Merge tag 'hwmon-for-linus-v4.5-rc6' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52 {
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = le16_to_cpu(raw->i_checksum_lo);
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = cpu_to_le16(csum_lo);
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73
74 return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79 {
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !ext4_has_metadata_csum(inode->i_sb))
85 return 1;
86
87 provided = le16_to_cpu(raw->i_checksum_lo);
88 calculated = ext4_inode_csum(inode, raw, ei);
89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 else
93 calculated &= 0xFFFF;
94
95 return provided == calculated;
96 }
97
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 struct ext4_inode_info *ei)
100 {
101 __u32 csum;
102
103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 cpu_to_le32(EXT4_OS_LINUX) ||
105 !ext4_has_metadata_csum(inode->i_sb))
106 return;
107
108 csum = ext4_inode_csum(inode, raw, ei);
109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 loff_t new_size)
117 {
118 trace_ext4_begin_ordered_truncate(inode, new_size);
119 /*
120 * If jinode is zero, then we never opened the file for
121 * writing, so there's no need to call
122 * jbd2_journal_begin_ordered_truncate() since there's no
123 * outstanding writes we need to flush.
124 */
125 if (!EXT4_I(inode)->jinode)
126 return 0;
127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 EXT4_I(inode)->jinode,
129 new_size);
130 }
131
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 int pextents);
138
139 /*
140 * Test whether an inode is a fast symlink.
141 */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144 int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146
147 if (ext4_has_inline_data(inode))
148 return 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 int nblocks)
160 {
161 int ret;
162
163 /*
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 jbd_debug(2, "restarting handle %p\n", handle);
171 up_write(&EXT4_I(inode)->i_data_sem);
172 ret = ext4_journal_restart(handle, nblocks);
173 down_write(&EXT4_I(inode)->i_data_sem);
174 ext4_discard_preallocations(inode);
175
176 return ret;
177 }
178
179 /*
180 * Called at the last iput() if i_nlink is zero.
181 */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 handle_t *handle;
185 int err;
186
187 trace_ext4_evict_inode(inode);
188
189 if (inode->i_nlink) {
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214 jbd2_complete_transaction(journal, commit_tid);
215 filemap_write_and_wait(&inode->i_data);
216 }
217 truncate_inode_pages_final(&inode->i_data);
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220 goto no_delete;
221 }
222
223 if (is_bad_inode(inode))
224 goto no_delete;
225 dquot_initialize(inode);
226
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
229 truncate_inode_pages_final(&inode->i_data);
230
231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it
236 */
237 sb_start_intwrite(inode->i_sb);
238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 ext4_blocks_for_truncate(inode)+3);
240 if (IS_ERR(handle)) {
241 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 /*
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
245 * cleaned up.
246 */
247 ext4_orphan_del(NULL, inode);
248 sb_end_intwrite(inode->i_sb);
249 goto no_delete;
250 }
251
252 if (IS_SYNC(inode))
253 ext4_handle_sync(handle);
254 inode->i_size = 0;
255 err = ext4_mark_inode_dirty(handle, inode);
256 if (err) {
257 ext4_warning(inode->i_sb,
258 "couldn't mark inode dirty (err %d)", err);
259 goto stop_handle;
260 }
261 if (inode->i_blocks)
262 ext4_truncate(inode);
263
264 /*
265 * ext4_ext_truncate() doesn't reserve any slop when it
266 * restarts journal transactions; therefore there may not be
267 * enough credits left in the handle to remove the inode from
268 * the orphan list and set the dtime field.
269 */
270 if (!ext4_handle_has_enough_credits(handle, 3)) {
271 err = ext4_journal_extend(handle, 3);
272 if (err > 0)
273 err = ext4_journal_restart(handle, 3);
274 if (err != 0) {
275 ext4_warning(inode->i_sb,
276 "couldn't extend journal (err %d)", err);
277 stop_handle:
278 ext4_journal_stop(handle);
279 ext4_orphan_del(NULL, inode);
280 sb_end_intwrite(inode->i_sb);
281 goto no_delete;
282 }
283 }
284
285 /*
286 * Kill off the orphan record which ext4_truncate created.
287 * AKPM: I think this can be inside the above `if'.
288 * Note that ext4_orphan_del() has to be able to cope with the
289 * deletion of a non-existent orphan - this is because we don't
290 * know if ext4_truncate() actually created an orphan record.
291 * (Well, we could do this if we need to, but heck - it works)
292 */
293 ext4_orphan_del(handle, inode);
294 EXT4_I(inode)->i_dtime = get_seconds();
295
296 /*
297 * One subtle ordering requirement: if anything has gone wrong
298 * (transaction abort, IO errors, whatever), then we can still
299 * do these next steps (the fs will already have been marked as
300 * having errors), but we can't free the inode if the mark_dirty
301 * fails.
302 */
303 if (ext4_mark_inode_dirty(handle, inode))
304 /* If that failed, just do the required in-core inode clear. */
305 ext4_clear_inode(inode);
306 else
307 ext4_free_inode(handle, inode);
308 ext4_journal_stop(handle);
309 sb_end_intwrite(inode->i_sb);
310 return;
311 no_delete:
312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318 return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323 * Called with i_data_sem down, which is important since we can call
324 * ext4_discard_preallocations() from here.
325 */
326 void ext4_da_update_reserve_space(struct inode *inode,
327 int used, int quota_claim)
328 {
329 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
330 struct ext4_inode_info *ei = EXT4_I(inode);
331
332 spin_lock(&ei->i_block_reservation_lock);
333 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
334 if (unlikely(used > ei->i_reserved_data_blocks)) {
335 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
336 "with only %d reserved data blocks",
337 __func__, inode->i_ino, used,
338 ei->i_reserved_data_blocks);
339 WARN_ON(1);
340 used = ei->i_reserved_data_blocks;
341 }
342
343 /* Update per-inode reservations */
344 ei->i_reserved_data_blocks -= used;
345 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
346
347 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
348
349 /* Update quota subsystem for data blocks */
350 if (quota_claim)
351 dquot_claim_block(inode, EXT4_C2B(sbi, used));
352 else {
353 /*
354 * We did fallocate with an offset that is already delayed
355 * allocated. So on delayed allocated writeback we should
356 * not re-claim the quota for fallocated blocks.
357 */
358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
359 }
360
361 /*
362 * If we have done all the pending block allocations and if
363 * there aren't any writers on the inode, we can discard the
364 * inode's preallocations.
365 */
366 if ((ei->i_reserved_data_blocks == 0) &&
367 (atomic_read(&inode->i_writecount) == 0))
368 ext4_discard_preallocations(inode);
369 }
370
371 static int __check_block_validity(struct inode *inode, const char *func,
372 unsigned int line,
373 struct ext4_map_blocks *map)
374 {
375 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376 map->m_len)) {
377 ext4_error_inode(inode, func, line, map->m_pblk,
378 "lblock %lu mapped to illegal pblock "
379 "(length %d)", (unsigned long) map->m_lblk,
380 map->m_len);
381 return -EFSCORRUPTED;
382 }
383 return 0;
384 }
385
386 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
387 ext4_lblk_t len)
388 {
389 int ret;
390
391 if (ext4_encrypted_inode(inode))
392 return ext4_encrypted_zeroout(inode, lblk, pblk, len);
393
394 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
395 if (ret > 0)
396 ret = 0;
397
398 return ret;
399 }
400
401 #define check_block_validity(inode, map) \
402 __check_block_validity((inode), __func__, __LINE__, (map))
403
404 #ifdef ES_AGGRESSIVE_TEST
405 static void ext4_map_blocks_es_recheck(handle_t *handle,
406 struct inode *inode,
407 struct ext4_map_blocks *es_map,
408 struct ext4_map_blocks *map,
409 int flags)
410 {
411 int retval;
412
413 map->m_flags = 0;
414 /*
415 * There is a race window that the result is not the same.
416 * e.g. xfstests #223 when dioread_nolock enables. The reason
417 * is that we lookup a block mapping in extent status tree with
418 * out taking i_data_sem. So at the time the unwritten extent
419 * could be converted.
420 */
421 down_read(&EXT4_I(inode)->i_data_sem);
422 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
423 retval = ext4_ext_map_blocks(handle, inode, map, flags &
424 EXT4_GET_BLOCKS_KEEP_SIZE);
425 } else {
426 retval = ext4_ind_map_blocks(handle, inode, map, flags &
427 EXT4_GET_BLOCKS_KEEP_SIZE);
428 }
429 up_read((&EXT4_I(inode)->i_data_sem));
430
431 /*
432 * We don't check m_len because extent will be collpased in status
433 * tree. So the m_len might not equal.
434 */
435 if (es_map->m_lblk != map->m_lblk ||
436 es_map->m_flags != map->m_flags ||
437 es_map->m_pblk != map->m_pblk) {
438 printk("ES cache assertion failed for inode: %lu "
439 "es_cached ex [%d/%d/%llu/%x] != "
440 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
441 inode->i_ino, es_map->m_lblk, es_map->m_len,
442 es_map->m_pblk, es_map->m_flags, map->m_lblk,
443 map->m_len, map->m_pblk, map->m_flags,
444 retval, flags);
445 }
446 }
447 #endif /* ES_AGGRESSIVE_TEST */
448
449 /*
450 * The ext4_map_blocks() function tries to look up the requested blocks,
451 * and returns if the blocks are already mapped.
452 *
453 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
454 * and store the allocated blocks in the result buffer head and mark it
455 * mapped.
456 *
457 * If file type is extents based, it will call ext4_ext_map_blocks(),
458 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
459 * based files
460 *
461 * On success, it returns the number of blocks being mapped or allocated.
462 * if create==0 and the blocks are pre-allocated and unwritten block,
463 * the result buffer head is unmapped. If the create ==1, it will make sure
464 * the buffer head is mapped.
465 *
466 * It returns 0 if plain look up failed (blocks have not been allocated), in
467 * that case, buffer head is unmapped
468 *
469 * It returns the error in case of allocation failure.
470 */
471 int ext4_map_blocks(handle_t *handle, struct inode *inode,
472 struct ext4_map_blocks *map, int flags)
473 {
474 struct extent_status es;
475 int retval;
476 int ret = 0;
477 #ifdef ES_AGGRESSIVE_TEST
478 struct ext4_map_blocks orig_map;
479
480 memcpy(&orig_map, map, sizeof(*map));
481 #endif
482
483 map->m_flags = 0;
484 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
485 "logical block %lu\n", inode->i_ino, flags, map->m_len,
486 (unsigned long) map->m_lblk);
487
488 /*
489 * ext4_map_blocks returns an int, and m_len is an unsigned int
490 */
491 if (unlikely(map->m_len > INT_MAX))
492 map->m_len = INT_MAX;
493
494 /* We can handle the block number less than EXT_MAX_BLOCKS */
495 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
496 return -EFSCORRUPTED;
497
498 /* Lookup extent status tree firstly */
499 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
500 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
501 map->m_pblk = ext4_es_pblock(&es) +
502 map->m_lblk - es.es_lblk;
503 map->m_flags |= ext4_es_is_written(&es) ?
504 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
505 retval = es.es_len - (map->m_lblk - es.es_lblk);
506 if (retval > map->m_len)
507 retval = map->m_len;
508 map->m_len = retval;
509 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
510 retval = 0;
511 } else {
512 BUG_ON(1);
513 }
514 #ifdef ES_AGGRESSIVE_TEST
515 ext4_map_blocks_es_recheck(handle, inode, map,
516 &orig_map, flags);
517 #endif
518 goto found;
519 }
520
521 /*
522 * Try to see if we can get the block without requesting a new
523 * file system block.
524 */
525 down_read(&EXT4_I(inode)->i_data_sem);
526 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
527 retval = ext4_ext_map_blocks(handle, inode, map, flags &
528 EXT4_GET_BLOCKS_KEEP_SIZE);
529 } else {
530 retval = ext4_ind_map_blocks(handle, inode, map, flags &
531 EXT4_GET_BLOCKS_KEEP_SIZE);
532 }
533 if (retval > 0) {
534 unsigned int status;
535
536 if (unlikely(retval != map->m_len)) {
537 ext4_warning(inode->i_sb,
538 "ES len assertion failed for inode "
539 "%lu: retval %d != map->m_len %d",
540 inode->i_ino, retval, map->m_len);
541 WARN_ON(1);
542 }
543
544 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
545 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
546 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
547 !(status & EXTENT_STATUS_WRITTEN) &&
548 ext4_find_delalloc_range(inode, map->m_lblk,
549 map->m_lblk + map->m_len - 1))
550 status |= EXTENT_STATUS_DELAYED;
551 ret = ext4_es_insert_extent(inode, map->m_lblk,
552 map->m_len, map->m_pblk, status);
553 if (ret < 0)
554 retval = ret;
555 }
556 up_read((&EXT4_I(inode)->i_data_sem));
557
558 found:
559 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
560 ret = check_block_validity(inode, map);
561 if (ret != 0)
562 return ret;
563 }
564
565 /* If it is only a block(s) look up */
566 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
567 return retval;
568
569 /*
570 * Returns if the blocks have already allocated
571 *
572 * Note that if blocks have been preallocated
573 * ext4_ext_get_block() returns the create = 0
574 * with buffer head unmapped.
575 */
576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
577 /*
578 * If we need to convert extent to unwritten
579 * we continue and do the actual work in
580 * ext4_ext_map_blocks()
581 */
582 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
583 return retval;
584
585 /*
586 * Here we clear m_flags because after allocating an new extent,
587 * it will be set again.
588 */
589 map->m_flags &= ~EXT4_MAP_FLAGS;
590
591 /*
592 * New blocks allocate and/or writing to unwritten extent
593 * will possibly result in updating i_data, so we take
594 * the write lock of i_data_sem, and call get_block()
595 * with create == 1 flag.
596 */
597 down_write(&EXT4_I(inode)->i_data_sem);
598
599 /*
600 * We need to check for EXT4 here because migrate
601 * could have changed the inode type in between
602 */
603 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
604 retval = ext4_ext_map_blocks(handle, inode, map, flags);
605 } else {
606 retval = ext4_ind_map_blocks(handle, inode, map, flags);
607
608 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
609 /*
610 * We allocated new blocks which will result in
611 * i_data's format changing. Force the migrate
612 * to fail by clearing migrate flags
613 */
614 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
615 }
616
617 /*
618 * Update reserved blocks/metadata blocks after successful
619 * block allocation which had been deferred till now. We don't
620 * support fallocate for non extent files. So we can update
621 * reserve space here.
622 */
623 if ((retval > 0) &&
624 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
625 ext4_da_update_reserve_space(inode, retval, 1);
626 }
627
628 if (retval > 0) {
629 unsigned int status;
630
631 if (unlikely(retval != map->m_len)) {
632 ext4_warning(inode->i_sb,
633 "ES len assertion failed for inode "
634 "%lu: retval %d != map->m_len %d",
635 inode->i_ino, retval, map->m_len);
636 WARN_ON(1);
637 }
638
639 /*
640 * We have to zeroout blocks before inserting them into extent
641 * status tree. Otherwise someone could look them up there and
642 * use them before they are really zeroed.
643 */
644 if (flags & EXT4_GET_BLOCKS_ZERO &&
645 map->m_flags & EXT4_MAP_MAPPED &&
646 map->m_flags & EXT4_MAP_NEW) {
647 ret = ext4_issue_zeroout(inode, map->m_lblk,
648 map->m_pblk, map->m_len);
649 if (ret) {
650 retval = ret;
651 goto out_sem;
652 }
653 }
654
655 /*
656 * If the extent has been zeroed out, we don't need to update
657 * extent status tree.
658 */
659 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
660 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
661 if (ext4_es_is_written(&es))
662 goto out_sem;
663 }
664 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
665 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
666 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
667 !(status & EXTENT_STATUS_WRITTEN) &&
668 ext4_find_delalloc_range(inode, map->m_lblk,
669 map->m_lblk + map->m_len - 1))
670 status |= EXTENT_STATUS_DELAYED;
671 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
672 map->m_pblk, status);
673 if (ret < 0) {
674 retval = ret;
675 goto out_sem;
676 }
677 }
678
679 out_sem:
680 up_write((&EXT4_I(inode)->i_data_sem));
681 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
682 ret = check_block_validity(inode, map);
683 if (ret != 0)
684 return ret;
685 }
686 return retval;
687 }
688
689 /*
690 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
691 * we have to be careful as someone else may be manipulating b_state as well.
692 */
693 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
694 {
695 unsigned long old_state;
696 unsigned long new_state;
697
698 flags &= EXT4_MAP_FLAGS;
699
700 /* Dummy buffer_head? Set non-atomically. */
701 if (!bh->b_page) {
702 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
703 return;
704 }
705 /*
706 * Someone else may be modifying b_state. Be careful! This is ugly but
707 * once we get rid of using bh as a container for mapping information
708 * to pass to / from get_block functions, this can go away.
709 */
710 do {
711 old_state = READ_ONCE(bh->b_state);
712 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
713 } while (unlikely(
714 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
715 }
716
717 /* Maximum number of blocks we map for direct IO at once. */
718 #define DIO_MAX_BLOCKS 4096
719
720 static int _ext4_get_block(struct inode *inode, sector_t iblock,
721 struct buffer_head *bh, int flags)
722 {
723 handle_t *handle = ext4_journal_current_handle();
724 struct ext4_map_blocks map;
725 int ret = 0, started = 0;
726 int dio_credits;
727
728 if (ext4_has_inline_data(inode))
729 return -ERANGE;
730
731 map.m_lblk = iblock;
732 map.m_len = bh->b_size >> inode->i_blkbits;
733
734 if (flags && !handle) {
735 /* Direct IO write... */
736 if (map.m_len > DIO_MAX_BLOCKS)
737 map.m_len = DIO_MAX_BLOCKS;
738 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
739 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
740 dio_credits);
741 if (IS_ERR(handle)) {
742 ret = PTR_ERR(handle);
743 return ret;
744 }
745 started = 1;
746 }
747
748 ret = ext4_map_blocks(handle, inode, &map, flags);
749 if (ret > 0) {
750 ext4_io_end_t *io_end = ext4_inode_aio(inode);
751
752 map_bh(bh, inode->i_sb, map.m_pblk);
753 ext4_update_bh_state(bh, map.m_flags);
754 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
755 set_buffer_defer_completion(bh);
756 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
757 ret = 0;
758 }
759 if (started)
760 ext4_journal_stop(handle);
761 return ret;
762 }
763
764 int ext4_get_block(struct inode *inode, sector_t iblock,
765 struct buffer_head *bh, int create)
766 {
767 return _ext4_get_block(inode, iblock, bh,
768 create ? EXT4_GET_BLOCKS_CREATE : 0);
769 }
770
771 /*
772 * `handle' can be NULL if create is zero
773 */
774 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
775 ext4_lblk_t block, int map_flags)
776 {
777 struct ext4_map_blocks map;
778 struct buffer_head *bh;
779 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
780 int err;
781
782 J_ASSERT(handle != NULL || create == 0);
783
784 map.m_lblk = block;
785 map.m_len = 1;
786 err = ext4_map_blocks(handle, inode, &map, map_flags);
787
788 if (err == 0)
789 return create ? ERR_PTR(-ENOSPC) : NULL;
790 if (err < 0)
791 return ERR_PTR(err);
792
793 bh = sb_getblk(inode->i_sb, map.m_pblk);
794 if (unlikely(!bh))
795 return ERR_PTR(-ENOMEM);
796 if (map.m_flags & EXT4_MAP_NEW) {
797 J_ASSERT(create != 0);
798 J_ASSERT(handle != NULL);
799
800 /*
801 * Now that we do not always journal data, we should
802 * keep in mind whether this should always journal the
803 * new buffer as metadata. For now, regular file
804 * writes use ext4_get_block instead, so it's not a
805 * problem.
806 */
807 lock_buffer(bh);
808 BUFFER_TRACE(bh, "call get_create_access");
809 err = ext4_journal_get_create_access(handle, bh);
810 if (unlikely(err)) {
811 unlock_buffer(bh);
812 goto errout;
813 }
814 if (!buffer_uptodate(bh)) {
815 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
816 set_buffer_uptodate(bh);
817 }
818 unlock_buffer(bh);
819 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
820 err = ext4_handle_dirty_metadata(handle, inode, bh);
821 if (unlikely(err))
822 goto errout;
823 } else
824 BUFFER_TRACE(bh, "not a new buffer");
825 return bh;
826 errout:
827 brelse(bh);
828 return ERR_PTR(err);
829 }
830
831 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
832 ext4_lblk_t block, int map_flags)
833 {
834 struct buffer_head *bh;
835
836 bh = ext4_getblk(handle, inode, block, map_flags);
837 if (IS_ERR(bh))
838 return bh;
839 if (!bh || buffer_uptodate(bh))
840 return bh;
841 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
842 wait_on_buffer(bh);
843 if (buffer_uptodate(bh))
844 return bh;
845 put_bh(bh);
846 return ERR_PTR(-EIO);
847 }
848
849 int ext4_walk_page_buffers(handle_t *handle,
850 struct buffer_head *head,
851 unsigned from,
852 unsigned to,
853 int *partial,
854 int (*fn)(handle_t *handle,
855 struct buffer_head *bh))
856 {
857 struct buffer_head *bh;
858 unsigned block_start, block_end;
859 unsigned blocksize = head->b_size;
860 int err, ret = 0;
861 struct buffer_head *next;
862
863 for (bh = head, block_start = 0;
864 ret == 0 && (bh != head || !block_start);
865 block_start = block_end, bh = next) {
866 next = bh->b_this_page;
867 block_end = block_start + blocksize;
868 if (block_end <= from || block_start >= to) {
869 if (partial && !buffer_uptodate(bh))
870 *partial = 1;
871 continue;
872 }
873 err = (*fn)(handle, bh);
874 if (!ret)
875 ret = err;
876 }
877 return ret;
878 }
879
880 /*
881 * To preserve ordering, it is essential that the hole instantiation and
882 * the data write be encapsulated in a single transaction. We cannot
883 * close off a transaction and start a new one between the ext4_get_block()
884 * and the commit_write(). So doing the jbd2_journal_start at the start of
885 * prepare_write() is the right place.
886 *
887 * Also, this function can nest inside ext4_writepage(). In that case, we
888 * *know* that ext4_writepage() has generated enough buffer credits to do the
889 * whole page. So we won't block on the journal in that case, which is good,
890 * because the caller may be PF_MEMALLOC.
891 *
892 * By accident, ext4 can be reentered when a transaction is open via
893 * quota file writes. If we were to commit the transaction while thus
894 * reentered, there can be a deadlock - we would be holding a quota
895 * lock, and the commit would never complete if another thread had a
896 * transaction open and was blocking on the quota lock - a ranking
897 * violation.
898 *
899 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
900 * will _not_ run commit under these circumstances because handle->h_ref
901 * is elevated. We'll still have enough credits for the tiny quotafile
902 * write.
903 */
904 int do_journal_get_write_access(handle_t *handle,
905 struct buffer_head *bh)
906 {
907 int dirty = buffer_dirty(bh);
908 int ret;
909
910 if (!buffer_mapped(bh) || buffer_freed(bh))
911 return 0;
912 /*
913 * __block_write_begin() could have dirtied some buffers. Clean
914 * the dirty bit as jbd2_journal_get_write_access() could complain
915 * otherwise about fs integrity issues. Setting of the dirty bit
916 * by __block_write_begin() isn't a real problem here as we clear
917 * the bit before releasing a page lock and thus writeback cannot
918 * ever write the buffer.
919 */
920 if (dirty)
921 clear_buffer_dirty(bh);
922 BUFFER_TRACE(bh, "get write access");
923 ret = ext4_journal_get_write_access(handle, bh);
924 if (!ret && dirty)
925 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
926 return ret;
927 }
928
929 #ifdef CONFIG_EXT4_FS_ENCRYPTION
930 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
931 get_block_t *get_block)
932 {
933 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
934 unsigned to = from + len;
935 struct inode *inode = page->mapping->host;
936 unsigned block_start, block_end;
937 sector_t block;
938 int err = 0;
939 unsigned blocksize = inode->i_sb->s_blocksize;
940 unsigned bbits;
941 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
942 bool decrypt = false;
943
944 BUG_ON(!PageLocked(page));
945 BUG_ON(from > PAGE_CACHE_SIZE);
946 BUG_ON(to > PAGE_CACHE_SIZE);
947 BUG_ON(from > to);
948
949 if (!page_has_buffers(page))
950 create_empty_buffers(page, blocksize, 0);
951 head = page_buffers(page);
952 bbits = ilog2(blocksize);
953 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
954
955 for (bh = head, block_start = 0; bh != head || !block_start;
956 block++, block_start = block_end, bh = bh->b_this_page) {
957 block_end = block_start + blocksize;
958 if (block_end <= from || block_start >= to) {
959 if (PageUptodate(page)) {
960 if (!buffer_uptodate(bh))
961 set_buffer_uptodate(bh);
962 }
963 continue;
964 }
965 if (buffer_new(bh))
966 clear_buffer_new(bh);
967 if (!buffer_mapped(bh)) {
968 WARN_ON(bh->b_size != blocksize);
969 err = get_block(inode, block, bh, 1);
970 if (err)
971 break;
972 if (buffer_new(bh)) {
973 unmap_underlying_metadata(bh->b_bdev,
974 bh->b_blocknr);
975 if (PageUptodate(page)) {
976 clear_buffer_new(bh);
977 set_buffer_uptodate(bh);
978 mark_buffer_dirty(bh);
979 continue;
980 }
981 if (block_end > to || block_start < from)
982 zero_user_segments(page, to, block_end,
983 block_start, from);
984 continue;
985 }
986 }
987 if (PageUptodate(page)) {
988 if (!buffer_uptodate(bh))
989 set_buffer_uptodate(bh);
990 continue;
991 }
992 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
993 !buffer_unwritten(bh) &&
994 (block_start < from || block_end > to)) {
995 ll_rw_block(READ, 1, &bh);
996 *wait_bh++ = bh;
997 decrypt = ext4_encrypted_inode(inode) &&
998 S_ISREG(inode->i_mode);
999 }
1000 }
1001 /*
1002 * If we issued read requests, let them complete.
1003 */
1004 while (wait_bh > wait) {
1005 wait_on_buffer(*--wait_bh);
1006 if (!buffer_uptodate(*wait_bh))
1007 err = -EIO;
1008 }
1009 if (unlikely(err))
1010 page_zero_new_buffers(page, from, to);
1011 else if (decrypt)
1012 err = ext4_decrypt(page);
1013 return err;
1014 }
1015 #endif
1016
1017 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1018 loff_t pos, unsigned len, unsigned flags,
1019 struct page **pagep, void **fsdata)
1020 {
1021 struct inode *inode = mapping->host;
1022 int ret, needed_blocks;
1023 handle_t *handle;
1024 int retries = 0;
1025 struct page *page;
1026 pgoff_t index;
1027 unsigned from, to;
1028
1029 trace_ext4_write_begin(inode, pos, len, flags);
1030 /*
1031 * Reserve one block more for addition to orphan list in case
1032 * we allocate blocks but write fails for some reason
1033 */
1034 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1035 index = pos >> PAGE_CACHE_SHIFT;
1036 from = pos & (PAGE_CACHE_SIZE - 1);
1037 to = from + len;
1038
1039 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1040 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1041 flags, pagep);
1042 if (ret < 0)
1043 return ret;
1044 if (ret == 1)
1045 return 0;
1046 }
1047
1048 /*
1049 * grab_cache_page_write_begin() can take a long time if the
1050 * system is thrashing due to memory pressure, or if the page
1051 * is being written back. So grab it first before we start
1052 * the transaction handle. This also allows us to allocate
1053 * the page (if needed) without using GFP_NOFS.
1054 */
1055 retry_grab:
1056 page = grab_cache_page_write_begin(mapping, index, flags);
1057 if (!page)
1058 return -ENOMEM;
1059 unlock_page(page);
1060
1061 retry_journal:
1062 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1063 if (IS_ERR(handle)) {
1064 page_cache_release(page);
1065 return PTR_ERR(handle);
1066 }
1067
1068 lock_page(page);
1069 if (page->mapping != mapping) {
1070 /* The page got truncated from under us */
1071 unlock_page(page);
1072 page_cache_release(page);
1073 ext4_journal_stop(handle);
1074 goto retry_grab;
1075 }
1076 /* In case writeback began while the page was unlocked */
1077 wait_for_stable_page(page);
1078
1079 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1080 if (ext4_should_dioread_nolock(inode))
1081 ret = ext4_block_write_begin(page, pos, len,
1082 ext4_get_block_write);
1083 else
1084 ret = ext4_block_write_begin(page, pos, len,
1085 ext4_get_block);
1086 #else
1087 if (ext4_should_dioread_nolock(inode))
1088 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1089 else
1090 ret = __block_write_begin(page, pos, len, ext4_get_block);
1091 #endif
1092 if (!ret && ext4_should_journal_data(inode)) {
1093 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1094 from, to, NULL,
1095 do_journal_get_write_access);
1096 }
1097
1098 if (ret) {
1099 unlock_page(page);
1100 /*
1101 * __block_write_begin may have instantiated a few blocks
1102 * outside i_size. Trim these off again. Don't need
1103 * i_size_read because we hold i_mutex.
1104 *
1105 * Add inode to orphan list in case we crash before
1106 * truncate finishes
1107 */
1108 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1109 ext4_orphan_add(handle, inode);
1110
1111 ext4_journal_stop(handle);
1112 if (pos + len > inode->i_size) {
1113 ext4_truncate_failed_write(inode);
1114 /*
1115 * If truncate failed early the inode might
1116 * still be on the orphan list; we need to
1117 * make sure the inode is removed from the
1118 * orphan list in that case.
1119 */
1120 if (inode->i_nlink)
1121 ext4_orphan_del(NULL, inode);
1122 }
1123
1124 if (ret == -ENOSPC &&
1125 ext4_should_retry_alloc(inode->i_sb, &retries))
1126 goto retry_journal;
1127 page_cache_release(page);
1128 return ret;
1129 }
1130 *pagep = page;
1131 return ret;
1132 }
1133
1134 /* For write_end() in data=journal mode */
1135 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1136 {
1137 int ret;
1138 if (!buffer_mapped(bh) || buffer_freed(bh))
1139 return 0;
1140 set_buffer_uptodate(bh);
1141 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1142 clear_buffer_meta(bh);
1143 clear_buffer_prio(bh);
1144 return ret;
1145 }
1146
1147 /*
1148 * We need to pick up the new inode size which generic_commit_write gave us
1149 * `file' can be NULL - eg, when called from page_symlink().
1150 *
1151 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1152 * buffers are managed internally.
1153 */
1154 static int ext4_write_end(struct file *file,
1155 struct address_space *mapping,
1156 loff_t pos, unsigned len, unsigned copied,
1157 struct page *page, void *fsdata)
1158 {
1159 handle_t *handle = ext4_journal_current_handle();
1160 struct inode *inode = mapping->host;
1161 loff_t old_size = inode->i_size;
1162 int ret = 0, ret2;
1163 int i_size_changed = 0;
1164
1165 trace_ext4_write_end(inode, pos, len, copied);
1166 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1167 ret = ext4_jbd2_file_inode(handle, inode);
1168 if (ret) {
1169 unlock_page(page);
1170 page_cache_release(page);
1171 goto errout;
1172 }
1173 }
1174
1175 if (ext4_has_inline_data(inode)) {
1176 ret = ext4_write_inline_data_end(inode, pos, len,
1177 copied, page);
1178 if (ret < 0)
1179 goto errout;
1180 copied = ret;
1181 } else
1182 copied = block_write_end(file, mapping, pos,
1183 len, copied, page, fsdata);
1184 /*
1185 * it's important to update i_size while still holding page lock:
1186 * page writeout could otherwise come in and zero beyond i_size.
1187 */
1188 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1189 unlock_page(page);
1190 page_cache_release(page);
1191
1192 if (old_size < pos)
1193 pagecache_isize_extended(inode, old_size, pos);
1194 /*
1195 * Don't mark the inode dirty under page lock. First, it unnecessarily
1196 * makes the holding time of page lock longer. Second, it forces lock
1197 * ordering of page lock and transaction start for journaling
1198 * filesystems.
1199 */
1200 if (i_size_changed)
1201 ext4_mark_inode_dirty(handle, inode);
1202
1203 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1204 /* if we have allocated more blocks and copied
1205 * less. We will have blocks allocated outside
1206 * inode->i_size. So truncate them
1207 */
1208 ext4_orphan_add(handle, inode);
1209 errout:
1210 ret2 = ext4_journal_stop(handle);
1211 if (!ret)
1212 ret = ret2;
1213
1214 if (pos + len > inode->i_size) {
1215 ext4_truncate_failed_write(inode);
1216 /*
1217 * If truncate failed early the inode might still be
1218 * on the orphan list; we need to make sure the inode
1219 * is removed from the orphan list in that case.
1220 */
1221 if (inode->i_nlink)
1222 ext4_orphan_del(NULL, inode);
1223 }
1224
1225 return ret ? ret : copied;
1226 }
1227
1228 /*
1229 * This is a private version of page_zero_new_buffers() which doesn't
1230 * set the buffer to be dirty, since in data=journalled mode we need
1231 * to call ext4_handle_dirty_metadata() instead.
1232 */
1233 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1234 {
1235 unsigned int block_start = 0, block_end;
1236 struct buffer_head *head, *bh;
1237
1238 bh = head = page_buffers(page);
1239 do {
1240 block_end = block_start + bh->b_size;
1241 if (buffer_new(bh)) {
1242 if (block_end > from && block_start < to) {
1243 if (!PageUptodate(page)) {
1244 unsigned start, size;
1245
1246 start = max(from, block_start);
1247 size = min(to, block_end) - start;
1248
1249 zero_user(page, start, size);
1250 set_buffer_uptodate(bh);
1251 }
1252 clear_buffer_new(bh);
1253 }
1254 }
1255 block_start = block_end;
1256 bh = bh->b_this_page;
1257 } while (bh != head);
1258 }
1259
1260 static int ext4_journalled_write_end(struct file *file,
1261 struct address_space *mapping,
1262 loff_t pos, unsigned len, unsigned copied,
1263 struct page *page, void *fsdata)
1264 {
1265 handle_t *handle = ext4_journal_current_handle();
1266 struct inode *inode = mapping->host;
1267 loff_t old_size = inode->i_size;
1268 int ret = 0, ret2;
1269 int partial = 0;
1270 unsigned from, to;
1271 int size_changed = 0;
1272
1273 trace_ext4_journalled_write_end(inode, pos, len, copied);
1274 from = pos & (PAGE_CACHE_SIZE - 1);
1275 to = from + len;
1276
1277 BUG_ON(!ext4_handle_valid(handle));
1278
1279 if (ext4_has_inline_data(inode))
1280 copied = ext4_write_inline_data_end(inode, pos, len,
1281 copied, page);
1282 else {
1283 if (copied < len) {
1284 if (!PageUptodate(page))
1285 copied = 0;
1286 zero_new_buffers(page, from+copied, to);
1287 }
1288
1289 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1290 to, &partial, write_end_fn);
1291 if (!partial)
1292 SetPageUptodate(page);
1293 }
1294 size_changed = ext4_update_inode_size(inode, pos + copied);
1295 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1296 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1297 unlock_page(page);
1298 page_cache_release(page);
1299
1300 if (old_size < pos)
1301 pagecache_isize_extended(inode, old_size, pos);
1302
1303 if (size_changed) {
1304 ret2 = ext4_mark_inode_dirty(handle, inode);
1305 if (!ret)
1306 ret = ret2;
1307 }
1308
1309 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1310 /* if we have allocated more blocks and copied
1311 * less. We will have blocks allocated outside
1312 * inode->i_size. So truncate them
1313 */
1314 ext4_orphan_add(handle, inode);
1315
1316 ret2 = ext4_journal_stop(handle);
1317 if (!ret)
1318 ret = ret2;
1319 if (pos + len > inode->i_size) {
1320 ext4_truncate_failed_write(inode);
1321 /*
1322 * If truncate failed early the inode might still be
1323 * on the orphan list; we need to make sure the inode
1324 * is removed from the orphan list in that case.
1325 */
1326 if (inode->i_nlink)
1327 ext4_orphan_del(NULL, inode);
1328 }
1329
1330 return ret ? ret : copied;
1331 }
1332
1333 /*
1334 * Reserve space for a single cluster
1335 */
1336 static int ext4_da_reserve_space(struct inode *inode)
1337 {
1338 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1339 struct ext4_inode_info *ei = EXT4_I(inode);
1340 int ret;
1341
1342 /*
1343 * We will charge metadata quota at writeout time; this saves
1344 * us from metadata over-estimation, though we may go over by
1345 * a small amount in the end. Here we just reserve for data.
1346 */
1347 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1348 if (ret)
1349 return ret;
1350
1351 spin_lock(&ei->i_block_reservation_lock);
1352 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1353 spin_unlock(&ei->i_block_reservation_lock);
1354 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1355 return -ENOSPC;
1356 }
1357 ei->i_reserved_data_blocks++;
1358 trace_ext4_da_reserve_space(inode);
1359 spin_unlock(&ei->i_block_reservation_lock);
1360
1361 return 0; /* success */
1362 }
1363
1364 static void ext4_da_release_space(struct inode *inode, int to_free)
1365 {
1366 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1367 struct ext4_inode_info *ei = EXT4_I(inode);
1368
1369 if (!to_free)
1370 return; /* Nothing to release, exit */
1371
1372 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1373
1374 trace_ext4_da_release_space(inode, to_free);
1375 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1376 /*
1377 * if there aren't enough reserved blocks, then the
1378 * counter is messed up somewhere. Since this
1379 * function is called from invalidate page, it's
1380 * harmless to return without any action.
1381 */
1382 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1383 "ino %lu, to_free %d with only %d reserved "
1384 "data blocks", inode->i_ino, to_free,
1385 ei->i_reserved_data_blocks);
1386 WARN_ON(1);
1387 to_free = ei->i_reserved_data_blocks;
1388 }
1389 ei->i_reserved_data_blocks -= to_free;
1390
1391 /* update fs dirty data blocks counter */
1392 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1393
1394 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1395
1396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1397 }
1398
1399 static void ext4_da_page_release_reservation(struct page *page,
1400 unsigned int offset,
1401 unsigned int length)
1402 {
1403 int to_release = 0, contiguous_blks = 0;
1404 struct buffer_head *head, *bh;
1405 unsigned int curr_off = 0;
1406 struct inode *inode = page->mapping->host;
1407 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1408 unsigned int stop = offset + length;
1409 int num_clusters;
1410 ext4_fsblk_t lblk;
1411
1412 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1413
1414 head = page_buffers(page);
1415 bh = head;
1416 do {
1417 unsigned int next_off = curr_off + bh->b_size;
1418
1419 if (next_off > stop)
1420 break;
1421
1422 if ((offset <= curr_off) && (buffer_delay(bh))) {
1423 to_release++;
1424 contiguous_blks++;
1425 clear_buffer_delay(bh);
1426 } else if (contiguous_blks) {
1427 lblk = page->index <<
1428 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1429 lblk += (curr_off >> inode->i_blkbits) -
1430 contiguous_blks;
1431 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1432 contiguous_blks = 0;
1433 }
1434 curr_off = next_off;
1435 } while ((bh = bh->b_this_page) != head);
1436
1437 if (contiguous_blks) {
1438 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1439 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1440 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1441 }
1442
1443 /* If we have released all the blocks belonging to a cluster, then we
1444 * need to release the reserved space for that cluster. */
1445 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1446 while (num_clusters > 0) {
1447 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1448 ((num_clusters - 1) << sbi->s_cluster_bits);
1449 if (sbi->s_cluster_ratio == 1 ||
1450 !ext4_find_delalloc_cluster(inode, lblk))
1451 ext4_da_release_space(inode, 1);
1452
1453 num_clusters--;
1454 }
1455 }
1456
1457 /*
1458 * Delayed allocation stuff
1459 */
1460
1461 struct mpage_da_data {
1462 struct inode *inode;
1463 struct writeback_control *wbc;
1464
1465 pgoff_t first_page; /* The first page to write */
1466 pgoff_t next_page; /* Current page to examine */
1467 pgoff_t last_page; /* Last page to examine */
1468 /*
1469 * Extent to map - this can be after first_page because that can be
1470 * fully mapped. We somewhat abuse m_flags to store whether the extent
1471 * is delalloc or unwritten.
1472 */
1473 struct ext4_map_blocks map;
1474 struct ext4_io_submit io_submit; /* IO submission data */
1475 };
1476
1477 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1478 bool invalidate)
1479 {
1480 int nr_pages, i;
1481 pgoff_t index, end;
1482 struct pagevec pvec;
1483 struct inode *inode = mpd->inode;
1484 struct address_space *mapping = inode->i_mapping;
1485
1486 /* This is necessary when next_page == 0. */
1487 if (mpd->first_page >= mpd->next_page)
1488 return;
1489
1490 index = mpd->first_page;
1491 end = mpd->next_page - 1;
1492 if (invalidate) {
1493 ext4_lblk_t start, last;
1494 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1495 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1496 ext4_es_remove_extent(inode, start, last - start + 1);
1497 }
1498
1499 pagevec_init(&pvec, 0);
1500 while (index <= end) {
1501 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1502 if (nr_pages == 0)
1503 break;
1504 for (i = 0; i < nr_pages; i++) {
1505 struct page *page = pvec.pages[i];
1506 if (page->index > end)
1507 break;
1508 BUG_ON(!PageLocked(page));
1509 BUG_ON(PageWriteback(page));
1510 if (invalidate) {
1511 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1512 ClearPageUptodate(page);
1513 }
1514 unlock_page(page);
1515 }
1516 index = pvec.pages[nr_pages - 1]->index + 1;
1517 pagevec_release(&pvec);
1518 }
1519 }
1520
1521 static void ext4_print_free_blocks(struct inode *inode)
1522 {
1523 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1524 struct super_block *sb = inode->i_sb;
1525 struct ext4_inode_info *ei = EXT4_I(inode);
1526
1527 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1528 EXT4_C2B(EXT4_SB(inode->i_sb),
1529 ext4_count_free_clusters(sb)));
1530 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1531 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1532 (long long) EXT4_C2B(EXT4_SB(sb),
1533 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1534 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1535 (long long) EXT4_C2B(EXT4_SB(sb),
1536 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1537 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1538 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1539 ei->i_reserved_data_blocks);
1540 return;
1541 }
1542
1543 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1544 {
1545 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1546 }
1547
1548 /*
1549 * This function is grabs code from the very beginning of
1550 * ext4_map_blocks, but assumes that the caller is from delayed write
1551 * time. This function looks up the requested blocks and sets the
1552 * buffer delay bit under the protection of i_data_sem.
1553 */
1554 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1555 struct ext4_map_blocks *map,
1556 struct buffer_head *bh)
1557 {
1558 struct extent_status es;
1559 int retval;
1560 sector_t invalid_block = ~((sector_t) 0xffff);
1561 #ifdef ES_AGGRESSIVE_TEST
1562 struct ext4_map_blocks orig_map;
1563
1564 memcpy(&orig_map, map, sizeof(*map));
1565 #endif
1566
1567 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1568 invalid_block = ~0;
1569
1570 map->m_flags = 0;
1571 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1572 "logical block %lu\n", inode->i_ino, map->m_len,
1573 (unsigned long) map->m_lblk);
1574
1575 /* Lookup extent status tree firstly */
1576 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1577 if (ext4_es_is_hole(&es)) {
1578 retval = 0;
1579 down_read(&EXT4_I(inode)->i_data_sem);
1580 goto add_delayed;
1581 }
1582
1583 /*
1584 * Delayed extent could be allocated by fallocate.
1585 * So we need to check it.
1586 */
1587 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1588 map_bh(bh, inode->i_sb, invalid_block);
1589 set_buffer_new(bh);
1590 set_buffer_delay(bh);
1591 return 0;
1592 }
1593
1594 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1595 retval = es.es_len - (iblock - es.es_lblk);
1596 if (retval > map->m_len)
1597 retval = map->m_len;
1598 map->m_len = retval;
1599 if (ext4_es_is_written(&es))
1600 map->m_flags |= EXT4_MAP_MAPPED;
1601 else if (ext4_es_is_unwritten(&es))
1602 map->m_flags |= EXT4_MAP_UNWRITTEN;
1603 else
1604 BUG_ON(1);
1605
1606 #ifdef ES_AGGRESSIVE_TEST
1607 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1608 #endif
1609 return retval;
1610 }
1611
1612 /*
1613 * Try to see if we can get the block without requesting a new
1614 * file system block.
1615 */
1616 down_read(&EXT4_I(inode)->i_data_sem);
1617 if (ext4_has_inline_data(inode))
1618 retval = 0;
1619 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1620 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1621 else
1622 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1623
1624 add_delayed:
1625 if (retval == 0) {
1626 int ret;
1627 /*
1628 * XXX: __block_prepare_write() unmaps passed block,
1629 * is it OK?
1630 */
1631 /*
1632 * If the block was allocated from previously allocated cluster,
1633 * then we don't need to reserve it again. However we still need
1634 * to reserve metadata for every block we're going to write.
1635 */
1636 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1637 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1638 ret = ext4_da_reserve_space(inode);
1639 if (ret) {
1640 /* not enough space to reserve */
1641 retval = ret;
1642 goto out_unlock;
1643 }
1644 }
1645
1646 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1647 ~0, EXTENT_STATUS_DELAYED);
1648 if (ret) {
1649 retval = ret;
1650 goto out_unlock;
1651 }
1652
1653 map_bh(bh, inode->i_sb, invalid_block);
1654 set_buffer_new(bh);
1655 set_buffer_delay(bh);
1656 } else if (retval > 0) {
1657 int ret;
1658 unsigned int status;
1659
1660 if (unlikely(retval != map->m_len)) {
1661 ext4_warning(inode->i_sb,
1662 "ES len assertion failed for inode "
1663 "%lu: retval %d != map->m_len %d",
1664 inode->i_ino, retval, map->m_len);
1665 WARN_ON(1);
1666 }
1667
1668 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1669 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1670 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1671 map->m_pblk, status);
1672 if (ret != 0)
1673 retval = ret;
1674 }
1675
1676 out_unlock:
1677 up_read((&EXT4_I(inode)->i_data_sem));
1678
1679 return retval;
1680 }
1681
1682 /*
1683 * This is a special get_block_t callback which is used by
1684 * ext4_da_write_begin(). It will either return mapped block or
1685 * reserve space for a single block.
1686 *
1687 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1688 * We also have b_blocknr = -1 and b_bdev initialized properly
1689 *
1690 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1691 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1692 * initialized properly.
1693 */
1694 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1695 struct buffer_head *bh, int create)
1696 {
1697 struct ext4_map_blocks map;
1698 int ret = 0;
1699
1700 BUG_ON(create == 0);
1701 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1702
1703 map.m_lblk = iblock;
1704 map.m_len = 1;
1705
1706 /*
1707 * first, we need to know whether the block is allocated already
1708 * preallocated blocks are unmapped but should treated
1709 * the same as allocated blocks.
1710 */
1711 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1712 if (ret <= 0)
1713 return ret;
1714
1715 map_bh(bh, inode->i_sb, map.m_pblk);
1716 ext4_update_bh_state(bh, map.m_flags);
1717
1718 if (buffer_unwritten(bh)) {
1719 /* A delayed write to unwritten bh should be marked
1720 * new and mapped. Mapped ensures that we don't do
1721 * get_block multiple times when we write to the same
1722 * offset and new ensures that we do proper zero out
1723 * for partial write.
1724 */
1725 set_buffer_new(bh);
1726 set_buffer_mapped(bh);
1727 }
1728 return 0;
1729 }
1730
1731 static int bget_one(handle_t *handle, struct buffer_head *bh)
1732 {
1733 get_bh(bh);
1734 return 0;
1735 }
1736
1737 static int bput_one(handle_t *handle, struct buffer_head *bh)
1738 {
1739 put_bh(bh);
1740 return 0;
1741 }
1742
1743 static int __ext4_journalled_writepage(struct page *page,
1744 unsigned int len)
1745 {
1746 struct address_space *mapping = page->mapping;
1747 struct inode *inode = mapping->host;
1748 struct buffer_head *page_bufs = NULL;
1749 handle_t *handle = NULL;
1750 int ret = 0, err = 0;
1751 int inline_data = ext4_has_inline_data(inode);
1752 struct buffer_head *inode_bh = NULL;
1753
1754 ClearPageChecked(page);
1755
1756 if (inline_data) {
1757 BUG_ON(page->index != 0);
1758 BUG_ON(len > ext4_get_max_inline_size(inode));
1759 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1760 if (inode_bh == NULL)
1761 goto out;
1762 } else {
1763 page_bufs = page_buffers(page);
1764 if (!page_bufs) {
1765 BUG();
1766 goto out;
1767 }
1768 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1769 NULL, bget_one);
1770 }
1771 /*
1772 * We need to release the page lock before we start the
1773 * journal, so grab a reference so the page won't disappear
1774 * out from under us.
1775 */
1776 get_page(page);
1777 unlock_page(page);
1778
1779 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1780 ext4_writepage_trans_blocks(inode));
1781 if (IS_ERR(handle)) {
1782 ret = PTR_ERR(handle);
1783 put_page(page);
1784 goto out_no_pagelock;
1785 }
1786 BUG_ON(!ext4_handle_valid(handle));
1787
1788 lock_page(page);
1789 put_page(page);
1790 if (page->mapping != mapping) {
1791 /* The page got truncated from under us */
1792 ext4_journal_stop(handle);
1793 ret = 0;
1794 goto out;
1795 }
1796
1797 if (inline_data) {
1798 BUFFER_TRACE(inode_bh, "get write access");
1799 ret = ext4_journal_get_write_access(handle, inode_bh);
1800
1801 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1802
1803 } else {
1804 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1805 do_journal_get_write_access);
1806
1807 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1808 write_end_fn);
1809 }
1810 if (ret == 0)
1811 ret = err;
1812 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1813 err = ext4_journal_stop(handle);
1814 if (!ret)
1815 ret = err;
1816
1817 if (!ext4_has_inline_data(inode))
1818 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1819 NULL, bput_one);
1820 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1821 out:
1822 unlock_page(page);
1823 out_no_pagelock:
1824 brelse(inode_bh);
1825 return ret;
1826 }
1827
1828 /*
1829 * Note that we don't need to start a transaction unless we're journaling data
1830 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1831 * need to file the inode to the transaction's list in ordered mode because if
1832 * we are writing back data added by write(), the inode is already there and if
1833 * we are writing back data modified via mmap(), no one guarantees in which
1834 * transaction the data will hit the disk. In case we are journaling data, we
1835 * cannot start transaction directly because transaction start ranks above page
1836 * lock so we have to do some magic.
1837 *
1838 * This function can get called via...
1839 * - ext4_writepages after taking page lock (have journal handle)
1840 * - journal_submit_inode_data_buffers (no journal handle)
1841 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1842 * - grab_page_cache when doing write_begin (have journal handle)
1843 *
1844 * We don't do any block allocation in this function. If we have page with
1845 * multiple blocks we need to write those buffer_heads that are mapped. This
1846 * is important for mmaped based write. So if we do with blocksize 1K
1847 * truncate(f, 1024);
1848 * a = mmap(f, 0, 4096);
1849 * a[0] = 'a';
1850 * truncate(f, 4096);
1851 * we have in the page first buffer_head mapped via page_mkwrite call back
1852 * but other buffer_heads would be unmapped but dirty (dirty done via the
1853 * do_wp_page). So writepage should write the first block. If we modify
1854 * the mmap area beyond 1024 we will again get a page_fault and the
1855 * page_mkwrite callback will do the block allocation and mark the
1856 * buffer_heads mapped.
1857 *
1858 * We redirty the page if we have any buffer_heads that is either delay or
1859 * unwritten in the page.
1860 *
1861 * We can get recursively called as show below.
1862 *
1863 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1864 * ext4_writepage()
1865 *
1866 * But since we don't do any block allocation we should not deadlock.
1867 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1868 */
1869 static int ext4_writepage(struct page *page,
1870 struct writeback_control *wbc)
1871 {
1872 int ret = 0;
1873 loff_t size;
1874 unsigned int len;
1875 struct buffer_head *page_bufs = NULL;
1876 struct inode *inode = page->mapping->host;
1877 struct ext4_io_submit io_submit;
1878 bool keep_towrite = false;
1879
1880 trace_ext4_writepage(page);
1881 size = i_size_read(inode);
1882 if (page->index == size >> PAGE_CACHE_SHIFT)
1883 len = size & ~PAGE_CACHE_MASK;
1884 else
1885 len = PAGE_CACHE_SIZE;
1886
1887 page_bufs = page_buffers(page);
1888 /*
1889 * We cannot do block allocation or other extent handling in this
1890 * function. If there are buffers needing that, we have to redirty
1891 * the page. But we may reach here when we do a journal commit via
1892 * journal_submit_inode_data_buffers() and in that case we must write
1893 * allocated buffers to achieve data=ordered mode guarantees.
1894 *
1895 * Also, if there is only one buffer per page (the fs block
1896 * size == the page size), if one buffer needs block
1897 * allocation or needs to modify the extent tree to clear the
1898 * unwritten flag, we know that the page can't be written at
1899 * all, so we might as well refuse the write immediately.
1900 * Unfortunately if the block size != page size, we can't as
1901 * easily detect this case using ext4_walk_page_buffers(), but
1902 * for the extremely common case, this is an optimization that
1903 * skips a useless round trip through ext4_bio_write_page().
1904 */
1905 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1906 ext4_bh_delay_or_unwritten)) {
1907 redirty_page_for_writepage(wbc, page);
1908 if ((current->flags & PF_MEMALLOC) ||
1909 (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1910 /*
1911 * For memory cleaning there's no point in writing only
1912 * some buffers. So just bail out. Warn if we came here
1913 * from direct reclaim.
1914 */
1915 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1916 == PF_MEMALLOC);
1917 unlock_page(page);
1918 return 0;
1919 }
1920 keep_towrite = true;
1921 }
1922
1923 if (PageChecked(page) && ext4_should_journal_data(inode))
1924 /*
1925 * It's mmapped pagecache. Add buffers and journal it. There
1926 * doesn't seem much point in redirtying the page here.
1927 */
1928 return __ext4_journalled_writepage(page, len);
1929
1930 ext4_io_submit_init(&io_submit, wbc);
1931 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1932 if (!io_submit.io_end) {
1933 redirty_page_for_writepage(wbc, page);
1934 unlock_page(page);
1935 return -ENOMEM;
1936 }
1937 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1938 ext4_io_submit(&io_submit);
1939 /* Drop io_end reference we got from init */
1940 ext4_put_io_end_defer(io_submit.io_end);
1941 return ret;
1942 }
1943
1944 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1945 {
1946 int len;
1947 loff_t size = i_size_read(mpd->inode);
1948 int err;
1949
1950 BUG_ON(page->index != mpd->first_page);
1951 if (page->index == size >> PAGE_CACHE_SHIFT)
1952 len = size & ~PAGE_CACHE_MASK;
1953 else
1954 len = PAGE_CACHE_SIZE;
1955 clear_page_dirty_for_io(page);
1956 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1957 if (!err)
1958 mpd->wbc->nr_to_write--;
1959 mpd->first_page++;
1960
1961 return err;
1962 }
1963
1964 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1965
1966 /*
1967 * mballoc gives us at most this number of blocks...
1968 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1969 * The rest of mballoc seems to handle chunks up to full group size.
1970 */
1971 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1972
1973 /*
1974 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1975 *
1976 * @mpd - extent of blocks
1977 * @lblk - logical number of the block in the file
1978 * @bh - buffer head we want to add to the extent
1979 *
1980 * The function is used to collect contig. blocks in the same state. If the
1981 * buffer doesn't require mapping for writeback and we haven't started the
1982 * extent of buffers to map yet, the function returns 'true' immediately - the
1983 * caller can write the buffer right away. Otherwise the function returns true
1984 * if the block has been added to the extent, false if the block couldn't be
1985 * added.
1986 */
1987 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1988 struct buffer_head *bh)
1989 {
1990 struct ext4_map_blocks *map = &mpd->map;
1991
1992 /* Buffer that doesn't need mapping for writeback? */
1993 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1994 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1995 /* So far no extent to map => we write the buffer right away */
1996 if (map->m_len == 0)
1997 return true;
1998 return false;
1999 }
2000
2001 /* First block in the extent? */
2002 if (map->m_len == 0) {
2003 map->m_lblk = lblk;
2004 map->m_len = 1;
2005 map->m_flags = bh->b_state & BH_FLAGS;
2006 return true;
2007 }
2008
2009 /* Don't go larger than mballoc is willing to allocate */
2010 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2011 return false;
2012
2013 /* Can we merge the block to our big extent? */
2014 if (lblk == map->m_lblk + map->m_len &&
2015 (bh->b_state & BH_FLAGS) == map->m_flags) {
2016 map->m_len++;
2017 return true;
2018 }
2019 return false;
2020 }
2021
2022 /*
2023 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2024 *
2025 * @mpd - extent of blocks for mapping
2026 * @head - the first buffer in the page
2027 * @bh - buffer we should start processing from
2028 * @lblk - logical number of the block in the file corresponding to @bh
2029 *
2030 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2031 * the page for IO if all buffers in this page were mapped and there's no
2032 * accumulated extent of buffers to map or add buffers in the page to the
2033 * extent of buffers to map. The function returns 1 if the caller can continue
2034 * by processing the next page, 0 if it should stop adding buffers to the
2035 * extent to map because we cannot extend it anymore. It can also return value
2036 * < 0 in case of error during IO submission.
2037 */
2038 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2039 struct buffer_head *head,
2040 struct buffer_head *bh,
2041 ext4_lblk_t lblk)
2042 {
2043 struct inode *inode = mpd->inode;
2044 int err;
2045 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2046 >> inode->i_blkbits;
2047
2048 do {
2049 BUG_ON(buffer_locked(bh));
2050
2051 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2052 /* Found extent to map? */
2053 if (mpd->map.m_len)
2054 return 0;
2055 /* Everything mapped so far and we hit EOF */
2056 break;
2057 }
2058 } while (lblk++, (bh = bh->b_this_page) != head);
2059 /* So far everything mapped? Submit the page for IO. */
2060 if (mpd->map.m_len == 0) {
2061 err = mpage_submit_page(mpd, head->b_page);
2062 if (err < 0)
2063 return err;
2064 }
2065 return lblk < blocks;
2066 }
2067
2068 /*
2069 * mpage_map_buffers - update buffers corresponding to changed extent and
2070 * submit fully mapped pages for IO
2071 *
2072 * @mpd - description of extent to map, on return next extent to map
2073 *
2074 * Scan buffers corresponding to changed extent (we expect corresponding pages
2075 * to be already locked) and update buffer state according to new extent state.
2076 * We map delalloc buffers to their physical location, clear unwritten bits,
2077 * and mark buffers as uninit when we perform writes to unwritten extents
2078 * and do extent conversion after IO is finished. If the last page is not fully
2079 * mapped, we update @map to the next extent in the last page that needs
2080 * mapping. Otherwise we submit the page for IO.
2081 */
2082 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2083 {
2084 struct pagevec pvec;
2085 int nr_pages, i;
2086 struct inode *inode = mpd->inode;
2087 struct buffer_head *head, *bh;
2088 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2089 pgoff_t start, end;
2090 ext4_lblk_t lblk;
2091 sector_t pblock;
2092 int err;
2093
2094 start = mpd->map.m_lblk >> bpp_bits;
2095 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2096 lblk = start << bpp_bits;
2097 pblock = mpd->map.m_pblk;
2098
2099 pagevec_init(&pvec, 0);
2100 while (start <= end) {
2101 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2102 PAGEVEC_SIZE);
2103 if (nr_pages == 0)
2104 break;
2105 for (i = 0; i < nr_pages; i++) {
2106 struct page *page = pvec.pages[i];
2107
2108 if (page->index > end)
2109 break;
2110 /* Up to 'end' pages must be contiguous */
2111 BUG_ON(page->index != start);
2112 bh = head = page_buffers(page);
2113 do {
2114 if (lblk < mpd->map.m_lblk)
2115 continue;
2116 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2117 /*
2118 * Buffer after end of mapped extent.
2119 * Find next buffer in the page to map.
2120 */
2121 mpd->map.m_len = 0;
2122 mpd->map.m_flags = 0;
2123 /*
2124 * FIXME: If dioread_nolock supports
2125 * blocksize < pagesize, we need to make
2126 * sure we add size mapped so far to
2127 * io_end->size as the following call
2128 * can submit the page for IO.
2129 */
2130 err = mpage_process_page_bufs(mpd, head,
2131 bh, lblk);
2132 pagevec_release(&pvec);
2133 if (err > 0)
2134 err = 0;
2135 return err;
2136 }
2137 if (buffer_delay(bh)) {
2138 clear_buffer_delay(bh);
2139 bh->b_blocknr = pblock++;
2140 }
2141 clear_buffer_unwritten(bh);
2142 } while (lblk++, (bh = bh->b_this_page) != head);
2143
2144 /*
2145 * FIXME: This is going to break if dioread_nolock
2146 * supports blocksize < pagesize as we will try to
2147 * convert potentially unmapped parts of inode.
2148 */
2149 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2150 /* Page fully mapped - let IO run! */
2151 err = mpage_submit_page(mpd, page);
2152 if (err < 0) {
2153 pagevec_release(&pvec);
2154 return err;
2155 }
2156 start++;
2157 }
2158 pagevec_release(&pvec);
2159 }
2160 /* Extent fully mapped and matches with page boundary. We are done. */
2161 mpd->map.m_len = 0;
2162 mpd->map.m_flags = 0;
2163 return 0;
2164 }
2165
2166 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2167 {
2168 struct inode *inode = mpd->inode;
2169 struct ext4_map_blocks *map = &mpd->map;
2170 int get_blocks_flags;
2171 int err, dioread_nolock;
2172
2173 trace_ext4_da_write_pages_extent(inode, map);
2174 /*
2175 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2176 * to convert an unwritten extent to be initialized (in the case
2177 * where we have written into one or more preallocated blocks). It is
2178 * possible that we're going to need more metadata blocks than
2179 * previously reserved. However we must not fail because we're in
2180 * writeback and there is nothing we can do about it so it might result
2181 * in data loss. So use reserved blocks to allocate metadata if
2182 * possible.
2183 *
2184 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2185 * the blocks in question are delalloc blocks. This indicates
2186 * that the blocks and quotas has already been checked when
2187 * the data was copied into the page cache.
2188 */
2189 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2190 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2191 dioread_nolock = ext4_should_dioread_nolock(inode);
2192 if (dioread_nolock)
2193 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2194 if (map->m_flags & (1 << BH_Delay))
2195 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2196
2197 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2198 if (err < 0)
2199 return err;
2200 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2201 if (!mpd->io_submit.io_end->handle &&
2202 ext4_handle_valid(handle)) {
2203 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2204 handle->h_rsv_handle = NULL;
2205 }
2206 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2207 }
2208
2209 BUG_ON(map->m_len == 0);
2210 if (map->m_flags & EXT4_MAP_NEW) {
2211 struct block_device *bdev = inode->i_sb->s_bdev;
2212 int i;
2213
2214 for (i = 0; i < map->m_len; i++)
2215 unmap_underlying_metadata(bdev, map->m_pblk + i);
2216 }
2217 return 0;
2218 }
2219
2220 /*
2221 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2222 * mpd->len and submit pages underlying it for IO
2223 *
2224 * @handle - handle for journal operations
2225 * @mpd - extent to map
2226 * @give_up_on_write - we set this to true iff there is a fatal error and there
2227 * is no hope of writing the data. The caller should discard
2228 * dirty pages to avoid infinite loops.
2229 *
2230 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2231 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2232 * them to initialized or split the described range from larger unwritten
2233 * extent. Note that we need not map all the described range since allocation
2234 * can return less blocks or the range is covered by more unwritten extents. We
2235 * cannot map more because we are limited by reserved transaction credits. On
2236 * the other hand we always make sure that the last touched page is fully
2237 * mapped so that it can be written out (and thus forward progress is
2238 * guaranteed). After mapping we submit all mapped pages for IO.
2239 */
2240 static int mpage_map_and_submit_extent(handle_t *handle,
2241 struct mpage_da_data *mpd,
2242 bool *give_up_on_write)
2243 {
2244 struct inode *inode = mpd->inode;
2245 struct ext4_map_blocks *map = &mpd->map;
2246 int err;
2247 loff_t disksize;
2248 int progress = 0;
2249
2250 mpd->io_submit.io_end->offset =
2251 ((loff_t)map->m_lblk) << inode->i_blkbits;
2252 do {
2253 err = mpage_map_one_extent(handle, mpd);
2254 if (err < 0) {
2255 struct super_block *sb = inode->i_sb;
2256
2257 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2258 goto invalidate_dirty_pages;
2259 /*
2260 * Let the uper layers retry transient errors.
2261 * In the case of ENOSPC, if ext4_count_free_blocks()
2262 * is non-zero, a commit should free up blocks.
2263 */
2264 if ((err == -ENOMEM) ||
2265 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2266 if (progress)
2267 goto update_disksize;
2268 return err;
2269 }
2270 ext4_msg(sb, KERN_CRIT,
2271 "Delayed block allocation failed for "
2272 "inode %lu at logical offset %llu with"
2273 " max blocks %u with error %d",
2274 inode->i_ino,
2275 (unsigned long long)map->m_lblk,
2276 (unsigned)map->m_len, -err);
2277 ext4_msg(sb, KERN_CRIT,
2278 "This should not happen!! Data will "
2279 "be lost\n");
2280 if (err == -ENOSPC)
2281 ext4_print_free_blocks(inode);
2282 invalidate_dirty_pages:
2283 *give_up_on_write = true;
2284 return err;
2285 }
2286 progress = 1;
2287 /*
2288 * Update buffer state, submit mapped pages, and get us new
2289 * extent to map
2290 */
2291 err = mpage_map_and_submit_buffers(mpd);
2292 if (err < 0)
2293 goto update_disksize;
2294 } while (map->m_len);
2295
2296 update_disksize:
2297 /*
2298 * Update on-disk size after IO is submitted. Races with
2299 * truncate are avoided by checking i_size under i_data_sem.
2300 */
2301 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2302 if (disksize > EXT4_I(inode)->i_disksize) {
2303 int err2;
2304 loff_t i_size;
2305
2306 down_write(&EXT4_I(inode)->i_data_sem);
2307 i_size = i_size_read(inode);
2308 if (disksize > i_size)
2309 disksize = i_size;
2310 if (disksize > EXT4_I(inode)->i_disksize)
2311 EXT4_I(inode)->i_disksize = disksize;
2312 err2 = ext4_mark_inode_dirty(handle, inode);
2313 up_write(&EXT4_I(inode)->i_data_sem);
2314 if (err2)
2315 ext4_error(inode->i_sb,
2316 "Failed to mark inode %lu dirty",
2317 inode->i_ino);
2318 if (!err)
2319 err = err2;
2320 }
2321 return err;
2322 }
2323
2324 /*
2325 * Calculate the total number of credits to reserve for one writepages
2326 * iteration. This is called from ext4_writepages(). We map an extent of
2327 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2328 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2329 * bpp - 1 blocks in bpp different extents.
2330 */
2331 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2332 {
2333 int bpp = ext4_journal_blocks_per_page(inode);
2334
2335 return ext4_meta_trans_blocks(inode,
2336 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2337 }
2338
2339 /*
2340 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2341 * and underlying extent to map
2342 *
2343 * @mpd - where to look for pages
2344 *
2345 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2346 * IO immediately. When we find a page which isn't mapped we start accumulating
2347 * extent of buffers underlying these pages that needs mapping (formed by
2348 * either delayed or unwritten buffers). We also lock the pages containing
2349 * these buffers. The extent found is returned in @mpd structure (starting at
2350 * mpd->lblk with length mpd->len blocks).
2351 *
2352 * Note that this function can attach bios to one io_end structure which are
2353 * neither logically nor physically contiguous. Although it may seem as an
2354 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2355 * case as we need to track IO to all buffers underlying a page in one io_end.
2356 */
2357 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2358 {
2359 struct address_space *mapping = mpd->inode->i_mapping;
2360 struct pagevec pvec;
2361 unsigned int nr_pages;
2362 long left = mpd->wbc->nr_to_write;
2363 pgoff_t index = mpd->first_page;
2364 pgoff_t end = mpd->last_page;
2365 int tag;
2366 int i, err = 0;
2367 int blkbits = mpd->inode->i_blkbits;
2368 ext4_lblk_t lblk;
2369 struct buffer_head *head;
2370
2371 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2372 tag = PAGECACHE_TAG_TOWRITE;
2373 else
2374 tag = PAGECACHE_TAG_DIRTY;
2375
2376 pagevec_init(&pvec, 0);
2377 mpd->map.m_len = 0;
2378 mpd->next_page = index;
2379 while (index <= end) {
2380 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2381 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2382 if (nr_pages == 0)
2383 goto out;
2384
2385 for (i = 0; i < nr_pages; i++) {
2386 struct page *page = pvec.pages[i];
2387
2388 /*
2389 * At this point, the page may be truncated or
2390 * invalidated (changing page->mapping to NULL), or
2391 * even swizzled back from swapper_space to tmpfs file
2392 * mapping. However, page->index will not change
2393 * because we have a reference on the page.
2394 */
2395 if (page->index > end)
2396 goto out;
2397
2398 /*
2399 * Accumulated enough dirty pages? This doesn't apply
2400 * to WB_SYNC_ALL mode. For integrity sync we have to
2401 * keep going because someone may be concurrently
2402 * dirtying pages, and we might have synced a lot of
2403 * newly appeared dirty pages, but have not synced all
2404 * of the old dirty pages.
2405 */
2406 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2407 goto out;
2408
2409 /* If we can't merge this page, we are done. */
2410 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2411 goto out;
2412
2413 lock_page(page);
2414 /*
2415 * If the page is no longer dirty, or its mapping no
2416 * longer corresponds to inode we are writing (which
2417 * means it has been truncated or invalidated), or the
2418 * page is already under writeback and we are not doing
2419 * a data integrity writeback, skip the page
2420 */
2421 if (!PageDirty(page) ||
2422 (PageWriteback(page) &&
2423 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2424 unlikely(page->mapping != mapping)) {
2425 unlock_page(page);
2426 continue;
2427 }
2428
2429 wait_on_page_writeback(page);
2430 BUG_ON(PageWriteback(page));
2431
2432 if (mpd->map.m_len == 0)
2433 mpd->first_page = page->index;
2434 mpd->next_page = page->index + 1;
2435 /* Add all dirty buffers to mpd */
2436 lblk = ((ext4_lblk_t)page->index) <<
2437 (PAGE_CACHE_SHIFT - blkbits);
2438 head = page_buffers(page);
2439 err = mpage_process_page_bufs(mpd, head, head, lblk);
2440 if (err <= 0)
2441 goto out;
2442 err = 0;
2443 left--;
2444 }
2445 pagevec_release(&pvec);
2446 cond_resched();
2447 }
2448 return 0;
2449 out:
2450 pagevec_release(&pvec);
2451 return err;
2452 }
2453
2454 static int __writepage(struct page *page, struct writeback_control *wbc,
2455 void *data)
2456 {
2457 struct address_space *mapping = data;
2458 int ret = ext4_writepage(page, wbc);
2459 mapping_set_error(mapping, ret);
2460 return ret;
2461 }
2462
2463 static int ext4_writepages(struct address_space *mapping,
2464 struct writeback_control *wbc)
2465 {
2466 pgoff_t writeback_index = 0;
2467 long nr_to_write = wbc->nr_to_write;
2468 int range_whole = 0;
2469 int cycled = 1;
2470 handle_t *handle = NULL;
2471 struct mpage_da_data mpd;
2472 struct inode *inode = mapping->host;
2473 int needed_blocks, rsv_blocks = 0, ret = 0;
2474 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2475 bool done;
2476 struct blk_plug plug;
2477 bool give_up_on_write = false;
2478
2479 trace_ext4_writepages(inode, wbc);
2480
2481 /*
2482 * No pages to write? This is mainly a kludge to avoid starting
2483 * a transaction for special inodes like journal inode on last iput()
2484 * because that could violate lock ordering on umount
2485 */
2486 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2487 goto out_writepages;
2488
2489 if (ext4_should_journal_data(inode)) {
2490 struct blk_plug plug;
2491
2492 blk_start_plug(&plug);
2493 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2494 blk_finish_plug(&plug);
2495 goto out_writepages;
2496 }
2497
2498 /*
2499 * If the filesystem has aborted, it is read-only, so return
2500 * right away instead of dumping stack traces later on that
2501 * will obscure the real source of the problem. We test
2502 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2503 * the latter could be true if the filesystem is mounted
2504 * read-only, and in that case, ext4_writepages should
2505 * *never* be called, so if that ever happens, we would want
2506 * the stack trace.
2507 */
2508 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2509 ret = -EROFS;
2510 goto out_writepages;
2511 }
2512
2513 if (ext4_should_dioread_nolock(inode)) {
2514 /*
2515 * We may need to convert up to one extent per block in
2516 * the page and we may dirty the inode.
2517 */
2518 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2519 }
2520
2521 /*
2522 * If we have inline data and arrive here, it means that
2523 * we will soon create the block for the 1st page, so
2524 * we'd better clear the inline data here.
2525 */
2526 if (ext4_has_inline_data(inode)) {
2527 /* Just inode will be modified... */
2528 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2529 if (IS_ERR(handle)) {
2530 ret = PTR_ERR(handle);
2531 goto out_writepages;
2532 }
2533 BUG_ON(ext4_test_inode_state(inode,
2534 EXT4_STATE_MAY_INLINE_DATA));
2535 ext4_destroy_inline_data(handle, inode);
2536 ext4_journal_stop(handle);
2537 }
2538
2539 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2540 range_whole = 1;
2541
2542 if (wbc->range_cyclic) {
2543 writeback_index = mapping->writeback_index;
2544 if (writeback_index)
2545 cycled = 0;
2546 mpd.first_page = writeback_index;
2547 mpd.last_page = -1;
2548 } else {
2549 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2550 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2551 }
2552
2553 mpd.inode = inode;
2554 mpd.wbc = wbc;
2555 ext4_io_submit_init(&mpd.io_submit, wbc);
2556 retry:
2557 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2558 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2559 done = false;
2560 blk_start_plug(&plug);
2561 while (!done && mpd.first_page <= mpd.last_page) {
2562 /* For each extent of pages we use new io_end */
2563 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2564 if (!mpd.io_submit.io_end) {
2565 ret = -ENOMEM;
2566 break;
2567 }
2568
2569 /*
2570 * We have two constraints: We find one extent to map and we
2571 * must always write out whole page (makes a difference when
2572 * blocksize < pagesize) so that we don't block on IO when we
2573 * try to write out the rest of the page. Journalled mode is
2574 * not supported by delalloc.
2575 */
2576 BUG_ON(ext4_should_journal_data(inode));
2577 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2578
2579 /* start a new transaction */
2580 handle = ext4_journal_start_with_reserve(inode,
2581 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2582 if (IS_ERR(handle)) {
2583 ret = PTR_ERR(handle);
2584 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2585 "%ld pages, ino %lu; err %d", __func__,
2586 wbc->nr_to_write, inode->i_ino, ret);
2587 /* Release allocated io_end */
2588 ext4_put_io_end(mpd.io_submit.io_end);
2589 break;
2590 }
2591
2592 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2593 ret = mpage_prepare_extent_to_map(&mpd);
2594 if (!ret) {
2595 if (mpd.map.m_len)
2596 ret = mpage_map_and_submit_extent(handle, &mpd,
2597 &give_up_on_write);
2598 else {
2599 /*
2600 * We scanned the whole range (or exhausted
2601 * nr_to_write), submitted what was mapped and
2602 * didn't find anything needing mapping. We are
2603 * done.
2604 */
2605 done = true;
2606 }
2607 }
2608 ext4_journal_stop(handle);
2609 /* Submit prepared bio */
2610 ext4_io_submit(&mpd.io_submit);
2611 /* Unlock pages we didn't use */
2612 mpage_release_unused_pages(&mpd, give_up_on_write);
2613 /* Drop our io_end reference we got from init */
2614 ext4_put_io_end(mpd.io_submit.io_end);
2615
2616 if (ret == -ENOSPC && sbi->s_journal) {
2617 /*
2618 * Commit the transaction which would
2619 * free blocks released in the transaction
2620 * and try again
2621 */
2622 jbd2_journal_force_commit_nested(sbi->s_journal);
2623 ret = 0;
2624 continue;
2625 }
2626 /* Fatal error - ENOMEM, EIO... */
2627 if (ret)
2628 break;
2629 }
2630 blk_finish_plug(&plug);
2631 if (!ret && !cycled && wbc->nr_to_write > 0) {
2632 cycled = 1;
2633 mpd.last_page = writeback_index - 1;
2634 mpd.first_page = 0;
2635 goto retry;
2636 }
2637
2638 /* Update index */
2639 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2640 /*
2641 * Set the writeback_index so that range_cyclic
2642 * mode will write it back later
2643 */
2644 mapping->writeback_index = mpd.first_page;
2645
2646 out_writepages:
2647 trace_ext4_writepages_result(inode, wbc, ret,
2648 nr_to_write - wbc->nr_to_write);
2649 return ret;
2650 }
2651
2652 static int ext4_nonda_switch(struct super_block *sb)
2653 {
2654 s64 free_clusters, dirty_clusters;
2655 struct ext4_sb_info *sbi = EXT4_SB(sb);
2656
2657 /*
2658 * switch to non delalloc mode if we are running low
2659 * on free block. The free block accounting via percpu
2660 * counters can get slightly wrong with percpu_counter_batch getting
2661 * accumulated on each CPU without updating global counters
2662 * Delalloc need an accurate free block accounting. So switch
2663 * to non delalloc when we are near to error range.
2664 */
2665 free_clusters =
2666 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2667 dirty_clusters =
2668 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2669 /*
2670 * Start pushing delalloc when 1/2 of free blocks are dirty.
2671 */
2672 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2673 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2674
2675 if (2 * free_clusters < 3 * dirty_clusters ||
2676 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2677 /*
2678 * free block count is less than 150% of dirty blocks
2679 * or free blocks is less than watermark
2680 */
2681 return 1;
2682 }
2683 return 0;
2684 }
2685
2686 /* We always reserve for an inode update; the superblock could be there too */
2687 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2688 {
2689 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2690 return 1;
2691
2692 if (pos + len <= 0x7fffffffULL)
2693 return 1;
2694
2695 /* We might need to update the superblock to set LARGE_FILE */
2696 return 2;
2697 }
2698
2699 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2700 loff_t pos, unsigned len, unsigned flags,
2701 struct page **pagep, void **fsdata)
2702 {
2703 int ret, retries = 0;
2704 struct page *page;
2705 pgoff_t index;
2706 struct inode *inode = mapping->host;
2707 handle_t *handle;
2708
2709 index = pos >> PAGE_CACHE_SHIFT;
2710
2711 if (ext4_nonda_switch(inode->i_sb)) {
2712 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2713 return ext4_write_begin(file, mapping, pos,
2714 len, flags, pagep, fsdata);
2715 }
2716 *fsdata = (void *)0;
2717 trace_ext4_da_write_begin(inode, pos, len, flags);
2718
2719 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2720 ret = ext4_da_write_inline_data_begin(mapping, inode,
2721 pos, len, flags,
2722 pagep, fsdata);
2723 if (ret < 0)
2724 return ret;
2725 if (ret == 1)
2726 return 0;
2727 }
2728
2729 /*
2730 * grab_cache_page_write_begin() can take a long time if the
2731 * system is thrashing due to memory pressure, or if the page
2732 * is being written back. So grab it first before we start
2733 * the transaction handle. This also allows us to allocate
2734 * the page (if needed) without using GFP_NOFS.
2735 */
2736 retry_grab:
2737 page = grab_cache_page_write_begin(mapping, index, flags);
2738 if (!page)
2739 return -ENOMEM;
2740 unlock_page(page);
2741
2742 /*
2743 * With delayed allocation, we don't log the i_disksize update
2744 * if there is delayed block allocation. But we still need
2745 * to journalling the i_disksize update if writes to the end
2746 * of file which has an already mapped buffer.
2747 */
2748 retry_journal:
2749 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2750 ext4_da_write_credits(inode, pos, len));
2751 if (IS_ERR(handle)) {
2752 page_cache_release(page);
2753 return PTR_ERR(handle);
2754 }
2755
2756 lock_page(page);
2757 if (page->mapping != mapping) {
2758 /* The page got truncated from under us */
2759 unlock_page(page);
2760 page_cache_release(page);
2761 ext4_journal_stop(handle);
2762 goto retry_grab;
2763 }
2764 /* In case writeback began while the page was unlocked */
2765 wait_for_stable_page(page);
2766
2767 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2768 ret = ext4_block_write_begin(page, pos, len,
2769 ext4_da_get_block_prep);
2770 #else
2771 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2772 #endif
2773 if (ret < 0) {
2774 unlock_page(page);
2775 ext4_journal_stop(handle);
2776 /*
2777 * block_write_begin may have instantiated a few blocks
2778 * outside i_size. Trim these off again. Don't need
2779 * i_size_read because we hold i_mutex.
2780 */
2781 if (pos + len > inode->i_size)
2782 ext4_truncate_failed_write(inode);
2783
2784 if (ret == -ENOSPC &&
2785 ext4_should_retry_alloc(inode->i_sb, &retries))
2786 goto retry_journal;
2787
2788 page_cache_release(page);
2789 return ret;
2790 }
2791
2792 *pagep = page;
2793 return ret;
2794 }
2795
2796 /*
2797 * Check if we should update i_disksize
2798 * when write to the end of file but not require block allocation
2799 */
2800 static int ext4_da_should_update_i_disksize(struct page *page,
2801 unsigned long offset)
2802 {
2803 struct buffer_head *bh;
2804 struct inode *inode = page->mapping->host;
2805 unsigned int idx;
2806 int i;
2807
2808 bh = page_buffers(page);
2809 idx = offset >> inode->i_blkbits;
2810
2811 for (i = 0; i < idx; i++)
2812 bh = bh->b_this_page;
2813
2814 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2815 return 0;
2816 return 1;
2817 }
2818
2819 static int ext4_da_write_end(struct file *file,
2820 struct address_space *mapping,
2821 loff_t pos, unsigned len, unsigned copied,
2822 struct page *page, void *fsdata)
2823 {
2824 struct inode *inode = mapping->host;
2825 int ret = 0, ret2;
2826 handle_t *handle = ext4_journal_current_handle();
2827 loff_t new_i_size;
2828 unsigned long start, end;
2829 int write_mode = (int)(unsigned long)fsdata;
2830
2831 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2832 return ext4_write_end(file, mapping, pos,
2833 len, copied, page, fsdata);
2834
2835 trace_ext4_da_write_end(inode, pos, len, copied);
2836 start = pos & (PAGE_CACHE_SIZE - 1);
2837 end = start + copied - 1;
2838
2839 /*
2840 * generic_write_end() will run mark_inode_dirty() if i_size
2841 * changes. So let's piggyback the i_disksize mark_inode_dirty
2842 * into that.
2843 */
2844 new_i_size = pos + copied;
2845 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2846 if (ext4_has_inline_data(inode) ||
2847 ext4_da_should_update_i_disksize(page, end)) {
2848 ext4_update_i_disksize(inode, new_i_size);
2849 /* We need to mark inode dirty even if
2850 * new_i_size is less that inode->i_size
2851 * bu greater than i_disksize.(hint delalloc)
2852 */
2853 ext4_mark_inode_dirty(handle, inode);
2854 }
2855 }
2856
2857 if (write_mode != CONVERT_INLINE_DATA &&
2858 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2859 ext4_has_inline_data(inode))
2860 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2861 page);
2862 else
2863 ret2 = generic_write_end(file, mapping, pos, len, copied,
2864 page, fsdata);
2865
2866 copied = ret2;
2867 if (ret2 < 0)
2868 ret = ret2;
2869 ret2 = ext4_journal_stop(handle);
2870 if (!ret)
2871 ret = ret2;
2872
2873 return ret ? ret : copied;
2874 }
2875
2876 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2877 unsigned int length)
2878 {
2879 /*
2880 * Drop reserved blocks
2881 */
2882 BUG_ON(!PageLocked(page));
2883 if (!page_has_buffers(page))
2884 goto out;
2885
2886 ext4_da_page_release_reservation(page, offset, length);
2887
2888 out:
2889 ext4_invalidatepage(page, offset, length);
2890
2891 return;
2892 }
2893
2894 /*
2895 * Force all delayed allocation blocks to be allocated for a given inode.
2896 */
2897 int ext4_alloc_da_blocks(struct inode *inode)
2898 {
2899 trace_ext4_alloc_da_blocks(inode);
2900
2901 if (!EXT4_I(inode)->i_reserved_data_blocks)
2902 return 0;
2903
2904 /*
2905 * We do something simple for now. The filemap_flush() will
2906 * also start triggering a write of the data blocks, which is
2907 * not strictly speaking necessary (and for users of
2908 * laptop_mode, not even desirable). However, to do otherwise
2909 * would require replicating code paths in:
2910 *
2911 * ext4_writepages() ->
2912 * write_cache_pages() ---> (via passed in callback function)
2913 * __mpage_da_writepage() -->
2914 * mpage_add_bh_to_extent()
2915 * mpage_da_map_blocks()
2916 *
2917 * The problem is that write_cache_pages(), located in
2918 * mm/page-writeback.c, marks pages clean in preparation for
2919 * doing I/O, which is not desirable if we're not planning on
2920 * doing I/O at all.
2921 *
2922 * We could call write_cache_pages(), and then redirty all of
2923 * the pages by calling redirty_page_for_writepage() but that
2924 * would be ugly in the extreme. So instead we would need to
2925 * replicate parts of the code in the above functions,
2926 * simplifying them because we wouldn't actually intend to
2927 * write out the pages, but rather only collect contiguous
2928 * logical block extents, call the multi-block allocator, and
2929 * then update the buffer heads with the block allocations.
2930 *
2931 * For now, though, we'll cheat by calling filemap_flush(),
2932 * which will map the blocks, and start the I/O, but not
2933 * actually wait for the I/O to complete.
2934 */
2935 return filemap_flush(inode->i_mapping);
2936 }
2937
2938 /*
2939 * bmap() is special. It gets used by applications such as lilo and by
2940 * the swapper to find the on-disk block of a specific piece of data.
2941 *
2942 * Naturally, this is dangerous if the block concerned is still in the
2943 * journal. If somebody makes a swapfile on an ext4 data-journaling
2944 * filesystem and enables swap, then they may get a nasty shock when the
2945 * data getting swapped to that swapfile suddenly gets overwritten by
2946 * the original zero's written out previously to the journal and
2947 * awaiting writeback in the kernel's buffer cache.
2948 *
2949 * So, if we see any bmap calls here on a modified, data-journaled file,
2950 * take extra steps to flush any blocks which might be in the cache.
2951 */
2952 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2953 {
2954 struct inode *inode = mapping->host;
2955 journal_t *journal;
2956 int err;
2957
2958 /*
2959 * We can get here for an inline file via the FIBMAP ioctl
2960 */
2961 if (ext4_has_inline_data(inode))
2962 return 0;
2963
2964 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2965 test_opt(inode->i_sb, DELALLOC)) {
2966 /*
2967 * With delalloc we want to sync the file
2968 * so that we can make sure we allocate
2969 * blocks for file
2970 */
2971 filemap_write_and_wait(mapping);
2972 }
2973
2974 if (EXT4_JOURNAL(inode) &&
2975 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2976 /*
2977 * This is a REALLY heavyweight approach, but the use of
2978 * bmap on dirty files is expected to be extremely rare:
2979 * only if we run lilo or swapon on a freshly made file
2980 * do we expect this to happen.
2981 *
2982 * (bmap requires CAP_SYS_RAWIO so this does not
2983 * represent an unprivileged user DOS attack --- we'd be
2984 * in trouble if mortal users could trigger this path at
2985 * will.)
2986 *
2987 * NB. EXT4_STATE_JDATA is not set on files other than
2988 * regular files. If somebody wants to bmap a directory
2989 * or symlink and gets confused because the buffer
2990 * hasn't yet been flushed to disk, they deserve
2991 * everything they get.
2992 */
2993
2994 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2995 journal = EXT4_JOURNAL(inode);
2996 jbd2_journal_lock_updates(journal);
2997 err = jbd2_journal_flush(journal);
2998 jbd2_journal_unlock_updates(journal);
2999
3000 if (err)
3001 return 0;
3002 }
3003
3004 return generic_block_bmap(mapping, block, ext4_get_block);
3005 }
3006
3007 static int ext4_readpage(struct file *file, struct page *page)
3008 {
3009 int ret = -EAGAIN;
3010 struct inode *inode = page->mapping->host;
3011
3012 trace_ext4_readpage(page);
3013
3014 if (ext4_has_inline_data(inode))
3015 ret = ext4_readpage_inline(inode, page);
3016
3017 if (ret == -EAGAIN)
3018 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3019
3020 return ret;
3021 }
3022
3023 static int
3024 ext4_readpages(struct file *file, struct address_space *mapping,
3025 struct list_head *pages, unsigned nr_pages)
3026 {
3027 struct inode *inode = mapping->host;
3028
3029 /* If the file has inline data, no need to do readpages. */
3030 if (ext4_has_inline_data(inode))
3031 return 0;
3032
3033 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3034 }
3035
3036 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3037 unsigned int length)
3038 {
3039 trace_ext4_invalidatepage(page, offset, length);
3040
3041 /* No journalling happens on data buffers when this function is used */
3042 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3043
3044 block_invalidatepage(page, offset, length);
3045 }
3046
3047 static int __ext4_journalled_invalidatepage(struct page *page,
3048 unsigned int offset,
3049 unsigned int length)
3050 {
3051 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3052
3053 trace_ext4_journalled_invalidatepage(page, offset, length);
3054
3055 /*
3056 * If it's a full truncate we just forget about the pending dirtying
3057 */
3058 if (offset == 0 && length == PAGE_CACHE_SIZE)
3059 ClearPageChecked(page);
3060
3061 return jbd2_journal_invalidatepage(journal, page, offset, length);
3062 }
3063
3064 /* Wrapper for aops... */
3065 static void ext4_journalled_invalidatepage(struct page *page,
3066 unsigned int offset,
3067 unsigned int length)
3068 {
3069 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3070 }
3071
3072 static int ext4_releasepage(struct page *page, gfp_t wait)
3073 {
3074 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3075
3076 trace_ext4_releasepage(page);
3077
3078 /* Page has dirty journalled data -> cannot release */
3079 if (PageChecked(page))
3080 return 0;
3081 if (journal)
3082 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3083 else
3084 return try_to_free_buffers(page);
3085 }
3086
3087 /*
3088 * ext4_get_block used when preparing for a DIO write or buffer write.
3089 * We allocate an uinitialized extent if blocks haven't been allocated.
3090 * The extent will be converted to initialized after the IO is complete.
3091 */
3092 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3093 struct buffer_head *bh_result, int create)
3094 {
3095 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3096 inode->i_ino, create);
3097 return _ext4_get_block(inode, iblock, bh_result,
3098 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3099 }
3100
3101 static int ext4_get_block_overwrite(struct inode *inode, sector_t iblock,
3102 struct buffer_head *bh_result, int create)
3103 {
3104 int ret;
3105
3106 ext4_debug("ext4_get_block_overwrite: inode %lu, create flag %d\n",
3107 inode->i_ino, create);
3108 ret = _ext4_get_block(inode, iblock, bh_result, 0);
3109 /*
3110 * Blocks should have been preallocated! ext4_file_write_iter() checks
3111 * that.
3112 */
3113 WARN_ON_ONCE(!buffer_mapped(bh_result));
3114
3115 return ret;
3116 }
3117
3118 #ifdef CONFIG_FS_DAX
3119 int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3120 struct buffer_head *bh_result, int create)
3121 {
3122 int ret, err;
3123 int credits;
3124 struct ext4_map_blocks map;
3125 handle_t *handle = NULL;
3126 int flags = 0;
3127
3128 ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
3129 inode->i_ino, create);
3130 map.m_lblk = iblock;
3131 map.m_len = bh_result->b_size >> inode->i_blkbits;
3132 credits = ext4_chunk_trans_blocks(inode, map.m_len);
3133 if (create) {
3134 flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3135 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3136 if (IS_ERR(handle)) {
3137 ret = PTR_ERR(handle);
3138 return ret;
3139 }
3140 }
3141
3142 ret = ext4_map_blocks(handle, inode, &map, flags);
3143 if (create) {
3144 err = ext4_journal_stop(handle);
3145 if (ret >= 0 && err < 0)
3146 ret = err;
3147 }
3148 if (ret <= 0)
3149 goto out;
3150 if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3151 int err2;
3152
3153 /*
3154 * We are protected by i_mmap_sem so we know block cannot go
3155 * away from under us even though we dropped i_data_sem.
3156 * Convert extent to written and write zeros there.
3157 *
3158 * Note: We may get here even when create == 0.
3159 */
3160 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3161 if (IS_ERR(handle)) {
3162 ret = PTR_ERR(handle);
3163 goto out;
3164 }
3165
3166 err = ext4_map_blocks(handle, inode, &map,
3167 EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3168 if (err < 0)
3169 ret = err;
3170 err2 = ext4_journal_stop(handle);
3171 if (err2 < 0 && ret > 0)
3172 ret = err2;
3173 }
3174 out:
3175 WARN_ON_ONCE(ret == 0 && create);
3176 if (ret > 0) {
3177 map_bh(bh_result, inode->i_sb, map.m_pblk);
3178 bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
3179 map.m_flags;
3180 /*
3181 * At least for now we have to clear BH_New so that DAX code
3182 * doesn't attempt to zero blocks again in a racy way.
3183 */
3184 bh_result->b_state &= ~(1 << BH_New);
3185 bh_result->b_size = map.m_len << inode->i_blkbits;
3186 ret = 0;
3187 }
3188 return ret;
3189 }
3190 #endif
3191
3192 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3193 ssize_t size, void *private)
3194 {
3195 ext4_io_end_t *io_end = iocb->private;
3196
3197 /* if not async direct IO just return */
3198 if (!io_end)
3199 return;
3200
3201 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3202 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3203 iocb->private, io_end->inode->i_ino, iocb, offset,
3204 size);
3205
3206 iocb->private = NULL;
3207 io_end->offset = offset;
3208 io_end->size = size;
3209 ext4_put_io_end(io_end);
3210 }
3211
3212 /*
3213 * For ext4 extent files, ext4 will do direct-io write to holes,
3214 * preallocated extents, and those write extend the file, no need to
3215 * fall back to buffered IO.
3216 *
3217 * For holes, we fallocate those blocks, mark them as unwritten
3218 * If those blocks were preallocated, we mark sure they are split, but
3219 * still keep the range to write as unwritten.
3220 *
3221 * The unwritten extents will be converted to written when DIO is completed.
3222 * For async direct IO, since the IO may still pending when return, we
3223 * set up an end_io call back function, which will do the conversion
3224 * when async direct IO completed.
3225 *
3226 * If the O_DIRECT write will extend the file then add this inode to the
3227 * orphan list. So recovery will truncate it back to the original size
3228 * if the machine crashes during the write.
3229 *
3230 */
3231 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3232 loff_t offset)
3233 {
3234 struct file *file = iocb->ki_filp;
3235 struct inode *inode = file->f_mapping->host;
3236 ssize_t ret;
3237 size_t count = iov_iter_count(iter);
3238 int overwrite = 0;
3239 get_block_t *get_block_func = NULL;
3240 int dio_flags = 0;
3241 loff_t final_size = offset + count;
3242 ext4_io_end_t *io_end = NULL;
3243
3244 /* Use the old path for reads and writes beyond i_size. */
3245 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3246 return ext4_ind_direct_IO(iocb, iter, offset);
3247
3248 BUG_ON(iocb->private == NULL);
3249
3250 /*
3251 * Make all waiters for direct IO properly wait also for extent
3252 * conversion. This also disallows race between truncate() and
3253 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3254 */
3255 if (iov_iter_rw(iter) == WRITE)
3256 inode_dio_begin(inode);
3257
3258 /* If we do a overwrite dio, i_mutex locking can be released */
3259 overwrite = *((int *)iocb->private);
3260
3261 if (overwrite)
3262 inode_unlock(inode);
3263
3264 /*
3265 * We could direct write to holes and fallocate.
3266 *
3267 * Allocated blocks to fill the hole are marked as
3268 * unwritten to prevent parallel buffered read to expose
3269 * the stale data before DIO complete the data IO.
3270 *
3271 * As to previously fallocated extents, ext4 get_block will
3272 * just simply mark the buffer mapped but still keep the
3273 * extents unwritten.
3274 *
3275 * For non AIO case, we will convert those unwritten extents
3276 * to written after return back from blockdev_direct_IO.
3277 *
3278 * For async DIO, the conversion needs to be deferred when the
3279 * IO is completed. The ext4 end_io callback function will be
3280 * called to take care of the conversion work. Here for async
3281 * case, we allocate an io_end structure to hook to the iocb.
3282 */
3283 iocb->private = NULL;
3284 if (overwrite) {
3285 get_block_func = ext4_get_block_overwrite;
3286 } else {
3287 ext4_inode_aio_set(inode, NULL);
3288 if (!is_sync_kiocb(iocb)) {
3289 io_end = ext4_init_io_end(inode, GFP_NOFS);
3290 if (!io_end) {
3291 ret = -ENOMEM;
3292 goto retake_lock;
3293 }
3294 /*
3295 * Grab reference for DIO. Will be dropped in
3296 * ext4_end_io_dio()
3297 */
3298 iocb->private = ext4_get_io_end(io_end);
3299 /*
3300 * we save the io structure for current async direct
3301 * IO, so that later ext4_map_blocks() could flag the
3302 * io structure whether there is a unwritten extents
3303 * needs to be converted when IO is completed.
3304 */
3305 ext4_inode_aio_set(inode, io_end);
3306 }
3307 get_block_func = ext4_get_block_write;
3308 dio_flags = DIO_LOCKING;
3309 }
3310 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3311 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3312 #endif
3313 if (IS_DAX(inode))
3314 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3315 ext4_end_io_dio, dio_flags);
3316 else
3317 ret = __blockdev_direct_IO(iocb, inode,
3318 inode->i_sb->s_bdev, iter, offset,
3319 get_block_func,
3320 ext4_end_io_dio, NULL, dio_flags);
3321
3322 /*
3323 * Put our reference to io_end. This can free the io_end structure e.g.
3324 * in sync IO case or in case of error. It can even perform extent
3325 * conversion if all bios we submitted finished before we got here.
3326 * Note that in that case iocb->private can be already set to NULL
3327 * here.
3328 */
3329 if (io_end) {
3330 ext4_inode_aio_set(inode, NULL);
3331 ext4_put_io_end(io_end);
3332 /*
3333 * When no IO was submitted ext4_end_io_dio() was not
3334 * called so we have to put iocb's reference.
3335 */
3336 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3337 WARN_ON(iocb->private != io_end);
3338 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3339 ext4_put_io_end(io_end);
3340 iocb->private = NULL;
3341 }
3342 }
3343 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3344 EXT4_STATE_DIO_UNWRITTEN)) {
3345 int err;
3346 /*
3347 * for non AIO case, since the IO is already
3348 * completed, we could do the conversion right here
3349 */
3350 err = ext4_convert_unwritten_extents(NULL, inode,
3351 offset, ret);
3352 if (err < 0)
3353 ret = err;
3354 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3355 }
3356
3357 retake_lock:
3358 if (iov_iter_rw(iter) == WRITE)
3359 inode_dio_end(inode);
3360 /* take i_mutex locking again if we do a ovewrite dio */
3361 if (overwrite)
3362 inode_lock(inode);
3363
3364 return ret;
3365 }
3366
3367 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3368 loff_t offset)
3369 {
3370 struct file *file = iocb->ki_filp;
3371 struct inode *inode = file->f_mapping->host;
3372 size_t count = iov_iter_count(iter);
3373 ssize_t ret;
3374
3375 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3376 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3377 return 0;
3378 #endif
3379
3380 /*
3381 * If we are doing data journalling we don't support O_DIRECT
3382 */
3383 if (ext4_should_journal_data(inode))
3384 return 0;
3385
3386 /* Let buffer I/O handle the inline data case. */
3387 if (ext4_has_inline_data(inode))
3388 return 0;
3389
3390 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3391 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3392 ret = ext4_ext_direct_IO(iocb, iter, offset);
3393 else
3394 ret = ext4_ind_direct_IO(iocb, iter, offset);
3395 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3396 return ret;
3397 }
3398
3399 /*
3400 * Pages can be marked dirty completely asynchronously from ext4's journalling
3401 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3402 * much here because ->set_page_dirty is called under VFS locks. The page is
3403 * not necessarily locked.
3404 *
3405 * We cannot just dirty the page and leave attached buffers clean, because the
3406 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3407 * or jbddirty because all the journalling code will explode.
3408 *
3409 * So what we do is to mark the page "pending dirty" and next time writepage
3410 * is called, propagate that into the buffers appropriately.
3411 */
3412 static int ext4_journalled_set_page_dirty(struct page *page)
3413 {
3414 SetPageChecked(page);
3415 return __set_page_dirty_nobuffers(page);
3416 }
3417
3418 static const struct address_space_operations ext4_aops = {
3419 .readpage = ext4_readpage,
3420 .readpages = ext4_readpages,
3421 .writepage = ext4_writepage,
3422 .writepages = ext4_writepages,
3423 .write_begin = ext4_write_begin,
3424 .write_end = ext4_write_end,
3425 .bmap = ext4_bmap,
3426 .invalidatepage = ext4_invalidatepage,
3427 .releasepage = ext4_releasepage,
3428 .direct_IO = ext4_direct_IO,
3429 .migratepage = buffer_migrate_page,
3430 .is_partially_uptodate = block_is_partially_uptodate,
3431 .error_remove_page = generic_error_remove_page,
3432 };
3433
3434 static const struct address_space_operations ext4_journalled_aops = {
3435 .readpage = ext4_readpage,
3436 .readpages = ext4_readpages,
3437 .writepage = ext4_writepage,
3438 .writepages = ext4_writepages,
3439 .write_begin = ext4_write_begin,
3440 .write_end = ext4_journalled_write_end,
3441 .set_page_dirty = ext4_journalled_set_page_dirty,
3442 .bmap = ext4_bmap,
3443 .invalidatepage = ext4_journalled_invalidatepage,
3444 .releasepage = ext4_releasepage,
3445 .direct_IO = ext4_direct_IO,
3446 .is_partially_uptodate = block_is_partially_uptodate,
3447 .error_remove_page = generic_error_remove_page,
3448 };
3449
3450 static const struct address_space_operations ext4_da_aops = {
3451 .readpage = ext4_readpage,
3452 .readpages = ext4_readpages,
3453 .writepage = ext4_writepage,
3454 .writepages = ext4_writepages,
3455 .write_begin = ext4_da_write_begin,
3456 .write_end = ext4_da_write_end,
3457 .bmap = ext4_bmap,
3458 .invalidatepage = ext4_da_invalidatepage,
3459 .releasepage = ext4_releasepage,
3460 .direct_IO = ext4_direct_IO,
3461 .migratepage = buffer_migrate_page,
3462 .is_partially_uptodate = block_is_partially_uptodate,
3463 .error_remove_page = generic_error_remove_page,
3464 };
3465
3466 void ext4_set_aops(struct inode *inode)
3467 {
3468 switch (ext4_inode_journal_mode(inode)) {
3469 case EXT4_INODE_ORDERED_DATA_MODE:
3470 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3471 break;
3472 case EXT4_INODE_WRITEBACK_DATA_MODE:
3473 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3474 break;
3475 case EXT4_INODE_JOURNAL_DATA_MODE:
3476 inode->i_mapping->a_ops = &ext4_journalled_aops;
3477 return;
3478 default:
3479 BUG();
3480 }
3481 if (test_opt(inode->i_sb, DELALLOC))
3482 inode->i_mapping->a_ops = &ext4_da_aops;
3483 else
3484 inode->i_mapping->a_ops = &ext4_aops;
3485 }
3486
3487 static int __ext4_block_zero_page_range(handle_t *handle,
3488 struct address_space *mapping, loff_t from, loff_t length)
3489 {
3490 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3491 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3492 unsigned blocksize, pos;
3493 ext4_lblk_t iblock;
3494 struct inode *inode = mapping->host;
3495 struct buffer_head *bh;
3496 struct page *page;
3497 int err = 0;
3498
3499 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3500 mapping_gfp_constraint(mapping, ~__GFP_FS));
3501 if (!page)
3502 return -ENOMEM;
3503
3504 blocksize = inode->i_sb->s_blocksize;
3505
3506 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3507
3508 if (!page_has_buffers(page))
3509 create_empty_buffers(page, blocksize, 0);
3510
3511 /* Find the buffer that contains "offset" */
3512 bh = page_buffers(page);
3513 pos = blocksize;
3514 while (offset >= pos) {
3515 bh = bh->b_this_page;
3516 iblock++;
3517 pos += blocksize;
3518 }
3519 if (buffer_freed(bh)) {
3520 BUFFER_TRACE(bh, "freed: skip");
3521 goto unlock;
3522 }
3523 if (!buffer_mapped(bh)) {
3524 BUFFER_TRACE(bh, "unmapped");
3525 ext4_get_block(inode, iblock, bh, 0);
3526 /* unmapped? It's a hole - nothing to do */
3527 if (!buffer_mapped(bh)) {
3528 BUFFER_TRACE(bh, "still unmapped");
3529 goto unlock;
3530 }
3531 }
3532
3533 /* Ok, it's mapped. Make sure it's up-to-date */
3534 if (PageUptodate(page))
3535 set_buffer_uptodate(bh);
3536
3537 if (!buffer_uptodate(bh)) {
3538 err = -EIO;
3539 ll_rw_block(READ, 1, &bh);
3540 wait_on_buffer(bh);
3541 /* Uhhuh. Read error. Complain and punt. */
3542 if (!buffer_uptodate(bh))
3543 goto unlock;
3544 if (S_ISREG(inode->i_mode) &&
3545 ext4_encrypted_inode(inode)) {
3546 /* We expect the key to be set. */
3547 BUG_ON(!ext4_has_encryption_key(inode));
3548 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3549 WARN_ON_ONCE(ext4_decrypt(page));
3550 }
3551 }
3552 if (ext4_should_journal_data(inode)) {
3553 BUFFER_TRACE(bh, "get write access");
3554 err = ext4_journal_get_write_access(handle, bh);
3555 if (err)
3556 goto unlock;
3557 }
3558 zero_user(page, offset, length);
3559 BUFFER_TRACE(bh, "zeroed end of block");
3560
3561 if (ext4_should_journal_data(inode)) {
3562 err = ext4_handle_dirty_metadata(handle, inode, bh);
3563 } else {
3564 err = 0;
3565 mark_buffer_dirty(bh);
3566 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3567 err = ext4_jbd2_file_inode(handle, inode);
3568 }
3569
3570 unlock:
3571 unlock_page(page);
3572 page_cache_release(page);
3573 return err;
3574 }
3575
3576 /*
3577 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3578 * starting from file offset 'from'. The range to be zero'd must
3579 * be contained with in one block. If the specified range exceeds
3580 * the end of the block it will be shortened to end of the block
3581 * that cooresponds to 'from'
3582 */
3583 static int ext4_block_zero_page_range(handle_t *handle,
3584 struct address_space *mapping, loff_t from, loff_t length)
3585 {
3586 struct inode *inode = mapping->host;
3587 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3588 unsigned blocksize = inode->i_sb->s_blocksize;
3589 unsigned max = blocksize - (offset & (blocksize - 1));
3590
3591 /*
3592 * correct length if it does not fall between
3593 * 'from' and the end of the block
3594 */
3595 if (length > max || length < 0)
3596 length = max;
3597
3598 if (IS_DAX(inode))
3599 return dax_zero_page_range(inode, from, length, ext4_get_block);
3600 return __ext4_block_zero_page_range(handle, mapping, from, length);
3601 }
3602
3603 /*
3604 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3605 * up to the end of the block which corresponds to `from'.
3606 * This required during truncate. We need to physically zero the tail end
3607 * of that block so it doesn't yield old data if the file is later grown.
3608 */
3609 static int ext4_block_truncate_page(handle_t *handle,
3610 struct address_space *mapping, loff_t from)
3611 {
3612 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3613 unsigned length;
3614 unsigned blocksize;
3615 struct inode *inode = mapping->host;
3616
3617 blocksize = inode->i_sb->s_blocksize;
3618 length = blocksize - (offset & (blocksize - 1));
3619
3620 return ext4_block_zero_page_range(handle, mapping, from, length);
3621 }
3622
3623 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3624 loff_t lstart, loff_t length)
3625 {
3626 struct super_block *sb = inode->i_sb;
3627 struct address_space *mapping = inode->i_mapping;
3628 unsigned partial_start, partial_end;
3629 ext4_fsblk_t start, end;
3630 loff_t byte_end = (lstart + length - 1);
3631 int err = 0;
3632
3633 partial_start = lstart & (sb->s_blocksize - 1);
3634 partial_end = byte_end & (sb->s_blocksize - 1);
3635
3636 start = lstart >> sb->s_blocksize_bits;
3637 end = byte_end >> sb->s_blocksize_bits;
3638
3639 /* Handle partial zero within the single block */
3640 if (start == end &&
3641 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3642 err = ext4_block_zero_page_range(handle, mapping,
3643 lstart, length);
3644 return err;
3645 }
3646 /* Handle partial zero out on the start of the range */
3647 if (partial_start) {
3648 err = ext4_block_zero_page_range(handle, mapping,
3649 lstart, sb->s_blocksize);
3650 if (err)
3651 return err;
3652 }
3653 /* Handle partial zero out on the end of the range */
3654 if (partial_end != sb->s_blocksize - 1)
3655 err = ext4_block_zero_page_range(handle, mapping,
3656 byte_end - partial_end,
3657 partial_end + 1);
3658 return err;
3659 }
3660
3661 int ext4_can_truncate(struct inode *inode)
3662 {
3663 if (S_ISREG(inode->i_mode))
3664 return 1;
3665 if (S_ISDIR(inode->i_mode))
3666 return 1;
3667 if (S_ISLNK(inode->i_mode))
3668 return !ext4_inode_is_fast_symlink(inode);
3669 return 0;
3670 }
3671
3672 /*
3673 * We have to make sure i_disksize gets properly updated before we truncate
3674 * page cache due to hole punching or zero range. Otherwise i_disksize update
3675 * can get lost as it may have been postponed to submission of writeback but
3676 * that will never happen after we truncate page cache.
3677 */
3678 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3679 loff_t len)
3680 {
3681 handle_t *handle;
3682 loff_t size = i_size_read(inode);
3683
3684 WARN_ON(!inode_is_locked(inode));
3685 if (offset > size || offset + len < size)
3686 return 0;
3687
3688 if (EXT4_I(inode)->i_disksize >= size)
3689 return 0;
3690
3691 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3692 if (IS_ERR(handle))
3693 return PTR_ERR(handle);
3694 ext4_update_i_disksize(inode, size);
3695 ext4_mark_inode_dirty(handle, inode);
3696 ext4_journal_stop(handle);
3697
3698 return 0;
3699 }
3700
3701 /*
3702 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3703 * associated with the given offset and length
3704 *
3705 * @inode: File inode
3706 * @offset: The offset where the hole will begin
3707 * @len: The length of the hole
3708 *
3709 * Returns: 0 on success or negative on failure
3710 */
3711
3712 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3713 {
3714 struct super_block *sb = inode->i_sb;
3715 ext4_lblk_t first_block, stop_block;
3716 struct address_space *mapping = inode->i_mapping;
3717 loff_t first_block_offset, last_block_offset;
3718 handle_t *handle;
3719 unsigned int credits;
3720 int ret = 0;
3721
3722 if (!S_ISREG(inode->i_mode))
3723 return -EOPNOTSUPP;
3724
3725 trace_ext4_punch_hole(inode, offset, length, 0);
3726
3727 /*
3728 * Write out all dirty pages to avoid race conditions
3729 * Then release them.
3730 */
3731 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3732 ret = filemap_write_and_wait_range(mapping, offset,
3733 offset + length - 1);
3734 if (ret)
3735 return ret;
3736 }
3737
3738 inode_lock(inode);
3739
3740 /* No need to punch hole beyond i_size */
3741 if (offset >= inode->i_size)
3742 goto out_mutex;
3743
3744 /*
3745 * If the hole extends beyond i_size, set the hole
3746 * to end after the page that contains i_size
3747 */
3748 if (offset + length > inode->i_size) {
3749 length = inode->i_size +
3750 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3751 offset;
3752 }
3753
3754 if (offset & (sb->s_blocksize - 1) ||
3755 (offset + length) & (sb->s_blocksize - 1)) {
3756 /*
3757 * Attach jinode to inode for jbd2 if we do any zeroing of
3758 * partial block
3759 */
3760 ret = ext4_inode_attach_jinode(inode);
3761 if (ret < 0)
3762 goto out_mutex;
3763
3764 }
3765
3766 /* Wait all existing dio workers, newcomers will block on i_mutex */
3767 ext4_inode_block_unlocked_dio(inode);
3768 inode_dio_wait(inode);
3769
3770 /*
3771 * Prevent page faults from reinstantiating pages we have released from
3772 * page cache.
3773 */
3774 down_write(&EXT4_I(inode)->i_mmap_sem);
3775 first_block_offset = round_up(offset, sb->s_blocksize);
3776 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3777
3778 /* Now release the pages and zero block aligned part of pages*/
3779 if (last_block_offset > first_block_offset) {
3780 ret = ext4_update_disksize_before_punch(inode, offset, length);
3781 if (ret)
3782 goto out_dio;
3783 truncate_pagecache_range(inode, first_block_offset,
3784 last_block_offset);
3785 }
3786
3787 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3788 credits = ext4_writepage_trans_blocks(inode);
3789 else
3790 credits = ext4_blocks_for_truncate(inode);
3791 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3792 if (IS_ERR(handle)) {
3793 ret = PTR_ERR(handle);
3794 ext4_std_error(sb, ret);
3795 goto out_dio;
3796 }
3797
3798 ret = ext4_zero_partial_blocks(handle, inode, offset,
3799 length);
3800 if (ret)
3801 goto out_stop;
3802
3803 first_block = (offset + sb->s_blocksize - 1) >>
3804 EXT4_BLOCK_SIZE_BITS(sb);
3805 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3806
3807 /* If there are no blocks to remove, return now */
3808 if (first_block >= stop_block)
3809 goto out_stop;
3810
3811 down_write(&EXT4_I(inode)->i_data_sem);
3812 ext4_discard_preallocations(inode);
3813
3814 ret = ext4_es_remove_extent(inode, first_block,
3815 stop_block - first_block);
3816 if (ret) {
3817 up_write(&EXT4_I(inode)->i_data_sem);
3818 goto out_stop;
3819 }
3820
3821 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3822 ret = ext4_ext_remove_space(inode, first_block,
3823 stop_block - 1);
3824 else
3825 ret = ext4_ind_remove_space(handle, inode, first_block,
3826 stop_block);
3827
3828 up_write(&EXT4_I(inode)->i_data_sem);
3829 if (IS_SYNC(inode))
3830 ext4_handle_sync(handle);
3831
3832 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3833 ext4_mark_inode_dirty(handle, inode);
3834 out_stop:
3835 ext4_journal_stop(handle);
3836 out_dio:
3837 up_write(&EXT4_I(inode)->i_mmap_sem);
3838 ext4_inode_resume_unlocked_dio(inode);
3839 out_mutex:
3840 inode_unlock(inode);
3841 return ret;
3842 }
3843
3844 int ext4_inode_attach_jinode(struct inode *inode)
3845 {
3846 struct ext4_inode_info *ei = EXT4_I(inode);
3847 struct jbd2_inode *jinode;
3848
3849 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3850 return 0;
3851
3852 jinode = jbd2_alloc_inode(GFP_KERNEL);
3853 spin_lock(&inode->i_lock);
3854 if (!ei->jinode) {
3855 if (!jinode) {
3856 spin_unlock(&inode->i_lock);
3857 return -ENOMEM;
3858 }
3859 ei->jinode = jinode;
3860 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3861 jinode = NULL;
3862 }
3863 spin_unlock(&inode->i_lock);
3864 if (unlikely(jinode != NULL))
3865 jbd2_free_inode(jinode);
3866 return 0;
3867 }
3868
3869 /*
3870 * ext4_truncate()
3871 *
3872 * We block out ext4_get_block() block instantiations across the entire
3873 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3874 * simultaneously on behalf of the same inode.
3875 *
3876 * As we work through the truncate and commit bits of it to the journal there
3877 * is one core, guiding principle: the file's tree must always be consistent on
3878 * disk. We must be able to restart the truncate after a crash.
3879 *
3880 * The file's tree may be transiently inconsistent in memory (although it
3881 * probably isn't), but whenever we close off and commit a journal transaction,
3882 * the contents of (the filesystem + the journal) must be consistent and
3883 * restartable. It's pretty simple, really: bottom up, right to left (although
3884 * left-to-right works OK too).
3885 *
3886 * Note that at recovery time, journal replay occurs *before* the restart of
3887 * truncate against the orphan inode list.
3888 *
3889 * The committed inode has the new, desired i_size (which is the same as
3890 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3891 * that this inode's truncate did not complete and it will again call
3892 * ext4_truncate() to have another go. So there will be instantiated blocks
3893 * to the right of the truncation point in a crashed ext4 filesystem. But
3894 * that's fine - as long as they are linked from the inode, the post-crash
3895 * ext4_truncate() run will find them and release them.
3896 */
3897 void ext4_truncate(struct inode *inode)
3898 {
3899 struct ext4_inode_info *ei = EXT4_I(inode);
3900 unsigned int credits;
3901 handle_t *handle;
3902 struct address_space *mapping = inode->i_mapping;
3903
3904 /*
3905 * There is a possibility that we're either freeing the inode
3906 * or it's a completely new inode. In those cases we might not
3907 * have i_mutex locked because it's not necessary.
3908 */
3909 if (!(inode->i_state & (I_NEW|I_FREEING)))
3910 WARN_ON(!inode_is_locked(inode));
3911 trace_ext4_truncate_enter(inode);
3912
3913 if (!ext4_can_truncate(inode))
3914 return;
3915
3916 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3917
3918 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3919 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3920
3921 if (ext4_has_inline_data(inode)) {
3922 int has_inline = 1;
3923
3924 ext4_inline_data_truncate(inode, &has_inline);
3925 if (has_inline)
3926 return;
3927 }
3928
3929 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3930 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3931 if (ext4_inode_attach_jinode(inode) < 0)
3932 return;
3933 }
3934
3935 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3936 credits = ext4_writepage_trans_blocks(inode);
3937 else
3938 credits = ext4_blocks_for_truncate(inode);
3939
3940 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3941 if (IS_ERR(handle)) {
3942 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3943 return;
3944 }
3945
3946 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3947 ext4_block_truncate_page(handle, mapping, inode->i_size);
3948
3949 /*
3950 * We add the inode to the orphan list, so that if this
3951 * truncate spans multiple transactions, and we crash, we will
3952 * resume the truncate when the filesystem recovers. It also
3953 * marks the inode dirty, to catch the new size.
3954 *
3955 * Implication: the file must always be in a sane, consistent
3956 * truncatable state while each transaction commits.
3957 */
3958 if (ext4_orphan_add(handle, inode))
3959 goto out_stop;
3960
3961 down_write(&EXT4_I(inode)->i_data_sem);
3962
3963 ext4_discard_preallocations(inode);
3964
3965 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3966 ext4_ext_truncate(handle, inode);
3967 else
3968 ext4_ind_truncate(handle, inode);
3969
3970 up_write(&ei->i_data_sem);
3971
3972 if (IS_SYNC(inode))
3973 ext4_handle_sync(handle);
3974
3975 out_stop:
3976 /*
3977 * If this was a simple ftruncate() and the file will remain alive,
3978 * then we need to clear up the orphan record which we created above.
3979 * However, if this was a real unlink then we were called by
3980 * ext4_evict_inode(), and we allow that function to clean up the
3981 * orphan info for us.
3982 */
3983 if (inode->i_nlink)
3984 ext4_orphan_del(handle, inode);
3985
3986 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3987 ext4_mark_inode_dirty(handle, inode);
3988 ext4_journal_stop(handle);
3989
3990 trace_ext4_truncate_exit(inode);
3991 }
3992
3993 /*
3994 * ext4_get_inode_loc returns with an extra refcount against the inode's
3995 * underlying buffer_head on success. If 'in_mem' is true, we have all
3996 * data in memory that is needed to recreate the on-disk version of this
3997 * inode.
3998 */
3999 static int __ext4_get_inode_loc(struct inode *inode,
4000 struct ext4_iloc *iloc, int in_mem)
4001 {
4002 struct ext4_group_desc *gdp;
4003 struct buffer_head *bh;
4004 struct super_block *sb = inode->i_sb;
4005 ext4_fsblk_t block;
4006 int inodes_per_block, inode_offset;
4007
4008 iloc->bh = NULL;
4009 if (!ext4_valid_inum(sb, inode->i_ino))
4010 return -EFSCORRUPTED;
4011
4012 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4013 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4014 if (!gdp)
4015 return -EIO;
4016
4017 /*
4018 * Figure out the offset within the block group inode table
4019 */
4020 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4021 inode_offset = ((inode->i_ino - 1) %
4022 EXT4_INODES_PER_GROUP(sb));
4023 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4024 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4025
4026 bh = sb_getblk(sb, block);
4027 if (unlikely(!bh))
4028 return -ENOMEM;
4029 if (!buffer_uptodate(bh)) {
4030 lock_buffer(bh);
4031
4032 /*
4033 * If the buffer has the write error flag, we have failed
4034 * to write out another inode in the same block. In this
4035 * case, we don't have to read the block because we may
4036 * read the old inode data successfully.
4037 */
4038 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4039 set_buffer_uptodate(bh);
4040
4041 if (buffer_uptodate(bh)) {
4042 /* someone brought it uptodate while we waited */
4043 unlock_buffer(bh);
4044 goto has_buffer;
4045 }
4046
4047 /*
4048 * If we have all information of the inode in memory and this
4049 * is the only valid inode in the block, we need not read the
4050 * block.
4051 */
4052 if (in_mem) {
4053 struct buffer_head *bitmap_bh;
4054 int i, start;
4055
4056 start = inode_offset & ~(inodes_per_block - 1);
4057
4058 /* Is the inode bitmap in cache? */
4059 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4060 if (unlikely(!bitmap_bh))
4061 goto make_io;
4062
4063 /*
4064 * If the inode bitmap isn't in cache then the
4065 * optimisation may end up performing two reads instead
4066 * of one, so skip it.
4067 */
4068 if (!buffer_uptodate(bitmap_bh)) {
4069 brelse(bitmap_bh);
4070 goto make_io;
4071 }
4072 for (i = start; i < start + inodes_per_block; i++) {
4073 if (i == inode_offset)
4074 continue;
4075 if (ext4_test_bit(i, bitmap_bh->b_data))
4076 break;
4077 }
4078 brelse(bitmap_bh);
4079 if (i == start + inodes_per_block) {
4080 /* all other inodes are free, so skip I/O */
4081 memset(bh->b_data, 0, bh->b_size);
4082 set_buffer_uptodate(bh);
4083 unlock_buffer(bh);
4084 goto has_buffer;
4085 }
4086 }
4087
4088 make_io:
4089 /*
4090 * If we need to do any I/O, try to pre-readahead extra
4091 * blocks from the inode table.
4092 */
4093 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4094 ext4_fsblk_t b, end, table;
4095 unsigned num;
4096 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4097
4098 table = ext4_inode_table(sb, gdp);
4099 /* s_inode_readahead_blks is always a power of 2 */
4100 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4101 if (table > b)
4102 b = table;
4103 end = b + ra_blks;
4104 num = EXT4_INODES_PER_GROUP(sb);
4105 if (ext4_has_group_desc_csum(sb))
4106 num -= ext4_itable_unused_count(sb, gdp);
4107 table += num / inodes_per_block;
4108 if (end > table)
4109 end = table;
4110 while (b <= end)
4111 sb_breadahead(sb, b++);
4112 }
4113
4114 /*
4115 * There are other valid inodes in the buffer, this inode
4116 * has in-inode xattrs, or we don't have this inode in memory.
4117 * Read the block from disk.
4118 */
4119 trace_ext4_load_inode(inode);
4120 get_bh(bh);
4121 bh->b_end_io = end_buffer_read_sync;
4122 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4123 wait_on_buffer(bh);
4124 if (!buffer_uptodate(bh)) {
4125 EXT4_ERROR_INODE_BLOCK(inode, block,
4126 "unable to read itable block");
4127 brelse(bh);
4128 return -EIO;
4129 }
4130 }
4131 has_buffer:
4132 iloc->bh = bh;
4133 return 0;
4134 }
4135
4136 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4137 {
4138 /* We have all inode data except xattrs in memory here. */
4139 return __ext4_get_inode_loc(inode, iloc,
4140 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4141 }
4142
4143 void ext4_set_inode_flags(struct inode *inode)
4144 {
4145 unsigned int flags = EXT4_I(inode)->i_flags;
4146 unsigned int new_fl = 0;
4147
4148 if (flags & EXT4_SYNC_FL)
4149 new_fl |= S_SYNC;
4150 if (flags & EXT4_APPEND_FL)
4151 new_fl |= S_APPEND;
4152 if (flags & EXT4_IMMUTABLE_FL)
4153 new_fl |= S_IMMUTABLE;
4154 if (flags & EXT4_NOATIME_FL)
4155 new_fl |= S_NOATIME;
4156 if (flags & EXT4_DIRSYNC_FL)
4157 new_fl |= S_DIRSYNC;
4158 if (test_opt(inode->i_sb, DAX))
4159 new_fl |= S_DAX;
4160 inode_set_flags(inode, new_fl,
4161 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4162 }
4163
4164 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4165 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4166 {
4167 unsigned int vfs_fl;
4168 unsigned long old_fl, new_fl;
4169
4170 do {
4171 vfs_fl = ei->vfs_inode.i_flags;
4172 old_fl = ei->i_flags;
4173 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4174 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4175 EXT4_DIRSYNC_FL);
4176 if (vfs_fl & S_SYNC)
4177 new_fl |= EXT4_SYNC_FL;
4178 if (vfs_fl & S_APPEND)
4179 new_fl |= EXT4_APPEND_FL;
4180 if (vfs_fl & S_IMMUTABLE)
4181 new_fl |= EXT4_IMMUTABLE_FL;
4182 if (vfs_fl & S_NOATIME)
4183 new_fl |= EXT4_NOATIME_FL;
4184 if (vfs_fl & S_DIRSYNC)
4185 new_fl |= EXT4_DIRSYNC_FL;
4186 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4187 }
4188
4189 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4190 struct ext4_inode_info *ei)
4191 {
4192 blkcnt_t i_blocks ;
4193 struct inode *inode = &(ei->vfs_inode);
4194 struct super_block *sb = inode->i_sb;
4195
4196 if (ext4_has_feature_huge_file(sb)) {
4197 /* we are using combined 48 bit field */
4198 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4199 le32_to_cpu(raw_inode->i_blocks_lo);
4200 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4201 /* i_blocks represent file system block size */
4202 return i_blocks << (inode->i_blkbits - 9);
4203 } else {
4204 return i_blocks;
4205 }
4206 } else {
4207 return le32_to_cpu(raw_inode->i_blocks_lo);
4208 }
4209 }
4210
4211 static inline void ext4_iget_extra_inode(struct inode *inode,
4212 struct ext4_inode *raw_inode,
4213 struct ext4_inode_info *ei)
4214 {
4215 __le32 *magic = (void *)raw_inode +
4216 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4217 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4218 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4219 ext4_find_inline_data_nolock(inode);
4220 } else
4221 EXT4_I(inode)->i_inline_off = 0;
4222 }
4223
4224 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4225 {
4226 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4227 return -EOPNOTSUPP;
4228 *projid = EXT4_I(inode)->i_projid;
4229 return 0;
4230 }
4231
4232 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4233 {
4234 struct ext4_iloc iloc;
4235 struct ext4_inode *raw_inode;
4236 struct ext4_inode_info *ei;
4237 struct inode *inode;
4238 journal_t *journal = EXT4_SB(sb)->s_journal;
4239 long ret;
4240 int block;
4241 uid_t i_uid;
4242 gid_t i_gid;
4243 projid_t i_projid;
4244
4245 inode = iget_locked(sb, ino);
4246 if (!inode)
4247 return ERR_PTR(-ENOMEM);
4248 if (!(inode->i_state & I_NEW))
4249 return inode;
4250
4251 ei = EXT4_I(inode);
4252 iloc.bh = NULL;
4253
4254 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4255 if (ret < 0)
4256 goto bad_inode;
4257 raw_inode = ext4_raw_inode(&iloc);
4258
4259 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4260 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4261 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4262 EXT4_INODE_SIZE(inode->i_sb)) {
4263 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4264 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4265 EXT4_INODE_SIZE(inode->i_sb));
4266 ret = -EFSCORRUPTED;
4267 goto bad_inode;
4268 }
4269 } else
4270 ei->i_extra_isize = 0;
4271
4272 /* Precompute checksum seed for inode metadata */
4273 if (ext4_has_metadata_csum(sb)) {
4274 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4275 __u32 csum;
4276 __le32 inum = cpu_to_le32(inode->i_ino);
4277 __le32 gen = raw_inode->i_generation;
4278 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4279 sizeof(inum));
4280 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4281 sizeof(gen));
4282 }
4283
4284 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4285 EXT4_ERROR_INODE(inode, "checksum invalid");
4286 ret = -EFSBADCRC;
4287 goto bad_inode;
4288 }
4289
4290 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4291 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4292 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4293 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4294 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4295 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4296 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4297 else
4298 i_projid = EXT4_DEF_PROJID;
4299
4300 if (!(test_opt(inode->i_sb, NO_UID32))) {
4301 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4302 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4303 }
4304 i_uid_write(inode, i_uid);
4305 i_gid_write(inode, i_gid);
4306 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4307 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4308
4309 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4310 ei->i_inline_off = 0;
4311 ei->i_dir_start_lookup = 0;
4312 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4313 /* We now have enough fields to check if the inode was active or not.
4314 * This is needed because nfsd might try to access dead inodes
4315 * the test is that same one that e2fsck uses
4316 * NeilBrown 1999oct15
4317 */
4318 if (inode->i_nlink == 0) {
4319 if ((inode->i_mode == 0 ||
4320 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4321 ino != EXT4_BOOT_LOADER_INO) {
4322 /* this inode is deleted */
4323 ret = -ESTALE;
4324 goto bad_inode;
4325 }
4326 /* The only unlinked inodes we let through here have
4327 * valid i_mode and are being read by the orphan
4328 * recovery code: that's fine, we're about to complete
4329 * the process of deleting those.
4330 * OR it is the EXT4_BOOT_LOADER_INO which is
4331 * not initialized on a new filesystem. */
4332 }
4333 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4334 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4335 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4336 if (ext4_has_feature_64bit(sb))
4337 ei->i_file_acl |=
4338 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4339 inode->i_size = ext4_isize(raw_inode);
4340 ei->i_disksize = inode->i_size;
4341 #ifdef CONFIG_QUOTA
4342 ei->i_reserved_quota = 0;
4343 #endif
4344 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4345 ei->i_block_group = iloc.block_group;
4346 ei->i_last_alloc_group = ~0;
4347 /*
4348 * NOTE! The in-memory inode i_data array is in little-endian order
4349 * even on big-endian machines: we do NOT byteswap the block numbers!
4350 */
4351 for (block = 0; block < EXT4_N_BLOCKS; block++)
4352 ei->i_data[block] = raw_inode->i_block[block];
4353 INIT_LIST_HEAD(&ei->i_orphan);
4354
4355 /*
4356 * Set transaction id's of transactions that have to be committed
4357 * to finish f[data]sync. We set them to currently running transaction
4358 * as we cannot be sure that the inode or some of its metadata isn't
4359 * part of the transaction - the inode could have been reclaimed and
4360 * now it is reread from disk.
4361 */
4362 if (journal) {
4363 transaction_t *transaction;
4364 tid_t tid;
4365
4366 read_lock(&journal->j_state_lock);
4367 if (journal->j_running_transaction)
4368 transaction = journal->j_running_transaction;
4369 else
4370 transaction = journal->j_committing_transaction;
4371 if (transaction)
4372 tid = transaction->t_tid;
4373 else
4374 tid = journal->j_commit_sequence;
4375 read_unlock(&journal->j_state_lock);
4376 ei->i_sync_tid = tid;
4377 ei->i_datasync_tid = tid;
4378 }
4379
4380 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4381 if (ei->i_extra_isize == 0) {
4382 /* The extra space is currently unused. Use it. */
4383 ei->i_extra_isize = sizeof(struct ext4_inode) -
4384 EXT4_GOOD_OLD_INODE_SIZE;
4385 } else {
4386 ext4_iget_extra_inode(inode, raw_inode, ei);
4387 }
4388 }
4389
4390 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4391 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4392 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4393 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4394
4395 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4396 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4397 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4398 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4399 inode->i_version |=
4400 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4401 }
4402 }
4403
4404 ret = 0;
4405 if (ei->i_file_acl &&
4406 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4407 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4408 ei->i_file_acl);
4409 ret = -EFSCORRUPTED;
4410 goto bad_inode;
4411 } else if (!ext4_has_inline_data(inode)) {
4412 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4413 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4414 (S_ISLNK(inode->i_mode) &&
4415 !ext4_inode_is_fast_symlink(inode))))
4416 /* Validate extent which is part of inode */
4417 ret = ext4_ext_check_inode(inode);
4418 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4419 (S_ISLNK(inode->i_mode) &&
4420 !ext4_inode_is_fast_symlink(inode))) {
4421 /* Validate block references which are part of inode */
4422 ret = ext4_ind_check_inode(inode);
4423 }
4424 }
4425 if (ret)
4426 goto bad_inode;
4427
4428 if (S_ISREG(inode->i_mode)) {
4429 inode->i_op = &ext4_file_inode_operations;
4430 inode->i_fop = &ext4_file_operations;
4431 ext4_set_aops(inode);
4432 } else if (S_ISDIR(inode->i_mode)) {
4433 inode->i_op = &ext4_dir_inode_operations;
4434 inode->i_fop = &ext4_dir_operations;
4435 } else if (S_ISLNK(inode->i_mode)) {
4436 if (ext4_encrypted_inode(inode)) {
4437 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4438 ext4_set_aops(inode);
4439 } else if (ext4_inode_is_fast_symlink(inode)) {
4440 inode->i_link = (char *)ei->i_data;
4441 inode->i_op = &ext4_fast_symlink_inode_operations;
4442 nd_terminate_link(ei->i_data, inode->i_size,
4443 sizeof(ei->i_data) - 1);
4444 } else {
4445 inode->i_op = &ext4_symlink_inode_operations;
4446 ext4_set_aops(inode);
4447 }
4448 inode_nohighmem(inode);
4449 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4450 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4451 inode->i_op = &ext4_special_inode_operations;
4452 if (raw_inode->i_block[0])
4453 init_special_inode(inode, inode->i_mode,
4454 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4455 else
4456 init_special_inode(inode, inode->i_mode,
4457 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4458 } else if (ino == EXT4_BOOT_LOADER_INO) {
4459 make_bad_inode(inode);
4460 } else {
4461 ret = -EFSCORRUPTED;
4462 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4463 goto bad_inode;
4464 }
4465 brelse(iloc.bh);
4466 ext4_set_inode_flags(inode);
4467 unlock_new_inode(inode);
4468 return inode;
4469
4470 bad_inode:
4471 brelse(iloc.bh);
4472 iget_failed(inode);
4473 return ERR_PTR(ret);
4474 }
4475
4476 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4477 {
4478 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4479 return ERR_PTR(-EFSCORRUPTED);
4480 return ext4_iget(sb, ino);
4481 }
4482
4483 static int ext4_inode_blocks_set(handle_t *handle,
4484 struct ext4_inode *raw_inode,
4485 struct ext4_inode_info *ei)
4486 {
4487 struct inode *inode = &(ei->vfs_inode);
4488 u64 i_blocks = inode->i_blocks;
4489 struct super_block *sb = inode->i_sb;
4490
4491 if (i_blocks <= ~0U) {
4492 /*
4493 * i_blocks can be represented in a 32 bit variable
4494 * as multiple of 512 bytes
4495 */
4496 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4497 raw_inode->i_blocks_high = 0;
4498 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4499 return 0;
4500 }
4501 if (!ext4_has_feature_huge_file(sb))
4502 return -EFBIG;
4503
4504 if (i_blocks <= 0xffffffffffffULL) {
4505 /*
4506 * i_blocks can be represented in a 48 bit variable
4507 * as multiple of 512 bytes
4508 */
4509 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4510 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4511 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4512 } else {
4513 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4514 /* i_block is stored in file system block size */
4515 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4516 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4517 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4518 }
4519 return 0;
4520 }
4521
4522 struct other_inode {
4523 unsigned long orig_ino;
4524 struct ext4_inode *raw_inode;
4525 };
4526
4527 static int other_inode_match(struct inode * inode, unsigned long ino,
4528 void *data)
4529 {
4530 struct other_inode *oi = (struct other_inode *) data;
4531
4532 if ((inode->i_ino != ino) ||
4533 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4534 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4535 ((inode->i_state & I_DIRTY_TIME) == 0))
4536 return 0;
4537 spin_lock(&inode->i_lock);
4538 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4539 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4540 (inode->i_state & I_DIRTY_TIME)) {
4541 struct ext4_inode_info *ei = EXT4_I(inode);
4542
4543 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4544 spin_unlock(&inode->i_lock);
4545
4546 spin_lock(&ei->i_raw_lock);
4547 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4548 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4549 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4550 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4551 spin_unlock(&ei->i_raw_lock);
4552 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4553 return -1;
4554 }
4555 spin_unlock(&inode->i_lock);
4556 return -1;
4557 }
4558
4559 /*
4560 * Opportunistically update the other time fields for other inodes in
4561 * the same inode table block.
4562 */
4563 static void ext4_update_other_inodes_time(struct super_block *sb,
4564 unsigned long orig_ino, char *buf)
4565 {
4566 struct other_inode oi;
4567 unsigned long ino;
4568 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4569 int inode_size = EXT4_INODE_SIZE(sb);
4570
4571 oi.orig_ino = orig_ino;
4572 /*
4573 * Calculate the first inode in the inode table block. Inode
4574 * numbers are one-based. That is, the first inode in a block
4575 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4576 */
4577 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4578 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4579 if (ino == orig_ino)
4580 continue;
4581 oi.raw_inode = (struct ext4_inode *) buf;
4582 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4583 }
4584 }
4585
4586 /*
4587 * Post the struct inode info into an on-disk inode location in the
4588 * buffer-cache. This gobbles the caller's reference to the
4589 * buffer_head in the inode location struct.
4590 *
4591 * The caller must have write access to iloc->bh.
4592 */
4593 static int ext4_do_update_inode(handle_t *handle,
4594 struct inode *inode,
4595 struct ext4_iloc *iloc)
4596 {
4597 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4598 struct ext4_inode_info *ei = EXT4_I(inode);
4599 struct buffer_head *bh = iloc->bh;
4600 struct super_block *sb = inode->i_sb;
4601 int err = 0, rc, block;
4602 int need_datasync = 0, set_large_file = 0;
4603 uid_t i_uid;
4604 gid_t i_gid;
4605 projid_t i_projid;
4606
4607 spin_lock(&ei->i_raw_lock);
4608
4609 /* For fields not tracked in the in-memory inode,
4610 * initialise them to zero for new inodes. */
4611 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4612 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4613
4614 ext4_get_inode_flags(ei);
4615 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4616 i_uid = i_uid_read(inode);
4617 i_gid = i_gid_read(inode);
4618 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4619 if (!(test_opt(inode->i_sb, NO_UID32))) {
4620 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4621 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4622 /*
4623 * Fix up interoperability with old kernels. Otherwise, old inodes get
4624 * re-used with the upper 16 bits of the uid/gid intact
4625 */
4626 if (!ei->i_dtime) {
4627 raw_inode->i_uid_high =
4628 cpu_to_le16(high_16_bits(i_uid));
4629 raw_inode->i_gid_high =
4630 cpu_to_le16(high_16_bits(i_gid));
4631 } else {
4632 raw_inode->i_uid_high = 0;
4633 raw_inode->i_gid_high = 0;
4634 }
4635 } else {
4636 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4637 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4638 raw_inode->i_uid_high = 0;
4639 raw_inode->i_gid_high = 0;
4640 }
4641 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4642
4643 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4644 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4645 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4646 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4647
4648 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4649 if (err) {
4650 spin_unlock(&ei->i_raw_lock);
4651 goto out_brelse;
4652 }
4653 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4654 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4655 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4656 raw_inode->i_file_acl_high =
4657 cpu_to_le16(ei->i_file_acl >> 32);
4658 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4659 if (ei->i_disksize != ext4_isize(raw_inode)) {
4660 ext4_isize_set(raw_inode, ei->i_disksize);
4661 need_datasync = 1;
4662 }
4663 if (ei->i_disksize > 0x7fffffffULL) {
4664 if (!ext4_has_feature_large_file(sb) ||
4665 EXT4_SB(sb)->s_es->s_rev_level ==
4666 cpu_to_le32(EXT4_GOOD_OLD_REV))
4667 set_large_file = 1;
4668 }
4669 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4670 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4671 if (old_valid_dev(inode->i_rdev)) {
4672 raw_inode->i_block[0] =
4673 cpu_to_le32(old_encode_dev(inode->i_rdev));
4674 raw_inode->i_block[1] = 0;
4675 } else {
4676 raw_inode->i_block[0] = 0;
4677 raw_inode->i_block[1] =
4678 cpu_to_le32(new_encode_dev(inode->i_rdev));
4679 raw_inode->i_block[2] = 0;
4680 }
4681 } else if (!ext4_has_inline_data(inode)) {
4682 for (block = 0; block < EXT4_N_BLOCKS; block++)
4683 raw_inode->i_block[block] = ei->i_data[block];
4684 }
4685
4686 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4687 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4688 if (ei->i_extra_isize) {
4689 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4690 raw_inode->i_version_hi =
4691 cpu_to_le32(inode->i_version >> 32);
4692 raw_inode->i_extra_isize =
4693 cpu_to_le16(ei->i_extra_isize);
4694 }
4695 }
4696
4697 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4698 EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4699 i_projid != EXT4_DEF_PROJID);
4700
4701 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4702 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4703 raw_inode->i_projid = cpu_to_le32(i_projid);
4704
4705 ext4_inode_csum_set(inode, raw_inode, ei);
4706 spin_unlock(&ei->i_raw_lock);
4707 if (inode->i_sb->s_flags & MS_LAZYTIME)
4708 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4709 bh->b_data);
4710
4711 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4712 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4713 if (!err)
4714 err = rc;
4715 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4716 if (set_large_file) {
4717 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4718 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4719 if (err)
4720 goto out_brelse;
4721 ext4_update_dynamic_rev(sb);
4722 ext4_set_feature_large_file(sb);
4723 ext4_handle_sync(handle);
4724 err = ext4_handle_dirty_super(handle, sb);
4725 }
4726 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4727 out_brelse:
4728 brelse(bh);
4729 ext4_std_error(inode->i_sb, err);
4730 return err;
4731 }
4732
4733 /*
4734 * ext4_write_inode()
4735 *
4736 * We are called from a few places:
4737 *
4738 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4739 * Here, there will be no transaction running. We wait for any running
4740 * transaction to commit.
4741 *
4742 * - Within flush work (sys_sync(), kupdate and such).
4743 * We wait on commit, if told to.
4744 *
4745 * - Within iput_final() -> write_inode_now()
4746 * We wait on commit, if told to.
4747 *
4748 * In all cases it is actually safe for us to return without doing anything,
4749 * because the inode has been copied into a raw inode buffer in
4750 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4751 * writeback.
4752 *
4753 * Note that we are absolutely dependent upon all inode dirtiers doing the
4754 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4755 * which we are interested.
4756 *
4757 * It would be a bug for them to not do this. The code:
4758 *
4759 * mark_inode_dirty(inode)
4760 * stuff();
4761 * inode->i_size = expr;
4762 *
4763 * is in error because write_inode() could occur while `stuff()' is running,
4764 * and the new i_size will be lost. Plus the inode will no longer be on the
4765 * superblock's dirty inode list.
4766 */
4767 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4768 {
4769 int err;
4770
4771 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4772 return 0;
4773
4774 if (EXT4_SB(inode->i_sb)->s_journal) {
4775 if (ext4_journal_current_handle()) {
4776 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4777 dump_stack();
4778 return -EIO;
4779 }
4780
4781 /*
4782 * No need to force transaction in WB_SYNC_NONE mode. Also
4783 * ext4_sync_fs() will force the commit after everything is
4784 * written.
4785 */
4786 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4787 return 0;
4788
4789 err = ext4_force_commit(inode->i_sb);
4790 } else {
4791 struct ext4_iloc iloc;
4792
4793 err = __ext4_get_inode_loc(inode, &iloc, 0);
4794 if (err)
4795 return err;
4796 /*
4797 * sync(2) will flush the whole buffer cache. No need to do
4798 * it here separately for each inode.
4799 */
4800 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4801 sync_dirty_buffer(iloc.bh);
4802 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4803 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4804 "IO error syncing inode");
4805 err = -EIO;
4806 }
4807 brelse(iloc.bh);
4808 }
4809 return err;
4810 }
4811
4812 /*
4813 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4814 * buffers that are attached to a page stradding i_size and are undergoing
4815 * commit. In that case we have to wait for commit to finish and try again.
4816 */
4817 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4818 {
4819 struct page *page;
4820 unsigned offset;
4821 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4822 tid_t commit_tid = 0;
4823 int ret;
4824
4825 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4826 /*
4827 * All buffers in the last page remain valid? Then there's nothing to
4828 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4829 * blocksize case
4830 */
4831 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4832 return;
4833 while (1) {
4834 page = find_lock_page(inode->i_mapping,
4835 inode->i_size >> PAGE_CACHE_SHIFT);
4836 if (!page)
4837 return;
4838 ret = __ext4_journalled_invalidatepage(page, offset,
4839 PAGE_CACHE_SIZE - offset);
4840 unlock_page(page);
4841 page_cache_release(page);
4842 if (ret != -EBUSY)
4843 return;
4844 commit_tid = 0;
4845 read_lock(&journal->j_state_lock);
4846 if (journal->j_committing_transaction)
4847 commit_tid = journal->j_committing_transaction->t_tid;
4848 read_unlock(&journal->j_state_lock);
4849 if (commit_tid)
4850 jbd2_log_wait_commit(journal, commit_tid);
4851 }
4852 }
4853
4854 /*
4855 * ext4_setattr()
4856 *
4857 * Called from notify_change.
4858 *
4859 * We want to trap VFS attempts to truncate the file as soon as
4860 * possible. In particular, we want to make sure that when the VFS
4861 * shrinks i_size, we put the inode on the orphan list and modify
4862 * i_disksize immediately, so that during the subsequent flushing of
4863 * dirty pages and freeing of disk blocks, we can guarantee that any
4864 * commit will leave the blocks being flushed in an unused state on
4865 * disk. (On recovery, the inode will get truncated and the blocks will
4866 * be freed, so we have a strong guarantee that no future commit will
4867 * leave these blocks visible to the user.)
4868 *
4869 * Another thing we have to assure is that if we are in ordered mode
4870 * and inode is still attached to the committing transaction, we must
4871 * we start writeout of all the dirty pages which are being truncated.
4872 * This way we are sure that all the data written in the previous
4873 * transaction are already on disk (truncate waits for pages under
4874 * writeback).
4875 *
4876 * Called with inode->i_mutex down.
4877 */
4878 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4879 {
4880 struct inode *inode = d_inode(dentry);
4881 int error, rc = 0;
4882 int orphan = 0;
4883 const unsigned int ia_valid = attr->ia_valid;
4884
4885 error = inode_change_ok(inode, attr);
4886 if (error)
4887 return error;
4888
4889 if (is_quota_modification(inode, attr)) {
4890 error = dquot_initialize(inode);
4891 if (error)
4892 return error;
4893 }
4894 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4895 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4896 handle_t *handle;
4897
4898 /* (user+group)*(old+new) structure, inode write (sb,
4899 * inode block, ? - but truncate inode update has it) */
4900 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4901 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4902 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4903 if (IS_ERR(handle)) {
4904 error = PTR_ERR(handle);
4905 goto err_out;
4906 }
4907 error = dquot_transfer(inode, attr);
4908 if (error) {
4909 ext4_journal_stop(handle);
4910 return error;
4911 }
4912 /* Update corresponding info in inode so that everything is in
4913 * one transaction */
4914 if (attr->ia_valid & ATTR_UID)
4915 inode->i_uid = attr->ia_uid;
4916 if (attr->ia_valid & ATTR_GID)
4917 inode->i_gid = attr->ia_gid;
4918 error = ext4_mark_inode_dirty(handle, inode);
4919 ext4_journal_stop(handle);
4920 }
4921
4922 if (attr->ia_valid & ATTR_SIZE) {
4923 handle_t *handle;
4924 loff_t oldsize = inode->i_size;
4925 int shrink = (attr->ia_size <= inode->i_size);
4926
4927 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4928 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4929
4930 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4931 return -EFBIG;
4932 }
4933 if (!S_ISREG(inode->i_mode))
4934 return -EINVAL;
4935
4936 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4937 inode_inc_iversion(inode);
4938
4939 if (ext4_should_order_data(inode) &&
4940 (attr->ia_size < inode->i_size)) {
4941 error = ext4_begin_ordered_truncate(inode,
4942 attr->ia_size);
4943 if (error)
4944 goto err_out;
4945 }
4946 if (attr->ia_size != inode->i_size) {
4947 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4948 if (IS_ERR(handle)) {
4949 error = PTR_ERR(handle);
4950 goto err_out;
4951 }
4952 if (ext4_handle_valid(handle) && shrink) {
4953 error = ext4_orphan_add(handle, inode);
4954 orphan = 1;
4955 }
4956 /*
4957 * Update c/mtime on truncate up, ext4_truncate() will
4958 * update c/mtime in shrink case below
4959 */
4960 if (!shrink) {
4961 inode->i_mtime = ext4_current_time(inode);
4962 inode->i_ctime = inode->i_mtime;
4963 }
4964 down_write(&EXT4_I(inode)->i_data_sem);
4965 EXT4_I(inode)->i_disksize = attr->ia_size;
4966 rc = ext4_mark_inode_dirty(handle, inode);
4967 if (!error)
4968 error = rc;
4969 /*
4970 * We have to update i_size under i_data_sem together
4971 * with i_disksize to avoid races with writeback code
4972 * running ext4_wb_update_i_disksize().
4973 */
4974 if (!error)
4975 i_size_write(inode, attr->ia_size);
4976 up_write(&EXT4_I(inode)->i_data_sem);
4977 ext4_journal_stop(handle);
4978 if (error) {
4979 if (orphan)
4980 ext4_orphan_del(NULL, inode);
4981 goto err_out;
4982 }
4983 }
4984 if (!shrink)
4985 pagecache_isize_extended(inode, oldsize, inode->i_size);
4986
4987 /*
4988 * Blocks are going to be removed from the inode. Wait
4989 * for dio in flight. Temporarily disable
4990 * dioread_nolock to prevent livelock.
4991 */
4992 if (orphan) {
4993 if (!ext4_should_journal_data(inode)) {
4994 ext4_inode_block_unlocked_dio(inode);
4995 inode_dio_wait(inode);
4996 ext4_inode_resume_unlocked_dio(inode);
4997 } else
4998 ext4_wait_for_tail_page_commit(inode);
4999 }
5000 down_write(&EXT4_I(inode)->i_mmap_sem);
5001 /*
5002 * Truncate pagecache after we've waited for commit
5003 * in data=journal mode to make pages freeable.
5004 */
5005 truncate_pagecache(inode, inode->i_size);
5006 if (shrink)
5007 ext4_truncate(inode);
5008 up_write(&EXT4_I(inode)->i_mmap_sem);
5009 }
5010
5011 if (!rc) {
5012 setattr_copy(inode, attr);
5013 mark_inode_dirty(inode);
5014 }
5015
5016 /*
5017 * If the call to ext4_truncate failed to get a transaction handle at
5018 * all, we need to clean up the in-core orphan list manually.
5019 */
5020 if (orphan && inode->i_nlink)
5021 ext4_orphan_del(NULL, inode);
5022
5023 if (!rc && (ia_valid & ATTR_MODE))
5024 rc = posix_acl_chmod(inode, inode->i_mode);
5025
5026 err_out:
5027 ext4_std_error(inode->i_sb, error);
5028 if (!error)
5029 error = rc;
5030 return error;
5031 }
5032
5033 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5034 struct kstat *stat)
5035 {
5036 struct inode *inode;
5037 unsigned long long delalloc_blocks;
5038
5039 inode = d_inode(dentry);
5040 generic_fillattr(inode, stat);
5041
5042 /*
5043 * If there is inline data in the inode, the inode will normally not
5044 * have data blocks allocated (it may have an external xattr block).
5045 * Report at least one sector for such files, so tools like tar, rsync,
5046 * others doen't incorrectly think the file is completely sparse.
5047 */
5048 if (unlikely(ext4_has_inline_data(inode)))
5049 stat->blocks += (stat->size + 511) >> 9;
5050
5051 /*
5052 * We can't update i_blocks if the block allocation is delayed
5053 * otherwise in the case of system crash before the real block
5054 * allocation is done, we will have i_blocks inconsistent with
5055 * on-disk file blocks.
5056 * We always keep i_blocks updated together with real
5057 * allocation. But to not confuse with user, stat
5058 * will return the blocks that include the delayed allocation
5059 * blocks for this file.
5060 */
5061 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5062 EXT4_I(inode)->i_reserved_data_blocks);
5063 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5064 return 0;
5065 }
5066
5067 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5068 int pextents)
5069 {
5070 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5071 return ext4_ind_trans_blocks(inode, lblocks);
5072 return ext4_ext_index_trans_blocks(inode, pextents);
5073 }
5074
5075 /*
5076 * Account for index blocks, block groups bitmaps and block group
5077 * descriptor blocks if modify datablocks and index blocks
5078 * worse case, the indexs blocks spread over different block groups
5079 *
5080 * If datablocks are discontiguous, they are possible to spread over
5081 * different block groups too. If they are contiguous, with flexbg,
5082 * they could still across block group boundary.
5083 *
5084 * Also account for superblock, inode, quota and xattr blocks
5085 */
5086 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5087 int pextents)
5088 {
5089 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5090 int gdpblocks;
5091 int idxblocks;
5092 int ret = 0;
5093
5094 /*
5095 * How many index blocks need to touch to map @lblocks logical blocks
5096 * to @pextents physical extents?
5097 */
5098 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5099
5100 ret = idxblocks;
5101
5102 /*
5103 * Now let's see how many group bitmaps and group descriptors need
5104 * to account
5105 */
5106 groups = idxblocks + pextents;
5107 gdpblocks = groups;
5108 if (groups > ngroups)
5109 groups = ngroups;
5110 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5111 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5112
5113 /* bitmaps and block group descriptor blocks */
5114 ret += groups + gdpblocks;
5115
5116 /* Blocks for super block, inode, quota and xattr blocks */
5117 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5118
5119 return ret;
5120 }
5121
5122 /*
5123 * Calculate the total number of credits to reserve to fit
5124 * the modification of a single pages into a single transaction,
5125 * which may include multiple chunks of block allocations.
5126 *
5127 * This could be called via ext4_write_begin()
5128 *
5129 * We need to consider the worse case, when
5130 * one new block per extent.
5131 */
5132 int ext4_writepage_trans_blocks(struct inode *inode)
5133 {
5134 int bpp = ext4_journal_blocks_per_page(inode);
5135 int ret;
5136
5137 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5138
5139 /* Account for data blocks for journalled mode */
5140 if (ext4_should_journal_data(inode))
5141 ret += bpp;
5142 return ret;
5143 }
5144
5145 /*
5146 * Calculate the journal credits for a chunk of data modification.
5147 *
5148 * This is called from DIO, fallocate or whoever calling
5149 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5150 *
5151 * journal buffers for data blocks are not included here, as DIO
5152 * and fallocate do no need to journal data buffers.
5153 */
5154 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5155 {
5156 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5157 }
5158
5159 /*
5160 * The caller must have previously called ext4_reserve_inode_write().
5161 * Give this, we know that the caller already has write access to iloc->bh.
5162 */
5163 int ext4_mark_iloc_dirty(handle_t *handle,
5164 struct inode *inode, struct ext4_iloc *iloc)
5165 {
5166 int err = 0;
5167
5168 if (IS_I_VERSION(inode))
5169 inode_inc_iversion(inode);
5170
5171 /* the do_update_inode consumes one bh->b_count */
5172 get_bh(iloc->bh);
5173
5174 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5175 err = ext4_do_update_inode(handle, inode, iloc);
5176 put_bh(iloc->bh);
5177 return err;
5178 }
5179
5180 /*
5181 * On success, We end up with an outstanding reference count against
5182 * iloc->bh. This _must_ be cleaned up later.
5183 */
5184
5185 int
5186 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5187 struct ext4_iloc *iloc)
5188 {
5189 int err;
5190
5191 err = ext4_get_inode_loc(inode, iloc);
5192 if (!err) {
5193 BUFFER_TRACE(iloc->bh, "get_write_access");
5194 err = ext4_journal_get_write_access(handle, iloc->bh);
5195 if (err) {
5196 brelse(iloc->bh);
5197 iloc->bh = NULL;
5198 }
5199 }
5200 ext4_std_error(inode->i_sb, err);
5201 return err;
5202 }
5203
5204 /*
5205 * Expand an inode by new_extra_isize bytes.
5206 * Returns 0 on success or negative error number on failure.
5207 */
5208 static int ext4_expand_extra_isize(struct inode *inode,
5209 unsigned int new_extra_isize,
5210 struct ext4_iloc iloc,
5211 handle_t *handle)
5212 {
5213 struct ext4_inode *raw_inode;
5214 struct ext4_xattr_ibody_header *header;
5215
5216 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5217 return 0;
5218
5219 raw_inode = ext4_raw_inode(&iloc);
5220
5221 header = IHDR(inode, raw_inode);
5222
5223 /* No extended attributes present */
5224 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5225 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5226 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5227 new_extra_isize);
5228 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5229 return 0;
5230 }
5231
5232 /* try to expand with EAs present */
5233 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5234 raw_inode, handle);
5235 }
5236
5237 /*
5238 * What we do here is to mark the in-core inode as clean with respect to inode
5239 * dirtiness (it may still be data-dirty).
5240 * This means that the in-core inode may be reaped by prune_icache
5241 * without having to perform any I/O. This is a very good thing,
5242 * because *any* task may call prune_icache - even ones which
5243 * have a transaction open against a different journal.
5244 *
5245 * Is this cheating? Not really. Sure, we haven't written the
5246 * inode out, but prune_icache isn't a user-visible syncing function.
5247 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5248 * we start and wait on commits.
5249 */
5250 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5251 {
5252 struct ext4_iloc iloc;
5253 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5254 static unsigned int mnt_count;
5255 int err, ret;
5256
5257 might_sleep();
5258 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5259 err = ext4_reserve_inode_write(handle, inode, &iloc);
5260 if (ext4_handle_valid(handle) &&
5261 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5262 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5263 /*
5264 * We need extra buffer credits since we may write into EA block
5265 * with this same handle. If journal_extend fails, then it will
5266 * only result in a minor loss of functionality for that inode.
5267 * If this is felt to be critical, then e2fsck should be run to
5268 * force a large enough s_min_extra_isize.
5269 */
5270 if ((jbd2_journal_extend(handle,
5271 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5272 ret = ext4_expand_extra_isize(inode,
5273 sbi->s_want_extra_isize,
5274 iloc, handle);
5275 if (ret) {
5276 ext4_set_inode_state(inode,
5277 EXT4_STATE_NO_EXPAND);
5278 if (mnt_count !=
5279 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5280 ext4_warning(inode->i_sb,
5281 "Unable to expand inode %lu. Delete"
5282 " some EAs or run e2fsck.",
5283 inode->i_ino);
5284 mnt_count =
5285 le16_to_cpu(sbi->s_es->s_mnt_count);
5286 }
5287 }
5288 }
5289 }
5290 if (!err)
5291 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5292 return err;
5293 }
5294
5295 /*
5296 * ext4_dirty_inode() is called from __mark_inode_dirty()
5297 *
5298 * We're really interested in the case where a file is being extended.
5299 * i_size has been changed by generic_commit_write() and we thus need
5300 * to include the updated inode in the current transaction.
5301 *
5302 * Also, dquot_alloc_block() will always dirty the inode when blocks
5303 * are allocated to the file.
5304 *
5305 * If the inode is marked synchronous, we don't honour that here - doing
5306 * so would cause a commit on atime updates, which we don't bother doing.
5307 * We handle synchronous inodes at the highest possible level.
5308 *
5309 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5310 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5311 * to copy into the on-disk inode structure are the timestamp files.
5312 */
5313 void ext4_dirty_inode(struct inode *inode, int flags)
5314 {
5315 handle_t *handle;
5316
5317 if (flags == I_DIRTY_TIME)
5318 return;
5319 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5320 if (IS_ERR(handle))
5321 goto out;
5322
5323 ext4_mark_inode_dirty(handle, inode);
5324
5325 ext4_journal_stop(handle);
5326 out:
5327 return;
5328 }
5329
5330 #if 0
5331 /*
5332 * Bind an inode's backing buffer_head into this transaction, to prevent
5333 * it from being flushed to disk early. Unlike
5334 * ext4_reserve_inode_write, this leaves behind no bh reference and
5335 * returns no iloc structure, so the caller needs to repeat the iloc
5336 * lookup to mark the inode dirty later.
5337 */
5338 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5339 {
5340 struct ext4_iloc iloc;
5341
5342 int err = 0;
5343 if (handle) {
5344 err = ext4_get_inode_loc(inode, &iloc);
5345 if (!err) {
5346 BUFFER_TRACE(iloc.bh, "get_write_access");
5347 err = jbd2_journal_get_write_access(handle, iloc.bh);
5348 if (!err)
5349 err = ext4_handle_dirty_metadata(handle,
5350 NULL,
5351 iloc.bh);
5352 brelse(iloc.bh);
5353 }
5354 }
5355 ext4_std_error(inode->i_sb, err);
5356 return err;
5357 }
5358 #endif
5359
5360 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5361 {
5362 journal_t *journal;
5363 handle_t *handle;
5364 int err;
5365
5366 /*
5367 * We have to be very careful here: changing a data block's
5368 * journaling status dynamically is dangerous. If we write a
5369 * data block to the journal, change the status and then delete
5370 * that block, we risk forgetting to revoke the old log record
5371 * from the journal and so a subsequent replay can corrupt data.
5372 * So, first we make sure that the journal is empty and that
5373 * nobody is changing anything.
5374 */
5375
5376 journal = EXT4_JOURNAL(inode);
5377 if (!journal)
5378 return 0;
5379 if (is_journal_aborted(journal))
5380 return -EROFS;
5381 /* We have to allocate physical blocks for delalloc blocks
5382 * before flushing journal. otherwise delalloc blocks can not
5383 * be allocated any more. even more truncate on delalloc blocks
5384 * could trigger BUG by flushing delalloc blocks in journal.
5385 * There is no delalloc block in non-journal data mode.
5386 */
5387 if (val && test_opt(inode->i_sb, DELALLOC)) {
5388 err = ext4_alloc_da_blocks(inode);
5389 if (err < 0)
5390 return err;
5391 }
5392
5393 /* Wait for all existing dio workers */
5394 ext4_inode_block_unlocked_dio(inode);
5395 inode_dio_wait(inode);
5396
5397 jbd2_journal_lock_updates(journal);
5398
5399 /*
5400 * OK, there are no updates running now, and all cached data is
5401 * synced to disk. We are now in a completely consistent state
5402 * which doesn't have anything in the journal, and we know that
5403 * no filesystem updates are running, so it is safe to modify
5404 * the inode's in-core data-journaling state flag now.
5405 */
5406
5407 if (val)
5408 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5409 else {
5410 err = jbd2_journal_flush(journal);
5411 if (err < 0) {
5412 jbd2_journal_unlock_updates(journal);
5413 ext4_inode_resume_unlocked_dio(inode);
5414 return err;
5415 }
5416 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5417 }
5418 ext4_set_aops(inode);
5419
5420 jbd2_journal_unlock_updates(journal);
5421 ext4_inode_resume_unlocked_dio(inode);
5422
5423 /* Finally we can mark the inode as dirty. */
5424
5425 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5426 if (IS_ERR(handle))
5427 return PTR_ERR(handle);
5428
5429 err = ext4_mark_inode_dirty(handle, inode);
5430 ext4_handle_sync(handle);
5431 ext4_journal_stop(handle);
5432 ext4_std_error(inode->i_sb, err);
5433
5434 return err;
5435 }
5436
5437 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5438 {
5439 return !buffer_mapped(bh);
5440 }
5441
5442 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5443 {
5444 struct page *page = vmf->page;
5445 loff_t size;
5446 unsigned long len;
5447 int ret;
5448 struct file *file = vma->vm_file;
5449 struct inode *inode = file_inode(file);
5450 struct address_space *mapping = inode->i_mapping;
5451 handle_t *handle;
5452 get_block_t *get_block;
5453 int retries = 0;
5454
5455 sb_start_pagefault(inode->i_sb);
5456 file_update_time(vma->vm_file);
5457
5458 down_read(&EXT4_I(inode)->i_mmap_sem);
5459 /* Delalloc case is easy... */
5460 if (test_opt(inode->i_sb, DELALLOC) &&
5461 !ext4_should_journal_data(inode) &&
5462 !ext4_nonda_switch(inode->i_sb)) {
5463 do {
5464 ret = block_page_mkwrite(vma, vmf,
5465 ext4_da_get_block_prep);
5466 } while (ret == -ENOSPC &&
5467 ext4_should_retry_alloc(inode->i_sb, &retries));
5468 goto out_ret;
5469 }
5470
5471 lock_page(page);
5472 size = i_size_read(inode);
5473 /* Page got truncated from under us? */
5474 if (page->mapping != mapping || page_offset(page) > size) {
5475 unlock_page(page);
5476 ret = VM_FAULT_NOPAGE;
5477 goto out;
5478 }
5479
5480 if (page->index == size >> PAGE_CACHE_SHIFT)
5481 len = size & ~PAGE_CACHE_MASK;
5482 else
5483 len = PAGE_CACHE_SIZE;
5484 /*
5485 * Return if we have all the buffers mapped. This avoids the need to do
5486 * journal_start/journal_stop which can block and take a long time
5487 */
5488 if (page_has_buffers(page)) {
5489 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5490 0, len, NULL,
5491 ext4_bh_unmapped)) {
5492 /* Wait so that we don't change page under IO */
5493 wait_for_stable_page(page);
5494 ret = VM_FAULT_LOCKED;
5495 goto out;
5496 }
5497 }
5498 unlock_page(page);
5499 /* OK, we need to fill the hole... */
5500 if (ext4_should_dioread_nolock(inode))
5501 get_block = ext4_get_block_write;
5502 else
5503 get_block = ext4_get_block;
5504 retry_alloc:
5505 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5506 ext4_writepage_trans_blocks(inode));
5507 if (IS_ERR(handle)) {
5508 ret = VM_FAULT_SIGBUS;
5509 goto out;
5510 }
5511 ret = block_page_mkwrite(vma, vmf, get_block);
5512 if (!ret && ext4_should_journal_data(inode)) {
5513 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5514 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5515 unlock_page(page);
5516 ret = VM_FAULT_SIGBUS;
5517 ext4_journal_stop(handle);
5518 goto out;
5519 }
5520 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5521 }
5522 ext4_journal_stop(handle);
5523 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5524 goto retry_alloc;
5525 out_ret:
5526 ret = block_page_mkwrite_return(ret);
5527 out:
5528 up_read(&EXT4_I(inode)->i_mmap_sem);
5529 sb_end_pagefault(inode->i_sb);
5530 return ret;
5531 }
5532
5533 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5534 {
5535 struct inode *inode = file_inode(vma->vm_file);
5536 int err;
5537
5538 down_read(&EXT4_I(inode)->i_mmap_sem);
5539 err = filemap_fault(vma, vmf);
5540 up_read(&EXT4_I(inode)->i_mmap_sem);
5541
5542 return err;
5543 }
This page took 0.136756 seconds and 6 git commands to generate.