodate(bh);
1285 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1286 clear_buffer_meta(bh);
1287 clear_buffer_prio(bh);
1288 return ret;
1289 }
1290
1291 /*
1292 * We need to pick up the new inode size which generic_commit_write gave us
1293 * `file' can be NULL - eg, when called from page_symlink().
1294 *
1295 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1296 * buffers are managed internally.
1297 */
1298 static int ext4_write_end(struct file *file,
1299 struct address_space *mapping,
1300 loff_t pos, unsigned len, unsigned copied,
1301 struct page *page, void *fsdata)
1302 {
1303 handle_t *handle = ext4_journal_current_handle();
1304 struct inode *inode = mapping->host;
1305 loff_t old_size = inode->i_size;
1306 int ret = 0, ret2;
1307 int i_size_changed = 0;
1308
1309 trace_ext4_write_end(inode, pos, len, copied);
1310 if (ext4_has_inline_data(inode)) {
1311 ret = ext4_write_inline_data_end(inode, pos, len,
1312 copied, page);
1313 if (ret < 0)
1314 goto errout;
1315 copied = ret;
1316 } else
1317 copied = block_write_end(file, mapping, pos,
1318 len, copied, page, fsdata);
1319 /*
1320 * it's important to update i_size while still holding page lock:
1321 * page writeout could otherwise come in and zero beyond i_size.
1322 */
1323 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1324 unlock_page(page);
1325 put_page(page);
1326
1327 if (old_size < pos)
1328 pagecache_isize_extended(inode, old_size, pos);
1329 /*
1330 * Don't mark the inode dirty under page lock. First, it unnecessarily
1331 * makes the holding time of page lock longer. Second, it forces lock
1332 * ordering of page lock and transaction start for journaling
1333 * filesystems.
1334 */
1335 if (i_size_changed)
1336 ext4_mark_inode_dirty(handle, inode);
1337
1338 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1339 /* if we have allocated more blocks and copied
1340 * less. We will have blocks allocated outside
1341 * inode->i_size. So truncate them
1342 */
1343 ext4_orphan_add(handle, inode);
1344 errout:
1345 ret2 = ext4_journal_stop(handle);
1346 if (!ret)
1347 ret = ret2;
1348
1349 if (pos + len > inode->i_size) {
1350 ext4_truncate_failed_write(inode);
1351 /*
1352 * If truncate failed early the inode might still be
1353 * on the orphan list; we need to make sure the inode
1354 * is removed from the orphan list in that case.
1355 */
1356 if (inode->i_nlink)
1357 ext4_orphan_del(NULL, inode);
1358 }
1359
1360 return ret ? ret : copied;
1361 }
1362
1363 /*
1364 * This is a private version of page_zero_new_buffers() which doesn't
1365 * set the buffer to be dirty, since in data=journalled mode we need
1366 * to call ext4_handle_dirty_metadata() instead.
1367 */
1368 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1369 {
1370 unsigned int block_start = 0, block_end;
1371 struct buffer_head *head, *bh;
1372
1373 bh = head = page_buffers(page);
1374 do {
1375 block_end = block_start + bh->b_size;
1376 if (buffer_new(bh)) {
1377 if (block_end > from && block_start < to) {
1378 if (!PageUptodate(page)) {
1379 unsigned start, size;
1380
1381 start = max(from, block_start);
1382 size = min(to, block_end) - start;
1383
1384 zero_user(page, start, size);
1385 set_buffer_uptodate(bh);
1386 }
1387 clear_buffer_new(bh);
1388 }
1389 }
1390 block_start = block_end;
1391 bh = bh->b_this_page;
1392 } while (bh != head);
1393 }
1394
1395 static int ext4_journalled_write_end(struct file *file,
1396 struct address_space *mapping,
1397 loff_t pos, unsigned len, unsigned copied,
1398 struct page *page, void *fsdata)
1399 {
1400 handle_t *handle = ext4_journal_current_handle();
1401 struct inode *inode = mapping->host;
1402 loff_t old_size = inode->i_size;
1403 int ret = 0, ret2;
1404 int partial = 0;
1405 unsigned from, to;
1406 int size_changed = 0;
1407
1408 trace_ext4_journalled_write_end(inode, pos, len, copied);
1409 from = pos & (PAGE_SIZE - 1);
1410 to = from + len;
1411
1412 BUG_ON(!ext4_handle_valid(handle));
1413
1414 if (ext4_has_inline_data(inode))
1415 copied = ext4_write_inline_data_end(inode, pos, len,
1416 copied, page);
1417 else {
1418 if (copied < len) {
1419 if (!PageUptodate(page))
1420 copied = 0;
1421 zero_new_buffers(page, from+copied, to);
1422 }
1423
1424 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1425 to, &partial, write_end_fn);
1426 if (!partial)
1427 SetPageUptodate(page);
1428 }
1429 size_changed = ext4_update_inode_size(inode, pos + copied);
1430 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1431 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1432 unlock_page(page);
1433 put_page(page);
1434
1435 if (old_size < pos)
1436 pagecache_isize_extended(inode, old_size, pos);
1437
1438 if (size_changed) {
1439 ret2 = ext4_mark_inode_dirty(handle, inode);
1440 if (!ret)
1441 ret = ret2;
1442 }
1443
1444 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1445 /* if we have allocated more blocks and copied
1446 * less. We will have blocks allocated outside
1447 * inode->i_size. So truncate them
1448 */
1449 ext4_orphan_add(handle, inode);
1450
1451 ret2 = ext4_journal_stop(handle);
1452 if (!ret)
1453 ret = ret2;
1454 if (pos + len > inode->i_size) {
1455 ext4_truncate_failed_write(inode);
1456 /*
1457 * If truncate failed early the inode might still be
1458 * on the orphan list; we need to make sure the inode
1459 * is removed from the orphan list in that case.
1460 */
1461 if (inode->i_nlink)
1462 ext4_orphan_del(NULL, inode);
1463 }
1464
1465 return ret ? ret : copied;
1466 }
1467
1468 /*
1469 * Reserve space for a single cluster
1470 */
1471 static int ext4_da_reserve_space(struct inode *inode)
1472 {
1473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474 struct ext4_inode_info *ei = EXT4_I(inode);
1475 int ret;
1476
1477 /*
1478 * We will charge metadata quota at writeout time; this saves
1479 * us from metadata over-estimation, though we may go over by
1480 * a small amount in the end. Here we just reserve for data.
1481 */
1482 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1483 if (ret)
1484 return ret;
1485
1486 spin_lock(&ei->i_block_reservation_lock);
1487 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1488 spin_unlock(&ei->i_block_reservation_lock);
1489 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1490 return -ENOSPC;
1491 }
1492 ei->i_reserved_data_blocks++;
1493 trace_ext4_da_reserve_space(inode);
1494 spin_unlock(&ei->i_block_reservation_lock);
1495
1496 return 0; /* success */
1497 }
1498
1499 static void ext4_da_release_space(struct inode *inode, int to_free)
1500 {
1501 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1502 struct ext4_inode_info *ei = EXT4_I(inode);
1503
1504 if (!to_free)
1505 return; /* Nothing to release, exit */
1506
1507 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1508
1509 trace_ext4_da_release_space(inode, to_free);
1510 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1511 /*
1512 * if there aren't enough reserved blocks, then the
1513 * counter is messed up somewhere. Since this
1514 * function is called from invalidate page, it's
1515 * harmless to return without any action.
1516 */
1517 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1518 "ino %lu, to_free %d with only %d reserved "
1519 "data blocks", inode->i_ino, to_free,
1520 ei->i_reserved_data_blocks);
1521 WARN_ON(1);
1522 to_free = ei->i_reserved_data_blocks;
1523 }
1524 ei->i_reserved_data_blocks -= to_free;
1525
1526 /* update fs dirty data blocks counter */
1527 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1528
1529 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1530
1531 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1532 }
1533
1534 static void ext4_da_page_release_reservation(struct page *page,
1535 unsigned int offset,
1536 unsigned int length)
1537 {
1538 int to_release = 0, contiguous_blks = 0;
1539 struct buffer_head *head, *bh;
1540 unsigned int curr_off = 0;
1541 struct inode *inode = page->mapping->host;
1542 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1543 unsigned int stop = offset + length;
1544 int num_clusters;
1545 ext4_fsblk_t lblk;
1546
1547 BUG_ON(stop > PAGE_SIZE || stop < length);
1548
1549 head = page_buffers(page);
1550 bh = head;
1551 do {
1552 unsigned int next_off = curr_off + bh->b_size;
1553
1554 if (next_off > stop)
1555 break;
1556
1557 if ((offset <= curr_off) && (buffer_delay(bh))) {
1558 to_release++;
1559 contiguous_blks++;
1560 clear_buffer_delay(bh);
1561 } else if (contiguous_blks) {
1562 lblk = page->index <<
1563 (PAGE_SHIFT - inode->i_blkbits);
1564 lblk += (curr_off >> inode->i_blkbits) -
1565 contiguous_blks;
1566 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1567 contiguous_blks = 0;
1568 }
1569 curr_off = next_off;
1570 } while ((bh = bh->b_this_page) != head);
1571
1572 if (contiguous_blks) {
1573 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1574 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1575 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1576 }
1577
1578 /* If we have released all the blocks belonging to a cluster, then we
1579 * need to release the reserved space for that cluster. */
1580 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1581 while (num_clusters > 0) {
1582 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1583 ((num_clusters - 1) << sbi->s_cluster_bits);
1584 if (sbi->s_cluster_ratio == 1 ||
1585 !ext4_find_delalloc_cluster(inode, lblk))
1586 ext4_da_release_space(inode, 1);
1587
1588 num_clusters--;
1589 }
1590 }
1591
1592 /*
1593 * Delayed allocation stuff
1594 */
1595
1596 struct mpage_da_data {
1597 struct inode *inode;
1598 struct writeback_control *wbc;
1599
1600 pgoff_t first_page; /* The first page to write */
1601 pgoff_t next_page; /* Current page to examine */
1602 pgoff_t last_page; /* Last page to examine */
1603 /*
1604 * Extent to map - this can be after first_page because that can be
1605 * fully mapped. We somewhat abuse m_flags to store whether the extent
1606 * is delalloc or unwritten.
1607 */
1608 struct ext4_map_blocks map;
1609 struct ext4_io_submit io_submit; /* IO submission data */
1610 };
1611
1612 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1613 bool invalidate)
1614 {
1615 int nr_pages, i;
1616 pgoff_t index, end;
1617 struct pagevec pvec;
1618 struct inode *inode = mpd->inode;
1619 struct address_space *mapping = inode->i_mapping;
1620
1621 /* This is necessary when next_page == 0. */
1622 if (mpd->first_page >= mpd->next_page)
1623 return;
1624
1625 index = mpd->first_page;
1626 end = mpd->next_page - 1;
1627 if (invalidate) {
1628 ext4_lblk_t start, last;
1629 start = index << (PAGE_SHIFT - inode->i_blkbits);
1630 last = end << (PAGE_SHIFT - inode->i_blkbits);
1631 ext4_es_remove_extent(inode, start, last - start + 1);
1632 }
1633
1634 pagevec_init(&pvec, 0);
1635 while (index <= end) {
1636 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1637 if (nr_pages == 0)
1638 break;
1639 for (i = 0; i < nr_pages; i++) {
1640 struct page *page = pvec.pages[i];
1641 if (page->index > end)
1642 break;
1643 BUG_ON(!PageLocked(page));
1644 BUG_ON(PageWriteback(page));
1645 if (invalidate) {
1646 block_invalidatepage(page, 0, PAGE_SIZE);
1647 ClearPageUptodate(page);
1648 }
1649 unlock_page(page);
1650 }
1651 index = pvec.pages[nr_pages - 1]->index + 1;
1652 pagevec_release(&pvec);
1653 }
1654 }
1655
1656 static void ext4_print_free_blocks(struct inode *inode)
1657 {
1658 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1659 struct super_block *sb = inode->i_sb;
1660 struct ext4_inode_info *ei = EXT4_I(inode);
1661
1662 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1663 EXT4_C2B(EXT4_SB(inode->i_sb),
1664 ext4_count_free_clusters(sb)));
1665 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1666 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1667 (long long) EXT4_C2B(EXT4_SB(sb),
1668 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1669 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1670 (long long) EXT4_C2B(EXT4_SB(sb),
1671 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1672 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1673 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1674 ei->i_reserved_data_blocks);
1675 return;
1676 }
1677
1678 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1679 {
1680 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1681 }
1682
1683 /*
1684 * This function is grabs code from the very beginning of
1685 * ext4_map_blocks, but assumes that the caller is from delayed write
1686 * time. This function looks up the requested blocks and sets the
1687 * buffer delay bit under the protection of i_data_sem.
1688 */
1689 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1690 struct ext4_map_blocks *map,
1691 struct buffer_head *bh)
1692 {
1693 struct extent_status es;
1694 int retval;
1695 sector_t invalid_block = ~((sector_t) 0xffff);
1696 #ifdef ES_AGGRESSIVE_TEST
1697 struct ext4_map_blocks orig_map;
1698
1699 memcpy(&orig_map, map, sizeof(*map));
1700 #endif
1701
1702 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1703 invalid_block = ~0;
1704
1705 map->m_flags = 0;
1706 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1707 "logical block %lu\n", inode->i_ino, map->m_len,
1708 (unsigned long) map->m_lblk);
1709
1710 /* Lookup extent status tree firstly */
1711 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1712 if (ext4_es_is_hole(&es)) {
1713 retval = 0;
1714 down_read(&EXT4_I(inode)->i_data_sem);
1715 goto add_delayed;
1716 }
1717
1718 /*
1719 * Delayed extent could be allocated by fallocate.
1720 * So we need to check it.
1721 */
1722 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1723 map_bh(bh, inode->i_sb, invalid_block);
1724 set_buffer_new(bh);
1725 set_buffer_delay(bh);
1726 return 0;
1727 }
1728
1729 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1730 retval = es.es_len - (iblock - es.es_lblk);
1731 if (retval > map->m_len)
1732 retval = map->m_len;
1733 map->m_len = retval;
1734 if (ext4_es_is_written(&es))
1735 map->m_flags |= EXT4_MAP_MAPPED;
1736 else if (ext4_es_is_unwritten(&es))
1737 map->m_flags |= EXT4_MAP_UNWRITTEN;
1738 else
1739 BUG_ON(1);
1740
1741 #ifdef ES_AGGRESSIVE_TEST
1742 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1743 #endif
1744 return retval;
1745 }
1746
1747 /*
1748 * Try to see if we can get the block without requesting a new
1749 * file system block.
1750 */
1751 down_read(&EXT4_I(inode)->i_data_sem);
1752 if (ext4_has_inline_data(inode))
1753 retval = 0;
1754 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1755 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1756 else
1757 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1758
1759 add_delayed:
1760 if (retval == 0) {
1761 int ret;
1762 /*
1763 * XXX: __block_prepare_write() unmaps passed block,
1764 * is it OK?
1765 */
1766 /*
1767 * If the block was allocated from previously allocated cluster,
1768 * then we don't need to reserve it again. However we still need
1769 * to reserve metadata for every block we're going to write.
1770 */
1771 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1772 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1773 ret = ext4_da_reserve_space(inode);
1774 if (ret) {
1775 /* not enough space to reserve */
1776 retval = ret;
1777 goto out_unlock;
1778 }
1779 }
1780
1781 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1782 ~0, EXTENT_STATUS_DELAYED);
1783 if (ret) {
1784 retval = ret;
1785 goto out_unlock;
1786 }
1787
1788 map_bh(bh, inode->i_sb, invalid_block);
1789 set_buffer_new(bh);
1790 set_buffer_delay(bh);
1791 } else if (retval > 0) {
1792 int ret;
1793 unsigned int status;
1794
1795 if (unlikely(retval != map->m_len)) {
1796 ext4_warning(inode->i_sb,
1797 "ES len assertion failed for inode "
1798 "%lu: retval %d != map->m_len %d",
1799 inode->i_ino, retval, map->m_len);
1800 WARN_ON(1);
1801 }
1802
1803 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1804 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1805 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1806 map->m_pblk, status);
1807 if (ret != 0)
1808 retval = ret;
1809 }
1810
1811 out_unlock:
1812 up_read((&EXT4_I(inode)->i_data_sem));
1813
1814 return retval;
1815 }
1816
1817 /*
1818 * This is a special get_block_t callback which is used by
1819 * ext4_da_write_begin(). It will either return mapped block or
1820 * reserve space for a single block.
1821 *
1822 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1823 * We also have b_blocknr = -1 and b_bdev initialized properly
1824 *
1825 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1826 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1827 * initialized properly.
1828 */
1829 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1830 struct buffer_head *bh, int create)
1831 {
1832 struct ext4_map_blocks map;
1833 int ret = 0;
1834
1835 BUG_ON(create == 0);
1836 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1837
1838 map.m_lblk = iblock;
1839 map.m_len = 1;
1840
1841 /*
1842 * first, we need to know whether the block is allocated already
1843 * preallocated blocks are unmapped but should treated
1844 * the same as allocated blocks.
1845 */
1846 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1847 if (ret <= 0)
1848 return ret;
1849
1850 map_bh(bh, inode->i_sb, map.m_pblk);
1851 ext4_update_bh_state(bh, map.m_flags);
1852
1853 if (buffer_unwritten(bh)) {
1854 /* A delayed write to unwritten bh should be marked
1855 * new and mapped. Mapped ensures that we don't do
1856 * get_block multiple times when we write to the same
1857 * offset and new ensures that we do proper zero out
1858 * for partial write.
1859 */
1860 set_buffer_new(bh);
1861 set_buffer_mapped(bh);
1862 }
1863 return 0;
1864 }
1865
1866 static int bget_one(handle_t *handle, struct buffer_head *bh)
1867 {
1868 get_bh(bh);
1869 return 0;
1870 }
1871
1872 static int bput_one(handle_t *handle, struct buffer_head *bh)
1873 {
1874 put_bh(bh);
1875 return 0;
1876 }
1877
1878 static int __ext4_journalled_writepage(struct page *page,
1879 unsigned int len)
1880 {
1881 struct address_space *mapping = page->mapping;
1882 struct inode *inode = mapping->host;
1883 struct buffer_head *page_bufs = NULL;
1884 handle_t *handle = NULL;
1885 int ret = 0, err = 0;
1886 int inline_data = ext4_has_inline_data(inode);
1887 struct buffer_head *inode_bh = NULL;
1888
1889 ClearPageChecked(page);
1890
1891 if (inline_data) {
1892 BUG_ON(page->index != 0);
1893 BUG_ON(len > ext4_get_max_inline_size(inode));
1894 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1895 if (inode_bh == NULL)
1896 goto out;
1897 } else {
1898 page_bufs = page_buffers(page);
1899 if (!page_bufs) {
1900 BUG();
1901 goto out;
1902 }
1903 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1904 NULL, bget_one);
1905 }
1906 /*
1907 * We need to release the page lock before we start the
1908 * journal, so grab a reference so the page won't disappear
1909 * out from under us.
1910 */
1911 get_page(page);
1912 unlock_page(page);
1913
1914 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1915 ext4_writepage_trans_blocks(inode));
1916 if (IS_ERR(handle)) {
1917 ret = PTR_ERR(handle);
1918 put_page(page);
1919 goto out_no_pagelock;
1920 }
1921 BUG_ON(!ext4_handle_valid(handle));
1922
1923 lock_page(page);
1924 put_page(page);
1925 if (page->mapping != mapping) {
1926 /* The page got truncated from under us */
1927 ext4_journal_stop(handle);
1928 ret = 0;
1929 goto out;
1930 }
1931
1932 if (inline_data) {
1933 BUFFER_TRACE(inode_bh, "get write access");
1934 ret = ext4_journal_get_write_access(handle, inode_bh);
1935
1936 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1937
1938 } else {
1939 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1940 do_journal_get_write_access);
1941
1942 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1943 write_end_fn);
1944 }
1945 if (ret == 0)
1946 ret = err;
1947 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1948 err = ext4_journal_stop(handle);
1949 if (!ret)
1950 ret = err;
1951
1952 if (!ext4_has_inline_data(inode))
1953 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1954 NULL, bput_one);
1955 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1956 out:
1957 unlock_page(page);
1958 out_no_pagelock:
1959 brelse(inode_bh);
1960 return ret;
1961 }
1962
1963 /*
1964 * Note that we don't need to start a transaction unless we're journaling data
1965 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1966 * need to file the inode to the transaction's list in ordered mode because if
1967 * we are writing back data added by write(), the inode is already there and if
1968 * we are writing back data modified via mmap(), no one guarantees in which
1969 * transaction the data will hit the disk. In case we are journaling data, we
1970 * cannot start transaction directly because transaction start ranks above page
1971 * lock so we have to do some magic.
1972 *
1973 * This function can get called via...
1974 * - ext4_writepages after taking page lock (have journal handle)
1975 * - journal_submit_inode_data_buffers (no journal handle)
1976 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1977 * - grab_page_cache when doing write_begin (have journal handle)
1978 *
1979 * We don't do any block allocation in this function. If we have page with
1980 * multiple blocks we need to write those buffer_heads that are mapped. This
1981 * is important for mmaped based write. So if we do with blocksize 1K
1982 * truncate(f, 1024);
1983 * a = mmap(f, 0, 4096);
1984 * a[0] = 'a';
1985 * truncate(f, 4096);
1986 * we have in the page first buffer_head mapped via page_mkwrite call back
1987 * but other buffer_heads would be unmapped but dirty (dirty done via the
1988 * do_wp_page). So writepage should write the first block. If we modify
1989 * the mmap area beyond 1024 we will again get a page_fault and the
1990 * page_mkwrite callback will do the block allocation and mark the
1991 * buffer_heads mapped.
1992 *
1993 * We redirty the page if we have any buffer_heads that is either delay or
1994 * unwritten in the page.
1995 *
1996 * We can get recursively called as show below.
1997 *
1998 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1999 * ext4_writepage()
2000 *
2001 * But since we don't do any block allocation we should not deadlock.
2002 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2003 */
2004 static int ext4_writepage(struct page *page,
2005 struct writeback_control *wbc)
2006 {
2007 int ret = 0;
2008 loff_t size;
2009 unsigned int len;
2010 struct buffer_head *page_bufs = NULL;
2011 struct inode *inode = page->mapping->host;
2012 struct ext4_io_submit io_submit;
2013 bool keep_towrite = false;
2014
2015 trace_ext4_writepage(page);
2016 size = i_size_read(inode);
2017 if (page->index == size >> PAGE_SHIFT)
2018 len = size & ~PAGE_MASK;
2019 else
2020 len = PAGE_SIZE;
2021
2022 page_bufs = page_buffers(page);
2023 /*
2024 * We cannot do block allocation or other extent handling in this
2025 * function. If there are buffers needing that, we have to redirty
2026 * the page. But we may reach here when we do a journal commit via
2027 * journal_submit_inode_data_buffers() and in that case we must write
2028 * allocated buffers to achieve data=ordered mode guarantees.
2029 *
2030 * Also, if there is only one buffer per page (the fs block
2031 * size == the page size), if one buffer needs block
2032 * allocation or needs to modify the extent tree to clear the
2033 * unwritten flag, we know that the page can't be written at
2034 * all, so we might as well refuse the write immediately.
2035 * Unfortunately if the block size != page size, we can't as
2036 * easily detect this case using ext4_walk_page_buffers(), but
2037 * for the extremely common case, this is an optimization that
2038 * skips a useless round trip through ext4_bio_write_page().
2039 */
2040 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2041 ext4_bh_delay_or_unwritten)) {
2042 redirty_page_for_writepage(wbc, page);
2043 if ((current->flags & PF_MEMALLOC) ||
2044 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2045 /*
2046 * For memory cleaning there's no point in writing only
2047 * some buffers. So just bail out. Warn if we came here
2048 * from direct reclaim.
2049 */
2050 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2051 == PF_MEMALLOC);
2052 unlock_page(page);
2053 return 0;
2054 }
2055 keep_towrite = true;
2056 }
2057
2058 if (PageChecked(page) && ext4_should_journal_data(inode))
2059 /*
2060 * It's mmapped pagecache. Add buffers and journal it. There
2061 * doesn't seem much point in redirtying the page here.
2062 */
2063 return __ext4_journalled_writepage(page, len);
2064
2065 ext4_io_submit_init(&io_submit, wbc);
2066 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2067 if (!io_submit.io_end) {
2068 redirty_page_for_writepage(wbc, page);
2069 unlock_page(page);
2070 return -ENOMEM;
2071 }
2072 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2073 ext4_io_submit(&io_submit);
2074 /* Drop io_end reference we got from init */
2075 ext4_put_io_end_defer(io_submit.io_end);
2076 return ret;
2077 }
2078
2079 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2080 {
2081 int len;
2082 loff_t size = i_size_read(mpd->inode);
2083 int err;
2084
2085 BUG_ON(page->index != mpd->first_page);
2086 if (page->index == size >> PAGE_SHIFT)
2087 len = size & ~PAGE_MASK;
2088 else
2089 len = PAGE_SIZE;
2090 clear_page_dirty_for_io(page);
2091 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2092 if (!err)
2093 mpd->wbc->nr_to_write--;
2094 mpd->first_page++;
2095
2096 return err;
2097 }
2098
2099 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2100
2101 /*
2102 * mballoc gives us at most this number of blocks...
2103 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2104 * The rest of mballoc seems to handle chunks up to full group size.
2105 */
2106 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2107
2108 /*
2109 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2110 *
2111 * @mpd - extent of blocks
2112 * @lblk - logical number of the block in the file
2113 * @bh - buffer head we want to add to the extent
2114 *
2115 * The function is used to collect contig. blocks in the same state. If the
2116 * buffer doesn't require mapping for writeback and we haven't started the
2117 * extent of buffers to map yet, the function returns 'true' immediately - the
2118 * caller can write the buffer right away. Otherwise the function returns true
2119 * if the block has been added to the extent, false if the block couldn't be
2120 * added.
2121 */
2122 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2123 struct buffer_head *bh)
2124 {
2125 struct ext4_map_blocks *map = &mpd->map;
2126
2127 /* Buffer that doesn't need mapping for writeback? */
2128 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2129 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2130 /* So far no extent to map => we write the buffer right away */
2131 if (map->m_len == 0)
2132 return true;
2133 return false;
2134 }
2135
2136 /* First block in the extent? */
2137 if (map->m_len == 0) {
2138 map->m_lblk = lblk;
2139 map->m_len = 1;
2140 map->m_flags = bh->b_state & BH_FLAGS;
2141 return true;
2142 }
2143
2144 /* Don't go larger than mballoc is willing to allocate */
2145 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2146 return false;
2147
2148 /* Can we merge the block to our big extent? */
2149 if (lblk == map->m_lblk + map->m_len &&
2150 (bh->b_state & BH_FLAGS) == map->m_flags) {
2151 map->m_len++;
2152 return true;
2153 }
2154 return false;
2155 }
2156
2157 /*
2158 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2159 *
2160 * @mpd - extent of blocks for mapping
2161 * @head - the first buffer in the page
2162 * @bh - buffer we should start processing from
2163 * @lblk - logical number of the block in the file corresponding to @bh
2164 *
2165 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2166 * the page for IO if all buffers in this page were mapped and there's no
2167 * accumulated extent of buffers to map or add buffers in the page to the
2168 * extent of buffers to map. The function returns 1 if the caller can continue
2169 * by processing the next page, 0 if it should stop adding buffers to the
2170 * extent to map because we cannot extend it anymore. It can also return value
2171 * < 0 in case of error during IO submission.
2172 */
2173 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2174 struct buffer_head *head,
2175 struct buffer_head *bh,
2176 ext4_lblk_t lblk)
2177 {
2178 struct inode *inode = mpd->inode;
2179 int err;
2180 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2181 >> inode->i_blkbits;
2182
2183 do {
2184 BUG_ON(buffer_locked(bh));
2185
2186 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2187 /* Found extent to map? */
2188 if (mpd->map.m_len)
2189 return 0;
2190 /* Everything mapped so far and we hit EOF */
2191 break;
2192 }
2193 } while (lblk++, (bh = bh->b_this_page) != head);
2194 /* So far everything mapped? Submit the page for IO. */
2195 if (mpd->map.m_len == 0) {
2196 err = mpage_submit_page(mpd, head->b_page);
2197 if (err < 0)
2198 return err;
2199 }
2200 return lblk < blocks;
2201 }
2202
2203 /*
2204 * mpage_map_buffers - update buffers corresponding to changed extent and
2205 * submit fully mapped pages for IO
2206 *
2207 * @mpd - description of extent to map, on return next extent to map
2208 *
2209 * Scan buffers corresponding to changed extent (we expect corresponding pages
2210 * to be already locked) and update buffer state according to new extent state.
2211 * We map delalloc buffers to their physical location, clear unwritten bits,
2212 * and mark buffers as uninit when we perform writes to unwritten extents
2213 * and do extent conversion after IO is finished. If the last page is not fully
2214 * mapped, we update @map to the next extent in the last page that needs
2215 * mapping. Otherwise we submit the page for IO.
2216 */
2217 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2218 {
2219 struct pagevec pvec;
2220 int nr_pages, i;
2221 struct inode *inode = mpd->inode;
2222 struct buffer_head *head, *bh;
2223 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2224 pgoff_t start, end;
2225 ext4_lblk_t lblk;
2226 sector_t pblock;
2227 int err;
2228
2229 start = mpd->map.m_lblk >> bpp_bits;
2230 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2231 lblk = start << bpp_bits;
2232 pblock = mpd->map.m_pblk;
2233
2234 pagevec_init(&pvec, 0);
2235 while (start <= end) {
2236 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2237 PAGEVEC_SIZE);
2238 if (nr_pages == 0)
2239 break;
2240 for (i = 0; i < nr_pages; i++) {
2241 struct page *page = pvec.pages[i];
2242
2243 if (page->index > end)
2244 break;
2245 /* Up to 'end' pages must be contiguous */
2246 BUG_ON(page->index != start);
2247 bh = head = page_buffers(page);
2248 do {
2249 if (lblk < mpd->map.m_lblk)
2250 continue;
2251 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2252 /*
2253 * Buffer after end of mapped extent.
2254 * Find next buffer in the page to map.
2255 */
2256 mpd->map.m_len = 0;
2257 mpd->map.m_flags = 0;
2258 /*
2259 * FIXME: If dioread_nolock supports
2260 * blocksize < pagesize, we need to make
2261 * sure we add size mapped so far to
2262 * io_end->size as the following call
2263 * can submit the page for IO.
2264 */
2265 err = mpage_process_page_bufs(mpd, head,
2266 bh, lblk);
2267 pagevec_release(&pvec);
2268 if (err > 0)
2269 err = 0;
2270 return err;
2271 }
2272 if (buffer_delay(bh)) {
2273 clear_buffer_delay(bh);
2274 bh->b_blocknr = pblock++;
2275 }
2276 clear_buffer_unwritten(bh);
2277 } while (lblk++, (bh = bh->b_this_page) != head);
2278
2279 /*
2280 * FIXME: This is going to break if dioread_nolock
2281 * supports blocksize < pagesize as we will try to
2282 * convert potentially unmapped parts of inode.
2283 */
2284 mpd->io_submit.io_end->size += PAGE_SIZE;
2285 /* Page fully mapped - let IO run! */
2286 err = mpage_submit_page(mpd, page);
2287 if (err < 0) {
2288 pagevec_release(&pvec);
2289 return err;
2290 }
2291 start++;
2292 }
2293 pagevec_release(&pvec);
2294 }
2295 /* Extent fully mapped and matches with page boundary. We are done. */
2296 mpd->map.m_len = 0;
2297 mpd->map.m_flags = 0;
2298 return 0;
2299 }
2300
2301 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2302 {
2303 struct inode *inode = mpd->inode;
2304 struct ext4_map_blocks *map = &mpd->map;
2305 int get_blocks_flags;
2306 int err, dioread_nolock;
2307
2308 trace_ext4_da_write_pages_extent(inode, map);
2309 /*
2310 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2311 * to convert an unwritten extent to be initialized (in the case
2312 * where we have written into one or more preallocated blocks). It is
2313 * possible that we're going to need more metadata blocks than
2314 * previously reserved. However we must not fail because we're in
2315 * writeback and there is nothing we can do about it so it might result
2316 * in data loss. So use reserved blocks to allocate metadata if
2317 * possible.
2318 *
2319 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2320 * the blocks in question are delalloc blocks. This indicates
2321 * that the blocks and quotas has already been checked when
2322 * the data was copied into the page cache.
2323 */
2324 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2325 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2326 EXT4_GET_BLOCKS_IO_SUBMIT;
2327 dioread_nolock = ext4_should_dioread_nolock(inode);
2328 if (dioread_nolock)
2329 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2330 if (map->m_flags & (1 << BH_Delay))
2331 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2332
2333 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2334 if (err < 0)
2335 return err;
2336 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2337 if (!mpd->io_submit.io_end->handle &&
2338 ext4_handle_valid(handle)) {
2339 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2340 handle->h_rsv_handle = NULL;
2341 }
2342 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2343 }
2344
2345 BUG_ON(map->m_len == 0);
2346 if (map->m_flags & EXT4_MAP_NEW) {
2347 struct block_device *bdev = inode->i_sb->s_bdev;
2348 int i;
2349
2350 for (i = 0; i < map->m_len; i++)
2351 unmap_underlying_metadata(bdev, map->m_pblk + i);
2352 }
2353 return 0;
2354 }
2355
2356 /*
2357 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2358 * mpd->len and submit pages underlying it for IO
2359 *
2360 * @handle - handle for journal operations
2361 * @mpd - extent to map
2362 * @give_up_on_write - we set this to true iff there is a fatal error and there
2363 * is no hope of writing the data. The caller should discard
2364 * dirty pages to avoid infinite loops.
2365 *
2366 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2367 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2368 * them to initialized or split the described range from larger unwritten
2369 * extent. Note that we need not map all the described range since allocation
2370 * can return less blocks or the range is covered by more unwritten extents. We
2371 * cannot map more because we are limited by reserved transaction credits. On
2372 * the other hand we always make sure that the last touched page is fully
2373 * mapped so that it can be written out (and thus forward progress is
2374 * guaranteed). After mapping we submit all mapped pages for IO.
2375 */
2376 static int mpage_map_and_submit_extent(handle_t *handle,
2377 struct mpage_da_data *mpd,
2378 bool *give_up_on_write)
2379 {
2380 struct inode *inode = mpd->inode;
2381 struct ext4_map_blocks *map = &mpd->map;
2382 int err;
2383 loff_t disksize;
2384 int progress = 0;
2385
2386 mpd->io_submit.io_end->offset =
2387 ((loff_t)map->m_lblk) << inode->i_blkbits;
2388 do {
2389 err = mpage_map_one_extent(handle, mpd);
2390 if (err < 0) {
2391 struct super_block *sb = inode->i_sb;
2392
2393 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2394 goto invalidate_dirty_pages;
2395 /*
2396 * Let the uper layers retry transient errors.
2397 * In the case of ENOSPC, if ext4_count_free_blocks()
2398 * is non-zero, a commit should free up blocks.
2399 */
2400 if ((err == -ENOMEM) ||
2401 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2402 if (progress)
2403 goto update_disksize;
2404 return err;
2405 }
2406 ext4_msg(sb, KERN_CRIT,
2407 "Delayed block allocation failed for "
2408 "inode %lu at logical offset %llu with"
2409 " max blocks %u with error %d",
2410 inode->i_ino,
2411 (unsigned long long)map->m_lblk,
2412 (unsigned)map->m_len, -err);
2413 ext4_msg(sb, KERN_CRIT,
2414 "This should not happen!! Data will "
2415 "be lost\n");
2416 if (err == -ENOSPC)
2417 ext4_print_free_blocks(inode);
2418 invalidate_dirty_pages:
2419 *give_up_on_write = true;
2420 return err;
2421 }
2422 progress = 1;
2423 /*
2424 * Update buffer state, submit mapped pages, and get us new
2425 * extent to map
2426 */
2427 err = mpage_map_and_submit_buffers(mpd);
2428 if (err < 0)
2429 goto update_disksize;
2430 } while (map->m_len);
2431
2432 update_disksize:
2433 /*
2434 * Update on-disk size after IO is submitted. Races with
2435 * truncate are avoided by checking i_size under i_data_sem.
2436 */
2437 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2438 if (disksize > EXT4_I(inode)->i_disksize) {
2439 int err2;
2440 loff_t i_size;
2441
2442 down_write(&EXT4_I(inode)->i_data_sem);
2443 i_size = i_size_read(inode);
2444 if (disksize > i_size)
2445 disksize = i_size;
2446 if (disksize > EXT4_I(inode)->i_disksize)
2447 EXT4_I(inode)->i_disksize = disksize;
2448 err2 = ext4_mark_inode_dirty(handle, inode);
2449 up_write(&EXT4_I(inode)->i_data_sem);
2450 if (err2)
2451 ext4_error(inode->i_sb,
2452 "Failed to mark inode %lu dirty",
2453 inode->i_ino);
2454 if (!err)
2455 err = err2;
2456 }
2457 return err;
2458 }
2459
2460 /*
2461 * Calculate the total number of credits to reserve for one writepages
2462 * iteration. This is called from ext4_writepages(). We map an extent of
2463 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2464 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2465 * bpp - 1 blocks in bpp different extents.
2466 */
2467 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2468 {
2469 int bpp = ext4_journal_blocks_per_page(inode);
2470
2471 return ext4_meta_trans_blocks(inode,
2472 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2473 }
2474
2475 /*
2476 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2477 * and underlying extent to map
2478 *
2479 * @mpd - where to look for pages
2480 *
2481 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2482 * IO immediately. When we find a page which isn't mapped we start accumulating
2483 * extent of buffers underlying these pages that needs mapping (formed by
2484 * either delayed or unwritten buffers). We also lock the pages containing
2485 * these buffers. The extent found is returned in @mpd structure (starting at
2486 * mpd->lblk with length mpd->len blocks).
2487 *
2488 * Note that this function can attach bios to one io_end structure which are
2489 * neither logically nor physically contiguous. Although it may seem as an
2490 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2491 * case as we need to track IO to all buffers underlying a page in one io_end.
2492 */
2493 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2494 {
2495 struct address_space *mapping = mpd->inode->i_mapping;
2496 struct pagevec pvec;
2497 unsigned int nr_pages;
2498 long left = mpd->wbc->nr_to_write;
2499 pgoff_t index = mpd->first_page;
2500 pgoff_t end = mpd->last_page;
2501 int tag;
2502 int i, err = 0;
2503 int blkbits = mpd->inode->i_blkbits;
2504 ext4_lblk_t lblk;
2505 struct buffer_head *head;
2506
2507 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2508 tag = PAGECACHE_TAG_TOWRITE;
2509 else
2510 tag = PAGECACHE_TAG_DIRTY;
2511
2512 pagevec_init(&pvec, 0);
2513 mpd->map.m_len = 0;
2514 mpd->next_page = index;
2515 while (index <= end) {
2516 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2517 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2518 if (nr_pages == 0)
2519 goto out;
2520
2521 for (i = 0; i < nr_pages; i++) {
2522 struct page *page = pvec.pages[i];
2523
2524 /*
2525 * At this point, the page may be truncated or
2526 * invalidated (changing page->mapping to NULL), or
2527 * even swizzled back from swapper_space to tmpfs file
2528 * mapping. However, page->index will not change
2529 * because we have a reference on the page.
2530 */
2531 if (page->index > end)
2532 goto out;
2533
2534 /*
2535 * Accumulated enough dirty pages? This doesn't apply
2536 * to WB_SYNC_ALL mode. For integrity sync we have to
2537 * keep going because someone may be concurrently
2538 * dirtying pages, and we might have synced a lot of
2539 * newly appeared dirty pages, but have not synced all
2540 * of the old dirty pages.
2541 */
2542 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2543 goto out;
2544
2545 /* If we can't merge this page, we are done. */
2546 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2547 goto out;
2548
2549 lock_page(page);
2550 /*
2551 * If the page is no longer dirty, or its mapping no
2552 * longer corresponds to inode we are writing (which
2553 * means it has been truncated or invalidated), or the
2554 * page is already under writeback and we are not doing
2555 * a data integrity writeback, skip the page
2556 */
2557 if (!PageDirty(page) ||
2558 (PageWriteback(page) &&
2559 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2560 unlikely(page->mapping != mapping)) {
2561 unlock_page(page);
2562 continue;
2563 }
2564
2565 wait_on_page_writeback(page);
2566 BUG_ON(PageWriteback(page));
2567
2568 if (mpd->map.m_len == 0)
2569 mpd->first_page = page->index;
2570 mpd->next_page = page->index + 1;
2571 /* Add all dirty buffers to mpd */
2572 lblk = ((ext4_lblk_t)page->index) <<
2573 (PAGE_SHIFT - blkbits);
2574 head = page_buffers(page);
2575 err = mpage_process_page_bufs(mpd, head, head, lblk);
2576 if (err <= 0)
2577 goto out;
2578 err = 0;
2579 left--;
2580 }
2581 pagevec_release(&pvec);
2582 cond_resched();
2583 }
2584 return 0;
2585 out:
2586 pagevec_release(&pvec);
2587 return err;
2588 }
2589
2590 static int __writepage(struct page *page, struct writeback_control *wbc,
2591 void *data)
2592 {
2593 struct address_space *mapping = data;
2594 int ret = ext4_writepage(page, wbc);
2595 mapping_set_error(mapping, ret);
2596 return ret;
2597 }
2598
2599 static int ext4_writepages(struct address_space *mapping,
2600 struct writeback_control *wbc)
2601 {
2602 pgoff_t writeback_index = 0;
2603 long nr_to_write = wbc->nr_to_write;
2604 int range_whole = 0;
2605 int cycled = 1;
2606 handle_t *handle = NULL;
2607 struct mpage_da_data mpd;
2608 struct inode *inode = mapping->host;
2609 int needed_blocks, rsv_blocks = 0, ret = 0;
2610 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2611 bool done;
2612 struct blk_plug plug;
2613 bool give_up_on_write = false;
2614
2615 percpu_down_read(&sbi->s_journal_flag_rwsem);
2616 trace_ext4_writepages(inode, wbc);
2617
2618 if (dax_mapping(mapping)) {
2619 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2620 wbc);
2621 goto out_writepages;
2622 }
2623
2624 /*
2625 * No pages to write? This is mainly a kludge to avoid starting
2626 * a transaction for special inodes like journal inode on last iput()
2627 * because that could violate lock ordering on umount
2628 */
2629 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2630 goto out_writepages;
2631
2632 if (ext4_should_journal_data(inode)) {
2633 struct blk_plug plug;
2634
2635 blk_start_plug(&plug);
2636 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2637 blk_finish_plug(&plug);
2638 goto out_writepages;
2639 }
2640
2641 /*
2642 * If the filesystem has aborted, it is read-only, so return
2643 * right away instead of dumping stack traces later on that
2644 * will obscure the real source of the problem. We test
2645 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2646 * the latter could be true if the filesystem is mounted
2647 * read-only, and in that case, ext4_writepages should
2648 * *never* be called, so if that ever happens, we would want
2649 * the stack trace.
2650 */
2651 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2652 ret = -EROFS;
2653 goto out_writepages;
2654 }
2655
2656 if (ext4_should_dioread_nolock(inode)) {
2657 /*
2658 * We may need to convert up to one extent per block in
2659 * the page and we may dirty the inode.
2660 */
2661 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2662 }
2663
2664 /*
2665 * If we have inline data and arrive here, it means that
2666 * we will soon create the block for the 1st page, so
2667 * we'd better clear the inline data here.
2668 */
2669 if (ext4_has_inline_data(inode)) {
2670 /* Just inode will be modified... */
2671 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2672 if (IS_ERR(handle)) {
2673 ret = PTR_ERR(handle);
2674 goto out_writepages;
2675 }
2676 BUG_ON(ext4_test_inode_state(inode,
2677 EXT4_STATE_MAY_INLINE_DATA));
2678 ext4_destroy_inline_data(handle, inode);
2679 ext4_journal_stop(handle);
2680 }
2681
2682 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2683 range_whole = 1;
2684
2685 if (wbc->range_cyclic) {
2686 writeback_index = mapping->writeback_index;
2687 if (writeback_index)
2688 cycled = 0;
2689 mpd.first_page = writeback_index;
2690 mpd.last_page = -1;
2691 } else {
2692 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2693 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2694 }
2695
2696 mpd.inode = inode;
2697 mpd.wbc = wbc;
2698 ext4_io_submit_init(&mpd.io_submit, wbc);
2699 retry:
2700 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2701 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2702 done = false;
2703 blk_start_plug(&plug);
2704 while (!done && mpd.first_page <= mpd.last_page) {
2705 /* For each extent of pages we use new io_end */
2706 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2707 if (!mpd.io_submit.io_end) {
2708 ret = -ENOMEM;
2709 break;
2710 }
2711
2712 /*
2713 * We have two constraints: We find one extent to map and we
2714 * must always write out whole page (makes a difference when
2715 * blocksize < pagesize) so that we don't block on IO when we
2716 * try to write out the rest of the page. Journalled mode is
2717 * not supported by delalloc.
2718 */
2719 BUG_ON(ext4_should_journal_data(inode));
2720 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2721
2722 /* start a new transaction */
2723 handle = ext4_journal_start_with_reserve(inode,
2724 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2725 if (IS_ERR(handle)) {
2726 ret = PTR_ERR(handle);
2727 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2728 "%ld pages, ino %lu; err %d", __func__,
2729 wbc->nr_to_write, inode->i_ino, ret);
2730 /* Release allocated io_end */
2731 ext4_put_io_end(mpd.io_submit.io_end);
2732 break;
2733 }
2734
2735 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2736 ret = mpage_prepare_extent_to_map(&mpd);
2737 if (!ret) {
2738 if (mpd.map.m_len)
2739 ret = mpage_map_and_submit_extent(handle, &mpd,
2740 &give_up_on_write);
2741 else {
2742 /*
2743 * We scanned the whole range (or exhausted
2744 * nr_to_write), submitted what was mapped and
2745 * didn't find anything needing mapping. We are
2746 * done.
2747 */
2748 done = true;
2749 }
2750 }
2751 ext4_journal_stop(handle);
2752 /* Submit prepared bio */
2753 ext4_io_submit(&mpd.io_submit);
2754 /* Unlock pages we didn't use */
2755 mpage_release_unused_pages(&mpd, give_up_on_write);
2756 /* Drop our io_end reference we got from init */
2757 ext4_put_io_end(mpd.io_submit.io_end);
2758
2759 if (ret == -ENOSPC && sbi->s_journal) {
2760 /*
2761 * Commit the transaction which would
2762 * free blocks released in the transaction
2763 * and try again
2764 */
2765 jbd2_journal_force_commit_nested(sbi->s_journal);
2766 ret = 0;
2767 continue;
2768 }
2769 /* Fatal error - ENOMEM, EIO... */
2770 if (ret)
2771 break;
2772 }
2773 blk_finish_plug(&plug);
2774 if (!ret && !cycled && wbc->nr_to_write > 0) {
2775 cycled = 1;
2776 mpd.last_page = writeback_index - 1;
2777 mpd.first_page = 0;
2778 goto retry;
2779 }
2780
2781 /* Update index */
2782 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2783 /*
2784 * Set the writeback_index so that range_cyclic
2785 * mode will write it back later
2786 */
2787 mapping->writeback_index = mpd.first_page;
2788
2789 out_writepages:
2790 trace_ext4_writepages_result(inode, wbc, ret,
2791 nr_to_write - wbc->nr_to_write);
2792 percpu_up_read(&sbi->s_journal_flag_rwsem);
2793 return ret;
2794 }
2795
2796 static int ext4_nonda_switch(struct super_block *sb)
2797 {
2798 s64 free_clusters, dirty_clusters;
2799 struct ext4_sb_info *sbi = EXT4_SB(sb);
2800
2801 /*
2802 * switch to non delalloc mode if we are running low
2803 * on free block. The free block accounting via percpu
2804 * counters can get slightly wrong with percpu_counter_batch getting
2805 * accumulated on each CPU without updating global counters
2806 * Delalloc need an accurate free block accounting. So switch
2807 * to non delalloc when we are near to error range.
2808 */
2809 free_clusters =
2810 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2811 dirty_clusters =
2812 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2813 /*
2814 * Start pushing delalloc when 1/2 of free blocks are dirty.
2815 */
2816 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2817 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2818
2819 if (2 * free_clusters < 3 * dirty_clusters ||
2820 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2821 /*
2822 * free block count is less than 150% of dirty blocks
2823 * or free blocks is less than watermark
2824 */
2825 return 1;
2826 }
2827 return 0;
2828 }
2829
2830 /* We always reserve for an inode update; the superblock could be there too */
2831 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2832 {
2833 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2834 return 1;
2835
2836 if (pos + len <= 0x7fffffffULL)
2837 return 1;
2838
2839 /* We might need to update the superblock to set LARGE_FILE */
2840 return 2;
2841 }
2842
2843 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2844 loff_t pos, unsigned len, unsigned flags,
2845 struct page **pagep, void **fsdata)
2846 {
2847 int ret, retries = 0;
2848 struct page *page;
2849 pgoff_t index;
2850 struct inode *inode = mapping->host;
2851 handle_t *handle;
2852
2853 index = pos >> PAGE_SHIFT;
2854
2855 if (ext4_nonda_switch(inode->i_sb)) {
2856 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2857 return ext4_write_begin(file, mapping, pos,
2858 len, flags, pagep, fsdata);
2859 }
2860 *fsdata = (void *)0;
2861 trace_ext4_da_write_begin(inode, pos, len, flags);
2862
2863 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2864 ret = ext4_da_write_inline_data_begin(mapping, inode,
2865 pos, len, flags,
2866 pagep, fsdata);
2867 if (ret < 0)
2868 return ret;
2869 if (ret == 1)
2870 return 0;
2871 }
2872
2873 /*
2874 * grab_cache_page_write_begin() can take a long time if the
2875 * system is thrashing due to memory pressure, or if the page
2876 * is being written back. So grab it first before we start
2877 * the transaction handle. This also allows us to allocate
2878 * the page (if needed) without using GFP_NOFS.
2879 */
2880 retry_grab:
2881 page = grab_cache_page_write_begin(mapping, index, flags);
2882 if (!page)
2883 return -ENOMEM;
2884 unlock_page(page);
2885
2886 /*
2887 * With delayed allocation, we don't log the i_disksize update
2888 * if there is delayed block allocation. But we still need
2889 * to journalling the i_disksize update if writes to the end
2890 * of file which has an already mapped buffer.
2891 */
2892 retry_journal:
2893 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2894 ext4_da_write_credits(inode, pos, len));
2895 if (IS_ERR(handle)) {
2896 put_page(page);
2897 return PTR_ERR(handle);
2898 }
2899
2900 lock_page(page);
2901 if (page->mapping != mapping) {
2902 /* The page got truncated from under us */
2903 unlock_page(page);
2904 put_page(page);
2905 ext4_journal_stop(handle);
2906 goto retry_grab;
2907 }
2908 /* In case writeback began while the page was unlocked */
2909 wait_for_stable_page(page);
2910
2911 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2912 ret = ext4_block_write_begin(page, pos, len,
2913 ext4_da_get_block_prep);
2914 #else
2915 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2916 #endif
2917 if (ret < 0) {
2918 unlock_page(page);
2919 ext4_journal_stop(handle);
2920 /*
2921 * block_write_begin may have instantiated a few blocks
2922 * outside i_size. Trim these off again. Don't need
2923 * i_size_read because we hold i_mutex.
2924 */
2925 if (pos + len > inode->i_size)
2926 ext4_truncate_failed_write(inode);
2927
2928 if (ret == -ENOSPC &&
2929 ext4_should_retry_alloc(inode->i_sb, &retries))
2930 goto retry_journal;
2931
2932 put_page(page);
2933 return ret;
2934 }
2935
2936 *pagep = page;
2937 return ret;
2938 }
2939
2940 /*
2941 * Check if we should update i_disksize
2942 * when write to the end of file but not require block allocation
2943 */
2944 static int ext4_da_should_update_i_disksize(struct page *page,
2945 unsigned long offset)
2946 {
2947 struct buffer_head *bh;
2948 struct inode *inode = page->mapping->host;
2949 unsigned int idx;
2950 int i;
2951
2952 bh = page_buffers(page);
2953 idx = offset >> inode->i_blkbits;
2954
2955 for (i = 0; i < idx; i++)
2956 bh = bh->b_this_page;
2957
2958 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2959 return 0;
2960 return 1;
2961 }
2962
2963 static int ext4_da_write_end(struct file *file,
2964 struct address_space *mapping,
2965 loff_t pos, unsigned len, unsigned copied,
2966 struct page *page, void *fsdata)
2967 {
2968 struct inode *inode = mapping->host;
2969 int ret = 0, ret2;
2970 handle_t *handle = ext4_journal_current_handle();
2971 loff_t new_i_size;
2972 unsigned long start, end;
2973 int write_mode = (int)(unsigned long)fsdata;
2974
2975 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2976 return ext4_write_end(file, mapping, pos,
2977 len, copied, page, fsdata);
2978
2979 trace_ext4_da_write_end(inode, pos, len, copied);
2980 start = pos & (PAGE_SIZE - 1);
2981 end = start + copied - 1;
2982
2983 /*
2984 * generic_write_end() will run mark_inode_dirty() if i_size
2985 * changes. So let's piggyback the i_disksize mark_inode_dirty
2986 * into that.
2987 */
2988 new_i_size = pos + copied;
2989 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2990 if (ext4_has_inline_data(inode) ||
2991 ext4_da_should_update_i_disksize(page, end)) {
2992 ext4_update_i_disksize(inode, new_i_size);
2993 /* We need to mark inode dirty even if
2994 * new_i_size is less that inode->i_size
2995 * bu greater than i_disksize.(hint delalloc)
2996 */
2997 ext4_mark_inode_dirty(handle, inode);
2998 }
2999 }
3000
3001 if (write_mode != CONVERT_INLINE_DATA &&
3002 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3003 ext4_has_inline_data(inode))
3004 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3005 page);
3006 else
3007 ret2 = generic_write_end(file, mapping, pos, len, copied,
3008 page, fsdata);
3009
3010 copied = ret2;
3011 if (ret2 < 0)
3012 ret = ret2;
3013 ret2 = ext4_journal_stop(handle);
3014 if (!ret)
3015 ret = ret2;
3016
3017 return ret ? ret : copied;
3018 }
3019
3020 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3021 unsigned int length)
3022 {
3023 /*
3024 * Drop reserved blocks
3025 */
3026 BUG_ON(!PageLocked(page));
3027 if (!page_has_buffers(page))
3028 goto out;
3029
3030 ext4_da_page_release_reservation(page, offset, length);
3031
3032 out:
3033 ext4_invalidatepage(page, offset, length);
3034
3035 return;
3036 }
3037
3038 /*
3039 * Force all delayed allocation blocks to be allocated for a given inode.
3040 */
3041 int ext4_alloc_da_blocks(struct inode *inode)
3042 {
3043 trace_ext4_alloc_da_blocks(inode);
3044
3045 if (!EXT4_I(inode)->i_reserved_data_blocks)
3046 return 0;
3047
3048 /*
3049 * We do something simple for now. The filemap_flush() will
3050 * also start triggering a write of the data blocks, which is
3051 * not strictly speaking necessary (and for users of
3052 * laptop_mode, not even desirable). However, to do otherwise
3053 * would require replicating code paths in:
3054 *
3055 * ext4_writepages() ->
3056 * write_cache_pages() ---> (via passed in callback function)
3057 * __mpage_da_writepage() -->
3058 * mpage_add_bh_to_extent()
3059 * mpage_da_map_blocks()
3060 *
3061 * The problem is that write_cache_pages(), located in
3062 * mm/page-writeback.c, marks pages clean in preparation for
3063 * doing I/O, which is not desirable if we're not planning on
3064 * doing I/O at all.
3065 *
3066 * We could call write_cache_pages(), and then redirty all of
3067 * the pages by calling redirty_page_for_writepage() but that
3068 * would be ugly in the extreme. So instead we would need to
3069 * replicate parts of the code in the above functions,
3070 * simplifying them because we wouldn't actually intend to
3071 * write out the pages, but rather only collect contiguous
3072 * logical block extents, call the multi-block allocator, and
3073 * then update the buffer heads with the block allocations.
3074 *
3075 * For now, though, we'll cheat by calling filemap_flush(),
3076 * which will map the blocks, and start the I/O, but not
3077 * actually wait for the I/O to complete.
3078 */
3079 return filemap_flush(inode->i_mapping);
3080 }
3081
3082 /*
3083 * bmap() is special. It gets used by applications such as lilo and by
3084 * the swapper to find the on-disk block of a specific piece of data.
3085 *
3086 * Naturally, this is dangerous if the block concerned is still in the
3087 * journal. If somebody makes a swapfile on an ext4 data-journaling
3088 * filesystem and enables swap, then they may get a nasty shock when the
3089 * data getting swapped to that swapfile suddenly gets overwritten by
3090 * the original zero's written out previously to the journal and
3091 * awaiting writeback in the kernel's buffer cache.
3092 *
3093 * So, if we see any bmap calls here on a modified, data-journaled file,
3094 * take extra steps to flush any blocks which might be in the cache.
3095 */
3096 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3097 {
3098 struct inode *inode = mapping->host;
3099 journal_t *journal;
3100 int err;
3101
3102 /*
3103 * We can get here for an inline file via the FIBMAP ioctl
3104 */
3105 if (ext4_has_inline_data(inode))
3106 return 0;
3107
3108 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3109 test_opt(inode->i_sb, DELALLOC)) {
3110 /*
3111 * With delalloc we want to sync the file
3112 * so that we can make sure we allocate
3113 * blocks for file
3114 */
3115 filemap_write_and_wait(mapping);
3116 }
3117
3118 if (EXT4_JOURNAL(inode) &&
3119 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3120 /*
3121 * This is a REALLY heavyweight approach, but the use of
3122 * bmap on dirty files is expected to be extremely rare:
3123 * only if we run lilo or swapon on a freshly made file
3124 * do we expect this to happen.
3125 *
3126 * (bmap requires CAP_SYS_RAWIO so this does not
3127 * represent an unprivileged user DOS attack --- we'd be
3128 * in trouble if mortal users could trigger this path at
3129 * will.)
3130 *
3131 * NB. EXT4_STATE_JDATA is not set on files other than
3132 * regular files. If somebody wants to bmap a directory
3133 * or symlink and gets confused because the buffer
3134 * hasn't yet been flushed to disk, they deserve
3135 * everything they get.
3136 */
3137
3138 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3139 journal = EXT4_JOURNAL(inode);
3140 jbd2_journal_lock_updates(journal);
3141 err = jbd2_journal_flush(journal);
3142 jbd2_journal_unlock_updates(journal);
3143
3144 if (err)
3145 return 0;
3146 }
3147
3148 return generic_block_bmap(mapping, block, ext4_get_block);
3149 }
3150
3151 static int ext4_readpage(struct file *file, struct page *page)
3152 {
3153 int ret = -EAGAIN;
3154 struct inode *inode = page->mapping->host;
3155
3156 trace_ext4_readpage(page);
3157
3158 if (ext4_has_inline_data(inode))
3159 ret = ext4_readpage_inline(inode, page);
3160
3161 if (ret == -EAGAIN)
3162 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3163
3164 return ret;
3165 }
3166
3167 static int
3168 ext4_readpages(struct file *file, struct address_space *mapping,
3169 struct list_head *pages, unsigned nr_pages)
3170 {
3171 struct inode *inode = mapping->host;
3172
3173 /* If the file has inline data, no need to do readpages. */
3174 if (ext4_has_inline_data(inode))
3175 return 0;
3176
3177 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3178 }
3179
3180 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3181 unsigned int length)
3182 {
3183 trace_ext4_invalidatepage(page, offset, length);
3184
3185 /* No journalling happens on data buffers when this function is used */
3186 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3187
3188 block_invalidatepage(page, offset, length);
3189 }
3190
3191 static int __ext4_journalled_invalidatepage(struct page *page,
3192 unsigned int offset,
3193 unsigned int length)
3194 {
3195 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3196
3197 trace_ext4_journalled_invalidatepage(page, offset, length);
3198
3199 /*
3200 * If it's a full truncate we just forget about the pending dirtying
3201 */
3202 if (offset == 0 && length == PAGE_SIZE)
3203 ClearPageChecked(page);
3204
3205 return jbd2_journal_invalidatepage(journal, page, offset, length);
3206 }
3207
3208 /* Wrapper for aops... */
3209 static void ext4_journalled_invalidatepage(struct page *page,
3210 unsigned int offset,
3211 unsigned int length)
3212 {
3213 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3214 }
3215
3216 static int ext4_releasepage(struct page *page, gfp_t wait)
3217 {
3218 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3219
3220 trace_ext4_releasepage(page);
3221
3222 /* Page has dirty journalled data -> cannot release */
3223 if (PageChecked(page))
3224 return 0;
3225 if (journal)
3226 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3227 else
3228 return try_to_free_buffers(page);
3229 }
3230
3231 #ifdef CONFIG_FS_DAX
3232 /*
3233 * Get block function for DAX IO and mmap faults. It takes care of converting
3234 * unwritten extents to written ones and initializes new / converted blocks
3235 * to zeros.
3236 */
3237 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3238 struct buffer_head *bh_result, int create)
3239 {
3240 int ret;
3241
3242 ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
3243 if (!create)
3244 return _ext4_get_block(inode, iblock, bh_result, 0);
3245
3246 ret = ext4_get_block_trans(inode, iblock, bh_result,
3247 EXT4_GET_BLOCKS_PRE_IO |
3248 EXT4_GET_BLOCKS_CREATE_ZERO);
3249 if (ret < 0)
3250 return ret;
3251
3252 if (buffer_unwritten(bh_result)) {
3253 /*
3254 * We are protected by i_mmap_sem or i_mutex so we know block
3255 * cannot go away from under us even though we dropped
3256 * i_data_sem. Convert extent to written and write zeros there.
3257 */
3258 ret = ext4_get_block_trans(inode, iblock, bh_result,
3259 EXT4_GET_BLOCKS_CONVERT |
3260 EXT4_GET_BLOCKS_CREATE_ZERO);
3261 if (ret < 0)
3262 return ret;
3263 }
3264 /*
3265 * At least for now we have to clear BH_New so that DAX code
3266 * doesn't attempt to zero blocks again in a racy way.
3267 */
3268 clear_buffer_new(bh_result);
3269 return 0;
3270 }
3271 #else
3272 /* Just define empty function, it will never get called. */
3273 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3274 struct buffer_head *bh_result, int create)
3275 {
3276 BUG();
3277 return 0;
3278 }
3279 #endif
3280
3281 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3282 ssize_t size, void *private)
3283 {
3284 ext4_io_end_t *io_end = private;
3285
3286 /* if not async direct IO just return */
3287 if (!io_end)
3288 return 0;
3289
3290 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3291 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3292 io_end, io_end->inode->i_ino, iocb, offset, size);
3293
3294 /*
3295 * Error during AIO DIO. We cannot convert unwritten extents as the
3296 * data was not written. Just clear the unwritten flag and drop io_end.
3297 */
3298 if (size <= 0) {
3299 ext4_clear_io_unwritten_flag(io_end);
3300 size = 0;
3301 }
3302 io_end->offset = offset;
3303 io_end->size = size;
3304 ext4_put_io_end(io_end);
3305
3306 return 0;
3307 }
3308
3309 /*
3310 * Handling of direct IO writes.
3311 *
3312 * For ext4 extent files, ext4 will do direct-io write even to holes,
3313 * preallocated extents, and those write extend the file, no need to
3314 * fall back to buffered IO.
3315 *
3316 * For holes, we fallocate those blocks, mark them as unwritten
3317 * If those blocks were preallocated, we mark sure they are split, but
3318 * still keep the range to write as unwritten.
3319 *
3320 * The unwritten extents will be converted to written when DIO is completed.
3321 * For async direct IO, since the IO may still pending when return, we
3322 * set up an end_io call back function, which will do the conversion
3323 * when async direct IO completed.
3324 *
3325 * If the O_DIRECT write will extend the file then add this inode to the
3326 * orphan list. So recovery will truncate it back to the original size
3327 * if the machine crashes during the write.
3328 *
3329 */
3330 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3331 {
3332 struct file *file = iocb->ki_filp;
3333 struct inode *inode = file->f_mapping->host;
3334 struct ext4_inode_info *ei = EXT4_I(inode);
3335 ssize_t ret;
3336 loff_t offset = iocb->ki_pos;
3337 size_t count = iov_iter_count(iter);
3338 int overwrite = 0;
3339 get_block_t *get_block_func = NULL;
3340 int dio_flags = 0;
3341 loff_t final_size = offset + count;
3342 int orphan = 0;
3343 handle_t *handle;
3344
3345 if (final_size > inode->i_size) {
3346 /* Credits for sb + inode write */
3347 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3348 if (IS_ERR(handle)) {
3349 ret = PTR_ERR(handle);
3350 goto out;
3351 }
3352 ret = ext4_orphan_add(handle, inode);
3353 if (ret) {
3354 ext4_journal_stop(handle);
3355 goto out;
3356 }
3357 orphan = 1;
3358 ei->i_disksize = inode->i_size;
3359 ext4_journal_stop(handle);
3360 }
3361
3362 BUG_ON(iocb->private == NULL);
3363
3364 /*
3365 * Make all waiters for direct IO properly wait also for extent
3366 * conversion. This also disallows race between truncate() and
3367 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3368 */
3369 inode_dio_begin(inode);
3370
3371 /* If we do a overwrite dio, i_mutex locking can be released */
3372 overwrite = *((int *)iocb->private);
3373
3374 if (overwrite)
3375 inode_unlock(inode);
3376
3377 /*
3378 * For extent mapped files we could direct write to holes and fallocate.
3379 *
3380 * Allocated blocks to fill the hole are marked as unwritten to prevent
3381 * parallel buffered read to expose the stale data before DIO complete
3382 * the data IO.
3383 *
3384 * As to previously fallocated extents, ext4 get_block will just simply
3385 * mark the buffer mapped but still keep the extents unwritten.
3386 *
3387 * For non AIO case, we will convert those unwritten extents to written
3388 * after return back from blockdev_direct_IO. That way we save us from
3389 * allocating io_end structure and also the overhead of offloading
3390 * the extent convertion to a workqueue.
3391 *
3392 * For async DIO, the conversion needs to be deferred when the
3393 * IO is completed. The ext4 end_io callback function will be
3394 * called to take care of the conversion work. Here for async
3395 * case, we allocate an io_end structure to hook to the iocb.
3396 */
3397 iocb->private = NULL;
3398 if (overwrite)
3399 get_block_func = ext4_dio_get_block_overwrite;
3400 else if (IS_DAX(inode)) {
3401 /*
3402 * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3403 * writes need zeroing either because they can race with page
3404 * faults or because they use partial blocks.
3405 */
3406 if (round_down(offset, 1<<inode->i_blkbits) >= inode->i_size &&
3407 ext4_aligned_io(inode, offset, count))
3408 get_block_func = ext4_dio_get_block;
3409 else
3410 get_block_func = ext4_dax_get_block;
3411 dio_flags = DIO_LOCKING;
3412 } else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3413 round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3414 get_block_func = ext4_dio_get_block;
3415 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3416 } else if (is_sync_kiocb(iocb)) {
3417 get_block_func = ext4_dio_get_block_unwritten_sync;
3418 dio_flags = DIO_LOCKING;
3419 } else {
3420 get_block_func = ext4_dio_get_block_unwritten_async;
3421 dio_flags = DIO_LOCKING;
3422 }
3423 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3424 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3425 #endif
3426 if (IS_DAX(inode)) {
3427 ret = dax_do_io(iocb, inode, iter, get_block_func,
3428 ext4_end_io_dio, dio_flags);
3429 } else
3430 ret = __blockdev_direct_IO(iocb, inode,
3431 inode->i_sb->s_bdev, iter,
3432 get_block_func,
3433 ext4_end_io_dio, NULL, dio_flags);
3434
3435 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3436 EXT4_STATE_DIO_UNWRITTEN)) {
3437 int err;
3438 /*
3439 * for non AIO case, since the IO is already
3440 * completed, we could do the conversion right here
3441 */
3442 err = ext4_convert_unwritten_extents(NULL, inode,
3443 offset, ret);
3444 if (err < 0)
3445 ret = err;
3446 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3447 }
3448
3449 inode_dio_end(inode);
3450 /* take i_mutex locking again if we do a ovewrite dio */
3451 if (overwrite)
3452 inode_lock(inode);
3453
3454 if (ret < 0 && final_size > inode->i_size)
3455 ext4_truncate_failed_write(inode);
3456
3457 /* Handle extending of i_size after direct IO write */
3458 if (orphan) {
3459 int err;
3460
3461 /* Credits for sb + inode write */
3462 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3463 if (IS_ERR(handle)) {
3464 /* This is really bad luck. We've written the data
3465 * but cannot extend i_size. Bail out and pretend
3466 * the write failed... */
3467 ret = PTR_ERR(handle);
3468 if (inode->i_nlink)
3469 ext4_orphan_del(NULL, inode);
3470
3471 goto out;
3472 }
3473 if (inode->i_nlink)
3474 ext4_orphan_del(handle, inode);
3475 if (ret > 0) {
3476 loff_t end = offset + ret;
3477 if (end > inode->i_size) {
3478 ei->i_disksize = end;
3479 i_size_write(inode, end);
3480 /*
3481 * We're going to return a positive `ret'
3482 * here due to non-zero-length I/O, so there's
3483 * no way of reporting error returns from
3484 * ext4_mark_inode_dirty() to userspace. So
3485 * ignore it.
3486 */
3487 ext4_mark_inode_dirty(handle, inode);
3488 }
3489 }
3490 err = ext4_journal_stop(handle);
3491 if (ret == 0)
3492 ret = err;
3493 }
3494 out:
3495 return ret;
3496 }
3497
3498 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3499 {
3500 int unlocked = 0;
3501 struct inode *inode = iocb->ki_filp->f_mapping->host;
3502 ssize_t ret;
3503
3504 if (ext4_should_dioread_nolock(inode)) {
3505 /*
3506 * Nolock dioread optimization may be dynamically disabled
3507 * via ext4_inode_block_unlocked_dio(). Check inode's state
3508 * while holding extra i_dio_count ref.
3509 */
3510 inode_dio_begin(inode);
3511 smp_mb();
3512 if (unlikely(ext4_test_inode_state(inode,
3513 EXT4_STATE_DIOREAD_LOCK)))
3514 inode_dio_end(inode);
3515 else
3516 unlocked = 1;
3517 }
3518 if (IS_DAX(inode)) {
3519 ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block,
3520 NULL, unlocked ? 0 : DIO_LOCKING);
3521 } else {
3522 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3523 iter, ext4_dio_get_block,
3524 NULL, NULL,
3525 unlocked ? 0 : DIO_LOCKING);
3526 }
3527 if (unlocked)
3528 inode_dio_end(inode);
3529 return ret;
3530 }
3531
3532 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3533 {
3534 struct file *file = iocb->ki_filp;
3535 struct inode *inode = file->f_mapping->host;
3536 size_t count = iov_iter_count(iter);
3537 loff_t offset = iocb->ki_pos;
3538 ssize_t ret;
3539
3540 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3541 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3542 return 0;
3543 #endif
3544
3545 /*
3546 * If we are doing data journalling we don't support O_DIRECT
3547 */
3548 if (ext4_should_journal_data(inode))
3549 return 0;
3550
3551 /* Let buffer I/O handle the inline data case. */
3552 if (ext4_has_inline_data(inode))
3553 return 0;
3554
3555 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3556 if (iov_iter_rw(iter) == READ)
3557 ret = ext4_direct_IO_read(iocb, iter);
3558 else
3559 ret = ext4_direct_IO_write(iocb, iter);
3560 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3561 return ret;
3562 }
3563
3564 /*
3565 * Pages can be marked dirty completely asynchronously from ext4's journalling
3566 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3567 * much here because ->set_page_dirty is called under VFS locks. The page is
3568 * not necessarily locked.
3569 *
3570 * We cannot just dirty the page and leave attached buffers clean, because the
3571 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3572 * or jbddirty because all the journalling code will explode.
3573 *
3574 * So what we do is to mark the page "pending dirty" and next time writepage
3575 * is called, propagate that into the buffers appropriately.
3576 */
3577 static int ext4_journalled_set_page_dirty(struct page *page)
3578 {
3579 SetPageChecked(page);
3580 return __set_page_dirty_nobuffers(page);
3581 }
3582
3583 static const struct address_space_operations ext4_aops = {
3584 .readpage = ext4_readpage,
3585 .readpages = ext4_readpages,
3586 .writepage = ext4_writepage,
3587 .writepages = ext4_writepages,
3588 .write_begin = ext4_write_begin,
3589 .write_end = ext4_write_end,
3590 .bmap = ext4_bmap,
3591 .invalidatepage = ext4_invalidatepage,
3592 .releasepage = ext4_releasepage,
3593 .direct_IO = ext4_direct_IO,
3594 .migratepage = buffer_migrate_page,
3595 .is_partially_uptodate = block_is_partially_uptodate,
3596 .error_remove_page = generic_error_remove_page,
3597 };
3598
3599 static const struct address_space_operations ext4_journalled_aops = {
3600 .readpage = ext4_readpage,
3601 .readpages = ext4_readpages,
3602 .writepage = ext4_writepage,
3603 .writepages = ext4_writepages,
3604 .write_begin = ext4_write_begin,
3605 .write_end = ext4_journalled_write_end,
3606 .set_page_dirty = ext4_journalled_set_page_dirty,
3607 .bmap = ext4_bmap,
3608 .invalidatepage = ext4_journalled_invalidatepage,
3609 .releasepage = ext4_releasepage,
3610 .direct_IO = ext4_direct_IO,
3611 .is_partially_uptodate = block_is_partially_uptodate,
3612 .error_remove_page = generic_error_remove_page,
3613 };
3614
3615 static const struct address_space_operations ext4_da_aops = {
3616 .readpage = ext4_readpage,
3617 .readpages = ext4_readpages,
3618 .writepage = ext4_writepage,
3619 .writepages = ext4_writepages,
3620 .write_begin = ext4_da_write_begin,
3621 .write_end = ext4_da_write_end,
3622 .bmap = ext4_bmap,
3623 .invalidatepage = ext4_da_invalidatepage,
3624 .releasepage = ext4_releasepage,
3625 .direct_IO = ext4_direct_IO,
3626 .migratepage = buffer_migrate_page,
3627 .is_partially_uptodate = block_is_partially_uptodate,
3628 .error_remove_page = generic_error_remove_page,
3629 };
3630
3631 void ext4_set_aops(struct inode *inode)
3632 {
3633 switch (ext4_inode_journal_mode(inode)) {
3634 case EXT4_INODE_ORDERED_DATA_MODE:
3635 case EXT4_INODE_WRITEBACK_DATA_MODE:
3636 break;
3637 case EXT4_INODE_JOURNAL_DATA_MODE:
3638 inode->i_mapping->a_ops = &ext4_journalled_aops;
3639 return;
3640 default:
3641 BUG();
3642 }
3643 if (test_opt(inode->i_sb, DELALLOC))
3644 inode->i_mapping->a_ops = &ext4_da_aops;
3645 else
3646 inode->i_mapping->a_ops = &ext4_aops;
3647 }
3648
3649 static int __ext4_block_zero_page_range(handle_t *handle,
3650 struct address_space *mapping, loff_t from, loff_t length)
3651 {
3652 ext4_fsblk_t index = from >> PAGE_SHIFT;
3653 unsigned offset = from & (PAGE_SIZE-1);
3654 unsigned blocksize, pos;
3655 ext4_lblk_t iblock;
3656 struct inode *inode = mapping->host;
3657 struct buffer_head *bh;
3658 struct page *page;
3659 int err = 0;
3660
3661 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3662 mapping_gfp_constraint(mapping, ~__GFP_FS));
3663 if (!page)
3664 return -ENOMEM;
3665
3666 blocksize = inode->i_sb->s_blocksize;
3667
3668 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3669
3670 if (!page_has_buffers(page))
3671 create_empty_buffers(page, blocksize, 0);
3672
3673 /* Find the buffer that contains "offset" */
3674 bh = page_buffers(page);
3675 pos = blocksize;
3676 while (offset >= pos) {
3677 bh = bh->b_this_page;
3678 iblock++;
3679 pos += blocksize;
3680 }
3681 if (buffer_freed(bh)) {
3682 BUFFER_TRACE(bh, "freed: skip");
3683 goto unlock;
3684 }
3685 if (!buffer_mapped(bh)) {
3686 BUFFER_TRACE(bh, "unmapped");
3687 ext4_get_block(inode, iblock, bh, 0);
3688 /* unmapped? It's a hole - nothing to do */
3689 if (!buffer_mapped(bh)) {
3690 BUFFER_TRACE(bh, "still unmapped");
3691 goto unlock;
3692 }
3693 }
3694
3695 /* Ok, it's mapped. Make sure it's up-to-date */
3696 if (PageUptodate(page))
3697 set_buffer_uptodate(bh);
3698
3699 if (!buffer_uptodate(bh)) {
3700 err = -EIO;
3701 ll_rw_block(READ, 1, &bh);
3702 wait_on_buffer(bh);
3703 /* Uhhuh. Read error. Complain and punt. */
3704 if (!buffer_uptodate(bh))
3705 goto unlock;
3706 if (S_ISREG(inode->i_mode) &&
3707 ext4_encrypted_inode(inode)) {
3708 /* We expect the key to be set. */
3709 BUG_ON(!ext4_has_encryption_key(inode));
3710 BUG_ON(blocksize != PAGE_SIZE);
3711 WARN_ON_ONCE(ext4_decrypt(page));
3712 }
3713 }
3714 if (ext4_should_journal_data(inode)) {
3715 BUFFER_TRACE(bh, "get write access");
3716 err = ext4_journal_get_write_access(handle, bh);
3717 if (err)
3718 goto unlock;
3719 }
3720 zero_user(page, offset, length);
3721 BUFFER_TRACE(bh, "zeroed end of block");
3722
3723 if (ext4_should_journal_data(inode)) {
3724 err = ext4_handle_dirty_metadata(handle, inode, bh);
3725 } else {
3726 err = 0;
3727 mark_buffer_dirty(bh);
3728 if (ext4_should_order_data(inode))
3729 err = ext4_jbd2_inode_add_write(handle, inode);
3730 }
3731
3732 unlock:
3733 unlock_page(page);
3734 put_page(page);
3735 return err;
3736 }
3737
3738 /*
3739 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3740 * starting from file offset 'from'. The range to be zero'd must
3741 * be contained with in one block. If the specified range exceeds
3742 * the end of the block it will be shortened to end of the block
3743 * that cooresponds to 'from'
3744 */
3745 static int ext4_block_zero_page_range(handle_t *handle,
3746 struct address_space *mapping, loff_t from, loff_t length)
3747 {
3748 struct inode *inode = mapping->host;
3749 unsigned offset = from & (PAGE_SIZE-1);
3750 unsigned blocksize = inode->i_sb->s_blocksize;
3751 unsigned max = blocksize - (offset & (blocksize - 1));
3752
3753 /*
3754 * correct length if it does not fall between
3755 * 'from' and the end of the block
3756 */
3757 if (length > max || length < 0)
3758 length = max;
3759
3760 if (IS_DAX(inode))
3761 return dax_zero_page_range(inode, from, length, ext4_get_block);
3762 return __ext4_block_zero_page_range(handle, mapping, from, length);
3763 }
3764
3765 /*
3766 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3767 * up to the end of the block which corresponds to `from'.
3768 * This required during truncate. We need to physically zero the tail end
3769 * of that block so it doesn't yield old data if the file is later grown.
3770 */
3771 static int ext4_block_truncate_page(handle_t *handle,
3772 struct address_space *mapping, loff_t from)
3773 {
3774 unsigned offset = from & (PAGE_SIZE-1);
3775 unsigned length;
3776 unsigned blocksize;
3777 struct inode *inode = mapping->host;
3778
3779 blocksize = inode->i_sb->s_blocksize;
3780 length = blocksize - (offset & (blocksize - 1));
3781
3782 return ext4_block_zero_page_range(handle, mapping, from, length);
3783 }
3784
3785 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3786 loff_t lstart, loff_t length)
3787 {
3788 struct super_block *sb = inode->i_sb;
3789 struct address_space *mapping = inode->i_mapping;
3790 unsigned partial_start, partial_end;
3791 ext4_fsblk_t start, end;
3792 loff_t byte_end = (lstart + length - 1);
3793 int err = 0;
3794
3795 partial_start = lstart & (sb->s_blocksize - 1);
3796 partial_end = byte_end & (sb->s_blocksize - 1);
3797
3798 start = lstart >> sb->s_blocksize_bits;
3799 end = byte_end >> sb->s_blocksize_bits;
3800
3801 /* Handle partial zero within the single block */
3802 if (start == end &&
3803 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3804 err = ext4_block_zero_page_range(handle, mapping,
3805 lstart, length);
3806 return err;
3807 }
3808 /* Handle partial zero out on the start of the range */
3809 if (partial_start) {
3810 err = ext4_block_zero_page_range(handle, mapping,
3811 lstart, sb->s_blocksize);
3812 if (err)
3813 return err;
3814 }
3815 /* Handle partial zero out on the end of the range */
3816 if (partial_end != sb->s_blocksize - 1)
3817 err = ext4_block_zero_page_range(handle, mapping,
3818 byte_end - partial_end,
3819 partial_end + 1);
3820 return err;
3821 }
3822
3823 int ext4_can_truncate(struct inode *inode)
3824 {
3825 if (S_ISREG(inode->i_mode))
3826 return 1;
3827 if (S_ISDIR(inode->i_mode))
3828 return 1;
3829 if (S_ISLNK(inode->i_mode))
3830 return !ext4_inode_is_fast_symlink(inode);
3831 return 0;
3832 }
3833
3834 /*
3835 * We have to make sure i_disksize gets properly updated before we truncate
3836 * page cache due to hole punching or zero range. Otherwise i_disksize update
3837 * can get lost as it may have been postponed to submission of writeback but
3838 * that will never happen after we truncate page cache.
3839 */
3840 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3841 loff_t len)
3842 {
3843 handle_t *handle;
3844 loff_t size = i_size_read(inode);
3845
3846 WARN_ON(!inode_is_locked(inode));
3847 if (offset > size || offset + len < size)
3848 return 0;
3849
3850 if (EXT4_I(inode)->i_disksize >= size)
3851 return 0;
3852
3853 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3854 if (IS_ERR(handle))
3855 return PTR_ERR(handle);
3856 ext4_update_i_disksize(inode, size);
3857 ext4_mark_inode_dirty(handle, inode);
3858 ext4_journal_stop(handle);
3859
3860 return 0;
3861 }
3862
3863 /*
3864 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3865 * associated with the given offset and length
3866 *
3867 * @inode: File inode
3868 * @offset: The offset where the hole will begin
3869 * @len: The length of the hole
3870 *
3871 * Returns: 0 on success or negative on failure
3872 */
3873
3874 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3875 {
3876 struct super_block *sb = inode->i_sb;
3877 ext4_lblk_t first_block, stop_block;
3878 struct address_space *mapping = inode->i_mapping;
3879 loff_t first_block_offset, last_block_offset;
3880 handle_t *handle;
3881 unsigned int credits;
3882 int ret = 0;
3883
3884 if (!S_ISREG(inode->i_mode))
3885 return -EOPNOTSUPP;
3886
3887 trace_ext4_punch_hole(inode, offset, length, 0);
3888
3889 /*
3890 * Write out all dirty pages to avoid race conditions
3891 * Then release them.
3892 */
3893 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3894 ret = filemap_write_and_wait_range(mapping, offset,
3895 offset + length - 1);
3896 if (ret)
3897 return ret;
3898 }
3899
3900 inode_lock(inode);
3901
3902 /* No need to punch hole beyond i_size */
3903 if (offset >= inode->i_size)
3904 goto out_mutex;
3905
3906 /*
3907 * If the hole extends beyond i_size, set the hole
3908 * to end after the page that contains i_size
3909 */
3910 if (offset + length > inode->i_size) {
3911 length = inode->i_size +
3912 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3913 offset;
3914 }
3915
3916 if (offset & (sb->s_blocksize - 1) ||
3917 (offset + length) & (sb->s_blocksize - 1)) {
3918 /*
3919 * Attach jinode to inode for jbd2 if we do any zeroing of
3920 * partial block
3921 */
3922 ret = ext4_inode_attach_jinode(inode);
3923 if (ret < 0)
3924 goto out_mutex;
3925
3926 }
3927
3928 /* Wait all existing dio workers, newcomers will block on i_mutex */
3929 ext4_inode_block_unlocked_dio(inode);
3930 inode_dio_wait(inode);
3931
3932 /*
3933 * Prevent page faults from reinstantiating pages we have released from
3934 * page cache.
3935 */
3936 down_write(&EXT4_I(inode)->i_mmap_sem);
3937 first_block_offset = round_up(offset, sb->s_blocksize);
3938 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3939
3940 /* Now release the pages and zero block aligned part of pages*/
3941 if (last_block_offset > first_block_offset) {
3942 ret = ext4_update_disksize_before_punch(inode, offset, length);
3943 if (ret)
3944 goto out_dio;
3945 truncate_pagecache_range(inode, first_block_offset,
3946 last_block_offset);
3947 }
3948
3949 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3950 credits = ext4_writepage_trans_blocks(inode);
3951 else
3952 credits = ext4_blocks_for_truncate(inode);
3953 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3954 if (IS_ERR(handle)) {
3955 ret = PTR_ERR(handle);
3956 ext4_std_error(sb, ret);
3957 goto out_dio;
3958 }
3959
3960 ret = ext4_zero_partial_blocks(handle, inode, offset,
3961 length);
3962 if (ret)
3963 goto out_stop;
3964
3965 first_block = (offset + sb->s_blocksize - 1) >>
3966 EXT4_BLOCK_SIZE_BITS(sb);
3967 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3968
3969 /* If there are no blocks to remove, return now */
3970 if (first_block >= stop_block)
3971 goto out_stop;
3972
3973 down_write(&EXT4_I(inode)->i_data_sem);
3974 ext4_discard_preallocations(inode);
3975
3976 ret = ext4_es_remove_extent(inode, first_block,
3977 stop_block - first_block);
3978 if (ret) {
3979 up_write(&EXT4_I(inode)->i_data_sem);
3980 goto out_stop;
3981 }
3982
3983 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3984 ret = ext4_ext_remove_space(inode, first_block,
3985 stop_block - 1);
3986 else
3987 ret = ext4_ind_remove_space(handle, inode, first_block,
3988 stop_block);
3989
3990 up_write(&EXT4_I(inode)->i_data_sem);
3991 if (IS_SYNC(inode))
3992 ext4_handle_sync(handle);
3993
3994 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3995 ext4_mark_inode_dirty(handle, inode);
3996 out_stop:
3997 ext4_journal_stop(handle);
3998 out_dio:
3999 up_write(&EXT4_I(inode)->i_mmap_sem);
4000 ext4_inode_resume_unlocked_dio(inode);
4001 out_mutex:
4002 inode_unlock(inode);
4003 return ret;
4004 }
4005
4006 int ext4_inode_attach_jinode(struct inode *inode)
4007 {
4008 struct ext4_inode_info *ei = EXT4_I(inode);
4009 struct jbd2_inode *jinode;
4010
4011 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4012 return 0;
4013
4014 jinode = jbd2_alloc_inode(GFP_KERNEL);
4015 spin_lock(&inode->i_lock);
4016 if (!ei->jinode) {
4017 if (!jinode) {
4018 spin_unlock(&inode->i_lock);
4019 return -ENOMEM;
4020 }
4021 ei->jinode = jinode;
4022 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4023 jinode = NULL;
4024 }
4025 spin_unlock(&inode->i_lock);
4026 if (unlikely(jinode != NULL))
4027 jbd2_free_inode(jinode);
4028 return 0;
4029 }
4030
4031 /*
4032 * ext4_truncate()
4033 *
4034 * We block out ext4_get_block() block instantiations across the entire
4035 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4036 * simultaneously on behalf of the same inode.
4037 *
4038 * As we work through the truncate and commit bits of it to the journal there
4039 * is one core, guiding principle: the file's tree must always be consistent on
4040 * disk. We must be able to restart the truncate after a crash.
4041 *
4042 * The file's tree may be transiently inconsistent in memory (although it
4043 * probably isn't), but whenever we close off and commit a journal transaction,
4044 * the contents of (the filesystem + the journal) must be consistent and
4045 * restartable. It's pretty simple, really: bottom up, right to left (although
4046 * left-to-right works OK too).
4047 *
4048 * Note that at recovery time, journal replay occurs *before* the restart of
4049 * truncate against the orphan inode list.
4050 *
4051 * The committed inode has the new, desired i_size (which is the same as
4052 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4053 * that this inode's truncate did not complete and it will again call
4054 * ext4_truncate() to have another go. So there will be instantiated blocks
4055 * to the right of the truncation point in a crashed ext4 filesystem. But
4056 * that's fine - as long as they are linked from the inode, the post-crash
4057 * ext4_truncate() run will find them and release them.
4058 */
4059 void ext4_truncate(struct inode *inode)
4060 {
4061 struct ext4_inode_info *ei = EXT4_I(inode);
4062 unsigned int credits;
4063 handle_t *handle;
4064 struct address_space *mapping = inode->i_mapping;
4065
4066 /*
4067 * There is a possibility that we're either freeing the inode
4068 * or it's a completely new inode. In those cases we might not
4069 * have i_mutex locked because it's not necessary.
4070 */
4071 if (!(inode->i_state & (I_NEW|I_FREEING)))
4072 WARN_ON(!inode_is_locked(inode));
4073 trace_ext4_truncate_enter(inode);
4074
4075 if (!ext4_can_truncate(inode))
4076 return;
4077
4078 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4079
4080 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4081 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4082
4083 if (ext4_has_inline_data(inode)) {
4084 int has_inline = 1;
4085
4086 ext4_inline_data_truncate(inode, &has_inline);
4087 if (has_inline)
4088 return;
4089 }
4090
4091 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4092 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4093 if (ext4_inode_attach_jinode(inode) < 0)
4094 return;
4095 }
4096
4097 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4098 credits = ext4_writepage_trans_blocks(inode);
4099 else
4100 credits = ext4_blocks_for_truncate(inode);
4101
4102 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4103 if (IS_ERR(handle)) {
4104 ext4_std_error(inode->i_sb, PTR_ERR(handle));
4105 return;
4106 }
4107
4108 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4109 ext4_block_truncate_page(handle, mapping, inode->i_size);
4110
4111 /*
4112 * We add the inode to the orphan list, so that if this
4113 * truncate spans multiple transactions, and we crash, we will
4114 * resume the truncate when the filesystem recovers. It also
4115 * marks the inode dirty, to catch the new size.
4116 *
4117 * Implication: the file must always be in a sane, consistent
4118 * truncatable state while each transaction commits.
4119 */
4120 if (ext4_orphan_add(handle, inode))
4121 goto out_stop;
4122
4123 down_write(&EXT4_I(inode)->i_data_sem);
4124
4125 ext4_discard_preallocations(inode);
4126
4127 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4128 ext4_ext_truncate(handle, inode);
4129 else
4130 ext4_ind_truncate(handle, inode);
4131
4132 up_write(&ei->i_data_sem);
4133
4134 if (IS_SYNC(inode))
4135 ext4_handle_sync(handle);
4136
4137 out_stop:
4138 /*
4139 * If this was a simple ftruncate() and the file will remain alive,
4140 * then we need to clear up the orphan record which we created above.
4141 * However, if this was a real unlink then we were called by
4142 * ext4_evict_inode(), and we allow that function to clean up the
4143 * orphan info for us.
4144 */
4145 if (inode->i_nlink)
4146 ext4_orphan_del(handle, inode);
4147
4148 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4149 ext4_mark_inode_dirty(handle, inode);
4150 ext4_journal_stop(handle);
4151
4152 trace_ext4_truncate_exit(inode);
4153 }
4154
4155 /*
4156 * ext4_get_inode_loc returns with an extra refcount against the inode's
4157 * underlying buffer_head on success. If 'in_mem' is true, we have all
4158 * data in memory that is needed to recreate the on-disk version of this
4159 * inode.
4160 */
4161 static int __ext4_get_inode_loc(struct inode *inode,
4162 struct ext4_iloc *iloc, int in_mem)
4163 {
4164 struct ext4_group_desc *gdp;
4165 struct buffer_head *bh;
4166 struct super_block *sb = inode->i_sb;
4167 ext4_fsblk_t block;
4168 int inodes_per_block, inode_offset;
4169
4170 iloc->bh = NULL;
4171 if (!ext4_valid_inum(sb, inode->i_ino))
4172 return -EFSCORRUPTED;
4173
4174 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4175 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4176 if (!gdp)
4177 return -EIO;
4178
4179 /*
4180 * Figure out the offset within the block group inode table
4181 */
4182 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4183 inode_offset = ((inode->i_ino - 1) %
4184 EXT4_INODES_PER_GROUP(sb));
4185 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4186 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4187
4188 bh = sb_getblk(sb, block);
4189 if (unlikely(!bh))
4190 return -ENOMEM;
4191 if (!buffer_uptodate(bh)) {
4192 lock_buffer(bh);
4193
4194 /*
4195 * If the buffer has the write error flag, we have failed
4196 * to write out another inode in the same block. In this
4197 * case, we don't have to read the block because we may
4198 * read the old inode data successfully.
4199 */
4200 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4201 set_buffer_uptodate(bh);
4202
4203 if (buffer_uptodate(bh)) {
4204 /* someone brought it uptodate while we waited */
4205 unlock_buffer(bh);
4206 goto has_buffer;
4207 }
4208
4209 /*
4210 * If we have all information of the inode in memory and this
4211 * is the only valid inode in the block, we need not read the
4212 * block.
4213 */
4214 if (in_mem) {
4215 struct buffer_head *bitmap_bh;
4216 int i, start;
4217
4218 start = inode_offset & ~(inodes_per_block - 1);
4219
4220 /* Is the inode bitmap in cache? */
4221 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4222 if (unlikely(!bitmap_bh))
4223 goto make_io;
4224
4225 /*
4226 * If the inode bitmap isn't in cache then the
4227 * optimisation may end up performing two reads instead
4228 * of one, so skip it.
4229 */
4230 if (!buffer_uptodate(bitmap_bh)) {
4231 brelse(bitmap_bh);
4232 goto make_io;
4233 }
4234 for (i = start; i < start + inodes_per_block; i++) {
4235 if (i == inode_offset)
4236 continue;
4237 if (ext4_test_bit(i, bitmap_bh->b_data))
4238 break;
4239 }
4240 brelse(bitmap_bh);
4241 if (i == start + inodes_per_block) {
4242 /* all other inodes are free, so skip I/O */
4243 memset(bh->b_data, 0, bh->b_size);
4244 set_buffer_uptodate(bh);
4245 unlock_buffer(bh);
4246 goto has_buffer;
4247 }
4248 }
4249
4250 make_io:
4251 /*
4252 * If we need to do any I/O, try to pre-readahead extra
4253 * blocks from the inode table.
4254 */
4255 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4256 ext4_fsblk_t b, end, table;
4257 unsigned num;
4258 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4259
4260 table = ext4_inode_table(sb, gdp);
4261 /* s_inode_readahead_blks is always a power of 2 */
4262 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4263 if (table > b)
4264 b = table;
4265 end = b + ra_blks;
4266 num = EXT4_INODES_PER_GROUP(sb);
4267 if (ext4_has_group_desc_csum(sb))
4268 num -= ext4_itable_unused_count(sb, gdp);
4269 table += num / inodes_per_block;
4270 if (end > table)
4271 end = table;
4272 while (b <= end)
4273 sb_breadahead(sb, b++);
4274 }
4275
4276 /*
4277 * There are other valid inodes in the buffer, this inode
4278 * has in-inode xattrs, or we don't have this inode in memory.
4279 * Read the block from disk.
4280 */
4281 trace_ext4_load_inode(inode);
4282 get_bh(bh);
4283 bh->b_end_io = end_buffer_read_sync;
4284 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4285 wait_on_buffer(bh);
4286 if (!buffer_uptodate(bh)) {
4287 EXT4_ERROR_INODE_BLOCK(inode, block,
4288 "unable to read itable block");
4289 brelse(bh);
4290 return -EIO;
4291 }
4292 }
4293 has_buffer:
4294 iloc->bh = bh;
4295 return 0;
4296 }
4297
4298 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4299 {
4300 /* We have all inode data except xattrs in memory here. */
4301 return __ext4_get_inode_loc(inode, iloc,
4302 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4303 }
4304
4305 void ext4_set_inode_flags(struct inode *inode)
4306 {
4307 unsigned int flags = EXT4_I(inode)->i_flags;
4308 unsigned int new_fl = 0;
4309
4310 if (flags & EXT4_SYNC_FL)
4311 new_fl |= S_SYNC;
4312 if (flags & EXT4_APPEND_FL)
4313 new_fl |= S_APPEND;
4314 if (flags & EXT4_IMMUTABLE_FL)
4315 new_fl |= S_IMMUTABLE;
4316 if (flags & EXT4_NOATIME_FL)
4317 new_fl |= S_NOATIME;
4318 if (flags & EXT4_DIRSYNC_FL)
4319 new_fl |= S_DIRSYNC;
4320 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4321 new_fl |= S_DAX;
4322 inode_set_flags(inode, new_fl,
4323 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4324 }
4325
4326 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4327 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4328 {
4329 unsigned int vfs_fl;
4330 unsigned long old_fl, new_fl;
4331
4332 do {
4333 vfs_fl = ei->vfs_inode.i_flags;
4334 old_fl = ei->i_flags;
4335 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4336 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4337 EXT4_DIRSYNC_FL);
4338 if (vfs_fl & S_SYNC)
4339 new_fl |= EXT4_SYNC_FL;
4340 if (vfs_fl & S_APPEND)
4341 new_fl |= EXT4_APPEND_FL;
4342 if (vfs_fl & S_IMMUTABLE)
4343 new_fl |= EXT4_IMMUTABLE_FL;
4344 if (vfs_fl & S_NOATIME)
4345 new_fl |= EXT4_NOATIME_FL;
4346 if (vfs_fl & S_DIRSYNC)
4347 new_fl |= EXT4_DIRSYNC_FL;
4348 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4349 }
4350
4351 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4352 struct ext4_inode_info *ei)
4353 {
4354 blkcnt_t i_blocks ;
4355 struct inode *inode = &(ei->vfs_inode);
4356 struct super_block *sb = inode->i_sb;
4357
4358 if (ext4_has_feature_huge_file(sb)) {
4359 /* we are using combined 48 bit field */
4360 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4361 le32_to_cpu(raw_inode->i_blocks_lo);
4362 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4363 /* i_blocks represent file system block size */
4364 return i_blocks << (inode->i_blkbits - 9);
4365 } else {
4366 return i_blocks;
4367 }
4368 } else {
4369 return le32_to_cpu(raw_inode->i_blocks_lo);
4370 }
4371 }
4372
4373 static inline void ext4_iget_extra_inode(struct inode *inode,
4374 struct ext4_inode *raw_inode,
4375 struct ext4_inode_info *ei)
4376 {
4377 __le32 *magic = (void *)raw_inode +
4378 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4379 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4380 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4381 ext4_find_inline_data_nolock(inode);
4382 } else
4383 EXT4_I(inode)->i_inline_off = 0;
4384 }
4385
4386 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4387 {
4388 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4389 return -EOPNOTSUPP;
4390 *projid = EXT4_I(inode)->i_projid;
4391 return 0;
4392 }
4393
4394 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4395 {
4396 struct ext4_iloc iloc;
4397 struct ext4_inode *raw_inode;
4398 struct ext4_inode_info *ei;
4399 struct inode *inode;
4400 journal_t *journal = EXT4_SB(sb)->s_journal;
4401 long ret;
4402 int block;
4403 uid_t i_uid;
4404 gid_t i_gid;
4405 projid_t i_projid;
4406
4407 inode = iget_locked(sb, ino);
4408 if (!inode)
4409 return ERR_PTR(-ENOMEM);
4410 if (!(inode->i_state & I_NEW))
4411 return inode;
4412
4413 ei = EXT4_I(inode);
4414 iloc.bh = NULL;
4415
4416 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4417 if (ret < 0)
4418 goto bad_inode;
4419 raw_inode = ext4_raw_inode(&iloc);
4420
4421 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4422 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4423 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4424 EXT4_INODE_SIZE(inode->i_sb)) {
4425 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4426 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4427 EXT4_INODE_SIZE(inode->i_sb));
4428 ret = -EFSCORRUPTED;
4429 goto bad_inode;
4430 }
4431 } else
4432 ei->i_extra_isize = 0;
4433
4434 /* Precompute checksum seed for inode metadata */
4435 if (ext4_has_metadata_csum(sb)) {
4436 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4437 __u32 csum;
4438 __le32 inum = cpu_to_le32(inode->i_ino);
4439 __le32 gen = raw_inode->i_generation;
4440 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4441 sizeof(inum));
4442 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4443 sizeof(gen));
4444 }
4445
4446 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4447 EXT4_ERROR_INODE(inode, "checksum invalid");
4448 ret = -EFSBADCRC;
4449 goto bad_inode;
4450 }
4451
4452 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4453 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4454 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4455 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4456 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4457 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4458 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4459 else
4460 i_projid = EXT4_DEF_PROJID;
4461
4462 if (!(test_opt(inode->i_sb, NO_UID32))) {
4463 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4464 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4465 }
4466 i_uid_write(inode, i_uid);
4467 i_gid_write(inode, i_gid);
4468 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4469 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4470
4471 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4472 ei->i_inline_off = 0;
4473 ei->i_dir_start_lookup = 0;
4474 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4475 /* We now have enough fields to check if the inode was active or not.
4476 * This is needed because nfsd might try to access dead inodes
4477 * the test is that same one that e2fsck uses
4478 * NeilBrown 1999oct15
4479 */
4480 if (inode->i_nlink == 0) {
4481 if ((inode->i_mode == 0 ||
4482 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4483 ino != EXT4_BOOT_LOADER_INO) {
4484 /* this inode is deleted */
4485 ret = -ESTALE;
4486 goto bad_inode;
4487 }
4488 /* The only unlinked inodes we let through here have
4489 * valid i_mode and are being read by the orphan
4490 * recovery code: that's fine, we're about to complete
4491 * the process of deleting those.
4492 * OR it is the EXT4_BOOT_LOADER_INO which is
4493 * not initialized on a new filesystem. */
4494 }
4495 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4496 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4497 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4498 if (ext4_has_feature_64bit(sb))
4499 ei->i_file_acl |=
4500 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4501 inode->i_size = ext4_isize(raw_inode);
4502 ei->i_disksize = inode->i_size;
4503 #ifdef CONFIG_QUOTA
4504 ei->i_reserved_quota = 0;
4505 #endif
4506 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4507 ei->i_block_group = iloc.block_group;
4508 ei->i_last_alloc_group = ~0;
4509 /*
4510 * NOTE! The in-memory inode i_data array is in little-endian order
4511 * even on big-endian machines: we do NOT byteswap the block numbers!
4512 */
4513 for (block = 0; block < EXT4_N_BLOCKS; block++)
4514 ei->i_data[block] = raw_inode->i_block[block];
4515 INIT_LIST_HEAD(&ei->i_orphan);
4516
4517 /*
4518 * Set transaction id's of transactions that have to be committed
4519 * to finish f[data]sync. We set them to currently running transaction
4520 * as we cannot be sure that the inode or some of its metadata isn't
4521 * part of the transaction - the inode could have been reclaimed and
4522 * now it is reread from disk.
4523 */
4524 if (journal) {
4525 transaction_t *transaction;
4526 tid_t tid;
4527
4528 read_lock(&journal->j_state_lock);
4529 if (journal->j_running_transaction)
4530 transaction = journal->j_running_transaction;
4531 else
4532 transaction = journal->j_committing_transaction;
4533 if (transaction)
4534 tid = transaction->t_tid;
4535 else
4536 tid = journal->j_commit_sequence;
4537 read_unlock(&journal->j_state_lock);
4538 ei->i_sync_tid = tid;
4539 ei->i_datasync_tid = tid;
4540 }
4541
4542 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4543 if (ei->i_extra_isize == 0) {
4544 /* The extra space is currently unused. Use it. */
4545 ei->i_extra_isize = sizeof(struct ext4_inode) -
4546 EXT4_GOOD_OLD_INODE_SIZE;
4547 } else {
4548 ext4_iget_extra_inode(inode, raw_inode, ei);
4549 }
4550 }
4551
4552 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4553 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4554 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4555 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4556
4557 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4558 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4559 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4560 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4561 inode->i_version |=
4562 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4563 }
4564 }
4565
4566 ret = 0;
4567 if (ei->i_file_acl &&
4568 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4569 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4570 ei->i_file_acl);
4571 ret = -EFSCORRUPTED;
4572 goto bad_inode;
4573 } else if (!ext4_has_inline_data(inode)) {
4574 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4575 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4576 (S_ISLNK(inode->i_mode) &&
4577 !ext4_inode_is_fast_symlink(inode))))
4578 /* Validate extent which is part of inode */
4579 ret = ext4_ext_check_inode(inode);
4580 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4581 (S_ISLNK(inode->i_mode) &&
4582 !ext4_inode_is_fast_symlink(inode))) {
4583 /* Validate block references which are part of inode */
4584 ret = ext4_ind_check_inode(inode);
4585 }
4586 }
4587 if (ret)
4588 goto bad_inode;
4589
4590 if (S_ISREG(inode->i_mode)) {
4591 inode->i_op = &ext4_file_inode_operations;
4592 inode->i_fop = &ext4_file_operations;
4593 ext4_set_aops(inode);
4594 } else if (S_ISDIR(inode->i_mode)) {
4595 inode->i_op = &ext4_dir_inode_operations;
4596 inode->i_fop = &ext4_dir_operations;
4597 } else if (S_ISLNK(inode->i_mode)) {
4598 if (ext4_encrypted_inode(inode)) {
4599 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4600 ext4_set_aops(inode);
4601 } else if (ext4_inode_is_fast_symlink(inode)) {
4602 inode->i_link = (char *)ei->i_data;
4603 inode->i_op = &ext4_fast_symlink_inode_operations;
4604 nd_terminate_link(ei->i_data, inode->i_size,
4605 sizeof(ei->i_data) - 1);
4606 } else {
4607 inode->i_op = &ext4_symlink_inode_operations;
4608 ext4_set_aops(inode);
4609 }
4610 inode_nohighmem(inode);
4611 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4612 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4613 inode->i_op = &ext4_special_inode_operations;
4614 if (raw_inode->i_block[0])
4615 init_special_inode(inode, inode->i_mode,
4616 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4617 else
4618 init_special_inode(inode, inode->i_mode,
4619 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4620 } else if (ino == EXT4_BOOT_LOADER_INO) {
4621 make_bad_inode(inode);
4622 } else {
4623 ret = -EFSCORRUPTED;
4624 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4625 goto bad_inode;
4626 }
4627 brelse(iloc.bh);
4628 ext4_set_inode_flags(inode);
4629 unlock_new_inode(inode);
4630 return inode;
4631
4632 bad_inode:
4633 brelse(iloc.bh);
4634 iget_failed(inode);
4635 return ERR_PTR(ret);
4636 }
4637
4638 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4639 {
4640 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4641 return ERR_PTR(-EFSCORRUPTED);
4642 return ext4_iget(sb, ino);
4643 }
4644
4645 static int ext4_inode_blocks_set(handle_t *handle,
4646 struct ext4_inode *raw_inode,
4647 struct ext4_inode_info *ei)
4648 {
4649 struct inode *inode = &(ei->vfs_inode);
4650 u64 i_blocks = inode->i_blocks;
4651 struct super_block *sb = inode->i_sb;
4652
4653 if (i_blocks <= ~0U) {
4654 /*
4655 * i_blocks can be represented in a 32 bit variable
4656 * as multiple of 512 bytes
4657 */
4658 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4659 raw_inode->i_blocks_high = 0;
4660 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4661 return 0;
4662 }
4663 if (!ext4_has_feature_huge_file(sb))
4664 return -EFBIG;
4665
4666 if (i_blocks <= 0xffffffffffffULL) {
4667 /*
4668 * i_blocks can be represented in a 48 bit variable
4669 * as multiple of 512 bytes
4670 */
4671 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4672 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4673 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4674 } else {
4675 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4676 /* i_block is stored in file system block size */
4677 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4678 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4679 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4680 }
4681 return 0;
4682 }
4683
4684 struct other_inode {
4685 unsigned long orig_ino;
4686 struct ext4_inode *raw_inode;
4687 };
4688
4689 static int other_inode_match(struct inode * inode, unsigned long ino,
4690 void *data)
4691 {
4692 struct other_inode *oi = (struct other_inode *) data;
4693
4694 if ((inode->i_ino != ino) ||
4695 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4696 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4697 ((inode->i_state & I_DIRTY_TIME) == 0))
4698 return 0;
4699 spin_lock(&inode->i_lock);
4700 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4701 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4702 (inode->i_state & I_DIRTY_TIME)) {
4703 struct ext4_inode_info *ei = EXT4_I(inode);
4704
4705 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4706 spin_unlock(&inode->i_lock);
4707
4708 spin_lock(&ei->i_raw_lock);
4709 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4710 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4711 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4712 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4713 spin_unlock(&ei->i_raw_lock);
4714 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4715 return -1;
4716 }
4717 spin_unlock(&inode->i_lock);
4718 return -1;
4719 }
4720
4721 /*
4722 * Opportunistically update the other time fields for other inodes in
4723 * the same inode table block.
4724 */
4725 static void ext4_update_other_inodes_time(struct super_block *sb,
4726 unsigned long orig_ino, char *buf)
4727 {
4728 struct other_inode oi;
4729 unsigned long ino;
4730 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4731 int inode_size = EXT4_INODE_SIZE(sb);
4732
4733 oi.orig_ino = orig_ino;
4734 /*
4735 * Calculate the first inode in the inode table block. Inode
4736 * numbers are one-based. That is, the first inode in a block
4737 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4738 */
4739 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4740 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4741 if (ino == orig_ino)
4742 continue;
4743 oi.raw_inode = (struct ext4_inode *) buf;
4744 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4745 }
4746 }
4747
4748 /*
4749 * Post the struct inode info into an on-disk inode location in the
4750 * buffer-cache. This gobbles the caller's reference to the
4751 * buffer_head in the inode location struct.
4752 *
4753 * The caller must have write access to iloc->bh.
4754 */
4755 static int ext4_do_update_inode(handle_t *handle,
4756 struct inode *inode,
4757 struct ext4_iloc *iloc)
4758 {
4759 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4760 struct ext4_inode_info *ei = EXT4_I(inode);
4761 struct buffer_head *bh = iloc->bh;
4762 struct super_block *sb = inode->i_sb;
4763 int err = 0, rc, block;
4764 int need_datasync = 0, set_large_file = 0;
4765 uid_t i_uid;
4766 gid_t i_gid;
4767 projid_t i_projid;
4768
4769 spin_lock(&ei->i_raw_lock);
4770
4771 /* For fields not tracked in the in-memory inode,
4772 * initialise them to zero for new inodes. */
4773 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4774 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4775
4776 ext4_get_inode_flags(ei);
4777 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4778 i_uid = i_uid_read(inode);
4779 i_gid = i_gid_read(inode);
4780 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4781 if (!(test_opt(inode->i_sb, NO_UID32))) {
4782 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4783 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4784 /*
4785 * Fix up interoperability with old kernels. Otherwise, old inodes get
4786 * re-used with the upper 16 bits of the uid/gid intact
4787 */
4788 if (!ei->i_dtime) {
4789 raw_inode->i_uid_high =
4790 cpu_to_le16(high_16_bits(i_uid));
4791 raw_inode->i_gid_high =
4792 cpu_to_le16(high_16_bits(i_gid));
4793 } else {
4794 raw_inode->i_uid_high = 0;
4795 raw_inode->i_gid_high = 0;
4796 }
4797 } else {
4798 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4799 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4800 raw_inode->i_uid_high = 0;
4801 raw_inode->i_gid_high = 0;
4802 }
4803 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4804
4805 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4806 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4807 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4808 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4809
4810 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4811 if (err) {
4812 spin_unlock(&ei->i_raw_lock);
4813 goto out_brelse;
4814 }
4815 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4816 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4817 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4818 raw_inode->i_file_acl_high =
4819 cpu_to_le16(ei->i_file_acl >> 32);
4820 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4821 if (ei->i_disksize != ext4_isize(raw_inode)) {
4822 ext4_isize_set(raw_inode, ei->i_disksize);
4823 need_datasync = 1;
4824 }
4825 if (ei->i_disksize > 0x7fffffffULL) {
4826 if (!ext4_has_feature_large_file(sb) ||
4827 EXT4_SB(sb)->s_es->s_rev_level ==
4828 cpu_to_le32(EXT4_GOOD_OLD_REV))
4829 set_large_file = 1;
4830 }
4831 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4832 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4833 if (old_valid_dev(inode->i_rdev)) {
4834 raw_inode->i_block[0] =
4835 cpu_to_le32(old_encode_dev(inode->i_rdev));
4836 raw_inode->i_block[1] = 0;
4837 } else {
4838 raw_inode->i_block[0] = 0;
4839 raw_inode->i_block[1] =
4840 cpu_to_le32(new_encode_dev(inode->i_rdev));
4841 raw_inode->i_block[2] = 0;
4842 }
4843 } else if (!ext4_has_inline_data(inode)) {
4844 for (block = 0; block < EXT4_N_BLOCKS; block++)
4845 raw_inode->i_block[block] = ei->i_data[block];
4846 }
4847
4848 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4849 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4850 if (ei->i_extra_isize) {
4851 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4852 raw_inode->i_version_hi =
4853 cpu_to_le32(inode->i_version >> 32);
4854 raw_inode->i_extra_isize =
4855 cpu_to_le16(ei->i_extra_isize);
4856 }
4857 }
4858
4859 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4860 EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4861 i_projid != EXT4_DEF_PROJID);
4862
4863 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4864 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4865 raw_inode->i_projid = cpu_to_le32(i_projid);
4866
4867 ext4_inode_csum_set(inode, raw_inode, ei);
4868 spin_unlock(&ei->i_raw_lock);
4869 if (inode->i_sb->s_flags & MS_LAZYTIME)
4870 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4871 bh->b_data);
4872
4873 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4874 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4875 if (!err)
4876 err = rc;
4877 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4878 if (set_large_file) {
4879 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4880 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4881 if (err)
4882 goto out_brelse;
4883 ext4_update_dynamic_rev(sb);
4884 ext4_set_feature_large_file(sb);
4885 ext4_handle_sync(handle);
4886 err = ext4_handle_dirty_super(handle, sb);
4887 }
4888 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4889 out_brelse:
4890 brelse(bh);
4891 ext4_std_error(inode->i_sb, err);
4892 return err;
4893 }
4894
4895 /*
4896 * ext4_write_inode()
4897 *
4898 * We are called from a few places:
4899 *
4900 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4901 * Here, there will be no transaction running. We wait for any running
4902 * transaction to commit.
4903 *
4904 * - Within flush work (sys_sync(), kupdate and such).
4905 * We wait on commit, if told to.
4906 *
4907 * - Within iput_final() -> write_inode_now()
4908 * We wait on commit, if told to.
4909 *
4910 * In all cases it is actually safe for us to return without doing anything,
4911 * because the inode has been copied into a raw inode buffer in
4912 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4913 * writeback.
4914 *
4915 * Note that we are absolutely dependent upon all inode dirtiers doing the
4916 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4917 * which we are interested.
4918 *
4919 * It would be a bug for them to not do this. The code:
4920 *
4921 * mark_inode_dirty(inode)
4922 * stuff();
4923 * inode->i_size = expr;
4924 *
4925 * is in error because write_inode() could occur while `stuff()' is running,
4926 * and the new i_size will be lost. Plus the inode will no longer be on the
4927 * superblock's dirty inode list.
4928 */
4929 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4930 {
4931 int err;
4932
4933 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4934 return 0;
4935
4936 if (EXT4_SB(inode->i_sb)->s_journal) {
4937 if (ext4_journal_current_handle()) {
4938 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4939 dump_stack();
4940 return -EIO;
4941 }
4942
4943 /*
4944 * No need to force transaction in WB_SYNC_NONE mode. Also
4945 * ext4_sync_fs() will force the commit after everything is
4946 * written.
4947 */
4948 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4949 return 0;
4950
4951 err = ext4_force_commit(inode->i_sb);
4952 } else {
4953 struct ext4_iloc iloc;
4954
4955 err = __ext4_get_inode_loc(inode, &iloc, 0);
4956 if (err)
4957 return err;
4958 /*
4959 * sync(2) will flush the whole buffer cache. No need to do
4960 * it here separately for each inode.
4961 */
4962 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4963 sync_dirty_buffer(iloc.bh);
4964 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4965 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4966 "IO error syncing inode");
4967 err = -EIO;
4968 }
4969 brelse(iloc.bh);
4970 }
4971 return err;
4972 }
4973
4974 /*
4975 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4976 * buffers that are attached to a page stradding i_size and are undergoing
4977 * commit. In that case we have to wait for commit to finish and try again.
4978 */
4979 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4980 {
4981 struct page *page;
4982 unsigned offset;
4983 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4984 tid_t commit_tid = 0;
4985 int ret;
4986
4987 offset = inode->i_size & (PAGE_SIZE - 1);
4988 /*
4989 * All buffers in the last page remain valid? Then there's nothing to
4990 * do. We do the check mainly to optimize the common PAGE_SIZE ==
4991 * blocksize case
4992 */
4993 if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
4994 return;
4995 while (1) {
4996 page = find_lock_page(inode->i_mapping,
4997 inode->i_size >> PAGE_SHIFT);
4998 if (!page)
4999 return;
5000 ret = __ext4_journalled_invalidatepage(page, offset,
5001 PAGE_SIZE - offset);
5002 unlock_page(page);
5003 put_page(page);
5004 if (ret != -EBUSY)
5005 return;
5006 commit_tid = 0;
5007 read_lock(&journal->j_state_lock);
5008 if (journal->j_committing_transaction)
5009 commit_tid = journal->j_committing_transaction->t_tid;
5010 read_unlock(&journal->j_state_lock);
5011 if (commit_tid)
5012 jbd2_log_wait_commit(journal, commit_tid);
5013 }
5014 }
5015
5016 /*
5017 * ext4_setattr()
5018 *
5019 * Called from notify_change.
5020 *
5021 * We want to trap VFS attempts to truncate the file as soon as
5022 * possible. In particular, we want to make sure that when the VFS
5023 * shrinks i_size, we put the inode on the orphan list and modify
5024 * i_disksize immediately, so that during the subsequent flushing of
5025 * dirty pages and freeing of disk blocks, we can guarantee that any
5026 * commit will leave the blocks being flushed in an unused state on
5027 * disk. (On recovery, the inode will get truncated and the blocks will
5028 * be freed, so we have a strong guarantee that no future commit will
5029 * leave these blocks visible to the user.)
5030 *
5031 * Another thing we have to assure is that if we are in ordered mode
5032 * and inode is still attached to the committing transaction, we must
5033 * we start writeout of all the dirty pages which are being truncated.
5034 * This way we are sure that all the data written in the previous
5035 * transaction are already on disk (truncate waits for pages under
5036 * writeback).
5037 *
5038 * Called with inode->i_mutex down.
5039 */
5040 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5041 {
5042 struct inode *inode = d_inode(dentry);
5043 int error, rc = 0;
5044 int orphan = 0;
5045 const unsigned int ia_valid = attr->ia_valid;
5046
5047 error = inode_change_ok(inode, attr);
5048 if (error)
5049 return error;
5050
5051 if (is_quota_modification(inode, attr)) {
5052 error = dquot_initialize(inode);
5053 if (error)
5054 return error;
5055 }
5056 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5057 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5058 handle_t *handle;
5059
5060 /* (user+group)*(old+new) structure, inode write (sb,
5061 * inode block, ? - but truncate inode update has it) */
5062 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5063 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5064 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5065 if (IS_ERR(handle)) {
5066 error = PTR_ERR(handle);
5067 goto err_out;
5068 }
5069 error = dquot_transfer(inode, attr);
5070 if (error) {
5071 ext4_journal_stop(handle);
5072 return error;
5073 }
5074 /* Update corresponding info in inode so that everything is in
5075 * one transaction */
5076 if (attr->ia_valid & ATTR_UID)
5077 inode->i_uid = attr->ia_uid;
5078 if (attr->ia_valid & ATTR_GID)
5079 inode->i_gid = attr->ia_gid;
5080 error = ext4_mark_inode_dirty(handle, inode);
5081 ext4_journal_stop(handle);
5082 }
5083
5084 if (attr->ia_valid & ATTR_SIZE) {
5085 handle_t *handle;
5086 loff_t oldsize = inode->i_size;
5087 int shrink = (attr->ia_size <= inode->i_size);
5088
5089 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5090 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5091
5092 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5093 return -EFBIG;
5094 }
5095 if (!S_ISREG(inode->i_mode))
5096 return -EINVAL;
5097
5098 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5099 inode_inc_iversion(inode);
5100
5101 if (ext4_should_order_data(inode) &&
5102 (attr->ia_size < inode->i_size)) {
5103 error = ext4_begin_ordered_truncate(inode,
5104 attr->ia_size);
5105 if (error)
5106 goto err_out;
5107 }
5108 if (attr->ia_size != inode->i_size) {
5109 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5110 if (IS_ERR(handle)) {
5111 error = PTR_ERR(handle);
5112 goto err_out;
5113 }
5114 if (ext4_handle_valid(handle) && shrink) {
5115 error = ext4_orphan_add(handle, inode);
5116 orphan = 1;
5117 }
5118 /*
5119 * Update c/mtime on truncate up, ext4_truncate() will
5120 * update c/mtime in shrink case below
5121 */
5122 if (!shrink) {
5123 inode->i_mtime = ext4_current_time(inode);
5124 inode->i_ctime = inode->i_mtime;
5125 }
5126 down_write(&EXT4_I(inode)->i_data_sem);
5127 EXT4_I(inode)->i_disksize = attr->ia_size;
5128 rc = ext4_mark_inode_dirty(handle, inode);
5129 if (!error)
5130 error = rc;
5131 /*
5132 * We have to update i_size under i_data_sem together
5133 * with i_disksize to avoid races with writeback code
5134 * running ext4_wb_update_i_disksize().
5135 */
5136 if (!error)
5137 i_size_write(inode, attr->ia_size);
5138 up_write(&EXT4_I(inode)->i_data_sem);
5139 ext4_journal_stop(handle);
5140 if (error) {
5141 if (orphan)
5142 ext4_orphan_del(NULL, inode);
5143 goto err_out;
5144 }
5145 }
5146 if (!shrink)
5147 pagecache_isize_extended(inode, oldsize, inode->i_size);
5148
5149 /*
5150 * Blocks are going to be removed from the inode. Wait
5151 * for dio in flight. Temporarily disable
5152 * dioread_nolock to prevent livelock.
5153 */
5154 if (orphan) {
5155 if (!ext4_should_journal_data(inode)) {
5156 ext4_inode_block_unlocked_dio(inode);
5157 inode_dio_wait(inode);
5158 ext4_inode_resume_unlocked_dio(inode);
5159 } else
5160 ext4_wait_for_tail_page_commit(inode);
5161 }
5162 down_write(&EXT4_I(inode)->i_mmap_sem);
5163 /*
5164 * Truncate pagecache after we've waited for commit
5165 * in data=journal mode to make pages freeable.
5166 */
5167 truncate_pagecache(inode, inode->i_size);
5168 if (shrink)
5169 ext4_truncate(inode);
5170 up_write(&EXT4_I(inode)->i_mmap_sem);
5171 }
5172
5173 if (!rc) {
5174 setattr_copy(inode, attr);
5175 mark_inode_dirty(inode);
5176 }
5177
5178 /*
5179 * If the call to ext4_truncate failed to get a transaction handle at
5180 * all, we need to clean up the in-core orphan list manually.
5181 */
5182 if (orphan && inode->i_nlink)
5183 ext4_orphan_del(NULL, inode);
5184
5185 if (!rc && (ia_valid & ATTR_MODE))
5186 rc = posix_acl_chmod(inode, inode->i_mode);
5187
5188 err_out:
5189 ext4_std_error(inode->i_sb, error);
5190 if (!error)
5191 error = rc;
5192 return error;
5193 }
5194
5195 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5196 struct kstat *stat)
5197 {
5198 struct inode *inode;
5199 unsigned long long delalloc_blocks;
5200
5201 inode = d_inode(dentry);
5202 generic_fillattr(inode, stat);
5203
5204 /*
5205 * If there is inline data in the inode, the inode will normally not
5206 * have data blocks allocated (it may have an external xattr block).
5207 * Report at least one sector for such files, so tools like tar, rsync,
5208 * others doen't incorrectly think the file is completely sparse.
5209 */
5210 if (unlikely(ext4_has_inline_data(inode)))
5211 stat->blocks += (stat->size + 511) >> 9;
5212
5213 /*
5214 * We can't update i_blocks if the block allocation is delayed
5215 * otherwise in the case of system crash before the real block
5216 * allocation is done, we will have i_blocks inconsistent with
5217 * on-disk file blocks.
5218 * We always keep i_blocks updated together with real
5219 * allocation. But to not confuse with user, stat
5220 * will return the blocks that include the delayed allocation
5221 * blocks for this file.
5222 */
5223 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5224 EXT4_I(inode)->i_reserved_data_blocks);
5225 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5226 return 0;
5227 }
5228
5229 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5230 int pextents)
5231 {
5232 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5233 return ext4_ind_trans_blocks(inode, lblocks);
5234 return ext4_ext_index_trans_blocks(inode, pextents);
5235 }
5236
5237 /*
5238 * Account for index blocks, block groups bitmaps and block group
5239 * descriptor blocks if modify datablocks and index blocks
5240 * worse case, the indexs blocks spread over different block groups
5241 *
5242 * If datablocks are discontiguous, they are possible to spread over
5243 * different block groups too. If they are contiguous, with flexbg,
5244 * they could still across block group boundary.
5245 *
5246 * Also account for superblock, inode, quota and xattr blocks
5247 */
5248 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5249 int pextents)
5250 {
5251 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5252 int gdpblocks;
5253 int idxblocks;
5254 int ret = 0;
5255
5256 /*
5257 * How many index blocks need to touch to map @lblocks logical blocks
5258 * to @pextents physical extents?
5259 */
5260 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5261
5262 ret = idxblocks;
5263
5264 /*
5265 * Now let's see how many group bitmaps and group descriptors need
5266 * to account
5267 */
5268 groups = idxblocks + pextents;
5269 gdpblocks = groups;
5270 if (groups > ngroups)
5271 groups = ngroups;
5272 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5273 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5274
5275 /* bitmaps and block group descriptor blocks */
5276 ret += groups + gdpblocks;
5277
5278 /* Blocks for super block, inode, quota and xattr blocks */
5279 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5280
5281 return ret;
5282 }
5283
5284 /*
5285 * Calculate the total number of credits to reserve to fit
5286 * the modification of a single pages into a single transaction,
5287 * which may include multiple chunks of block allocations.
5288 *
5289 * This could be called via ext4_write_begin()
5290 *
5291 * We need to consider the worse case, when
5292 * one new block per extent.
5293 */
5294 int ext4_writepage_trans_blocks(struct inode *inode)
5295 {
5296 int bpp = ext4_journal_blocks_per_page(inode);
5297 int ret;
5298
5299 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5300
5301 /* Account for data blocks for journalled mode */
5302 if (ext4_should_journal_data(inode))
5303 ret += bpp;
5304 return ret;
5305 }
5306
5307 /*
5308 * Calculate the journal credits for a chunk of data modification.
5309 *
5310 * This is called from DIO, fallocate or whoever calling
5311 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5312 *
5313 * journal buffers for data blocks are not included here, as DIO
5314 * and fallocate do no need to journal data buffers.
5315 */
5316 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5317 {
5318 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5319 }
5320
5321 /*
5322 * The caller must have previously called ext4_reserve_inode_write().
5323 * Give this, we know that the caller already has write access to iloc->bh.
5324 */
5325 int ext4_mark_iloc_dirty(handle_t *handle,
5326 struct inode *inode, struct ext4_iloc *iloc)
5327 {
5328 int err = 0;
5329
5330 if (IS_I_VERSION(inode))
5331 inode_inc_iversion(inode);
5332
5333 /* the do_update_inode consumes one bh->b_count */
5334 get_bh(iloc->bh);
5335
5336 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5337 err = ext4_do_update_inode(handle, inode, iloc);
5338 put_bh(iloc->bh);
5339 return err;
5340 }
5341
5342 /*
5343 * On success, We end up with an outstanding reference count against
5344 * iloc->bh. This _must_ be cleaned up later.
5345 */
5346
5347 int
5348 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5349 struct ext4_iloc *iloc)
5350 {
5351 int err;
5352
5353 err = ext4_get_inode_loc(inode, iloc);
5354 if (!err) {
5355 BUFFER_TRACE(iloc->bh, "get_write_access");
5356 err = ext4_journal_get_write_access(handle, iloc->bh);
5357 if (err) {
5358 brelse(iloc->bh);
5359 iloc->bh = NULL;
5360 }
5361 }
5362 ext4_std_error(inode->i_sb, err);
5363 return err;
5364 }
5365
5366 /*
5367 * Expand an inode by new_extra_isize bytes.
5368 * Returns 0 on success or negative error number on failure.
5369 */
5370 static int ext4_expand_extra_isize(struct inode *inode,
5371 unsigned int new_extra_isize,
5372 struct ext4_iloc iloc,
5373 handle_t *handle)
5374 {
5375 struct ext4_inode *raw_inode;
5376 struct ext4_xattr_ibody_header *header;
5377
5378 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5379 return 0;
5380
5381 raw_inode = ext4_raw_inode(&iloc);
5382
5383 header = IHDR(inode, raw_inode);
5384
5385 /* No extended attributes present */
5386 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5387 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5388 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5389 new_extra_isize);
5390 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5391 return 0;
5392 }
5393
5394 /* try to expand with EAs present */
5395 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5396 raw_inode, handle);
5397 }
5398
5399 /*
5400 * What we do here is to mark the in-core inode as clean with respect to inode
5401 * dirtiness (it may still be data-dirty).
5402 * This means that the in-core inode may be reaped by prune_icache
5403 * without having to perform any I/O. This is a very good thing,
5404 * because *any* task may call prune_icache - even ones which
5405 * have a transaction open against a different journal.
5406 *
5407 * Is this cheating? Not really. Sure, we haven't written the
5408 * inode out, but prune_icache isn't a user-visible syncing function.
5409 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5410 * we start and wait on commits.
5411 */
5412 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5413 {
5414 struct ext4_iloc iloc;
5415 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5416 static unsigned int mnt_count;
5417 int err, ret;
5418
5419 might_sleep();
5420 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5421 err = ext4_reserve_inode_write(handle, inode, &iloc);
5422 if (err)
5423 return err;
5424 if (ext4_handle_valid(handle) &&
5425 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5426 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5427 /*
5428 * We need extra buffer credits since we may write into EA block
5429 * with this same handle. If journal_extend fails, then it will
5430 * only result in a minor loss of functionality for that inode.
5431 * If this is felt to be critical, then e2fsck should be run to
5432 * force a large enough s_min_extra_isize.
5433 */
5434 if ((jbd2_journal_extend(handle,
5435 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5436 ret = ext4_expand_extra_isize(inode,
5437 sbi->s_want_extra_isize,
5438 iloc, handle);
5439 if (ret) {
5440 ext4_set_inode_state(inode,
5441 EXT4_STATE_NO_EXPAND);
5442 if (mnt_count !=
5443 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5444 ext4_warning(inode->i_sb,
5445 "Unable to expand inode %lu. Delete"
5446 " some EAs or run e2fsck.",
5447 inode->i_ino);
5448 mnt_count =
5449 le16_to_cpu(sbi->s_es->s_mnt_count);
5450 }
5451 }
5452 }
5453 }
5454 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5455 }
5456
5457 /*
5458 * ext4_dirty_inode() is called from __mark_inode_dirty()
5459 *
5460 * We're really interested in the case where a file is being extended.
5461 * i_size has been changed by generic_commit_write() and we thus need
5462 * to include the updated inode in the current transaction.
5463 *
5464 * Also, dquot_alloc_block() will always dirty the inode when blocks
5465 * are allocated to the file.
5466 *
5467 * If the inode is marked synchronous, we don't honour that here - doing
5468 * so would cause a commit on atime updates, which we don't bother doing.
5469 * We handle synchronous inodes at the highest possible level.
5470 *
5471 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5472 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5473 * to copy into the on-disk inode structure are the timestamp files.
5474 */
5475 void ext4_dirty_inode(struct inode *inode, int flags)
5476 {
5477 handle_t *handle;
5478
5479 if (flags == I_DIRTY_TIME)
5480 return;
5481 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5482 if (IS_ERR(handle))
5483 goto out;
5484
5485 ext4_mark_inode_dirty(handle, inode);
5486
5487 ext4_journal_stop(handle);
5488 out:
5489 return;
5490 }
5491
5492 #if 0
5493 /*
5494 * Bind an inode's backing buffer_head into this transaction, to prevent
5495 * it from being flushed to disk early. Unlike
5496 * ext4_reserve_inode_write, this leaves behind no bh reference and
5497 * returns no iloc structure, so the caller needs to repeat the iloc
5498 * lookup to mark the inode dirty later.
5499 */
5500 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5501 {
5502 struct ext4_iloc iloc;
5503
5504 int err = 0;
5505 if (handle) {
5506 err = ext4_get_inode_loc(inode, &iloc);
5507 if (!err) {
5508 BUFFER_TRACE(iloc.bh, "get_write_access");
5509 err = jbd2_journal_get_write_access(handle, iloc.bh);
5510 if (!err)
5511 err = ext4_handle_dirty_metadata(handle,
5512 NULL,
5513 iloc.bh);
5514 brelse(iloc.bh);
5515 }
5516 }
5517 ext4_std_error(inode->i_sb, err);
5518 return err;
5519 }
5520 #endif
5521
5522 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5523 {
5524 journal_t *journal;
5525 handle_t *handle;
5526 int err;
5527 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5528
5529 /*
5530 * We have to be very careful here: changing a data block's
5531 * journaling status dynamically is dangerous. If we write a
5532 * data block to the journal, change the status and then delete
5533 * that block, we risk forgetting to revoke the old log record
5534 * from the journal and so a subsequent replay can corrupt data.
5535 * So, first we make sure that the journal is empty and that
5536 * nobody is changing anything.
5537 */
5538
5539 journal = EXT4_JOURNAL(inode);
5540 if (!journal)
5541 return 0;
5542 if (is_journal_aborted(journal))
5543 return -EROFS;
5544
5545 /* Wait for all existing dio workers */
5546 ext4_inode_block_unlocked_dio(inode);
5547 inode_dio_wait(inode);
5548
5549 /*
5550 * Before flushing the journal and switching inode's aops, we have
5551 * to flush all dirty data the inode has. There can be outstanding
5552 * delayed allocations, there can be unwritten extents created by
5553 * fallocate or buffered writes in dioread_nolock mode covered by
5554 * dirty data which can be converted only after flushing the dirty
5555 * data (and journalled aops don't know how to handle these cases).
5556 */
5557 if (val) {
5558 down_write(&EXT4_I(inode)->i_mmap_sem);
5559 err = filemap_write_and_wait(inode->i_mapping);
5560 if (err < 0) {
5561 up_write(&EXT4_I(inode)->i_mmap_sem);
5562 ext4_inode_resume_unlocked_dio(inode);
5563 return err;
5564 }
5565 }
5566
5567 percpu_down_write(&sbi->s_journal_flag_rwsem);
5568 jbd2_journal_lock_updates(journal);
5569
5570 /*
5571 * OK, there are no updates running now, and all cached data is
5572 * synced to disk. We are now in a completely consistent state
5573 * which doesn't have anything in the journal, and we know that
5574 * no filesystem updates are running, so it is safe to modify
5575 * the inode's in-core data-journaling state flag now.
5576 */
5577
5578 if (val)
5579 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5580 else {
5581 err = jbd2_journal_flush(journal);
5582 if (err < 0) {
5583 jbd2_journal_unlock_updates(journal);
5584 percpu_up_write(&sbi->s_journal_flag_rwsem);
5585 ext4_inode_resume_unlocked_dio(inode);
5586 return err;
5587 }
5588 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5589 }
5590 ext4_set_aops(inode);
5591
5592 jbd2_journal_unlock_updates(journal);
5593 percpu_up_write(&sbi->s_journal_flag_rwsem);
5594
5595 if (val)
5596 up_write(&EXT4_I(inode)->i_mmap_sem);
5597 ext4_inode_resume_unlocked_dio(inode);
5598
5599 /* Finally we can mark the inode as dirty. */
5600
5601 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5602 if (IS_ERR(handle))
5603 return PTR_ERR(handle);
5604
5605 err = ext4_mark_inode_dirty(handle, inode);
5606 ext4_handle_sync(handle);
5607 ext4_journal_stop(handle);
5608 ext4_std_error(inode->i_sb, err);
5609
5610 return err;
5611 }
5612
5613 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5614 {
5615 return !buffer_mapped(bh);
5616 }
5617
5618 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5619 {
5620 struct page *page = vmf->page;
5621 loff_t size;
5622 unsigned long len;
5623 int ret;
5624 struct file *file = vma->vm_file;
5625 struct inode *inode = file_inode(file);
5626 struct address_space *mapping = inode->i_mapping;
5627 handle_t *handle;
5628 get_block_t *get_block;
5629 int retries = 0;
5630
5631 sb_start_pagefault(inode->i_sb);
5632 file_update_time(vma->vm_file);
5633
5634 down_read(&EXT4_I(inode)->i_mmap_sem);
5635 /* Delalloc case is easy... */
5636 if (test_opt(inode->i_sb, DELALLOC) &&
5637 !ext4_should_journal_data(inode) &&
5638 !ext4_nonda_switch(inode->i_sb)) {
5639 do {
5640 ret = block_page_mkwrite(vma, vmf,
5641 ext4_da_get_block_prep);
5642 } while (ret == -ENOSPC &&
5643 ext4_should_retry_alloc(inode->i_sb, &retries));
5644 goto out_ret;
5645 }
5646
5647 lock_page(page);
5648 size = i_size_read(inode);
5649 /* Page got truncated from under us? */
5650 if (page->mapping != mapping || page_offset(page) > size) {
5651 unlock_page(page);
5652 ret = VM_FAULT_NOPAGE;
5653 goto out;
5654 }
5655
5656 if (page->index == size >> PAGE_SHIFT)
5657 len = size & ~PAGE_MASK;
5658 else
5659 len = PAGE_SIZE;
5660 /*
5661 * Return if we have all the buffers mapped. This avoids the need to do
5662 * journal_start/journal_stop which can block and take a long time
5663 */
5664 if (page_has_buffers(page)) {
5665 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5666 0, len, NULL,
5667 ext4_bh_unmapped)) {
5668 /* Wait so that we don't change page under IO */
5669 wait_for_stable_page(page);
5670 ret = VM_FAULT_LOCKED;
5671 goto out;
5672 }
5673 }
5674 unlock_page(page);
5675 /* OK, we need to fill the hole... */
5676 if (ext4_should_dioread_nolock(inode))
5677 get_block = ext4_get_block_unwritten;
5678 else
5679 get_block = ext4_get_block;
5680 retry_alloc:
5681 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5682 ext4_writepage_trans_blocks(inode));
5683 if (IS_ERR(handle)) {
5684 ret = VM_FAULT_SIGBUS;
5685 goto out;
5686 }
5687 ret = block_page_mkwrite(vma, vmf, get_block);
5688 if (!ret && ext4_should_journal_data(inode)) {
5689 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5690 PAGE_SIZE, NULL, do_journal_get_write_access)) {
5691 unlock_page(page);
5692 ret = VM_FAULT_SIGBUS;
5693 ext4_journal_stop(handle);
5694 goto out;
5695 }
5696 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5697 }
5698 ext4_journal_stop(handle);
5699 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5700 goto retry_alloc;
5701 out_ret:
5702 ret = block_page_mkwrite_return(ret);
5703 out:
5704 up_read(&EXT4_I(inode)->i_mmap_sem);
5705 sb_end_pagefault(inode->i_sb);
5706 return ret;
5707 }
5708
5709 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5710 {
5711 struct inode *inode = file_inode(vma->vm_file);
5712 int err;
5713
5714 down_read(&EXT4_I(inode)->i_mmap_sem);
5715 err = filemap_fault(vma, vmf);
5716 up_read(&EXT4_I(inode)->i_mmap_sem);
5717
5718 return err;
5719 }
5720
5721 /*
5722 * Find the first extent at or after @lblk in an inode that is not a hole.
5723 * Search for @map_len blocks at most. The extent is returned in @result.
5724 *
5725 * The function returns 1 if we found an extent. The function returns 0 in
5726 * case there is no extent at or after @lblk and in that case also sets
5727 * @result->es_len to 0. In case of error, the error code is returned.
5728 */
5729 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5730 unsigned int map_len, struct extent_status *result)
5731 {
5732 struct ext4_map_blocks map;
5733 struct extent_status es = {};
5734 int ret;
5735
5736 map.m_lblk = lblk;
5737 map.m_len = map_len;
5738
5739 /*
5740 * For non-extent based files this loop may iterate several times since
5741 * we do not determine full hole size.
5742 */
5743 while (map.m_len > 0) {
5744 ret = ext4_map_blocks(NULL, inode, &map, 0);
5745 if (ret < 0)
5746 return ret;
5747 /* There's extent covering m_lblk? Just return it. */
5748 if (ret > 0) {
5749 int status;
5750
5751 ext4_es_store_pblock(result, map.m_pblk);
5752 result->es_lblk = map.m_lblk;
5753 result->es_len = map.m_len;
5754 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5755 status = EXTENT_STATUS_UNWRITTEN;
5756 else
5757 status = EXTENT_STATUS_WRITTEN;
5758 ext4_es_store_status(result, status);
5759 return 1;
5760 }
5761 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5762 map.m_lblk + map.m_len - 1,
5763 &es);
5764 /* Is delalloc data before next block in extent tree? */
5765 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5766 ext4_lblk_t offset = 0;
5767
5768 if (es.es_lblk < lblk)
5769 offset = lblk - es.es_lblk;
5770 result->es_lblk = es.es_lblk + offset;
5771 ext4_es_store_pblock(result,
5772 ext4_es_pblock(&es) + offset);
5773 result->es_len = es.es_len - offset;
5774 ext4_es_store_status(result, ext4_es_status(&es));
5775
5776 return 1;
5777 }
5778 /* There's a hole at m_lblk, advance us after it */
5779 map.m_lblk += map.m_len;
5780 map_len -= map.m_len;
5781 map.m_len = map_len;
5782 cond_resched();
5783 }
5784 result->es_len = 0;
5785 return 0;
5786 }
This page took 0.167467 seconds and 5 git commands to generate.