Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54 {
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u16 csum_lo;
57 __u16 csum_hi = 0;
58 __u32 csum;
59
60 csum_lo = le16_to_cpu(raw->i_checksum_lo);
61 raw->i_checksum_lo = 0;
62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65 raw->i_checksum_hi = 0;
66 }
67
68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 EXT4_INODE_SIZE(inode->i_sb));
70
71 raw->i_checksum_lo = cpu_to_le16(csum_lo);
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76 return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 struct ext4_inode_info *ei)
81 {
82 __u32 provided, calculated;
83
84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 cpu_to_le32(EXT4_OS_LINUX) ||
86 !ext4_has_metadata_csum(inode->i_sb))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102 {
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !ext4_has_metadata_csum(inode->i_sb))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119 {
120 trace_ext4_begin_ordered_truncate(inode, new_size);
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned int offset,
135 unsigned int length);
136 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
138 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
139 int pextents);
140
141 /*
142 * Test whether an inode is a fast symlink.
143 */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146 int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
148
149 if (ext4_has_inline_data(inode))
150 return 0;
151
152 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153 }
154
155 /*
156 * Restart the transaction associated with *handle. This does a commit,
157 * so before we call here everything must be consistently dirtied against
158 * this transaction.
159 */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161 int nblocks)
162 {
163 int ret;
164
165 /*
166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
167 * moment, get_block can be called only for blocks inside i_size since
168 * page cache has been already dropped and writes are blocked by
169 * i_mutex. So we can safely drop the i_data_sem here.
170 */
171 BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 jbd_debug(2, "restarting handle %p\n", handle);
173 up_write(&EXT4_I(inode)->i_data_sem);
174 ret = ext4_journal_restart(handle, nblocks);
175 down_write(&EXT4_I(inode)->i_data_sem);
176 ext4_discard_preallocations(inode);
177
178 return ret;
179 }
180
181 /*
182 * Called at the last iput() if i_nlink is zero.
183 */
184 void ext4_evict_inode(struct inode *inode)
185 {
186 handle_t *handle;
187 int err;
188
189 trace_ext4_evict_inode(inode);
190
191 if (inode->i_nlink) {
192 /*
193 * When journalling data dirty buffers are tracked only in the
194 * journal. So although mm thinks everything is clean and
195 * ready for reaping the inode might still have some pages to
196 * write in the running transaction or waiting to be
197 * checkpointed. Thus calling jbd2_journal_invalidatepage()
198 * (via truncate_inode_pages()) to discard these buffers can
199 * cause data loss. Also even if we did not discard these
200 * buffers, we would have no way to find them after the inode
201 * is reaped and thus user could see stale data if he tries to
202 * read them before the transaction is checkpointed. So be
203 * careful and force everything to disk here... We use
204 * ei->i_datasync_tid to store the newest transaction
205 * containing inode's data.
206 *
207 * Note that directories do not have this problem because they
208 * don't use page cache.
209 */
210 if (ext4_should_journal_data(inode) &&
211 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
212 inode->i_ino != EXT4_JOURNAL_INO) {
213 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
214 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
215
216 jbd2_complete_transaction(journal, commit_tid);
217 filemap_write_and_wait(&inode->i_data);
218 }
219 truncate_inode_pages_final(&inode->i_data);
220
221 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
222 goto no_delete;
223 }
224
225 if (is_bad_inode(inode))
226 goto no_delete;
227 dquot_initialize(inode);
228
229 if (ext4_should_order_data(inode))
230 ext4_begin_ordered_truncate(inode, 0);
231 truncate_inode_pages_final(&inode->i_data);
232
233 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
234
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
238 */
239 sb_start_intwrite(inode->i_sb);
240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241 ext4_blocks_for_truncate(inode)+3);
242 if (IS_ERR(handle)) {
243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
249 ext4_orphan_del(NULL, inode);
250 sb_end_intwrite(inode->i_sb);
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
255 ext4_handle_sync(handle);
256 inode->i_size = 0;
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
259 ext4_warning(inode->i_sb,
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
263 if (inode->i_blocks)
264 ext4_truncate(inode);
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
272 if (!ext4_handle_has_enough_credits(handle, 3)) {
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
277 ext4_warning(inode->i_sb,
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
281 ext4_orphan_del(NULL, inode);
282 sb_end_intwrite(inode->i_sb);
283 goto no_delete;
284 }
285 }
286
287 /*
288 * Kill off the orphan record which ext4_truncate created.
289 * AKPM: I think this can be inside the above `if'.
290 * Note that ext4_orphan_del() has to be able to cope with the
291 * deletion of a non-existent orphan - this is because we don't
292 * know if ext4_truncate() actually created an orphan record.
293 * (Well, we could do this if we need to, but heck - it works)
294 */
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
305 if (ext4_mark_inode_dirty(handle, inode))
306 /* If that failed, just do the required in-core inode clear. */
307 ext4_clear_inode(inode);
308 else
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
311 sb_end_intwrite(inode->i_sb);
312 return;
313 no_delete:
314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320 return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325 * Called with i_data_sem down, which is important since we can call
326 * ext4_discard_preallocations() from here.
327 */
328 void ext4_da_update_reserve_space(struct inode *inode,
329 int used, int quota_claim)
330 {
331 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
332 struct ext4_inode_info *ei = EXT4_I(inode);
333
334 spin_lock(&ei->i_block_reservation_lock);
335 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
336 if (unlikely(used > ei->i_reserved_data_blocks)) {
337 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
338 "with only %d reserved data blocks",
339 __func__, inode->i_ino, used,
340 ei->i_reserved_data_blocks);
341 WARN_ON(1);
342 used = ei->i_reserved_data_blocks;
343 }
344
345 /* Update per-inode reservations */
346 ei->i_reserved_data_blocks -= used;
347 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
348
349 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
350
351 /* Update quota subsystem for data blocks */
352 if (quota_claim)
353 dquot_claim_block(inode, EXT4_C2B(sbi, used));
354 else {
355 /*
356 * We did fallocate with an offset that is already delayed
357 * allocated. So on delayed allocated writeback we should
358 * not re-claim the quota for fallocated blocks.
359 */
360 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
361 }
362
363 /*
364 * If we have done all the pending block allocations and if
365 * there aren't any writers on the inode, we can discard the
366 * inode's preallocations.
367 */
368 if ((ei->i_reserved_data_blocks == 0) &&
369 (atomic_read(&inode->i_writecount) == 0))
370 ext4_discard_preallocations(inode);
371 }
372
373 static int __check_block_validity(struct inode *inode, const char *func,
374 unsigned int line,
375 struct ext4_map_blocks *map)
376 {
377 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
378 map->m_len)) {
379 ext4_error_inode(inode, func, line, map->m_pblk,
380 "lblock %lu mapped to illegal pblock "
381 "(length %d)", (unsigned long) map->m_lblk,
382 map->m_len);
383 return -EIO;
384 }
385 return 0;
386 }
387
388 #define check_block_validity(inode, map) \
389 __check_block_validity((inode), __func__, __LINE__, (map))
390
391 #ifdef ES_AGGRESSIVE_TEST
392 static void ext4_map_blocks_es_recheck(handle_t *handle,
393 struct inode *inode,
394 struct ext4_map_blocks *es_map,
395 struct ext4_map_blocks *map,
396 int flags)
397 {
398 int retval;
399
400 map->m_flags = 0;
401 /*
402 * There is a race window that the result is not the same.
403 * e.g. xfstests #223 when dioread_nolock enables. The reason
404 * is that we lookup a block mapping in extent status tree with
405 * out taking i_data_sem. So at the time the unwritten extent
406 * could be converted.
407 */
408 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
409 down_read(&EXT4_I(inode)->i_data_sem);
410 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
411 retval = ext4_ext_map_blocks(handle, inode, map, flags &
412 EXT4_GET_BLOCKS_KEEP_SIZE);
413 } else {
414 retval = ext4_ind_map_blocks(handle, inode, map, flags &
415 EXT4_GET_BLOCKS_KEEP_SIZE);
416 }
417 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
418 up_read((&EXT4_I(inode)->i_data_sem));
419
420 /*
421 * We don't check m_len because extent will be collpased in status
422 * tree. So the m_len might not equal.
423 */
424 if (es_map->m_lblk != map->m_lblk ||
425 es_map->m_flags != map->m_flags ||
426 es_map->m_pblk != map->m_pblk) {
427 printk("ES cache assertion failed for inode: %lu "
428 "es_cached ex [%d/%d/%llu/%x] != "
429 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
430 inode->i_ino, es_map->m_lblk, es_map->m_len,
431 es_map->m_pblk, es_map->m_flags, map->m_lblk,
432 map->m_len, map->m_pblk, map->m_flags,
433 retval, flags);
434 }
435 }
436 #endif /* ES_AGGRESSIVE_TEST */
437
438 /*
439 * The ext4_map_blocks() function tries to look up the requested blocks,
440 * and returns if the blocks are already mapped.
441 *
442 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
443 * and store the allocated blocks in the result buffer head and mark it
444 * mapped.
445 *
446 * If file type is extents based, it will call ext4_ext_map_blocks(),
447 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
448 * based files
449 *
450 * On success, it returns the number of blocks being mapped or allocated.
451 * if create==0 and the blocks are pre-allocated and unwritten block,
452 * the result buffer head is unmapped. If the create ==1, it will make sure
453 * the buffer head is mapped.
454 *
455 * It returns 0 if plain look up failed (blocks have not been allocated), in
456 * that case, buffer head is unmapped
457 *
458 * It returns the error in case of allocation failure.
459 */
460 int ext4_map_blocks(handle_t *handle, struct inode *inode,
461 struct ext4_map_blocks *map, int flags)
462 {
463 struct extent_status es;
464 int retval;
465 int ret = 0;
466 #ifdef ES_AGGRESSIVE_TEST
467 struct ext4_map_blocks orig_map;
468
469 memcpy(&orig_map, map, sizeof(*map));
470 #endif
471
472 map->m_flags = 0;
473 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
474 "logical block %lu\n", inode->i_ino, flags, map->m_len,
475 (unsigned long) map->m_lblk);
476
477 /*
478 * ext4_map_blocks returns an int, and m_len is an unsigned int
479 */
480 if (unlikely(map->m_len > INT_MAX))
481 map->m_len = INT_MAX;
482
483 /* We can handle the block number less than EXT_MAX_BLOCKS */
484 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
485 return -EIO;
486
487 /* Lookup extent status tree firstly */
488 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
489 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
490 map->m_pblk = ext4_es_pblock(&es) +
491 map->m_lblk - es.es_lblk;
492 map->m_flags |= ext4_es_is_written(&es) ?
493 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
494 retval = es.es_len - (map->m_lblk - es.es_lblk);
495 if (retval > map->m_len)
496 retval = map->m_len;
497 map->m_len = retval;
498 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
499 retval = 0;
500 } else {
501 BUG_ON(1);
502 }
503 #ifdef ES_AGGRESSIVE_TEST
504 ext4_map_blocks_es_recheck(handle, inode, map,
505 &orig_map, flags);
506 #endif
507 goto found;
508 }
509
510 /*
511 * Try to see if we can get the block without requesting a new
512 * file system block.
513 */
514 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
515 down_read(&EXT4_I(inode)->i_data_sem);
516 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
517 retval = ext4_ext_map_blocks(handle, inode, map, flags &
518 EXT4_GET_BLOCKS_KEEP_SIZE);
519 } else {
520 retval = ext4_ind_map_blocks(handle, inode, map, flags &
521 EXT4_GET_BLOCKS_KEEP_SIZE);
522 }
523 if (retval > 0) {
524 unsigned int status;
525
526 if (unlikely(retval != map->m_len)) {
527 ext4_warning(inode->i_sb,
528 "ES len assertion failed for inode "
529 "%lu: retval %d != map->m_len %d",
530 inode->i_ino, retval, map->m_len);
531 WARN_ON(1);
532 }
533
534 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
535 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
536 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
537 ext4_find_delalloc_range(inode, map->m_lblk,
538 map->m_lblk + map->m_len - 1))
539 status |= EXTENT_STATUS_DELAYED;
540 ret = ext4_es_insert_extent(inode, map->m_lblk,
541 map->m_len, map->m_pblk, status);
542 if (ret < 0)
543 retval = ret;
544 }
545 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546 up_read((&EXT4_I(inode)->i_data_sem));
547
548 found:
549 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
550 ret = check_block_validity(inode, map);
551 if (ret != 0)
552 return ret;
553 }
554
555 /* If it is only a block(s) look up */
556 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
557 return retval;
558
559 /*
560 * Returns if the blocks have already allocated
561 *
562 * Note that if blocks have been preallocated
563 * ext4_ext_get_block() returns the create = 0
564 * with buffer head unmapped.
565 */
566 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
567 /*
568 * If we need to convert extent to unwritten
569 * we continue and do the actual work in
570 * ext4_ext_map_blocks()
571 */
572 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
573 return retval;
574
575 /*
576 * Here we clear m_flags because after allocating an new extent,
577 * it will be set again.
578 */
579 map->m_flags &= ~EXT4_MAP_FLAGS;
580
581 /*
582 * New blocks allocate and/or writing to unwritten extent
583 * will possibly result in updating i_data, so we take
584 * the write lock of i_data_sem, and call get_block()
585 * with create == 1 flag.
586 */
587 down_write(&EXT4_I(inode)->i_data_sem);
588
589 /*
590 * We need to check for EXT4 here because migrate
591 * could have changed the inode type in between
592 */
593 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
594 retval = ext4_ext_map_blocks(handle, inode, map, flags);
595 } else {
596 retval = ext4_ind_map_blocks(handle, inode, map, flags);
597
598 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
599 /*
600 * We allocated new blocks which will result in
601 * i_data's format changing. Force the migrate
602 * to fail by clearing migrate flags
603 */
604 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
605 }
606
607 /*
608 * Update reserved blocks/metadata blocks after successful
609 * block allocation which had been deferred till now. We don't
610 * support fallocate for non extent files. So we can update
611 * reserve space here.
612 */
613 if ((retval > 0) &&
614 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
615 ext4_da_update_reserve_space(inode, retval, 1);
616 }
617
618 if (retval > 0) {
619 unsigned int status;
620
621 if (unlikely(retval != map->m_len)) {
622 ext4_warning(inode->i_sb,
623 "ES len assertion failed for inode "
624 "%lu: retval %d != map->m_len %d",
625 inode->i_ino, retval, map->m_len);
626 WARN_ON(1);
627 }
628
629 /*
630 * If the extent has been zeroed out, we don't need to update
631 * extent status tree.
632 */
633 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
634 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
635 if (ext4_es_is_written(&es))
636 goto has_zeroout;
637 }
638 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
639 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
640 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
641 ext4_find_delalloc_range(inode, map->m_lblk,
642 map->m_lblk + map->m_len - 1))
643 status |= EXTENT_STATUS_DELAYED;
644 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
645 map->m_pblk, status);
646 if (ret < 0)
647 retval = ret;
648 }
649
650 has_zeroout:
651 up_write((&EXT4_I(inode)->i_data_sem));
652 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
653 ret = check_block_validity(inode, map);
654 if (ret != 0)
655 return ret;
656 }
657 return retval;
658 }
659
660 /* Maximum number of blocks we map for direct IO at once. */
661 #define DIO_MAX_BLOCKS 4096
662
663 static int _ext4_get_block(struct inode *inode, sector_t iblock,
664 struct buffer_head *bh, int flags)
665 {
666 handle_t *handle = ext4_journal_current_handle();
667 struct ext4_map_blocks map;
668 int ret = 0, started = 0;
669 int dio_credits;
670
671 if (ext4_has_inline_data(inode))
672 return -ERANGE;
673
674 map.m_lblk = iblock;
675 map.m_len = bh->b_size >> inode->i_blkbits;
676
677 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
678 /* Direct IO write... */
679 if (map.m_len > DIO_MAX_BLOCKS)
680 map.m_len = DIO_MAX_BLOCKS;
681 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
682 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
683 dio_credits);
684 if (IS_ERR(handle)) {
685 ret = PTR_ERR(handle);
686 return ret;
687 }
688 started = 1;
689 }
690
691 ret = ext4_map_blocks(handle, inode, &map, flags);
692 if (ret > 0) {
693 ext4_io_end_t *io_end = ext4_inode_aio(inode);
694
695 map_bh(bh, inode->i_sb, map.m_pblk);
696 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
697 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
698 set_buffer_defer_completion(bh);
699 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
700 ret = 0;
701 }
702 if (started)
703 ext4_journal_stop(handle);
704 return ret;
705 }
706
707 int ext4_get_block(struct inode *inode, sector_t iblock,
708 struct buffer_head *bh, int create)
709 {
710 return _ext4_get_block(inode, iblock, bh,
711 create ? EXT4_GET_BLOCKS_CREATE : 0);
712 }
713
714 /*
715 * `handle' can be NULL if create is zero
716 */
717 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
718 ext4_lblk_t block, int create)
719 {
720 struct ext4_map_blocks map;
721 struct buffer_head *bh;
722 int err;
723
724 J_ASSERT(handle != NULL || create == 0);
725
726 map.m_lblk = block;
727 map.m_len = 1;
728 err = ext4_map_blocks(handle, inode, &map,
729 create ? EXT4_GET_BLOCKS_CREATE : 0);
730
731 if (err == 0)
732 return create ? ERR_PTR(-ENOSPC) : NULL;
733 if (err < 0)
734 return ERR_PTR(err);
735
736 bh = sb_getblk(inode->i_sb, map.m_pblk);
737 if (unlikely(!bh))
738 return ERR_PTR(-ENOMEM);
739 if (map.m_flags & EXT4_MAP_NEW) {
740 J_ASSERT(create != 0);
741 J_ASSERT(handle != NULL);
742
743 /*
744 * Now that we do not always journal data, we should
745 * keep in mind whether this should always journal the
746 * new buffer as metadata. For now, regular file
747 * writes use ext4_get_block instead, so it's not a
748 * problem.
749 */
750 lock_buffer(bh);
751 BUFFER_TRACE(bh, "call get_create_access");
752 err = ext4_journal_get_create_access(handle, bh);
753 if (unlikely(err)) {
754 unlock_buffer(bh);
755 goto errout;
756 }
757 if (!buffer_uptodate(bh)) {
758 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
759 set_buffer_uptodate(bh);
760 }
761 unlock_buffer(bh);
762 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
763 err = ext4_handle_dirty_metadata(handle, inode, bh);
764 if (unlikely(err))
765 goto errout;
766 } else
767 BUFFER_TRACE(bh, "not a new buffer");
768 return bh;
769 errout:
770 brelse(bh);
771 return ERR_PTR(err);
772 }
773
774 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
775 ext4_lblk_t block, int create)
776 {
777 struct buffer_head *bh;
778
779 bh = ext4_getblk(handle, inode, block, create);
780 if (IS_ERR(bh))
781 return bh;
782 if (!bh || buffer_uptodate(bh))
783 return bh;
784 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
785 wait_on_buffer(bh);
786 if (buffer_uptodate(bh))
787 return bh;
788 put_bh(bh);
789 return ERR_PTR(-EIO);
790 }
791
792 int ext4_walk_page_buffers(handle_t *handle,
793 struct buffer_head *head,
794 unsigned from,
795 unsigned to,
796 int *partial,
797 int (*fn)(handle_t *handle,
798 struct buffer_head *bh))
799 {
800 struct buffer_head *bh;
801 unsigned block_start, block_end;
802 unsigned blocksize = head->b_size;
803 int err, ret = 0;
804 struct buffer_head *next;
805
806 for (bh = head, block_start = 0;
807 ret == 0 && (bh != head || !block_start);
808 block_start = block_end, bh = next) {
809 next = bh->b_this_page;
810 block_end = block_start + blocksize;
811 if (block_end <= from || block_start >= to) {
812 if (partial && !buffer_uptodate(bh))
813 *partial = 1;
814 continue;
815 }
816 err = (*fn)(handle, bh);
817 if (!ret)
818 ret = err;
819 }
820 return ret;
821 }
822
823 /*
824 * To preserve ordering, it is essential that the hole instantiation and
825 * the data write be encapsulated in a single transaction. We cannot
826 * close off a transaction and start a new one between the ext4_get_block()
827 * and the commit_write(). So doing the jbd2_journal_start at the start of
828 * prepare_write() is the right place.
829 *
830 * Also, this function can nest inside ext4_writepage(). In that case, we
831 * *know* that ext4_writepage() has generated enough buffer credits to do the
832 * whole page. So we won't block on the journal in that case, which is good,
833 * because the caller may be PF_MEMALLOC.
834 *
835 * By accident, ext4 can be reentered when a transaction is open via
836 * quota file writes. If we were to commit the transaction while thus
837 * reentered, there can be a deadlock - we would be holding a quota
838 * lock, and the commit would never complete if another thread had a
839 * transaction open and was blocking on the quota lock - a ranking
840 * violation.
841 *
842 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
843 * will _not_ run commit under these circumstances because handle->h_ref
844 * is elevated. We'll still have enough credits for the tiny quotafile
845 * write.
846 */
847 int do_journal_get_write_access(handle_t *handle,
848 struct buffer_head *bh)
849 {
850 int dirty = buffer_dirty(bh);
851 int ret;
852
853 if (!buffer_mapped(bh) || buffer_freed(bh))
854 return 0;
855 /*
856 * __block_write_begin() could have dirtied some buffers. Clean
857 * the dirty bit as jbd2_journal_get_write_access() could complain
858 * otherwise about fs integrity issues. Setting of the dirty bit
859 * by __block_write_begin() isn't a real problem here as we clear
860 * the bit before releasing a page lock and thus writeback cannot
861 * ever write the buffer.
862 */
863 if (dirty)
864 clear_buffer_dirty(bh);
865 BUFFER_TRACE(bh, "get write access");
866 ret = ext4_journal_get_write_access(handle, bh);
867 if (!ret && dirty)
868 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
869 return ret;
870 }
871
872 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
873 struct buffer_head *bh_result, int create);
874 static int ext4_write_begin(struct file *file, struct address_space *mapping,
875 loff_t pos, unsigned len, unsigned flags,
876 struct page **pagep, void **fsdata)
877 {
878 struct inode *inode = mapping->host;
879 int ret, needed_blocks;
880 handle_t *handle;
881 int retries = 0;
882 struct page *page;
883 pgoff_t index;
884 unsigned from, to;
885
886 trace_ext4_write_begin(inode, pos, len, flags);
887 /*
888 * Reserve one block more for addition to orphan list in case
889 * we allocate blocks but write fails for some reason
890 */
891 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
892 index = pos >> PAGE_CACHE_SHIFT;
893 from = pos & (PAGE_CACHE_SIZE - 1);
894 to = from + len;
895
896 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
897 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
898 flags, pagep);
899 if (ret < 0)
900 return ret;
901 if (ret == 1)
902 return 0;
903 }
904
905 /*
906 * grab_cache_page_write_begin() can take a long time if the
907 * system is thrashing due to memory pressure, or if the page
908 * is being written back. So grab it first before we start
909 * the transaction handle. This also allows us to allocate
910 * the page (if needed) without using GFP_NOFS.
911 */
912 retry_grab:
913 page = grab_cache_page_write_begin(mapping, index, flags);
914 if (!page)
915 return -ENOMEM;
916 unlock_page(page);
917
918 retry_journal:
919 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
920 if (IS_ERR(handle)) {
921 page_cache_release(page);
922 return PTR_ERR(handle);
923 }
924
925 lock_page(page);
926 if (page->mapping != mapping) {
927 /* The page got truncated from under us */
928 unlock_page(page);
929 page_cache_release(page);
930 ext4_journal_stop(handle);
931 goto retry_grab;
932 }
933 /* In case writeback began while the page was unlocked */
934 wait_for_stable_page(page);
935
936 if (ext4_should_dioread_nolock(inode))
937 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
938 else
939 ret = __block_write_begin(page, pos, len, ext4_get_block);
940
941 if (!ret && ext4_should_journal_data(inode)) {
942 ret = ext4_walk_page_buffers(handle, page_buffers(page),
943 from, to, NULL,
944 do_journal_get_write_access);
945 }
946
947 if (ret) {
948 unlock_page(page);
949 /*
950 * __block_write_begin may have instantiated a few blocks
951 * outside i_size. Trim these off again. Don't need
952 * i_size_read because we hold i_mutex.
953 *
954 * Add inode to orphan list in case we crash before
955 * truncate finishes
956 */
957 if (pos + len > inode->i_size && ext4_can_truncate(inode))
958 ext4_orphan_add(handle, inode);
959
960 ext4_journal_stop(handle);
961 if (pos + len > inode->i_size) {
962 ext4_truncate_failed_write(inode);
963 /*
964 * If truncate failed early the inode might
965 * still be on the orphan list; we need to
966 * make sure the inode is removed from the
967 * orphan list in that case.
968 */
969 if (inode->i_nlink)
970 ext4_orphan_del(NULL, inode);
971 }
972
973 if (ret == -ENOSPC &&
974 ext4_should_retry_alloc(inode->i_sb, &retries))
975 goto retry_journal;
976 page_cache_release(page);
977 return ret;
978 }
979 *pagep = page;
980 return ret;
981 }
982
983 /* For write_end() in data=journal mode */
984 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
985 {
986 int ret;
987 if (!buffer_mapped(bh) || buffer_freed(bh))
988 return 0;
989 set_buffer_uptodate(bh);
990 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
991 clear_buffer_meta(bh);
992 clear_buffer_prio(bh);
993 return ret;
994 }
995
996 /*
997 * We need to pick up the new inode size which generic_commit_write gave us
998 * `file' can be NULL - eg, when called from page_symlink().
999 *
1000 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1001 * buffers are managed internally.
1002 */
1003 static int ext4_write_end(struct file *file,
1004 struct address_space *mapping,
1005 loff_t pos, unsigned len, unsigned copied,
1006 struct page *page, void *fsdata)
1007 {
1008 handle_t *handle = ext4_journal_current_handle();
1009 struct inode *inode = mapping->host;
1010 int ret = 0, ret2;
1011 int i_size_changed = 0;
1012
1013 trace_ext4_write_end(inode, pos, len, copied);
1014 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1015 ret = ext4_jbd2_file_inode(handle, inode);
1016 if (ret) {
1017 unlock_page(page);
1018 page_cache_release(page);
1019 goto errout;
1020 }
1021 }
1022
1023 if (ext4_has_inline_data(inode)) {
1024 ret = ext4_write_inline_data_end(inode, pos, len,
1025 copied, page);
1026 if (ret < 0)
1027 goto errout;
1028 copied = ret;
1029 } else
1030 copied = block_write_end(file, mapping, pos,
1031 len, copied, page, fsdata);
1032 /*
1033 * it's important to update i_size while still holding page lock:
1034 * page writeout could otherwise come in and zero beyond i_size.
1035 */
1036 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1037 unlock_page(page);
1038 page_cache_release(page);
1039
1040 /*
1041 * Don't mark the inode dirty under page lock. First, it unnecessarily
1042 * makes the holding time of page lock longer. Second, it forces lock
1043 * ordering of page lock and transaction start for journaling
1044 * filesystems.
1045 */
1046 if (i_size_changed)
1047 ext4_mark_inode_dirty(handle, inode);
1048
1049 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1050 /* if we have allocated more blocks and copied
1051 * less. We will have blocks allocated outside
1052 * inode->i_size. So truncate them
1053 */
1054 ext4_orphan_add(handle, inode);
1055 errout:
1056 ret2 = ext4_journal_stop(handle);
1057 if (!ret)
1058 ret = ret2;
1059
1060 if (pos + len > inode->i_size) {
1061 ext4_truncate_failed_write(inode);
1062 /*
1063 * If truncate failed early the inode might still be
1064 * on the orphan list; we need to make sure the inode
1065 * is removed from the orphan list in that case.
1066 */
1067 if (inode->i_nlink)
1068 ext4_orphan_del(NULL, inode);
1069 }
1070
1071 return ret ? ret : copied;
1072 }
1073
1074 static int ext4_journalled_write_end(struct file *file,
1075 struct address_space *mapping,
1076 loff_t pos, unsigned len, unsigned copied,
1077 struct page *page, void *fsdata)
1078 {
1079 handle_t *handle = ext4_journal_current_handle();
1080 struct inode *inode = mapping->host;
1081 int ret = 0, ret2;
1082 int partial = 0;
1083 unsigned from, to;
1084 int size_changed = 0;
1085
1086 trace_ext4_journalled_write_end(inode, pos, len, copied);
1087 from = pos & (PAGE_CACHE_SIZE - 1);
1088 to = from + len;
1089
1090 BUG_ON(!ext4_handle_valid(handle));
1091
1092 if (ext4_has_inline_data(inode))
1093 copied = ext4_write_inline_data_end(inode, pos, len,
1094 copied, page);
1095 else {
1096 if (copied < len) {
1097 if (!PageUptodate(page))
1098 copied = 0;
1099 page_zero_new_buffers(page, from+copied, to);
1100 }
1101
1102 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1103 to, &partial, write_end_fn);
1104 if (!partial)
1105 SetPageUptodate(page);
1106 }
1107 size_changed = ext4_update_inode_size(inode, pos + copied);
1108 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1109 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1110 unlock_page(page);
1111 page_cache_release(page);
1112
1113 if (size_changed) {
1114 ret2 = ext4_mark_inode_dirty(handle, inode);
1115 if (!ret)
1116 ret = ret2;
1117 }
1118
1119 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1120 /* if we have allocated more blocks and copied
1121 * less. We will have blocks allocated outside
1122 * inode->i_size. So truncate them
1123 */
1124 ext4_orphan_add(handle, inode);
1125
1126 ret2 = ext4_journal_stop(handle);
1127 if (!ret)
1128 ret = ret2;
1129 if (pos + len > inode->i_size) {
1130 ext4_truncate_failed_write(inode);
1131 /*
1132 * If truncate failed early the inode might still be
1133 * on the orphan list; we need to make sure the inode
1134 * is removed from the orphan list in that case.
1135 */
1136 if (inode->i_nlink)
1137 ext4_orphan_del(NULL, inode);
1138 }
1139
1140 return ret ? ret : copied;
1141 }
1142
1143 /*
1144 * Reserve a single cluster located at lblock
1145 */
1146 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1147 {
1148 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1149 struct ext4_inode_info *ei = EXT4_I(inode);
1150 unsigned int md_needed;
1151 int ret;
1152
1153 /*
1154 * We will charge metadata quota at writeout time; this saves
1155 * us from metadata over-estimation, though we may go over by
1156 * a small amount in the end. Here we just reserve for data.
1157 */
1158 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1159 if (ret)
1160 return ret;
1161
1162 /*
1163 * recalculate the amount of metadata blocks to reserve
1164 * in order to allocate nrblocks
1165 * worse case is one extent per block
1166 */
1167 spin_lock(&ei->i_block_reservation_lock);
1168 /*
1169 * ext4_calc_metadata_amount() has side effects, which we have
1170 * to be prepared undo if we fail to claim space.
1171 */
1172 md_needed = 0;
1173 trace_ext4_da_reserve_space(inode, 0);
1174
1175 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1176 spin_unlock(&ei->i_block_reservation_lock);
1177 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1178 return -ENOSPC;
1179 }
1180 ei->i_reserved_data_blocks++;
1181 spin_unlock(&ei->i_block_reservation_lock);
1182
1183 return 0; /* success */
1184 }
1185
1186 static void ext4_da_release_space(struct inode *inode, int to_free)
1187 {
1188 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1189 struct ext4_inode_info *ei = EXT4_I(inode);
1190
1191 if (!to_free)
1192 return; /* Nothing to release, exit */
1193
1194 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1195
1196 trace_ext4_da_release_space(inode, to_free);
1197 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1198 /*
1199 * if there aren't enough reserved blocks, then the
1200 * counter is messed up somewhere. Since this
1201 * function is called from invalidate page, it's
1202 * harmless to return without any action.
1203 */
1204 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1205 "ino %lu, to_free %d with only %d reserved "
1206 "data blocks", inode->i_ino, to_free,
1207 ei->i_reserved_data_blocks);
1208 WARN_ON(1);
1209 to_free = ei->i_reserved_data_blocks;
1210 }
1211 ei->i_reserved_data_blocks -= to_free;
1212
1213 /* update fs dirty data blocks counter */
1214 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1215
1216 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1217
1218 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1219 }
1220
1221 static void ext4_da_page_release_reservation(struct page *page,
1222 unsigned int offset,
1223 unsigned int length)
1224 {
1225 int to_release = 0;
1226 struct buffer_head *head, *bh;
1227 unsigned int curr_off = 0;
1228 struct inode *inode = page->mapping->host;
1229 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1230 unsigned int stop = offset + length;
1231 int num_clusters;
1232 ext4_fsblk_t lblk;
1233
1234 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1235
1236 head = page_buffers(page);
1237 bh = head;
1238 do {
1239 unsigned int next_off = curr_off + bh->b_size;
1240
1241 if (next_off > stop)
1242 break;
1243
1244 if ((offset <= curr_off) && (buffer_delay(bh))) {
1245 to_release++;
1246 clear_buffer_delay(bh);
1247 }
1248 curr_off = next_off;
1249 } while ((bh = bh->b_this_page) != head);
1250
1251 if (to_release) {
1252 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1253 ext4_es_remove_extent(inode, lblk, to_release);
1254 }
1255
1256 /* If we have released all the blocks belonging to a cluster, then we
1257 * need to release the reserved space for that cluster. */
1258 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1259 while (num_clusters > 0) {
1260 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1261 ((num_clusters - 1) << sbi->s_cluster_bits);
1262 if (sbi->s_cluster_ratio == 1 ||
1263 !ext4_find_delalloc_cluster(inode, lblk))
1264 ext4_da_release_space(inode, 1);
1265
1266 num_clusters--;
1267 }
1268 }
1269
1270 /*
1271 * Delayed allocation stuff
1272 */
1273
1274 struct mpage_da_data {
1275 struct inode *inode;
1276 struct writeback_control *wbc;
1277
1278 pgoff_t first_page; /* The first page to write */
1279 pgoff_t next_page; /* Current page to examine */
1280 pgoff_t last_page; /* Last page to examine */
1281 /*
1282 * Extent to map - this can be after first_page because that can be
1283 * fully mapped. We somewhat abuse m_flags to store whether the extent
1284 * is delalloc or unwritten.
1285 */
1286 struct ext4_map_blocks map;
1287 struct ext4_io_submit io_submit; /* IO submission data */
1288 };
1289
1290 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1291 bool invalidate)
1292 {
1293 int nr_pages, i;
1294 pgoff_t index, end;
1295 struct pagevec pvec;
1296 struct inode *inode = mpd->inode;
1297 struct address_space *mapping = inode->i_mapping;
1298
1299 /* This is necessary when next_page == 0. */
1300 if (mpd->first_page >= mpd->next_page)
1301 return;
1302
1303 index = mpd->first_page;
1304 end = mpd->next_page - 1;
1305 if (invalidate) {
1306 ext4_lblk_t start, last;
1307 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1308 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1309 ext4_es_remove_extent(inode, start, last - start + 1);
1310 }
1311
1312 pagevec_init(&pvec, 0);
1313 while (index <= end) {
1314 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1315 if (nr_pages == 0)
1316 break;
1317 for (i = 0; i < nr_pages; i++) {
1318 struct page *page = pvec.pages[i];
1319 if (page->index > end)
1320 break;
1321 BUG_ON(!PageLocked(page));
1322 BUG_ON(PageWriteback(page));
1323 if (invalidate) {
1324 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1325 ClearPageUptodate(page);
1326 }
1327 unlock_page(page);
1328 }
1329 index = pvec.pages[nr_pages - 1]->index + 1;
1330 pagevec_release(&pvec);
1331 }
1332 }
1333
1334 static void ext4_print_free_blocks(struct inode *inode)
1335 {
1336 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1337 struct super_block *sb = inode->i_sb;
1338 struct ext4_inode_info *ei = EXT4_I(inode);
1339
1340 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1341 EXT4_C2B(EXT4_SB(inode->i_sb),
1342 ext4_count_free_clusters(sb)));
1343 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1344 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1345 (long long) EXT4_C2B(EXT4_SB(sb),
1346 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1347 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1348 (long long) EXT4_C2B(EXT4_SB(sb),
1349 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1350 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1351 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1352 ei->i_reserved_data_blocks);
1353 return;
1354 }
1355
1356 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1357 {
1358 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1359 }
1360
1361 /*
1362 * This function is grabs code from the very beginning of
1363 * ext4_map_blocks, but assumes that the caller is from delayed write
1364 * time. This function looks up the requested blocks and sets the
1365 * buffer delay bit under the protection of i_data_sem.
1366 */
1367 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1368 struct ext4_map_blocks *map,
1369 struct buffer_head *bh)
1370 {
1371 struct extent_status es;
1372 int retval;
1373 sector_t invalid_block = ~((sector_t) 0xffff);
1374 #ifdef ES_AGGRESSIVE_TEST
1375 struct ext4_map_blocks orig_map;
1376
1377 memcpy(&orig_map, map, sizeof(*map));
1378 #endif
1379
1380 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1381 invalid_block = ~0;
1382
1383 map->m_flags = 0;
1384 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1385 "logical block %lu\n", inode->i_ino, map->m_len,
1386 (unsigned long) map->m_lblk);
1387
1388 /* Lookup extent status tree firstly */
1389 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1390 if (ext4_es_is_hole(&es)) {
1391 retval = 0;
1392 down_read(&EXT4_I(inode)->i_data_sem);
1393 goto add_delayed;
1394 }
1395
1396 /*
1397 * Delayed extent could be allocated by fallocate.
1398 * So we need to check it.
1399 */
1400 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1401 map_bh(bh, inode->i_sb, invalid_block);
1402 set_buffer_new(bh);
1403 set_buffer_delay(bh);
1404 return 0;
1405 }
1406
1407 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1408 retval = es.es_len - (iblock - es.es_lblk);
1409 if (retval > map->m_len)
1410 retval = map->m_len;
1411 map->m_len = retval;
1412 if (ext4_es_is_written(&es))
1413 map->m_flags |= EXT4_MAP_MAPPED;
1414 else if (ext4_es_is_unwritten(&es))
1415 map->m_flags |= EXT4_MAP_UNWRITTEN;
1416 else
1417 BUG_ON(1);
1418
1419 #ifdef ES_AGGRESSIVE_TEST
1420 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1421 #endif
1422 return retval;
1423 }
1424
1425 /*
1426 * Try to see if we can get the block without requesting a new
1427 * file system block.
1428 */
1429 down_read(&EXT4_I(inode)->i_data_sem);
1430 if (ext4_has_inline_data(inode))
1431 retval = 0;
1432 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1433 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1434 else
1435 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1436
1437 add_delayed:
1438 if (retval == 0) {
1439 int ret;
1440 /*
1441 * XXX: __block_prepare_write() unmaps passed block,
1442 * is it OK?
1443 */
1444 /*
1445 * If the block was allocated from previously allocated cluster,
1446 * then we don't need to reserve it again. However we still need
1447 * to reserve metadata for every block we're going to write.
1448 */
1449 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1450 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1451 ret = ext4_da_reserve_space(inode, iblock);
1452 if (ret) {
1453 /* not enough space to reserve */
1454 retval = ret;
1455 goto out_unlock;
1456 }
1457 }
1458
1459 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1460 ~0, EXTENT_STATUS_DELAYED);
1461 if (ret) {
1462 retval = ret;
1463 goto out_unlock;
1464 }
1465
1466 map_bh(bh, inode->i_sb, invalid_block);
1467 set_buffer_new(bh);
1468 set_buffer_delay(bh);
1469 } else if (retval > 0) {
1470 int ret;
1471 unsigned int status;
1472
1473 if (unlikely(retval != map->m_len)) {
1474 ext4_warning(inode->i_sb,
1475 "ES len assertion failed for inode "
1476 "%lu: retval %d != map->m_len %d",
1477 inode->i_ino, retval, map->m_len);
1478 WARN_ON(1);
1479 }
1480
1481 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1482 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1483 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1484 map->m_pblk, status);
1485 if (ret != 0)
1486 retval = ret;
1487 }
1488
1489 out_unlock:
1490 up_read((&EXT4_I(inode)->i_data_sem));
1491
1492 return retval;
1493 }
1494
1495 /*
1496 * This is a special get_block_t callback which is used by
1497 * ext4_da_write_begin(). It will either return mapped block or
1498 * reserve space for a single block.
1499 *
1500 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1501 * We also have b_blocknr = -1 and b_bdev initialized properly
1502 *
1503 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1504 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1505 * initialized properly.
1506 */
1507 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1508 struct buffer_head *bh, int create)
1509 {
1510 struct ext4_map_blocks map;
1511 int ret = 0;
1512
1513 BUG_ON(create == 0);
1514 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1515
1516 map.m_lblk = iblock;
1517 map.m_len = 1;
1518
1519 /*
1520 * first, we need to know whether the block is allocated already
1521 * preallocated blocks are unmapped but should treated
1522 * the same as allocated blocks.
1523 */
1524 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1525 if (ret <= 0)
1526 return ret;
1527
1528 map_bh(bh, inode->i_sb, map.m_pblk);
1529 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1530
1531 if (buffer_unwritten(bh)) {
1532 /* A delayed write to unwritten bh should be marked
1533 * new and mapped. Mapped ensures that we don't do
1534 * get_block multiple times when we write to the same
1535 * offset and new ensures that we do proper zero out
1536 * for partial write.
1537 */
1538 set_buffer_new(bh);
1539 set_buffer_mapped(bh);
1540 }
1541 return 0;
1542 }
1543
1544 static int bget_one(handle_t *handle, struct buffer_head *bh)
1545 {
1546 get_bh(bh);
1547 return 0;
1548 }
1549
1550 static int bput_one(handle_t *handle, struct buffer_head *bh)
1551 {
1552 put_bh(bh);
1553 return 0;
1554 }
1555
1556 static int __ext4_journalled_writepage(struct page *page,
1557 unsigned int len)
1558 {
1559 struct address_space *mapping = page->mapping;
1560 struct inode *inode = mapping->host;
1561 struct buffer_head *page_bufs = NULL;
1562 handle_t *handle = NULL;
1563 int ret = 0, err = 0;
1564 int inline_data = ext4_has_inline_data(inode);
1565 struct buffer_head *inode_bh = NULL;
1566
1567 ClearPageChecked(page);
1568
1569 if (inline_data) {
1570 BUG_ON(page->index != 0);
1571 BUG_ON(len > ext4_get_max_inline_size(inode));
1572 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1573 if (inode_bh == NULL)
1574 goto out;
1575 } else {
1576 page_bufs = page_buffers(page);
1577 if (!page_bufs) {
1578 BUG();
1579 goto out;
1580 }
1581 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1582 NULL, bget_one);
1583 }
1584 /* As soon as we unlock the page, it can go away, but we have
1585 * references to buffers so we are safe */
1586 unlock_page(page);
1587
1588 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1589 ext4_writepage_trans_blocks(inode));
1590 if (IS_ERR(handle)) {
1591 ret = PTR_ERR(handle);
1592 goto out;
1593 }
1594
1595 BUG_ON(!ext4_handle_valid(handle));
1596
1597 if (inline_data) {
1598 BUFFER_TRACE(inode_bh, "get write access");
1599 ret = ext4_journal_get_write_access(handle, inode_bh);
1600
1601 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1602
1603 } else {
1604 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1605 do_journal_get_write_access);
1606
1607 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1608 write_end_fn);
1609 }
1610 if (ret == 0)
1611 ret = err;
1612 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1613 err = ext4_journal_stop(handle);
1614 if (!ret)
1615 ret = err;
1616
1617 if (!ext4_has_inline_data(inode))
1618 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1619 NULL, bput_one);
1620 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1621 out:
1622 brelse(inode_bh);
1623 return ret;
1624 }
1625
1626 /*
1627 * Note that we don't need to start a transaction unless we're journaling data
1628 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1629 * need to file the inode to the transaction's list in ordered mode because if
1630 * we are writing back data added by write(), the inode is already there and if
1631 * we are writing back data modified via mmap(), no one guarantees in which
1632 * transaction the data will hit the disk. In case we are journaling data, we
1633 * cannot start transaction directly because transaction start ranks above page
1634 * lock so we have to do some magic.
1635 *
1636 * This function can get called via...
1637 * - ext4_writepages after taking page lock (have journal handle)
1638 * - journal_submit_inode_data_buffers (no journal handle)
1639 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1640 * - grab_page_cache when doing write_begin (have journal handle)
1641 *
1642 * We don't do any block allocation in this function. If we have page with
1643 * multiple blocks we need to write those buffer_heads that are mapped. This
1644 * is important for mmaped based write. So if we do with blocksize 1K
1645 * truncate(f, 1024);
1646 * a = mmap(f, 0, 4096);
1647 * a[0] = 'a';
1648 * truncate(f, 4096);
1649 * we have in the page first buffer_head mapped via page_mkwrite call back
1650 * but other buffer_heads would be unmapped but dirty (dirty done via the
1651 * do_wp_page). So writepage should write the first block. If we modify
1652 * the mmap area beyond 1024 we will again get a page_fault and the
1653 * page_mkwrite callback will do the block allocation and mark the
1654 * buffer_heads mapped.
1655 *
1656 * We redirty the page if we have any buffer_heads that is either delay or
1657 * unwritten in the page.
1658 *
1659 * We can get recursively called as show below.
1660 *
1661 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1662 * ext4_writepage()
1663 *
1664 * But since we don't do any block allocation we should not deadlock.
1665 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1666 */
1667 static int ext4_writepage(struct page *page,
1668 struct writeback_control *wbc)
1669 {
1670 int ret = 0;
1671 loff_t size;
1672 unsigned int len;
1673 struct buffer_head *page_bufs = NULL;
1674 struct inode *inode = page->mapping->host;
1675 struct ext4_io_submit io_submit;
1676 bool keep_towrite = false;
1677
1678 trace_ext4_writepage(page);
1679 size = i_size_read(inode);
1680 if (page->index == size >> PAGE_CACHE_SHIFT)
1681 len = size & ~PAGE_CACHE_MASK;
1682 else
1683 len = PAGE_CACHE_SIZE;
1684
1685 page_bufs = page_buffers(page);
1686 /*
1687 * We cannot do block allocation or other extent handling in this
1688 * function. If there are buffers needing that, we have to redirty
1689 * the page. But we may reach here when we do a journal commit via
1690 * journal_submit_inode_data_buffers() and in that case we must write
1691 * allocated buffers to achieve data=ordered mode guarantees.
1692 */
1693 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1694 ext4_bh_delay_or_unwritten)) {
1695 redirty_page_for_writepage(wbc, page);
1696 if (current->flags & PF_MEMALLOC) {
1697 /*
1698 * For memory cleaning there's no point in writing only
1699 * some buffers. So just bail out. Warn if we came here
1700 * from direct reclaim.
1701 */
1702 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1703 == PF_MEMALLOC);
1704 unlock_page(page);
1705 return 0;
1706 }
1707 keep_towrite = true;
1708 }
1709
1710 if (PageChecked(page) && ext4_should_journal_data(inode))
1711 /*
1712 * It's mmapped pagecache. Add buffers and journal it. There
1713 * doesn't seem much point in redirtying the page here.
1714 */
1715 return __ext4_journalled_writepage(page, len);
1716
1717 ext4_io_submit_init(&io_submit, wbc);
1718 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1719 if (!io_submit.io_end) {
1720 redirty_page_for_writepage(wbc, page);
1721 unlock_page(page);
1722 return -ENOMEM;
1723 }
1724 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1725 ext4_io_submit(&io_submit);
1726 /* Drop io_end reference we got from init */
1727 ext4_put_io_end_defer(io_submit.io_end);
1728 return ret;
1729 }
1730
1731 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1732 {
1733 int len;
1734 loff_t size = i_size_read(mpd->inode);
1735 int err;
1736
1737 BUG_ON(page->index != mpd->first_page);
1738 if (page->index == size >> PAGE_CACHE_SHIFT)
1739 len = size & ~PAGE_CACHE_MASK;
1740 else
1741 len = PAGE_CACHE_SIZE;
1742 clear_page_dirty_for_io(page);
1743 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1744 if (!err)
1745 mpd->wbc->nr_to_write--;
1746 mpd->first_page++;
1747
1748 return err;
1749 }
1750
1751 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1752
1753 /*
1754 * mballoc gives us at most this number of blocks...
1755 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1756 * The rest of mballoc seems to handle chunks up to full group size.
1757 */
1758 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1759
1760 /*
1761 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1762 *
1763 * @mpd - extent of blocks
1764 * @lblk - logical number of the block in the file
1765 * @bh - buffer head we want to add to the extent
1766 *
1767 * The function is used to collect contig. blocks in the same state. If the
1768 * buffer doesn't require mapping for writeback and we haven't started the
1769 * extent of buffers to map yet, the function returns 'true' immediately - the
1770 * caller can write the buffer right away. Otherwise the function returns true
1771 * if the block has been added to the extent, false if the block couldn't be
1772 * added.
1773 */
1774 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1775 struct buffer_head *bh)
1776 {
1777 struct ext4_map_blocks *map = &mpd->map;
1778
1779 /* Buffer that doesn't need mapping for writeback? */
1780 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1781 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1782 /* So far no extent to map => we write the buffer right away */
1783 if (map->m_len == 0)
1784 return true;
1785 return false;
1786 }
1787
1788 /* First block in the extent? */
1789 if (map->m_len == 0) {
1790 map->m_lblk = lblk;
1791 map->m_len = 1;
1792 map->m_flags = bh->b_state & BH_FLAGS;
1793 return true;
1794 }
1795
1796 /* Don't go larger than mballoc is willing to allocate */
1797 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1798 return false;
1799
1800 /* Can we merge the block to our big extent? */
1801 if (lblk == map->m_lblk + map->m_len &&
1802 (bh->b_state & BH_FLAGS) == map->m_flags) {
1803 map->m_len++;
1804 return true;
1805 }
1806 return false;
1807 }
1808
1809 /*
1810 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1811 *
1812 * @mpd - extent of blocks for mapping
1813 * @head - the first buffer in the page
1814 * @bh - buffer we should start processing from
1815 * @lblk - logical number of the block in the file corresponding to @bh
1816 *
1817 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1818 * the page for IO if all buffers in this page were mapped and there's no
1819 * accumulated extent of buffers to map or add buffers in the page to the
1820 * extent of buffers to map. The function returns 1 if the caller can continue
1821 * by processing the next page, 0 if it should stop adding buffers to the
1822 * extent to map because we cannot extend it anymore. It can also return value
1823 * < 0 in case of error during IO submission.
1824 */
1825 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1826 struct buffer_head *head,
1827 struct buffer_head *bh,
1828 ext4_lblk_t lblk)
1829 {
1830 struct inode *inode = mpd->inode;
1831 int err;
1832 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1833 >> inode->i_blkbits;
1834
1835 do {
1836 BUG_ON(buffer_locked(bh));
1837
1838 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1839 /* Found extent to map? */
1840 if (mpd->map.m_len)
1841 return 0;
1842 /* Everything mapped so far and we hit EOF */
1843 break;
1844 }
1845 } while (lblk++, (bh = bh->b_this_page) != head);
1846 /* So far everything mapped? Submit the page for IO. */
1847 if (mpd->map.m_len == 0) {
1848 err = mpage_submit_page(mpd, head->b_page);
1849 if (err < 0)
1850 return err;
1851 }
1852 return lblk < blocks;
1853 }
1854
1855 /*
1856 * mpage_map_buffers - update buffers corresponding to changed extent and
1857 * submit fully mapped pages for IO
1858 *
1859 * @mpd - description of extent to map, on return next extent to map
1860 *
1861 * Scan buffers corresponding to changed extent (we expect corresponding pages
1862 * to be already locked) and update buffer state according to new extent state.
1863 * We map delalloc buffers to their physical location, clear unwritten bits,
1864 * and mark buffers as uninit when we perform writes to unwritten extents
1865 * and do extent conversion after IO is finished. If the last page is not fully
1866 * mapped, we update @map to the next extent in the last page that needs
1867 * mapping. Otherwise we submit the page for IO.
1868 */
1869 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1870 {
1871 struct pagevec pvec;
1872 int nr_pages, i;
1873 struct inode *inode = mpd->inode;
1874 struct buffer_head *head, *bh;
1875 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1876 pgoff_t start, end;
1877 ext4_lblk_t lblk;
1878 sector_t pblock;
1879 int err;
1880
1881 start = mpd->map.m_lblk >> bpp_bits;
1882 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1883 lblk = start << bpp_bits;
1884 pblock = mpd->map.m_pblk;
1885
1886 pagevec_init(&pvec, 0);
1887 while (start <= end) {
1888 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1889 PAGEVEC_SIZE);
1890 if (nr_pages == 0)
1891 break;
1892 for (i = 0; i < nr_pages; i++) {
1893 struct page *page = pvec.pages[i];
1894
1895 if (page->index > end)
1896 break;
1897 /* Up to 'end' pages must be contiguous */
1898 BUG_ON(page->index != start);
1899 bh = head = page_buffers(page);
1900 do {
1901 if (lblk < mpd->map.m_lblk)
1902 continue;
1903 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1904 /*
1905 * Buffer after end of mapped extent.
1906 * Find next buffer in the page to map.
1907 */
1908 mpd->map.m_len = 0;
1909 mpd->map.m_flags = 0;
1910 /*
1911 * FIXME: If dioread_nolock supports
1912 * blocksize < pagesize, we need to make
1913 * sure we add size mapped so far to
1914 * io_end->size as the following call
1915 * can submit the page for IO.
1916 */
1917 err = mpage_process_page_bufs(mpd, head,
1918 bh, lblk);
1919 pagevec_release(&pvec);
1920 if (err > 0)
1921 err = 0;
1922 return err;
1923 }
1924 if (buffer_delay(bh)) {
1925 clear_buffer_delay(bh);
1926 bh->b_blocknr = pblock++;
1927 }
1928 clear_buffer_unwritten(bh);
1929 } while (lblk++, (bh = bh->b_this_page) != head);
1930
1931 /*
1932 * FIXME: This is going to break if dioread_nolock
1933 * supports blocksize < pagesize as we will try to
1934 * convert potentially unmapped parts of inode.
1935 */
1936 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1937 /* Page fully mapped - let IO run! */
1938 err = mpage_submit_page(mpd, page);
1939 if (err < 0) {
1940 pagevec_release(&pvec);
1941 return err;
1942 }
1943 start++;
1944 }
1945 pagevec_release(&pvec);
1946 }
1947 /* Extent fully mapped and matches with page boundary. We are done. */
1948 mpd->map.m_len = 0;
1949 mpd->map.m_flags = 0;
1950 return 0;
1951 }
1952
1953 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1954 {
1955 struct inode *inode = mpd->inode;
1956 struct ext4_map_blocks *map = &mpd->map;
1957 int get_blocks_flags;
1958 int err, dioread_nolock;
1959
1960 trace_ext4_da_write_pages_extent(inode, map);
1961 /*
1962 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1963 * to convert an unwritten extent to be initialized (in the case
1964 * where we have written into one or more preallocated blocks). It is
1965 * possible that we're going to need more metadata blocks than
1966 * previously reserved. However we must not fail because we're in
1967 * writeback and there is nothing we can do about it so it might result
1968 * in data loss. So use reserved blocks to allocate metadata if
1969 * possible.
1970 *
1971 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1972 * the blocks in question are delalloc blocks. This indicates
1973 * that the blocks and quotas has already been checked when
1974 * the data was copied into the page cache.
1975 */
1976 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1977 EXT4_GET_BLOCKS_METADATA_NOFAIL;
1978 dioread_nolock = ext4_should_dioread_nolock(inode);
1979 if (dioread_nolock)
1980 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1981 if (map->m_flags & (1 << BH_Delay))
1982 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1983
1984 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
1985 if (err < 0)
1986 return err;
1987 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
1988 if (!mpd->io_submit.io_end->handle &&
1989 ext4_handle_valid(handle)) {
1990 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
1991 handle->h_rsv_handle = NULL;
1992 }
1993 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
1994 }
1995
1996 BUG_ON(map->m_len == 0);
1997 if (map->m_flags & EXT4_MAP_NEW) {
1998 struct block_device *bdev = inode->i_sb->s_bdev;
1999 int i;
2000
2001 for (i = 0; i < map->m_len; i++)
2002 unmap_underlying_metadata(bdev, map->m_pblk + i);
2003 }
2004 return 0;
2005 }
2006
2007 /*
2008 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2009 * mpd->len and submit pages underlying it for IO
2010 *
2011 * @handle - handle for journal operations
2012 * @mpd - extent to map
2013 * @give_up_on_write - we set this to true iff there is a fatal error and there
2014 * is no hope of writing the data. The caller should discard
2015 * dirty pages to avoid infinite loops.
2016 *
2017 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2018 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2019 * them to initialized or split the described range from larger unwritten
2020 * extent. Note that we need not map all the described range since allocation
2021 * can return less blocks or the range is covered by more unwritten extents. We
2022 * cannot map more because we are limited by reserved transaction credits. On
2023 * the other hand we always make sure that the last touched page is fully
2024 * mapped so that it can be written out (and thus forward progress is
2025 * guaranteed). After mapping we submit all mapped pages for IO.
2026 */
2027 static int mpage_map_and_submit_extent(handle_t *handle,
2028 struct mpage_da_data *mpd,
2029 bool *give_up_on_write)
2030 {
2031 struct inode *inode = mpd->inode;
2032 struct ext4_map_blocks *map = &mpd->map;
2033 int err;
2034 loff_t disksize;
2035 int progress = 0;
2036
2037 mpd->io_submit.io_end->offset =
2038 ((loff_t)map->m_lblk) << inode->i_blkbits;
2039 do {
2040 err = mpage_map_one_extent(handle, mpd);
2041 if (err < 0) {
2042 struct super_block *sb = inode->i_sb;
2043
2044 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2045 goto invalidate_dirty_pages;
2046 /*
2047 * Let the uper layers retry transient errors.
2048 * In the case of ENOSPC, if ext4_count_free_blocks()
2049 * is non-zero, a commit should free up blocks.
2050 */
2051 if ((err == -ENOMEM) ||
2052 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2053 if (progress)
2054 goto update_disksize;
2055 return err;
2056 }
2057 ext4_msg(sb, KERN_CRIT,
2058 "Delayed block allocation failed for "
2059 "inode %lu at logical offset %llu with"
2060 " max blocks %u with error %d",
2061 inode->i_ino,
2062 (unsigned long long)map->m_lblk,
2063 (unsigned)map->m_len, -err);
2064 ext4_msg(sb, KERN_CRIT,
2065 "This should not happen!! Data will "
2066 "be lost\n");
2067 if (err == -ENOSPC)
2068 ext4_print_free_blocks(inode);
2069 invalidate_dirty_pages:
2070 *give_up_on_write = true;
2071 return err;
2072 }
2073 progress = 1;
2074 /*
2075 * Update buffer state, submit mapped pages, and get us new
2076 * extent to map
2077 */
2078 err = mpage_map_and_submit_buffers(mpd);
2079 if (err < 0)
2080 goto update_disksize;
2081 } while (map->m_len);
2082
2083 update_disksize:
2084 /*
2085 * Update on-disk size after IO is submitted. Races with
2086 * truncate are avoided by checking i_size under i_data_sem.
2087 */
2088 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2089 if (disksize > EXT4_I(inode)->i_disksize) {
2090 int err2;
2091 loff_t i_size;
2092
2093 down_write(&EXT4_I(inode)->i_data_sem);
2094 i_size = i_size_read(inode);
2095 if (disksize > i_size)
2096 disksize = i_size;
2097 if (disksize > EXT4_I(inode)->i_disksize)
2098 EXT4_I(inode)->i_disksize = disksize;
2099 err2 = ext4_mark_inode_dirty(handle, inode);
2100 up_write(&EXT4_I(inode)->i_data_sem);
2101 if (err2)
2102 ext4_error(inode->i_sb,
2103 "Failed to mark inode %lu dirty",
2104 inode->i_ino);
2105 if (!err)
2106 err = err2;
2107 }
2108 return err;
2109 }
2110
2111 /*
2112 * Calculate the total number of credits to reserve for one writepages
2113 * iteration. This is called from ext4_writepages(). We map an extent of
2114 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2115 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2116 * bpp - 1 blocks in bpp different extents.
2117 */
2118 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2119 {
2120 int bpp = ext4_journal_blocks_per_page(inode);
2121
2122 return ext4_meta_trans_blocks(inode,
2123 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2124 }
2125
2126 /*
2127 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2128 * and underlying extent to map
2129 *
2130 * @mpd - where to look for pages
2131 *
2132 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2133 * IO immediately. When we find a page which isn't mapped we start accumulating
2134 * extent of buffers underlying these pages that needs mapping (formed by
2135 * either delayed or unwritten buffers). We also lock the pages containing
2136 * these buffers. The extent found is returned in @mpd structure (starting at
2137 * mpd->lblk with length mpd->len blocks).
2138 *
2139 * Note that this function can attach bios to one io_end structure which are
2140 * neither logically nor physically contiguous. Although it may seem as an
2141 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2142 * case as we need to track IO to all buffers underlying a page in one io_end.
2143 */
2144 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2145 {
2146 struct address_space *mapping = mpd->inode->i_mapping;
2147 struct pagevec pvec;
2148 unsigned int nr_pages;
2149 long left = mpd->wbc->nr_to_write;
2150 pgoff_t index = mpd->first_page;
2151 pgoff_t end = mpd->last_page;
2152 int tag;
2153 int i, err = 0;
2154 int blkbits = mpd->inode->i_blkbits;
2155 ext4_lblk_t lblk;
2156 struct buffer_head *head;
2157
2158 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2159 tag = PAGECACHE_TAG_TOWRITE;
2160 else
2161 tag = PAGECACHE_TAG_DIRTY;
2162
2163 pagevec_init(&pvec, 0);
2164 mpd->map.m_len = 0;
2165 mpd->next_page = index;
2166 while (index <= end) {
2167 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2168 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2169 if (nr_pages == 0)
2170 goto out;
2171
2172 for (i = 0; i < nr_pages; i++) {
2173 struct page *page = pvec.pages[i];
2174
2175 /*
2176 * At this point, the page may be truncated or
2177 * invalidated (changing page->mapping to NULL), or
2178 * even swizzled back from swapper_space to tmpfs file
2179 * mapping. However, page->index will not change
2180 * because we have a reference on the page.
2181 */
2182 if (page->index > end)
2183 goto out;
2184
2185 /*
2186 * Accumulated enough dirty pages? This doesn't apply
2187 * to WB_SYNC_ALL mode. For integrity sync we have to
2188 * keep going because someone may be concurrently
2189 * dirtying pages, and we might have synced a lot of
2190 * newly appeared dirty pages, but have not synced all
2191 * of the old dirty pages.
2192 */
2193 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2194 goto out;
2195
2196 /* If we can't merge this page, we are done. */
2197 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2198 goto out;
2199
2200 lock_page(page);
2201 /*
2202 * If the page is no longer dirty, or its mapping no
2203 * longer corresponds to inode we are writing (which
2204 * means it has been truncated or invalidated), or the
2205 * page is already under writeback and we are not doing
2206 * a data integrity writeback, skip the page
2207 */
2208 if (!PageDirty(page) ||
2209 (PageWriteback(page) &&
2210 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2211 unlikely(page->mapping != mapping)) {
2212 unlock_page(page);
2213 continue;
2214 }
2215
2216 wait_on_page_writeback(page);
2217 BUG_ON(PageWriteback(page));
2218
2219 if (mpd->map.m_len == 0)
2220 mpd->first_page = page->index;
2221 mpd->next_page = page->index + 1;
2222 /* Add all dirty buffers to mpd */
2223 lblk = ((ext4_lblk_t)page->index) <<
2224 (PAGE_CACHE_SHIFT - blkbits);
2225 head = page_buffers(page);
2226 err = mpage_process_page_bufs(mpd, head, head, lblk);
2227 if (err <= 0)
2228 goto out;
2229 err = 0;
2230 left--;
2231 }
2232 pagevec_release(&pvec);
2233 cond_resched();
2234 }
2235 return 0;
2236 out:
2237 pagevec_release(&pvec);
2238 return err;
2239 }
2240
2241 static int __writepage(struct page *page, struct writeback_control *wbc,
2242 void *data)
2243 {
2244 struct address_space *mapping = data;
2245 int ret = ext4_writepage(page, wbc);
2246 mapping_set_error(mapping, ret);
2247 return ret;
2248 }
2249
2250 static int ext4_writepages(struct address_space *mapping,
2251 struct writeback_control *wbc)
2252 {
2253 pgoff_t writeback_index = 0;
2254 long nr_to_write = wbc->nr_to_write;
2255 int range_whole = 0;
2256 int cycled = 1;
2257 handle_t *handle = NULL;
2258 struct mpage_da_data mpd;
2259 struct inode *inode = mapping->host;
2260 int needed_blocks, rsv_blocks = 0, ret = 0;
2261 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2262 bool done;
2263 struct blk_plug plug;
2264 bool give_up_on_write = false;
2265
2266 trace_ext4_writepages(inode, wbc);
2267
2268 /*
2269 * No pages to write? This is mainly a kludge to avoid starting
2270 * a transaction for special inodes like journal inode on last iput()
2271 * because that could violate lock ordering on umount
2272 */
2273 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2274 goto out_writepages;
2275
2276 if (ext4_should_journal_data(inode)) {
2277 struct blk_plug plug;
2278
2279 blk_start_plug(&plug);
2280 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2281 blk_finish_plug(&plug);
2282 goto out_writepages;
2283 }
2284
2285 /*
2286 * If the filesystem has aborted, it is read-only, so return
2287 * right away instead of dumping stack traces later on that
2288 * will obscure the real source of the problem. We test
2289 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2290 * the latter could be true if the filesystem is mounted
2291 * read-only, and in that case, ext4_writepages should
2292 * *never* be called, so if that ever happens, we would want
2293 * the stack trace.
2294 */
2295 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2296 ret = -EROFS;
2297 goto out_writepages;
2298 }
2299
2300 if (ext4_should_dioread_nolock(inode)) {
2301 /*
2302 * We may need to convert up to one extent per block in
2303 * the page and we may dirty the inode.
2304 */
2305 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2306 }
2307
2308 /*
2309 * If we have inline data and arrive here, it means that
2310 * we will soon create the block for the 1st page, so
2311 * we'd better clear the inline data here.
2312 */
2313 if (ext4_has_inline_data(inode)) {
2314 /* Just inode will be modified... */
2315 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2316 if (IS_ERR(handle)) {
2317 ret = PTR_ERR(handle);
2318 goto out_writepages;
2319 }
2320 BUG_ON(ext4_test_inode_state(inode,
2321 EXT4_STATE_MAY_INLINE_DATA));
2322 ext4_destroy_inline_data(handle, inode);
2323 ext4_journal_stop(handle);
2324 }
2325
2326 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2327 range_whole = 1;
2328
2329 if (wbc->range_cyclic) {
2330 writeback_index = mapping->writeback_index;
2331 if (writeback_index)
2332 cycled = 0;
2333 mpd.first_page = writeback_index;
2334 mpd.last_page = -1;
2335 } else {
2336 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2337 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2338 }
2339
2340 mpd.inode = inode;
2341 mpd.wbc = wbc;
2342 ext4_io_submit_init(&mpd.io_submit, wbc);
2343 retry:
2344 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2345 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2346 done = false;
2347 blk_start_plug(&plug);
2348 while (!done && mpd.first_page <= mpd.last_page) {
2349 /* For each extent of pages we use new io_end */
2350 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2351 if (!mpd.io_submit.io_end) {
2352 ret = -ENOMEM;
2353 break;
2354 }
2355
2356 /*
2357 * We have two constraints: We find one extent to map and we
2358 * must always write out whole page (makes a difference when
2359 * blocksize < pagesize) so that we don't block on IO when we
2360 * try to write out the rest of the page. Journalled mode is
2361 * not supported by delalloc.
2362 */
2363 BUG_ON(ext4_should_journal_data(inode));
2364 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2365
2366 /* start a new transaction */
2367 handle = ext4_journal_start_with_reserve(inode,
2368 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2369 if (IS_ERR(handle)) {
2370 ret = PTR_ERR(handle);
2371 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2372 "%ld pages, ino %lu; err %d", __func__,
2373 wbc->nr_to_write, inode->i_ino, ret);
2374 /* Release allocated io_end */
2375 ext4_put_io_end(mpd.io_submit.io_end);
2376 break;
2377 }
2378
2379 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2380 ret = mpage_prepare_extent_to_map(&mpd);
2381 if (!ret) {
2382 if (mpd.map.m_len)
2383 ret = mpage_map_and_submit_extent(handle, &mpd,
2384 &give_up_on_write);
2385 else {
2386 /*
2387 * We scanned the whole range (or exhausted
2388 * nr_to_write), submitted what was mapped and
2389 * didn't find anything needing mapping. We are
2390 * done.
2391 */
2392 done = true;
2393 }
2394 }
2395 ext4_journal_stop(handle);
2396 /* Submit prepared bio */
2397 ext4_io_submit(&mpd.io_submit);
2398 /* Unlock pages we didn't use */
2399 mpage_release_unused_pages(&mpd, give_up_on_write);
2400 /* Drop our io_end reference we got from init */
2401 ext4_put_io_end(mpd.io_submit.io_end);
2402
2403 if (ret == -ENOSPC && sbi->s_journal) {
2404 /*
2405 * Commit the transaction which would
2406 * free blocks released in the transaction
2407 * and try again
2408 */
2409 jbd2_journal_force_commit_nested(sbi->s_journal);
2410 ret = 0;
2411 continue;
2412 }
2413 /* Fatal error - ENOMEM, EIO... */
2414 if (ret)
2415 break;
2416 }
2417 blk_finish_plug(&plug);
2418 if (!ret && !cycled && wbc->nr_to_write > 0) {
2419 cycled = 1;
2420 mpd.last_page = writeback_index - 1;
2421 mpd.first_page = 0;
2422 goto retry;
2423 }
2424
2425 /* Update index */
2426 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2427 /*
2428 * Set the writeback_index so that range_cyclic
2429 * mode will write it back later
2430 */
2431 mapping->writeback_index = mpd.first_page;
2432
2433 out_writepages:
2434 trace_ext4_writepages_result(inode, wbc, ret,
2435 nr_to_write - wbc->nr_to_write);
2436 return ret;
2437 }
2438
2439 static int ext4_nonda_switch(struct super_block *sb)
2440 {
2441 s64 free_clusters, dirty_clusters;
2442 struct ext4_sb_info *sbi = EXT4_SB(sb);
2443
2444 /*
2445 * switch to non delalloc mode if we are running low
2446 * on free block. The free block accounting via percpu
2447 * counters can get slightly wrong with percpu_counter_batch getting
2448 * accumulated on each CPU without updating global counters
2449 * Delalloc need an accurate free block accounting. So switch
2450 * to non delalloc when we are near to error range.
2451 */
2452 free_clusters =
2453 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2454 dirty_clusters =
2455 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2456 /*
2457 * Start pushing delalloc when 1/2 of free blocks are dirty.
2458 */
2459 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2460 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2461
2462 if (2 * free_clusters < 3 * dirty_clusters ||
2463 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2464 /*
2465 * free block count is less than 150% of dirty blocks
2466 * or free blocks is less than watermark
2467 */
2468 return 1;
2469 }
2470 return 0;
2471 }
2472
2473 /* We always reserve for an inode update; the superblock could be there too */
2474 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2475 {
2476 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2477 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2478 return 1;
2479
2480 if (pos + len <= 0x7fffffffULL)
2481 return 1;
2482
2483 /* We might need to update the superblock to set LARGE_FILE */
2484 return 2;
2485 }
2486
2487 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2488 loff_t pos, unsigned len, unsigned flags,
2489 struct page **pagep, void **fsdata)
2490 {
2491 int ret, retries = 0;
2492 struct page *page;
2493 pgoff_t index;
2494 struct inode *inode = mapping->host;
2495 handle_t *handle;
2496
2497 index = pos >> PAGE_CACHE_SHIFT;
2498
2499 if (ext4_nonda_switch(inode->i_sb)) {
2500 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2501 return ext4_write_begin(file, mapping, pos,
2502 len, flags, pagep, fsdata);
2503 }
2504 *fsdata = (void *)0;
2505 trace_ext4_da_write_begin(inode, pos, len, flags);
2506
2507 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2508 ret = ext4_da_write_inline_data_begin(mapping, inode,
2509 pos, len, flags,
2510 pagep, fsdata);
2511 if (ret < 0)
2512 return ret;
2513 if (ret == 1)
2514 return 0;
2515 }
2516
2517 /*
2518 * grab_cache_page_write_begin() can take a long time if the
2519 * system is thrashing due to memory pressure, or if the page
2520 * is being written back. So grab it first before we start
2521 * the transaction handle. This also allows us to allocate
2522 * the page (if needed) without using GFP_NOFS.
2523 */
2524 retry_grab:
2525 page = grab_cache_page_write_begin(mapping, index, flags);
2526 if (!page)
2527 return -ENOMEM;
2528 unlock_page(page);
2529
2530 /*
2531 * With delayed allocation, we don't log the i_disksize update
2532 * if there is delayed block allocation. But we still need
2533 * to journalling the i_disksize update if writes to the end
2534 * of file which has an already mapped buffer.
2535 */
2536 retry_journal:
2537 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2538 ext4_da_write_credits(inode, pos, len));
2539 if (IS_ERR(handle)) {
2540 page_cache_release(page);
2541 return PTR_ERR(handle);
2542 }
2543
2544 lock_page(page);
2545 if (page->mapping != mapping) {
2546 /* The page got truncated from under us */
2547 unlock_page(page);
2548 page_cache_release(page);
2549 ext4_journal_stop(handle);
2550 goto retry_grab;
2551 }
2552 /* In case writeback began while the page was unlocked */
2553 wait_for_stable_page(page);
2554
2555 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2556 if (ret < 0) {
2557 unlock_page(page);
2558 ext4_journal_stop(handle);
2559 /*
2560 * block_write_begin may have instantiated a few blocks
2561 * outside i_size. Trim these off again. Don't need
2562 * i_size_read because we hold i_mutex.
2563 */
2564 if (pos + len > inode->i_size)
2565 ext4_truncate_failed_write(inode);
2566
2567 if (ret == -ENOSPC &&
2568 ext4_should_retry_alloc(inode->i_sb, &retries))
2569 goto retry_journal;
2570
2571 page_cache_release(page);
2572 return ret;
2573 }
2574
2575 *pagep = page;
2576 return ret;
2577 }
2578
2579 /*
2580 * Check if we should update i_disksize
2581 * when write to the end of file but not require block allocation
2582 */
2583 static int ext4_da_should_update_i_disksize(struct page *page,
2584 unsigned long offset)
2585 {
2586 struct buffer_head *bh;
2587 struct inode *inode = page->mapping->host;
2588 unsigned int idx;
2589 int i;
2590
2591 bh = page_buffers(page);
2592 idx = offset >> inode->i_blkbits;
2593
2594 for (i = 0; i < idx; i++)
2595 bh = bh->b_this_page;
2596
2597 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2598 return 0;
2599 return 1;
2600 }
2601
2602 static int ext4_da_write_end(struct file *file,
2603 struct address_space *mapping,
2604 loff_t pos, unsigned len, unsigned copied,
2605 struct page *page, void *fsdata)
2606 {
2607 struct inode *inode = mapping->host;
2608 int ret = 0, ret2;
2609 handle_t *handle = ext4_journal_current_handle();
2610 loff_t new_i_size;
2611 unsigned long start, end;
2612 int write_mode = (int)(unsigned long)fsdata;
2613
2614 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2615 return ext4_write_end(file, mapping, pos,
2616 len, copied, page, fsdata);
2617
2618 trace_ext4_da_write_end(inode, pos, len, copied);
2619 start = pos & (PAGE_CACHE_SIZE - 1);
2620 end = start + copied - 1;
2621
2622 /*
2623 * generic_write_end() will run mark_inode_dirty() if i_size
2624 * changes. So let's piggyback the i_disksize mark_inode_dirty
2625 * into that.
2626 */
2627 new_i_size = pos + copied;
2628 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2629 if (ext4_has_inline_data(inode) ||
2630 ext4_da_should_update_i_disksize(page, end)) {
2631 ext4_update_i_disksize(inode, new_i_size);
2632 /* We need to mark inode dirty even if
2633 * new_i_size is less that inode->i_size
2634 * bu greater than i_disksize.(hint delalloc)
2635 */
2636 ext4_mark_inode_dirty(handle, inode);
2637 }
2638 }
2639
2640 if (write_mode != CONVERT_INLINE_DATA &&
2641 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2642 ext4_has_inline_data(inode))
2643 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2644 page);
2645 else
2646 ret2 = generic_write_end(file, mapping, pos, len, copied,
2647 page, fsdata);
2648
2649 copied = ret2;
2650 if (ret2 < 0)
2651 ret = ret2;
2652 ret2 = ext4_journal_stop(handle);
2653 if (!ret)
2654 ret = ret2;
2655
2656 return ret ? ret : copied;
2657 }
2658
2659 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2660 unsigned int length)
2661 {
2662 /*
2663 * Drop reserved blocks
2664 */
2665 BUG_ON(!PageLocked(page));
2666 if (!page_has_buffers(page))
2667 goto out;
2668
2669 ext4_da_page_release_reservation(page, offset, length);
2670
2671 out:
2672 ext4_invalidatepage(page, offset, length);
2673
2674 return;
2675 }
2676
2677 /*
2678 * Force all delayed allocation blocks to be allocated for a given inode.
2679 */
2680 int ext4_alloc_da_blocks(struct inode *inode)
2681 {
2682 trace_ext4_alloc_da_blocks(inode);
2683
2684 if (!EXT4_I(inode)->i_reserved_data_blocks)
2685 return 0;
2686
2687 /*
2688 * We do something simple for now. The filemap_flush() will
2689 * also start triggering a write of the data blocks, which is
2690 * not strictly speaking necessary (and for users of
2691 * laptop_mode, not even desirable). However, to do otherwise
2692 * would require replicating code paths in:
2693 *
2694 * ext4_writepages() ->
2695 * write_cache_pages() ---> (via passed in callback function)
2696 * __mpage_da_writepage() -->
2697 * mpage_add_bh_to_extent()
2698 * mpage_da_map_blocks()
2699 *
2700 * The problem is that write_cache_pages(), located in
2701 * mm/page-writeback.c, marks pages clean in preparation for
2702 * doing I/O, which is not desirable if we're not planning on
2703 * doing I/O at all.
2704 *
2705 * We could call write_cache_pages(), and then redirty all of
2706 * the pages by calling redirty_page_for_writepage() but that
2707 * would be ugly in the extreme. So instead we would need to
2708 * replicate parts of the code in the above functions,
2709 * simplifying them because we wouldn't actually intend to
2710 * write out the pages, but rather only collect contiguous
2711 * logical block extents, call the multi-block allocator, and
2712 * then update the buffer heads with the block allocations.
2713 *
2714 * For now, though, we'll cheat by calling filemap_flush(),
2715 * which will map the blocks, and start the I/O, but not
2716 * actually wait for the I/O to complete.
2717 */
2718 return filemap_flush(inode->i_mapping);
2719 }
2720
2721 /*
2722 * bmap() is special. It gets used by applications such as lilo and by
2723 * the swapper to find the on-disk block of a specific piece of data.
2724 *
2725 * Naturally, this is dangerous if the block concerned is still in the
2726 * journal. If somebody makes a swapfile on an ext4 data-journaling
2727 * filesystem and enables swap, then they may get a nasty shock when the
2728 * data getting swapped to that swapfile suddenly gets overwritten by
2729 * the original zero's written out previously to the journal and
2730 * awaiting writeback in the kernel's buffer cache.
2731 *
2732 * So, if we see any bmap calls here on a modified, data-journaled file,
2733 * take extra steps to flush any blocks which might be in the cache.
2734 */
2735 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2736 {
2737 struct inode *inode = mapping->host;
2738 journal_t *journal;
2739 int err;
2740
2741 /*
2742 * We can get here for an inline file via the FIBMAP ioctl
2743 */
2744 if (ext4_has_inline_data(inode))
2745 return 0;
2746
2747 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2748 test_opt(inode->i_sb, DELALLOC)) {
2749 /*
2750 * With delalloc we want to sync the file
2751 * so that we can make sure we allocate
2752 * blocks for file
2753 */
2754 filemap_write_and_wait(mapping);
2755 }
2756
2757 if (EXT4_JOURNAL(inode) &&
2758 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2759 /*
2760 * This is a REALLY heavyweight approach, but the use of
2761 * bmap on dirty files is expected to be extremely rare:
2762 * only if we run lilo or swapon on a freshly made file
2763 * do we expect this to happen.
2764 *
2765 * (bmap requires CAP_SYS_RAWIO so this does not
2766 * represent an unprivileged user DOS attack --- we'd be
2767 * in trouble if mortal users could trigger this path at
2768 * will.)
2769 *
2770 * NB. EXT4_STATE_JDATA is not set on files other than
2771 * regular files. If somebody wants to bmap a directory
2772 * or symlink and gets confused because the buffer
2773 * hasn't yet been flushed to disk, they deserve
2774 * everything they get.
2775 */
2776
2777 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2778 journal = EXT4_JOURNAL(inode);
2779 jbd2_journal_lock_updates(journal);
2780 err = jbd2_journal_flush(journal);
2781 jbd2_journal_unlock_updates(journal);
2782
2783 if (err)
2784 return 0;
2785 }
2786
2787 return generic_block_bmap(mapping, block, ext4_get_block);
2788 }
2789
2790 static int ext4_readpage(struct file *file, struct page *page)
2791 {
2792 int ret = -EAGAIN;
2793 struct inode *inode = page->mapping->host;
2794
2795 trace_ext4_readpage(page);
2796
2797 if (ext4_has_inline_data(inode))
2798 ret = ext4_readpage_inline(inode, page);
2799
2800 if (ret == -EAGAIN)
2801 return mpage_readpage(page, ext4_get_block);
2802
2803 return ret;
2804 }
2805
2806 static int
2807 ext4_readpages(struct file *file, struct address_space *mapping,
2808 struct list_head *pages, unsigned nr_pages)
2809 {
2810 struct inode *inode = mapping->host;
2811
2812 /* If the file has inline data, no need to do readpages. */
2813 if (ext4_has_inline_data(inode))
2814 return 0;
2815
2816 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2817 }
2818
2819 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2820 unsigned int length)
2821 {
2822 trace_ext4_invalidatepage(page, offset, length);
2823
2824 /* No journalling happens on data buffers when this function is used */
2825 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2826
2827 block_invalidatepage(page, offset, length);
2828 }
2829
2830 static int __ext4_journalled_invalidatepage(struct page *page,
2831 unsigned int offset,
2832 unsigned int length)
2833 {
2834 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2835
2836 trace_ext4_journalled_invalidatepage(page, offset, length);
2837
2838 /*
2839 * If it's a full truncate we just forget about the pending dirtying
2840 */
2841 if (offset == 0 && length == PAGE_CACHE_SIZE)
2842 ClearPageChecked(page);
2843
2844 return jbd2_journal_invalidatepage(journal, page, offset, length);
2845 }
2846
2847 /* Wrapper for aops... */
2848 static void ext4_journalled_invalidatepage(struct page *page,
2849 unsigned int offset,
2850 unsigned int length)
2851 {
2852 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2853 }
2854
2855 static int ext4_releasepage(struct page *page, gfp_t wait)
2856 {
2857 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2858
2859 trace_ext4_releasepage(page);
2860
2861 /* Page has dirty journalled data -> cannot release */
2862 if (PageChecked(page))
2863 return 0;
2864 if (journal)
2865 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2866 else
2867 return try_to_free_buffers(page);
2868 }
2869
2870 /*
2871 * ext4_get_block used when preparing for a DIO write or buffer write.
2872 * We allocate an uinitialized extent if blocks haven't been allocated.
2873 * The extent will be converted to initialized after the IO is complete.
2874 */
2875 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2876 struct buffer_head *bh_result, int create)
2877 {
2878 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2879 inode->i_ino, create);
2880 return _ext4_get_block(inode, iblock, bh_result,
2881 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2882 }
2883
2884 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2885 struct buffer_head *bh_result, int create)
2886 {
2887 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2888 inode->i_ino, create);
2889 return _ext4_get_block(inode, iblock, bh_result,
2890 EXT4_GET_BLOCKS_NO_LOCK);
2891 }
2892
2893 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2894 ssize_t size, void *private)
2895 {
2896 ext4_io_end_t *io_end = iocb->private;
2897
2898 /* if not async direct IO just return */
2899 if (!io_end)
2900 return;
2901
2902 ext_debug("ext4_end_io_dio(): io_end 0x%p "
2903 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2904 iocb->private, io_end->inode->i_ino, iocb, offset,
2905 size);
2906
2907 iocb->private = NULL;
2908 io_end->offset = offset;
2909 io_end->size = size;
2910 ext4_put_io_end(io_end);
2911 }
2912
2913 /*
2914 * For ext4 extent files, ext4 will do direct-io write to holes,
2915 * preallocated extents, and those write extend the file, no need to
2916 * fall back to buffered IO.
2917 *
2918 * For holes, we fallocate those blocks, mark them as unwritten
2919 * If those blocks were preallocated, we mark sure they are split, but
2920 * still keep the range to write as unwritten.
2921 *
2922 * The unwritten extents will be converted to written when DIO is completed.
2923 * For async direct IO, since the IO may still pending when return, we
2924 * set up an end_io call back function, which will do the conversion
2925 * when async direct IO completed.
2926 *
2927 * If the O_DIRECT write will extend the file then add this inode to the
2928 * orphan list. So recovery will truncate it back to the original size
2929 * if the machine crashes during the write.
2930 *
2931 */
2932 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2933 struct iov_iter *iter, loff_t offset)
2934 {
2935 struct file *file = iocb->ki_filp;
2936 struct inode *inode = file->f_mapping->host;
2937 ssize_t ret;
2938 size_t count = iov_iter_count(iter);
2939 int overwrite = 0;
2940 get_block_t *get_block_func = NULL;
2941 int dio_flags = 0;
2942 loff_t final_size = offset + count;
2943 ext4_io_end_t *io_end = NULL;
2944
2945 /* Use the old path for reads and writes beyond i_size. */
2946 if (rw != WRITE || final_size > inode->i_size)
2947 return ext4_ind_direct_IO(rw, iocb, iter, offset);
2948
2949 BUG_ON(iocb->private == NULL);
2950
2951 /*
2952 * Make all waiters for direct IO properly wait also for extent
2953 * conversion. This also disallows race between truncate() and
2954 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2955 */
2956 if (rw == WRITE)
2957 atomic_inc(&inode->i_dio_count);
2958
2959 /* If we do a overwrite dio, i_mutex locking can be released */
2960 overwrite = *((int *)iocb->private);
2961
2962 if (overwrite) {
2963 down_read(&EXT4_I(inode)->i_data_sem);
2964 mutex_unlock(&inode->i_mutex);
2965 }
2966
2967 /*
2968 * We could direct write to holes and fallocate.
2969 *
2970 * Allocated blocks to fill the hole are marked as
2971 * unwritten to prevent parallel buffered read to expose
2972 * the stale data before DIO complete the data IO.
2973 *
2974 * As to previously fallocated extents, ext4 get_block will
2975 * just simply mark the buffer mapped but still keep the
2976 * extents unwritten.
2977 *
2978 * For non AIO case, we will convert those unwritten extents
2979 * to written after return back from blockdev_direct_IO.
2980 *
2981 * For async DIO, the conversion needs to be deferred when the
2982 * IO is completed. The ext4 end_io callback function will be
2983 * called to take care of the conversion work. Here for async
2984 * case, we allocate an io_end structure to hook to the iocb.
2985 */
2986 iocb->private = NULL;
2987 ext4_inode_aio_set(inode, NULL);
2988 if (!is_sync_kiocb(iocb)) {
2989 io_end = ext4_init_io_end(inode, GFP_NOFS);
2990 if (!io_end) {
2991 ret = -ENOMEM;
2992 goto retake_lock;
2993 }
2994 /*
2995 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
2996 */
2997 iocb->private = ext4_get_io_end(io_end);
2998 /*
2999 * we save the io structure for current async direct
3000 * IO, so that later ext4_map_blocks() could flag the
3001 * io structure whether there is a unwritten extents
3002 * needs to be converted when IO is completed.
3003 */
3004 ext4_inode_aio_set(inode, io_end);
3005 }
3006
3007 if (overwrite) {
3008 get_block_func = ext4_get_block_write_nolock;
3009 } else {
3010 get_block_func = ext4_get_block_write;
3011 dio_flags = DIO_LOCKING;
3012 }
3013 ret = __blockdev_direct_IO(rw, iocb, inode,
3014 inode->i_sb->s_bdev, iter,
3015 offset,
3016 get_block_func,
3017 ext4_end_io_dio,
3018 NULL,
3019 dio_flags);
3020
3021 /*
3022 * Put our reference to io_end. This can free the io_end structure e.g.
3023 * in sync IO case or in case of error. It can even perform extent
3024 * conversion if all bios we submitted finished before we got here.
3025 * Note that in that case iocb->private can be already set to NULL
3026 * here.
3027 */
3028 if (io_end) {
3029 ext4_inode_aio_set(inode, NULL);
3030 ext4_put_io_end(io_end);
3031 /*
3032 * When no IO was submitted ext4_end_io_dio() was not
3033 * called so we have to put iocb's reference.
3034 */
3035 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3036 WARN_ON(iocb->private != io_end);
3037 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3038 ext4_put_io_end(io_end);
3039 iocb->private = NULL;
3040 }
3041 }
3042 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3043 EXT4_STATE_DIO_UNWRITTEN)) {
3044 int err;
3045 /*
3046 * for non AIO case, since the IO is already
3047 * completed, we could do the conversion right here
3048 */
3049 err = ext4_convert_unwritten_extents(NULL, inode,
3050 offset, ret);
3051 if (err < 0)
3052 ret = err;
3053 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3054 }
3055
3056 retake_lock:
3057 if (rw == WRITE)
3058 inode_dio_done(inode);
3059 /* take i_mutex locking again if we do a ovewrite dio */
3060 if (overwrite) {
3061 up_read(&EXT4_I(inode)->i_data_sem);
3062 mutex_lock(&inode->i_mutex);
3063 }
3064
3065 return ret;
3066 }
3067
3068 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3069 struct iov_iter *iter, loff_t offset)
3070 {
3071 struct file *file = iocb->ki_filp;
3072 struct inode *inode = file->f_mapping->host;
3073 size_t count = iov_iter_count(iter);
3074 ssize_t ret;
3075
3076 /*
3077 * If we are doing data journalling we don't support O_DIRECT
3078 */
3079 if (ext4_should_journal_data(inode))
3080 return 0;
3081
3082 /* Let buffer I/O handle the inline data case. */
3083 if (ext4_has_inline_data(inode))
3084 return 0;
3085
3086 trace_ext4_direct_IO_enter(inode, offset, count, rw);
3087 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3088 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3089 else
3090 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3091 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3092 return ret;
3093 }
3094
3095 /*
3096 * Pages can be marked dirty completely asynchronously from ext4's journalling
3097 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3098 * much here because ->set_page_dirty is called under VFS locks. The page is
3099 * not necessarily locked.
3100 *
3101 * We cannot just dirty the page and leave attached buffers clean, because the
3102 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3103 * or jbddirty because all the journalling code will explode.
3104 *
3105 * So what we do is to mark the page "pending dirty" and next time writepage
3106 * is called, propagate that into the buffers appropriately.
3107 */
3108 static int ext4_journalled_set_page_dirty(struct page *page)
3109 {
3110 SetPageChecked(page);
3111 return __set_page_dirty_nobuffers(page);
3112 }
3113
3114 static const struct address_space_operations ext4_aops = {
3115 .readpage = ext4_readpage,
3116 .readpages = ext4_readpages,
3117 .writepage = ext4_writepage,
3118 .writepages = ext4_writepages,
3119 .write_begin = ext4_write_begin,
3120 .write_end = ext4_write_end,
3121 .bmap = ext4_bmap,
3122 .invalidatepage = ext4_invalidatepage,
3123 .releasepage = ext4_releasepage,
3124 .direct_IO = ext4_direct_IO,
3125 .migratepage = buffer_migrate_page,
3126 .is_partially_uptodate = block_is_partially_uptodate,
3127 .error_remove_page = generic_error_remove_page,
3128 };
3129
3130 static const struct address_space_operations ext4_journalled_aops = {
3131 .readpage = ext4_readpage,
3132 .readpages = ext4_readpages,
3133 .writepage = ext4_writepage,
3134 .writepages = ext4_writepages,
3135 .write_begin = ext4_write_begin,
3136 .write_end = ext4_journalled_write_end,
3137 .set_page_dirty = ext4_journalled_set_page_dirty,
3138 .bmap = ext4_bmap,
3139 .invalidatepage = ext4_journalled_invalidatepage,
3140 .releasepage = ext4_releasepage,
3141 .direct_IO = ext4_direct_IO,
3142 .is_partially_uptodate = block_is_partially_uptodate,
3143 .error_remove_page = generic_error_remove_page,
3144 };
3145
3146 static const struct address_space_operations ext4_da_aops = {
3147 .readpage = ext4_readpage,
3148 .readpages = ext4_readpages,
3149 .writepage = ext4_writepage,
3150 .writepages = ext4_writepages,
3151 .write_begin = ext4_da_write_begin,
3152 .write_end = ext4_da_write_end,
3153 .bmap = ext4_bmap,
3154 .invalidatepage = ext4_da_invalidatepage,
3155 .releasepage = ext4_releasepage,
3156 .direct_IO = ext4_direct_IO,
3157 .migratepage = buffer_migrate_page,
3158 .is_partially_uptodate = block_is_partially_uptodate,
3159 .error_remove_page = generic_error_remove_page,
3160 };
3161
3162 void ext4_set_aops(struct inode *inode)
3163 {
3164 switch (ext4_inode_journal_mode(inode)) {
3165 case EXT4_INODE_ORDERED_DATA_MODE:
3166 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3167 break;
3168 case EXT4_INODE_WRITEBACK_DATA_MODE:
3169 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3170 break;
3171 case EXT4_INODE_JOURNAL_DATA_MODE:
3172 inode->i_mapping->a_ops = &ext4_journalled_aops;
3173 return;
3174 default:
3175 BUG();
3176 }
3177 if (test_opt(inode->i_sb, DELALLOC))
3178 inode->i_mapping->a_ops = &ext4_da_aops;
3179 else
3180 inode->i_mapping->a_ops = &ext4_aops;
3181 }
3182
3183 /*
3184 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3185 * starting from file offset 'from'. The range to be zero'd must
3186 * be contained with in one block. If the specified range exceeds
3187 * the end of the block it will be shortened to end of the block
3188 * that cooresponds to 'from'
3189 */
3190 static int ext4_block_zero_page_range(handle_t *handle,
3191 struct address_space *mapping, loff_t from, loff_t length)
3192 {
3193 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3194 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3195 unsigned blocksize, max, pos;
3196 ext4_lblk_t iblock;
3197 struct inode *inode = mapping->host;
3198 struct buffer_head *bh;
3199 struct page *page;
3200 int err = 0;
3201
3202 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3203 mapping_gfp_mask(mapping) & ~__GFP_FS);
3204 if (!page)
3205 return -ENOMEM;
3206
3207 blocksize = inode->i_sb->s_blocksize;
3208 max = blocksize - (offset & (blocksize - 1));
3209
3210 /*
3211 * correct length if it does not fall between
3212 * 'from' and the end of the block
3213 */
3214 if (length > max || length < 0)
3215 length = max;
3216
3217 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3218
3219 if (!page_has_buffers(page))
3220 create_empty_buffers(page, blocksize, 0);
3221
3222 /* Find the buffer that contains "offset" */
3223 bh = page_buffers(page);
3224 pos = blocksize;
3225 while (offset >= pos) {
3226 bh = bh->b_this_page;
3227 iblock++;
3228 pos += blocksize;
3229 }
3230 if (buffer_freed(bh)) {
3231 BUFFER_TRACE(bh, "freed: skip");
3232 goto unlock;
3233 }
3234 if (!buffer_mapped(bh)) {
3235 BUFFER_TRACE(bh, "unmapped");
3236 ext4_get_block(inode, iblock, bh, 0);
3237 /* unmapped? It's a hole - nothing to do */
3238 if (!buffer_mapped(bh)) {
3239 BUFFER_TRACE(bh, "still unmapped");
3240 goto unlock;
3241 }
3242 }
3243
3244 /* Ok, it's mapped. Make sure it's up-to-date */
3245 if (PageUptodate(page))
3246 set_buffer_uptodate(bh);
3247
3248 if (!buffer_uptodate(bh)) {
3249 err = -EIO;
3250 ll_rw_block(READ, 1, &bh);
3251 wait_on_buffer(bh);
3252 /* Uhhuh. Read error. Complain and punt. */
3253 if (!buffer_uptodate(bh))
3254 goto unlock;
3255 }
3256 if (ext4_should_journal_data(inode)) {
3257 BUFFER_TRACE(bh, "get write access");
3258 err = ext4_journal_get_write_access(handle, bh);
3259 if (err)
3260 goto unlock;
3261 }
3262 zero_user(page, offset, length);
3263 BUFFER_TRACE(bh, "zeroed end of block");
3264
3265 if (ext4_should_journal_data(inode)) {
3266 err = ext4_handle_dirty_metadata(handle, inode, bh);
3267 } else {
3268 err = 0;
3269 mark_buffer_dirty(bh);
3270 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3271 err = ext4_jbd2_file_inode(handle, inode);
3272 }
3273
3274 unlock:
3275 unlock_page(page);
3276 page_cache_release(page);
3277 return err;
3278 }
3279
3280 /*
3281 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3282 * up to the end of the block which corresponds to `from'.
3283 * This required during truncate. We need to physically zero the tail end
3284 * of that block so it doesn't yield old data if the file is later grown.
3285 */
3286 static int ext4_block_truncate_page(handle_t *handle,
3287 struct address_space *mapping, loff_t from)
3288 {
3289 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3290 unsigned length;
3291 unsigned blocksize;
3292 struct inode *inode = mapping->host;
3293
3294 blocksize = inode->i_sb->s_blocksize;
3295 length = blocksize - (offset & (blocksize - 1));
3296
3297 return ext4_block_zero_page_range(handle, mapping, from, length);
3298 }
3299
3300 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3301 loff_t lstart, loff_t length)
3302 {
3303 struct super_block *sb = inode->i_sb;
3304 struct address_space *mapping = inode->i_mapping;
3305 unsigned partial_start, partial_end;
3306 ext4_fsblk_t start, end;
3307 loff_t byte_end = (lstart + length - 1);
3308 int err = 0;
3309
3310 partial_start = lstart & (sb->s_blocksize - 1);
3311 partial_end = byte_end & (sb->s_blocksize - 1);
3312
3313 start = lstart >> sb->s_blocksize_bits;
3314 end = byte_end >> sb->s_blocksize_bits;
3315
3316 /* Handle partial zero within the single block */
3317 if (start == end &&
3318 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3319 err = ext4_block_zero_page_range(handle, mapping,
3320 lstart, length);
3321 return err;
3322 }
3323 /* Handle partial zero out on the start of the range */
3324 if (partial_start) {
3325 err = ext4_block_zero_page_range(handle, mapping,
3326 lstart, sb->s_blocksize);
3327 if (err)
3328 return err;
3329 }
3330 /* Handle partial zero out on the end of the range */
3331 if (partial_end != sb->s_blocksize - 1)
3332 err = ext4_block_zero_page_range(handle, mapping,
3333 byte_end - partial_end,
3334 partial_end + 1);
3335 return err;
3336 }
3337
3338 int ext4_can_truncate(struct inode *inode)
3339 {
3340 if (S_ISREG(inode->i_mode))
3341 return 1;
3342 if (S_ISDIR(inode->i_mode))
3343 return 1;
3344 if (S_ISLNK(inode->i_mode))
3345 return !ext4_inode_is_fast_symlink(inode);
3346 return 0;
3347 }
3348
3349 /*
3350 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3351 * associated with the given offset and length
3352 *
3353 * @inode: File inode
3354 * @offset: The offset where the hole will begin
3355 * @len: The length of the hole
3356 *
3357 * Returns: 0 on success or negative on failure
3358 */
3359
3360 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3361 {
3362 struct super_block *sb = inode->i_sb;
3363 ext4_lblk_t first_block, stop_block;
3364 struct address_space *mapping = inode->i_mapping;
3365 loff_t first_block_offset, last_block_offset;
3366 handle_t *handle;
3367 unsigned int credits;
3368 int ret = 0;
3369
3370 if (!S_ISREG(inode->i_mode))
3371 return -EOPNOTSUPP;
3372
3373 trace_ext4_punch_hole(inode, offset, length, 0);
3374
3375 /*
3376 * Write out all dirty pages to avoid race conditions
3377 * Then release them.
3378 */
3379 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3380 ret = filemap_write_and_wait_range(mapping, offset,
3381 offset + length - 1);
3382 if (ret)
3383 return ret;
3384 }
3385
3386 mutex_lock(&inode->i_mutex);
3387
3388 /* No need to punch hole beyond i_size */
3389 if (offset >= inode->i_size)
3390 goto out_mutex;
3391
3392 /*
3393 * If the hole extends beyond i_size, set the hole
3394 * to end after the page that contains i_size
3395 */
3396 if (offset + length > inode->i_size) {
3397 length = inode->i_size +
3398 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3399 offset;
3400 }
3401
3402 if (offset & (sb->s_blocksize - 1) ||
3403 (offset + length) & (sb->s_blocksize - 1)) {
3404 /*
3405 * Attach jinode to inode for jbd2 if we do any zeroing of
3406 * partial block
3407 */
3408 ret = ext4_inode_attach_jinode(inode);
3409 if (ret < 0)
3410 goto out_mutex;
3411
3412 }
3413
3414 first_block_offset = round_up(offset, sb->s_blocksize);
3415 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3416
3417 /* Now release the pages and zero block aligned part of pages*/
3418 if (last_block_offset > first_block_offset)
3419 truncate_pagecache_range(inode, first_block_offset,
3420 last_block_offset);
3421
3422 /* Wait all existing dio workers, newcomers will block on i_mutex */
3423 ext4_inode_block_unlocked_dio(inode);
3424 inode_dio_wait(inode);
3425
3426 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3427 credits = ext4_writepage_trans_blocks(inode);
3428 else
3429 credits = ext4_blocks_for_truncate(inode);
3430 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3431 if (IS_ERR(handle)) {
3432 ret = PTR_ERR(handle);
3433 ext4_std_error(sb, ret);
3434 goto out_dio;
3435 }
3436
3437 ret = ext4_zero_partial_blocks(handle, inode, offset,
3438 length);
3439 if (ret)
3440 goto out_stop;
3441
3442 first_block = (offset + sb->s_blocksize - 1) >>
3443 EXT4_BLOCK_SIZE_BITS(sb);
3444 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3445
3446 /* If there are no blocks to remove, return now */
3447 if (first_block >= stop_block)
3448 goto out_stop;
3449
3450 down_write(&EXT4_I(inode)->i_data_sem);
3451 ext4_discard_preallocations(inode);
3452
3453 ret = ext4_es_remove_extent(inode, first_block,
3454 stop_block - first_block);
3455 if (ret) {
3456 up_write(&EXT4_I(inode)->i_data_sem);
3457 goto out_stop;
3458 }
3459
3460 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3461 ret = ext4_ext_remove_space(inode, first_block,
3462 stop_block - 1);
3463 else
3464 ret = ext4_ind_remove_space(handle, inode, first_block,
3465 stop_block);
3466
3467 up_write(&EXT4_I(inode)->i_data_sem);
3468 if (IS_SYNC(inode))
3469 ext4_handle_sync(handle);
3470
3471 /* Now release the pages again to reduce race window */
3472 if (last_block_offset > first_block_offset)
3473 truncate_pagecache_range(inode, first_block_offset,
3474 last_block_offset);
3475
3476 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3477 ext4_mark_inode_dirty(handle, inode);
3478 out_stop:
3479 ext4_journal_stop(handle);
3480 out_dio:
3481 ext4_inode_resume_unlocked_dio(inode);
3482 out_mutex:
3483 mutex_unlock(&inode->i_mutex);
3484 return ret;
3485 }
3486
3487 int ext4_inode_attach_jinode(struct inode *inode)
3488 {
3489 struct ext4_inode_info *ei = EXT4_I(inode);
3490 struct jbd2_inode *jinode;
3491
3492 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3493 return 0;
3494
3495 jinode = jbd2_alloc_inode(GFP_KERNEL);
3496 spin_lock(&inode->i_lock);
3497 if (!ei->jinode) {
3498 if (!jinode) {
3499 spin_unlock(&inode->i_lock);
3500 return -ENOMEM;
3501 }
3502 ei->jinode = jinode;
3503 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3504 jinode = NULL;
3505 }
3506 spin_unlock(&inode->i_lock);
3507 if (unlikely(jinode != NULL))
3508 jbd2_free_inode(jinode);
3509 return 0;
3510 }
3511
3512 /*
3513 * ext4_truncate()
3514 *
3515 * We block out ext4_get_block() block instantiations across the entire
3516 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3517 * simultaneously on behalf of the same inode.
3518 *
3519 * As we work through the truncate and commit bits of it to the journal there
3520 * is one core, guiding principle: the file's tree must always be consistent on
3521 * disk. We must be able to restart the truncate after a crash.
3522 *
3523 * The file's tree may be transiently inconsistent in memory (although it
3524 * probably isn't), but whenever we close off and commit a journal transaction,
3525 * the contents of (the filesystem + the journal) must be consistent and
3526 * restartable. It's pretty simple, really: bottom up, right to left (although
3527 * left-to-right works OK too).
3528 *
3529 * Note that at recovery time, journal replay occurs *before* the restart of
3530 * truncate against the orphan inode list.
3531 *
3532 * The committed inode has the new, desired i_size (which is the same as
3533 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3534 * that this inode's truncate did not complete and it will again call
3535 * ext4_truncate() to have another go. So there will be instantiated blocks
3536 * to the right of the truncation point in a crashed ext4 filesystem. But
3537 * that's fine - as long as they are linked from the inode, the post-crash
3538 * ext4_truncate() run will find them and release them.
3539 */
3540 void ext4_truncate(struct inode *inode)
3541 {
3542 struct ext4_inode_info *ei = EXT4_I(inode);
3543 unsigned int credits;
3544 handle_t *handle;
3545 struct address_space *mapping = inode->i_mapping;
3546
3547 /*
3548 * There is a possibility that we're either freeing the inode
3549 * or it's a completely new inode. In those cases we might not
3550 * have i_mutex locked because it's not necessary.
3551 */
3552 if (!(inode->i_state & (I_NEW|I_FREEING)))
3553 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3554 trace_ext4_truncate_enter(inode);
3555
3556 if (!ext4_can_truncate(inode))
3557 return;
3558
3559 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3560
3561 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3562 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3563
3564 if (ext4_has_inline_data(inode)) {
3565 int has_inline = 1;
3566
3567 ext4_inline_data_truncate(inode, &has_inline);
3568 if (has_inline)
3569 return;
3570 }
3571
3572 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3573 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3574 if (ext4_inode_attach_jinode(inode) < 0)
3575 return;
3576 }
3577
3578 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3579 credits = ext4_writepage_trans_blocks(inode);
3580 else
3581 credits = ext4_blocks_for_truncate(inode);
3582
3583 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3584 if (IS_ERR(handle)) {
3585 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3586 return;
3587 }
3588
3589 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3590 ext4_block_truncate_page(handle, mapping, inode->i_size);
3591
3592 /*
3593 * We add the inode to the orphan list, so that if this
3594 * truncate spans multiple transactions, and we crash, we will
3595 * resume the truncate when the filesystem recovers. It also
3596 * marks the inode dirty, to catch the new size.
3597 *
3598 * Implication: the file must always be in a sane, consistent
3599 * truncatable state while each transaction commits.
3600 */
3601 if (ext4_orphan_add(handle, inode))
3602 goto out_stop;
3603
3604 down_write(&EXT4_I(inode)->i_data_sem);
3605
3606 ext4_discard_preallocations(inode);
3607
3608 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3609 ext4_ext_truncate(handle, inode);
3610 else
3611 ext4_ind_truncate(handle, inode);
3612
3613 up_write(&ei->i_data_sem);
3614
3615 if (IS_SYNC(inode))
3616 ext4_handle_sync(handle);
3617
3618 out_stop:
3619 /*
3620 * If this was a simple ftruncate() and the file will remain alive,
3621 * then we need to clear up the orphan record which we created above.
3622 * However, if this was a real unlink then we were called by
3623 * ext4_evict_inode(), and we allow that function to clean up the
3624 * orphan info for us.
3625 */
3626 if (inode->i_nlink)
3627 ext4_orphan_del(handle, inode);
3628
3629 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3630 ext4_mark_inode_dirty(handle, inode);
3631 ext4_journal_stop(handle);
3632
3633 trace_ext4_truncate_exit(inode);
3634 }
3635
3636 /*
3637 * ext4_get_inode_loc returns with an extra refcount against the inode's
3638 * underlying buffer_head on success. If 'in_mem' is true, we have all
3639 * data in memory that is needed to recreate the on-disk version of this
3640 * inode.
3641 */
3642 static int __ext4_get_inode_loc(struct inode *inode,
3643 struct ext4_iloc *iloc, int in_mem)
3644 {
3645 struct ext4_group_desc *gdp;
3646 struct buffer_head *bh;
3647 struct super_block *sb = inode->i_sb;
3648 ext4_fsblk_t block;
3649 int inodes_per_block, inode_offset;
3650
3651 iloc->bh = NULL;
3652 if (!ext4_valid_inum(sb, inode->i_ino))
3653 return -EIO;
3654
3655 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3656 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3657 if (!gdp)
3658 return -EIO;
3659
3660 /*
3661 * Figure out the offset within the block group inode table
3662 */
3663 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3664 inode_offset = ((inode->i_ino - 1) %
3665 EXT4_INODES_PER_GROUP(sb));
3666 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3667 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3668
3669 bh = sb_getblk(sb, block);
3670 if (unlikely(!bh))
3671 return -ENOMEM;
3672 if (!buffer_uptodate(bh)) {
3673 lock_buffer(bh);
3674
3675 /*
3676 * If the buffer has the write error flag, we have failed
3677 * to write out another inode in the same block. In this
3678 * case, we don't have to read the block because we may
3679 * read the old inode data successfully.
3680 */
3681 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3682 set_buffer_uptodate(bh);
3683
3684 if (buffer_uptodate(bh)) {
3685 /* someone brought it uptodate while we waited */
3686 unlock_buffer(bh);
3687 goto has_buffer;
3688 }
3689
3690 /*
3691 * If we have all information of the inode in memory and this
3692 * is the only valid inode in the block, we need not read the
3693 * block.
3694 */
3695 if (in_mem) {
3696 struct buffer_head *bitmap_bh;
3697 int i, start;
3698
3699 start = inode_offset & ~(inodes_per_block - 1);
3700
3701 /* Is the inode bitmap in cache? */
3702 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3703 if (unlikely(!bitmap_bh))
3704 goto make_io;
3705
3706 /*
3707 * If the inode bitmap isn't in cache then the
3708 * optimisation may end up performing two reads instead
3709 * of one, so skip it.
3710 */
3711 if (!buffer_uptodate(bitmap_bh)) {
3712 brelse(bitmap_bh);
3713 goto make_io;
3714 }
3715 for (i = start; i < start + inodes_per_block; i++) {
3716 if (i == inode_offset)
3717 continue;
3718 if (ext4_test_bit(i, bitmap_bh->b_data))
3719 break;
3720 }
3721 brelse(bitmap_bh);
3722 if (i == start + inodes_per_block) {
3723 /* all other inodes are free, so skip I/O */
3724 memset(bh->b_data, 0, bh->b_size);
3725 set_buffer_uptodate(bh);
3726 unlock_buffer(bh);
3727 goto has_buffer;
3728 }
3729 }
3730
3731 make_io:
3732 /*
3733 * If we need to do any I/O, try to pre-readahead extra
3734 * blocks from the inode table.
3735 */
3736 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3737 ext4_fsblk_t b, end, table;
3738 unsigned num;
3739 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3740
3741 table = ext4_inode_table(sb, gdp);
3742 /* s_inode_readahead_blks is always a power of 2 */
3743 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3744 if (table > b)
3745 b = table;
3746 end = b + ra_blks;
3747 num = EXT4_INODES_PER_GROUP(sb);
3748 if (ext4_has_group_desc_csum(sb))
3749 num -= ext4_itable_unused_count(sb, gdp);
3750 table += num / inodes_per_block;
3751 if (end > table)
3752 end = table;
3753 while (b <= end)
3754 sb_breadahead(sb, b++);
3755 }
3756
3757 /*
3758 * There are other valid inodes in the buffer, this inode
3759 * has in-inode xattrs, or we don't have this inode in memory.
3760 * Read the block from disk.
3761 */
3762 trace_ext4_load_inode(inode);
3763 get_bh(bh);
3764 bh->b_end_io = end_buffer_read_sync;
3765 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3766 wait_on_buffer(bh);
3767 if (!buffer_uptodate(bh)) {
3768 EXT4_ERROR_INODE_BLOCK(inode, block,
3769 "unable to read itable block");
3770 brelse(bh);
3771 return -EIO;
3772 }
3773 }
3774 has_buffer:
3775 iloc->bh = bh;
3776 return 0;
3777 }
3778
3779 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3780 {
3781 /* We have all inode data except xattrs in memory here. */
3782 return __ext4_get_inode_loc(inode, iloc,
3783 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3784 }
3785
3786 void ext4_set_inode_flags(struct inode *inode)
3787 {
3788 unsigned int flags = EXT4_I(inode)->i_flags;
3789 unsigned int new_fl = 0;
3790
3791 if (flags & EXT4_SYNC_FL)
3792 new_fl |= S_SYNC;
3793 if (flags & EXT4_APPEND_FL)
3794 new_fl |= S_APPEND;
3795 if (flags & EXT4_IMMUTABLE_FL)
3796 new_fl |= S_IMMUTABLE;
3797 if (flags & EXT4_NOATIME_FL)
3798 new_fl |= S_NOATIME;
3799 if (flags & EXT4_DIRSYNC_FL)
3800 new_fl |= S_DIRSYNC;
3801 inode_set_flags(inode, new_fl,
3802 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3803 }
3804
3805 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3806 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3807 {
3808 unsigned int vfs_fl;
3809 unsigned long old_fl, new_fl;
3810
3811 do {
3812 vfs_fl = ei->vfs_inode.i_flags;
3813 old_fl = ei->i_flags;
3814 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3815 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3816 EXT4_DIRSYNC_FL);
3817 if (vfs_fl & S_SYNC)
3818 new_fl |= EXT4_SYNC_FL;
3819 if (vfs_fl & S_APPEND)
3820 new_fl |= EXT4_APPEND_FL;
3821 if (vfs_fl & S_IMMUTABLE)
3822 new_fl |= EXT4_IMMUTABLE_FL;
3823 if (vfs_fl & S_NOATIME)
3824 new_fl |= EXT4_NOATIME_FL;
3825 if (vfs_fl & S_DIRSYNC)
3826 new_fl |= EXT4_DIRSYNC_FL;
3827 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3828 }
3829
3830 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3831 struct ext4_inode_info *ei)
3832 {
3833 blkcnt_t i_blocks ;
3834 struct inode *inode = &(ei->vfs_inode);
3835 struct super_block *sb = inode->i_sb;
3836
3837 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3838 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3839 /* we are using combined 48 bit field */
3840 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3841 le32_to_cpu(raw_inode->i_blocks_lo);
3842 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3843 /* i_blocks represent file system block size */
3844 return i_blocks << (inode->i_blkbits - 9);
3845 } else {
3846 return i_blocks;
3847 }
3848 } else {
3849 return le32_to_cpu(raw_inode->i_blocks_lo);
3850 }
3851 }
3852
3853 static inline void ext4_iget_extra_inode(struct inode *inode,
3854 struct ext4_inode *raw_inode,
3855 struct ext4_inode_info *ei)
3856 {
3857 __le32 *magic = (void *)raw_inode +
3858 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3859 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3860 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3861 ext4_find_inline_data_nolock(inode);
3862 } else
3863 EXT4_I(inode)->i_inline_off = 0;
3864 }
3865
3866 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3867 {
3868 struct ext4_iloc iloc;
3869 struct ext4_inode *raw_inode;
3870 struct ext4_inode_info *ei;
3871 struct inode *inode;
3872 journal_t *journal = EXT4_SB(sb)->s_journal;
3873 long ret;
3874 int block;
3875 uid_t i_uid;
3876 gid_t i_gid;
3877
3878 inode = iget_locked(sb, ino);
3879 if (!inode)
3880 return ERR_PTR(-ENOMEM);
3881 if (!(inode->i_state & I_NEW))
3882 return inode;
3883
3884 ei = EXT4_I(inode);
3885 iloc.bh = NULL;
3886
3887 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3888 if (ret < 0)
3889 goto bad_inode;
3890 raw_inode = ext4_raw_inode(&iloc);
3891
3892 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3893 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3894 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3895 EXT4_INODE_SIZE(inode->i_sb)) {
3896 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3897 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3898 EXT4_INODE_SIZE(inode->i_sb));
3899 ret = -EIO;
3900 goto bad_inode;
3901 }
3902 } else
3903 ei->i_extra_isize = 0;
3904
3905 /* Precompute checksum seed for inode metadata */
3906 if (ext4_has_metadata_csum(sb)) {
3907 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3908 __u32 csum;
3909 __le32 inum = cpu_to_le32(inode->i_ino);
3910 __le32 gen = raw_inode->i_generation;
3911 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3912 sizeof(inum));
3913 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3914 sizeof(gen));
3915 }
3916
3917 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3918 EXT4_ERROR_INODE(inode, "checksum invalid");
3919 ret = -EIO;
3920 goto bad_inode;
3921 }
3922
3923 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3924 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3925 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3926 if (!(test_opt(inode->i_sb, NO_UID32))) {
3927 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3928 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3929 }
3930 i_uid_write(inode, i_uid);
3931 i_gid_write(inode, i_gid);
3932 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3933
3934 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3935 ei->i_inline_off = 0;
3936 ei->i_dir_start_lookup = 0;
3937 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3938 /* We now have enough fields to check if the inode was active or not.
3939 * This is needed because nfsd might try to access dead inodes
3940 * the test is that same one that e2fsck uses
3941 * NeilBrown 1999oct15
3942 */
3943 if (inode->i_nlink == 0) {
3944 if ((inode->i_mode == 0 ||
3945 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3946 ino != EXT4_BOOT_LOADER_INO) {
3947 /* this inode is deleted */
3948 ret = -ESTALE;
3949 goto bad_inode;
3950 }
3951 /* The only unlinked inodes we let through here have
3952 * valid i_mode and are being read by the orphan
3953 * recovery code: that's fine, we're about to complete
3954 * the process of deleting those.
3955 * OR it is the EXT4_BOOT_LOADER_INO which is
3956 * not initialized on a new filesystem. */
3957 }
3958 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3959 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3960 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3961 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3962 ei->i_file_acl |=
3963 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3964 inode->i_size = ext4_isize(raw_inode);
3965 ei->i_disksize = inode->i_size;
3966 #ifdef CONFIG_QUOTA
3967 ei->i_reserved_quota = 0;
3968 #endif
3969 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3970 ei->i_block_group = iloc.block_group;
3971 ei->i_last_alloc_group = ~0;
3972 /*
3973 * NOTE! The in-memory inode i_data array is in little-endian order
3974 * even on big-endian machines: we do NOT byteswap the block numbers!
3975 */
3976 for (block = 0; block < EXT4_N_BLOCKS; block++)
3977 ei->i_data[block] = raw_inode->i_block[block];
3978 INIT_LIST_HEAD(&ei->i_orphan);
3979
3980 /*
3981 * Set transaction id's of transactions that have to be committed
3982 * to finish f[data]sync. We set them to currently running transaction
3983 * as we cannot be sure that the inode or some of its metadata isn't
3984 * part of the transaction - the inode could have been reclaimed and
3985 * now it is reread from disk.
3986 */
3987 if (journal) {
3988 transaction_t *transaction;
3989 tid_t tid;
3990
3991 read_lock(&journal->j_state_lock);
3992 if (journal->j_running_transaction)
3993 transaction = journal->j_running_transaction;
3994 else
3995 transaction = journal->j_committing_transaction;
3996 if (transaction)
3997 tid = transaction->t_tid;
3998 else
3999 tid = journal->j_commit_sequence;
4000 read_unlock(&journal->j_state_lock);
4001 ei->i_sync_tid = tid;
4002 ei->i_datasync_tid = tid;
4003 }
4004
4005 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4006 if (ei->i_extra_isize == 0) {
4007 /* The extra space is currently unused. Use it. */
4008 ei->i_extra_isize = sizeof(struct ext4_inode) -
4009 EXT4_GOOD_OLD_INODE_SIZE;
4010 } else {
4011 ext4_iget_extra_inode(inode, raw_inode, ei);
4012 }
4013 }
4014
4015 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4016 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4017 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4018 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4019
4020 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4021 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4022 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4023 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4024 inode->i_version |=
4025 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4026 }
4027 }
4028
4029 ret = 0;
4030 if (ei->i_file_acl &&
4031 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4032 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4033 ei->i_file_acl);
4034 ret = -EIO;
4035 goto bad_inode;
4036 } else if (!ext4_has_inline_data(inode)) {
4037 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4038 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4039 (S_ISLNK(inode->i_mode) &&
4040 !ext4_inode_is_fast_symlink(inode))))
4041 /* Validate extent which is part of inode */
4042 ret = ext4_ext_check_inode(inode);
4043 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4044 (S_ISLNK(inode->i_mode) &&
4045 !ext4_inode_is_fast_symlink(inode))) {
4046 /* Validate block references which are part of inode */
4047 ret = ext4_ind_check_inode(inode);
4048 }
4049 }
4050 if (ret)
4051 goto bad_inode;
4052
4053 if (S_ISREG(inode->i_mode)) {
4054 inode->i_op = &ext4_file_inode_operations;
4055 inode->i_fop = &ext4_file_operations;
4056 ext4_set_aops(inode);
4057 } else if (S_ISDIR(inode->i_mode)) {
4058 inode->i_op = &ext4_dir_inode_operations;
4059 inode->i_fop = &ext4_dir_operations;
4060 } else if (S_ISLNK(inode->i_mode)) {
4061 if (ext4_inode_is_fast_symlink(inode)) {
4062 inode->i_op = &ext4_fast_symlink_inode_operations;
4063 nd_terminate_link(ei->i_data, inode->i_size,
4064 sizeof(ei->i_data) - 1);
4065 } else {
4066 inode->i_op = &ext4_symlink_inode_operations;
4067 ext4_set_aops(inode);
4068 }
4069 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4070 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4071 inode->i_op = &ext4_special_inode_operations;
4072 if (raw_inode->i_block[0])
4073 init_special_inode(inode, inode->i_mode,
4074 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4075 else
4076 init_special_inode(inode, inode->i_mode,
4077 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4078 } else if (ino == EXT4_BOOT_LOADER_INO) {
4079 make_bad_inode(inode);
4080 } else {
4081 ret = -EIO;
4082 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4083 goto bad_inode;
4084 }
4085 brelse(iloc.bh);
4086 ext4_set_inode_flags(inode);
4087 unlock_new_inode(inode);
4088 return inode;
4089
4090 bad_inode:
4091 brelse(iloc.bh);
4092 iget_failed(inode);
4093 return ERR_PTR(ret);
4094 }
4095
4096 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4097 {
4098 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4099 return ERR_PTR(-EIO);
4100 return ext4_iget(sb, ino);
4101 }
4102
4103 static int ext4_inode_blocks_set(handle_t *handle,
4104 struct ext4_inode *raw_inode,
4105 struct ext4_inode_info *ei)
4106 {
4107 struct inode *inode = &(ei->vfs_inode);
4108 u64 i_blocks = inode->i_blocks;
4109 struct super_block *sb = inode->i_sb;
4110
4111 if (i_blocks <= ~0U) {
4112 /*
4113 * i_blocks can be represented in a 32 bit variable
4114 * as multiple of 512 bytes
4115 */
4116 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4117 raw_inode->i_blocks_high = 0;
4118 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4119 return 0;
4120 }
4121 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4122 return -EFBIG;
4123
4124 if (i_blocks <= 0xffffffffffffULL) {
4125 /*
4126 * i_blocks can be represented in a 48 bit variable
4127 * as multiple of 512 bytes
4128 */
4129 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4130 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4131 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4132 } else {
4133 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4134 /* i_block is stored in file system block size */
4135 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4136 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4137 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4138 }
4139 return 0;
4140 }
4141
4142 /*
4143 * Post the struct inode info into an on-disk inode location in the
4144 * buffer-cache. This gobbles the caller's reference to the
4145 * buffer_head in the inode location struct.
4146 *
4147 * The caller must have write access to iloc->bh.
4148 */
4149 static int ext4_do_update_inode(handle_t *handle,
4150 struct inode *inode,
4151 struct ext4_iloc *iloc)
4152 {
4153 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4154 struct ext4_inode_info *ei = EXT4_I(inode);
4155 struct buffer_head *bh = iloc->bh;
4156 struct super_block *sb = inode->i_sb;
4157 int err = 0, rc, block;
4158 int need_datasync = 0, set_large_file = 0;
4159 uid_t i_uid;
4160 gid_t i_gid;
4161
4162 spin_lock(&ei->i_raw_lock);
4163
4164 /* For fields not tracked in the in-memory inode,
4165 * initialise them to zero for new inodes. */
4166 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4167 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4168
4169 ext4_get_inode_flags(ei);
4170 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4171 i_uid = i_uid_read(inode);
4172 i_gid = i_gid_read(inode);
4173 if (!(test_opt(inode->i_sb, NO_UID32))) {
4174 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4175 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4176 /*
4177 * Fix up interoperability with old kernels. Otherwise, old inodes get
4178 * re-used with the upper 16 bits of the uid/gid intact
4179 */
4180 if (!ei->i_dtime) {
4181 raw_inode->i_uid_high =
4182 cpu_to_le16(high_16_bits(i_uid));
4183 raw_inode->i_gid_high =
4184 cpu_to_le16(high_16_bits(i_gid));
4185 } else {
4186 raw_inode->i_uid_high = 0;
4187 raw_inode->i_gid_high = 0;
4188 }
4189 } else {
4190 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4191 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4192 raw_inode->i_uid_high = 0;
4193 raw_inode->i_gid_high = 0;
4194 }
4195 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4196
4197 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4198 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4199 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4200 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4201
4202 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4203 if (err) {
4204 spin_unlock(&ei->i_raw_lock);
4205 goto out_brelse;
4206 }
4207 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4208 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4209 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4210 raw_inode->i_file_acl_high =
4211 cpu_to_le16(ei->i_file_acl >> 32);
4212 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4213 if (ei->i_disksize != ext4_isize(raw_inode)) {
4214 ext4_isize_set(raw_inode, ei->i_disksize);
4215 need_datasync = 1;
4216 }
4217 if (ei->i_disksize > 0x7fffffffULL) {
4218 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4219 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4220 EXT4_SB(sb)->s_es->s_rev_level ==
4221 cpu_to_le32(EXT4_GOOD_OLD_REV))
4222 set_large_file = 1;
4223 }
4224 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4225 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4226 if (old_valid_dev(inode->i_rdev)) {
4227 raw_inode->i_block[0] =
4228 cpu_to_le32(old_encode_dev(inode->i_rdev));
4229 raw_inode->i_block[1] = 0;
4230 } else {
4231 raw_inode->i_block[0] = 0;
4232 raw_inode->i_block[1] =
4233 cpu_to_le32(new_encode_dev(inode->i_rdev));
4234 raw_inode->i_block[2] = 0;
4235 }
4236 } else if (!ext4_has_inline_data(inode)) {
4237 for (block = 0; block < EXT4_N_BLOCKS; block++)
4238 raw_inode->i_block[block] = ei->i_data[block];
4239 }
4240
4241 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4242 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4243 if (ei->i_extra_isize) {
4244 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4245 raw_inode->i_version_hi =
4246 cpu_to_le32(inode->i_version >> 32);
4247 raw_inode->i_extra_isize =
4248 cpu_to_le16(ei->i_extra_isize);
4249 }
4250 }
4251
4252 ext4_inode_csum_set(inode, raw_inode, ei);
4253
4254 spin_unlock(&ei->i_raw_lock);
4255
4256 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4257 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4258 if (!err)
4259 err = rc;
4260 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4261 if (set_large_file) {
4262 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4263 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4264 if (err)
4265 goto out_brelse;
4266 ext4_update_dynamic_rev(sb);
4267 EXT4_SET_RO_COMPAT_FEATURE(sb,
4268 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4269 ext4_handle_sync(handle);
4270 err = ext4_handle_dirty_super(handle, sb);
4271 }
4272 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4273 out_brelse:
4274 brelse(bh);
4275 ext4_std_error(inode->i_sb, err);
4276 return err;
4277 }
4278
4279 /*
4280 * ext4_write_inode()
4281 *
4282 * We are called from a few places:
4283 *
4284 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4285 * Here, there will be no transaction running. We wait for any running
4286 * transaction to commit.
4287 *
4288 * - Within flush work (sys_sync(), kupdate and such).
4289 * We wait on commit, if told to.
4290 *
4291 * - Within iput_final() -> write_inode_now()
4292 * We wait on commit, if told to.
4293 *
4294 * In all cases it is actually safe for us to return without doing anything,
4295 * because the inode has been copied into a raw inode buffer in
4296 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4297 * writeback.
4298 *
4299 * Note that we are absolutely dependent upon all inode dirtiers doing the
4300 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4301 * which we are interested.
4302 *
4303 * It would be a bug for them to not do this. The code:
4304 *
4305 * mark_inode_dirty(inode)
4306 * stuff();
4307 * inode->i_size = expr;
4308 *
4309 * is in error because write_inode() could occur while `stuff()' is running,
4310 * and the new i_size will be lost. Plus the inode will no longer be on the
4311 * superblock's dirty inode list.
4312 */
4313 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4314 {
4315 int err;
4316
4317 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4318 return 0;
4319
4320 if (EXT4_SB(inode->i_sb)->s_journal) {
4321 if (ext4_journal_current_handle()) {
4322 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4323 dump_stack();
4324 return -EIO;
4325 }
4326
4327 /*
4328 * No need to force transaction in WB_SYNC_NONE mode. Also
4329 * ext4_sync_fs() will force the commit after everything is
4330 * written.
4331 */
4332 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4333 return 0;
4334
4335 err = ext4_force_commit(inode->i_sb);
4336 } else {
4337 struct ext4_iloc iloc;
4338
4339 err = __ext4_get_inode_loc(inode, &iloc, 0);
4340 if (err)
4341 return err;
4342 /*
4343 * sync(2) will flush the whole buffer cache. No need to do
4344 * it here separately for each inode.
4345 */
4346 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4347 sync_dirty_buffer(iloc.bh);
4348 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4349 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4350 "IO error syncing inode");
4351 err = -EIO;
4352 }
4353 brelse(iloc.bh);
4354 }
4355 return err;
4356 }
4357
4358 /*
4359 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4360 * buffers that are attached to a page stradding i_size and are undergoing
4361 * commit. In that case we have to wait for commit to finish and try again.
4362 */
4363 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4364 {
4365 struct page *page;
4366 unsigned offset;
4367 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4368 tid_t commit_tid = 0;
4369 int ret;
4370
4371 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4372 /*
4373 * All buffers in the last page remain valid? Then there's nothing to
4374 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4375 * blocksize case
4376 */
4377 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4378 return;
4379 while (1) {
4380 page = find_lock_page(inode->i_mapping,
4381 inode->i_size >> PAGE_CACHE_SHIFT);
4382 if (!page)
4383 return;
4384 ret = __ext4_journalled_invalidatepage(page, offset,
4385 PAGE_CACHE_SIZE - offset);
4386 unlock_page(page);
4387 page_cache_release(page);
4388 if (ret != -EBUSY)
4389 return;
4390 commit_tid = 0;
4391 read_lock(&journal->j_state_lock);
4392 if (journal->j_committing_transaction)
4393 commit_tid = journal->j_committing_transaction->t_tid;
4394 read_unlock(&journal->j_state_lock);
4395 if (commit_tid)
4396 jbd2_log_wait_commit(journal, commit_tid);
4397 }
4398 }
4399
4400 /*
4401 * ext4_setattr()
4402 *
4403 * Called from notify_change.
4404 *
4405 * We want to trap VFS attempts to truncate the file as soon as
4406 * possible. In particular, we want to make sure that when the VFS
4407 * shrinks i_size, we put the inode on the orphan list and modify
4408 * i_disksize immediately, so that during the subsequent flushing of
4409 * dirty pages and freeing of disk blocks, we can guarantee that any
4410 * commit will leave the blocks being flushed in an unused state on
4411 * disk. (On recovery, the inode will get truncated and the blocks will
4412 * be freed, so we have a strong guarantee that no future commit will
4413 * leave these blocks visible to the user.)
4414 *
4415 * Another thing we have to assure is that if we are in ordered mode
4416 * and inode is still attached to the committing transaction, we must
4417 * we start writeout of all the dirty pages which are being truncated.
4418 * This way we are sure that all the data written in the previous
4419 * transaction are already on disk (truncate waits for pages under
4420 * writeback).
4421 *
4422 * Called with inode->i_mutex down.
4423 */
4424 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4425 {
4426 struct inode *inode = dentry->d_inode;
4427 int error, rc = 0;
4428 int orphan = 0;
4429 const unsigned int ia_valid = attr->ia_valid;
4430
4431 error = inode_change_ok(inode, attr);
4432 if (error)
4433 return error;
4434
4435 if (is_quota_modification(inode, attr))
4436 dquot_initialize(inode);
4437 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4438 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4439 handle_t *handle;
4440
4441 /* (user+group)*(old+new) structure, inode write (sb,
4442 * inode block, ? - but truncate inode update has it) */
4443 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4444 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4445 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4446 if (IS_ERR(handle)) {
4447 error = PTR_ERR(handle);
4448 goto err_out;
4449 }
4450 error = dquot_transfer(inode, attr);
4451 if (error) {
4452 ext4_journal_stop(handle);
4453 return error;
4454 }
4455 /* Update corresponding info in inode so that everything is in
4456 * one transaction */
4457 if (attr->ia_valid & ATTR_UID)
4458 inode->i_uid = attr->ia_uid;
4459 if (attr->ia_valid & ATTR_GID)
4460 inode->i_gid = attr->ia_gid;
4461 error = ext4_mark_inode_dirty(handle, inode);
4462 ext4_journal_stop(handle);
4463 }
4464
4465 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4466 handle_t *handle;
4467
4468 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4469 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4470
4471 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4472 return -EFBIG;
4473 }
4474
4475 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4476 inode_inc_iversion(inode);
4477
4478 if (S_ISREG(inode->i_mode) &&
4479 (attr->ia_size < inode->i_size)) {
4480 if (ext4_should_order_data(inode)) {
4481 error = ext4_begin_ordered_truncate(inode,
4482 attr->ia_size);
4483 if (error)
4484 goto err_out;
4485 }
4486 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4487 if (IS_ERR(handle)) {
4488 error = PTR_ERR(handle);
4489 goto err_out;
4490 }
4491 if (ext4_handle_valid(handle)) {
4492 error = ext4_orphan_add(handle, inode);
4493 orphan = 1;
4494 }
4495 down_write(&EXT4_I(inode)->i_data_sem);
4496 EXT4_I(inode)->i_disksize = attr->ia_size;
4497 rc = ext4_mark_inode_dirty(handle, inode);
4498 if (!error)
4499 error = rc;
4500 /*
4501 * We have to update i_size under i_data_sem together
4502 * with i_disksize to avoid races with writeback code
4503 * running ext4_wb_update_i_disksize().
4504 */
4505 if (!error)
4506 i_size_write(inode, attr->ia_size);
4507 up_write(&EXT4_I(inode)->i_data_sem);
4508 ext4_journal_stop(handle);
4509 if (error) {
4510 ext4_orphan_del(NULL, inode);
4511 goto err_out;
4512 }
4513 } else {
4514 loff_t oldsize = inode->i_size;
4515
4516 i_size_write(inode, attr->ia_size);
4517 pagecache_isize_extended(inode, oldsize, inode->i_size);
4518 }
4519
4520 /*
4521 * Blocks are going to be removed from the inode. Wait
4522 * for dio in flight. Temporarily disable
4523 * dioread_nolock to prevent livelock.
4524 */
4525 if (orphan) {
4526 if (!ext4_should_journal_data(inode)) {
4527 ext4_inode_block_unlocked_dio(inode);
4528 inode_dio_wait(inode);
4529 ext4_inode_resume_unlocked_dio(inode);
4530 } else
4531 ext4_wait_for_tail_page_commit(inode);
4532 }
4533 /*
4534 * Truncate pagecache after we've waited for commit
4535 * in data=journal mode to make pages freeable.
4536 */
4537 truncate_pagecache(inode, inode->i_size);
4538 }
4539 /*
4540 * We want to call ext4_truncate() even if attr->ia_size ==
4541 * inode->i_size for cases like truncation of fallocated space
4542 */
4543 if (attr->ia_valid & ATTR_SIZE)
4544 ext4_truncate(inode);
4545
4546 if (!rc) {
4547 setattr_copy(inode, attr);
4548 mark_inode_dirty(inode);
4549 }
4550
4551 /*
4552 * If the call to ext4_truncate failed to get a transaction handle at
4553 * all, we need to clean up the in-core orphan list manually.
4554 */
4555 if (orphan && inode->i_nlink)
4556 ext4_orphan_del(NULL, inode);
4557
4558 if (!rc && (ia_valid & ATTR_MODE))
4559 rc = posix_acl_chmod(inode, inode->i_mode);
4560
4561 err_out:
4562 ext4_std_error(inode->i_sb, error);
4563 if (!error)
4564 error = rc;
4565 return error;
4566 }
4567
4568 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4569 struct kstat *stat)
4570 {
4571 struct inode *inode;
4572 unsigned long long delalloc_blocks;
4573
4574 inode = dentry->d_inode;
4575 generic_fillattr(inode, stat);
4576
4577 /*
4578 * If there is inline data in the inode, the inode will normally not
4579 * have data blocks allocated (it may have an external xattr block).
4580 * Report at least one sector for such files, so tools like tar, rsync,
4581 * others doen't incorrectly think the file is completely sparse.
4582 */
4583 if (unlikely(ext4_has_inline_data(inode)))
4584 stat->blocks += (stat->size + 511) >> 9;
4585
4586 /*
4587 * We can't update i_blocks if the block allocation is delayed
4588 * otherwise in the case of system crash before the real block
4589 * allocation is done, we will have i_blocks inconsistent with
4590 * on-disk file blocks.
4591 * We always keep i_blocks updated together with real
4592 * allocation. But to not confuse with user, stat
4593 * will return the blocks that include the delayed allocation
4594 * blocks for this file.
4595 */
4596 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4597 EXT4_I(inode)->i_reserved_data_blocks);
4598 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4599 return 0;
4600 }
4601
4602 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4603 int pextents)
4604 {
4605 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4606 return ext4_ind_trans_blocks(inode, lblocks);
4607 return ext4_ext_index_trans_blocks(inode, pextents);
4608 }
4609
4610 /*
4611 * Account for index blocks, block groups bitmaps and block group
4612 * descriptor blocks if modify datablocks and index blocks
4613 * worse case, the indexs blocks spread over different block groups
4614 *
4615 * If datablocks are discontiguous, they are possible to spread over
4616 * different block groups too. If they are contiguous, with flexbg,
4617 * they could still across block group boundary.
4618 *
4619 * Also account for superblock, inode, quota and xattr blocks
4620 */
4621 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4622 int pextents)
4623 {
4624 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4625 int gdpblocks;
4626 int idxblocks;
4627 int ret = 0;
4628
4629 /*
4630 * How many index blocks need to touch to map @lblocks logical blocks
4631 * to @pextents physical extents?
4632 */
4633 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4634
4635 ret = idxblocks;
4636
4637 /*
4638 * Now let's see how many group bitmaps and group descriptors need
4639 * to account
4640 */
4641 groups = idxblocks + pextents;
4642 gdpblocks = groups;
4643 if (groups > ngroups)
4644 groups = ngroups;
4645 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4646 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4647
4648 /* bitmaps and block group descriptor blocks */
4649 ret += groups + gdpblocks;
4650
4651 /* Blocks for super block, inode, quota and xattr blocks */
4652 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4653
4654 return ret;
4655 }
4656
4657 /*
4658 * Calculate the total number of credits to reserve to fit
4659 * the modification of a single pages into a single transaction,
4660 * which may include multiple chunks of block allocations.
4661 *
4662 * This could be called via ext4_write_begin()
4663 *
4664 * We need to consider the worse case, when
4665 * one new block per extent.
4666 */
4667 int ext4_writepage_trans_blocks(struct inode *inode)
4668 {
4669 int bpp = ext4_journal_blocks_per_page(inode);
4670 int ret;
4671
4672 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4673
4674 /* Account for data blocks for journalled mode */
4675 if (ext4_should_journal_data(inode))
4676 ret += bpp;
4677 return ret;
4678 }
4679
4680 /*
4681 * Calculate the journal credits for a chunk of data modification.
4682 *
4683 * This is called from DIO, fallocate or whoever calling
4684 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4685 *
4686 * journal buffers for data blocks are not included here, as DIO
4687 * and fallocate do no need to journal data buffers.
4688 */
4689 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4690 {
4691 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4692 }
4693
4694 /*
4695 * The caller must have previously called ext4_reserve_inode_write().
4696 * Give this, we know that the caller already has write access to iloc->bh.
4697 */
4698 int ext4_mark_iloc_dirty(handle_t *handle,
4699 struct inode *inode, struct ext4_iloc *iloc)
4700 {
4701 int err = 0;
4702
4703 if (IS_I_VERSION(inode))
4704 inode_inc_iversion(inode);
4705
4706 /* the do_update_inode consumes one bh->b_count */
4707 get_bh(iloc->bh);
4708
4709 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4710 err = ext4_do_update_inode(handle, inode, iloc);
4711 put_bh(iloc->bh);
4712 return err;
4713 }
4714
4715 /*
4716 * On success, We end up with an outstanding reference count against
4717 * iloc->bh. This _must_ be cleaned up later.
4718 */
4719
4720 int
4721 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4722 struct ext4_iloc *iloc)
4723 {
4724 int err;
4725
4726 err = ext4_get_inode_loc(inode, iloc);
4727 if (!err) {
4728 BUFFER_TRACE(iloc->bh, "get_write_access");
4729 err = ext4_journal_get_write_access(handle, iloc->bh);
4730 if (err) {
4731 brelse(iloc->bh);
4732 iloc->bh = NULL;
4733 }
4734 }
4735 ext4_std_error(inode->i_sb, err);
4736 return err;
4737 }
4738
4739 /*
4740 * Expand an inode by new_extra_isize bytes.
4741 * Returns 0 on success or negative error number on failure.
4742 */
4743 static int ext4_expand_extra_isize(struct inode *inode,
4744 unsigned int new_extra_isize,
4745 struct ext4_iloc iloc,
4746 handle_t *handle)
4747 {
4748 struct ext4_inode *raw_inode;
4749 struct ext4_xattr_ibody_header *header;
4750
4751 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4752 return 0;
4753
4754 raw_inode = ext4_raw_inode(&iloc);
4755
4756 header = IHDR(inode, raw_inode);
4757
4758 /* No extended attributes present */
4759 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4760 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4761 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4762 new_extra_isize);
4763 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4764 return 0;
4765 }
4766
4767 /* try to expand with EAs present */
4768 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4769 raw_inode, handle);
4770 }
4771
4772 /*
4773 * What we do here is to mark the in-core inode as clean with respect to inode
4774 * dirtiness (it may still be data-dirty).
4775 * This means that the in-core inode may be reaped by prune_icache
4776 * without having to perform any I/O. This is a very good thing,
4777 * because *any* task may call prune_icache - even ones which
4778 * have a transaction open against a different journal.
4779 *
4780 * Is this cheating? Not really. Sure, we haven't written the
4781 * inode out, but prune_icache isn't a user-visible syncing function.
4782 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4783 * we start and wait on commits.
4784 */
4785 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4786 {
4787 struct ext4_iloc iloc;
4788 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4789 static unsigned int mnt_count;
4790 int err, ret;
4791
4792 might_sleep();
4793 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4794 err = ext4_reserve_inode_write(handle, inode, &iloc);
4795 if (ext4_handle_valid(handle) &&
4796 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4797 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4798 /*
4799 * We need extra buffer credits since we may write into EA block
4800 * with this same handle. If journal_extend fails, then it will
4801 * only result in a minor loss of functionality for that inode.
4802 * If this is felt to be critical, then e2fsck should be run to
4803 * force a large enough s_min_extra_isize.
4804 */
4805 if ((jbd2_journal_extend(handle,
4806 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4807 ret = ext4_expand_extra_isize(inode,
4808 sbi->s_want_extra_isize,
4809 iloc, handle);
4810 if (ret) {
4811 ext4_set_inode_state(inode,
4812 EXT4_STATE_NO_EXPAND);
4813 if (mnt_count !=
4814 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4815 ext4_warning(inode->i_sb,
4816 "Unable to expand inode %lu. Delete"
4817 " some EAs or run e2fsck.",
4818 inode->i_ino);
4819 mnt_count =
4820 le16_to_cpu(sbi->s_es->s_mnt_count);
4821 }
4822 }
4823 }
4824 }
4825 if (!err)
4826 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4827 return err;
4828 }
4829
4830 /*
4831 * ext4_dirty_inode() is called from __mark_inode_dirty()
4832 *
4833 * We're really interested in the case where a file is being extended.
4834 * i_size has been changed by generic_commit_write() and we thus need
4835 * to include the updated inode in the current transaction.
4836 *
4837 * Also, dquot_alloc_block() will always dirty the inode when blocks
4838 * are allocated to the file.
4839 *
4840 * If the inode is marked synchronous, we don't honour that here - doing
4841 * so would cause a commit on atime updates, which we don't bother doing.
4842 * We handle synchronous inodes at the highest possible level.
4843 */
4844 void ext4_dirty_inode(struct inode *inode, int flags)
4845 {
4846 handle_t *handle;
4847
4848 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4849 if (IS_ERR(handle))
4850 goto out;
4851
4852 ext4_mark_inode_dirty(handle, inode);
4853
4854 ext4_journal_stop(handle);
4855 out:
4856 return;
4857 }
4858
4859 #if 0
4860 /*
4861 * Bind an inode's backing buffer_head into this transaction, to prevent
4862 * it from being flushed to disk early. Unlike
4863 * ext4_reserve_inode_write, this leaves behind no bh reference and
4864 * returns no iloc structure, so the caller needs to repeat the iloc
4865 * lookup to mark the inode dirty later.
4866 */
4867 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4868 {
4869 struct ext4_iloc iloc;
4870
4871 int err = 0;
4872 if (handle) {
4873 err = ext4_get_inode_loc(inode, &iloc);
4874 if (!err) {
4875 BUFFER_TRACE(iloc.bh, "get_write_access");
4876 err = jbd2_journal_get_write_access(handle, iloc.bh);
4877 if (!err)
4878 err = ext4_handle_dirty_metadata(handle,
4879 NULL,
4880 iloc.bh);
4881 brelse(iloc.bh);
4882 }
4883 }
4884 ext4_std_error(inode->i_sb, err);
4885 return err;
4886 }
4887 #endif
4888
4889 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4890 {
4891 journal_t *journal;
4892 handle_t *handle;
4893 int err;
4894
4895 /*
4896 * We have to be very careful here: changing a data block's
4897 * journaling status dynamically is dangerous. If we write a
4898 * data block to the journal, change the status and then delete
4899 * that block, we risk forgetting to revoke the old log record
4900 * from the journal and so a subsequent replay can corrupt data.
4901 * So, first we make sure that the journal is empty and that
4902 * nobody is changing anything.
4903 */
4904
4905 journal = EXT4_JOURNAL(inode);
4906 if (!journal)
4907 return 0;
4908 if (is_journal_aborted(journal))
4909 return -EROFS;
4910 /* We have to allocate physical blocks for delalloc blocks
4911 * before flushing journal. otherwise delalloc blocks can not
4912 * be allocated any more. even more truncate on delalloc blocks
4913 * could trigger BUG by flushing delalloc blocks in journal.
4914 * There is no delalloc block in non-journal data mode.
4915 */
4916 if (val && test_opt(inode->i_sb, DELALLOC)) {
4917 err = ext4_alloc_da_blocks(inode);
4918 if (err < 0)
4919 return err;
4920 }
4921
4922 /* Wait for all existing dio workers */
4923 ext4_inode_block_unlocked_dio(inode);
4924 inode_dio_wait(inode);
4925
4926 jbd2_journal_lock_updates(journal);
4927
4928 /*
4929 * OK, there are no updates running now, and all cached data is
4930 * synced to disk. We are now in a completely consistent state
4931 * which doesn't have anything in the journal, and we know that
4932 * no filesystem updates are running, so it is safe to modify
4933 * the inode's in-core data-journaling state flag now.
4934 */
4935
4936 if (val)
4937 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4938 else {
4939 err = jbd2_journal_flush(journal);
4940 if (err < 0) {
4941 jbd2_journal_unlock_updates(journal);
4942 ext4_inode_resume_unlocked_dio(inode);
4943 return err;
4944 }
4945 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4946 }
4947 ext4_set_aops(inode);
4948
4949 jbd2_journal_unlock_updates(journal);
4950 ext4_inode_resume_unlocked_dio(inode);
4951
4952 /* Finally we can mark the inode as dirty. */
4953
4954 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4955 if (IS_ERR(handle))
4956 return PTR_ERR(handle);
4957
4958 err = ext4_mark_inode_dirty(handle, inode);
4959 ext4_handle_sync(handle);
4960 ext4_journal_stop(handle);
4961 ext4_std_error(inode->i_sb, err);
4962
4963 return err;
4964 }
4965
4966 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4967 {
4968 return !buffer_mapped(bh);
4969 }
4970
4971 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4972 {
4973 struct page *page = vmf->page;
4974 loff_t size;
4975 unsigned long len;
4976 int ret;
4977 struct file *file = vma->vm_file;
4978 struct inode *inode = file_inode(file);
4979 struct address_space *mapping = inode->i_mapping;
4980 handle_t *handle;
4981 get_block_t *get_block;
4982 int retries = 0;
4983
4984 sb_start_pagefault(inode->i_sb);
4985 file_update_time(vma->vm_file);
4986 /* Delalloc case is easy... */
4987 if (test_opt(inode->i_sb, DELALLOC) &&
4988 !ext4_should_journal_data(inode) &&
4989 !ext4_nonda_switch(inode->i_sb)) {
4990 do {
4991 ret = __block_page_mkwrite(vma, vmf,
4992 ext4_da_get_block_prep);
4993 } while (ret == -ENOSPC &&
4994 ext4_should_retry_alloc(inode->i_sb, &retries));
4995 goto out_ret;
4996 }
4997
4998 lock_page(page);
4999 size = i_size_read(inode);
5000 /* Page got truncated from under us? */
5001 if (page->mapping != mapping || page_offset(page) > size) {
5002 unlock_page(page);
5003 ret = VM_FAULT_NOPAGE;
5004 goto out;
5005 }
5006
5007 if (page->index == size >> PAGE_CACHE_SHIFT)
5008 len = size & ~PAGE_CACHE_MASK;
5009 else
5010 len = PAGE_CACHE_SIZE;
5011 /*
5012 * Return if we have all the buffers mapped. This avoids the need to do
5013 * journal_start/journal_stop which can block and take a long time
5014 */
5015 if (page_has_buffers(page)) {
5016 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5017 0, len, NULL,
5018 ext4_bh_unmapped)) {
5019 /* Wait so that we don't change page under IO */
5020 wait_for_stable_page(page);
5021 ret = VM_FAULT_LOCKED;
5022 goto out;
5023 }
5024 }
5025 unlock_page(page);
5026 /* OK, we need to fill the hole... */
5027 if (ext4_should_dioread_nolock(inode))
5028 get_block = ext4_get_block_write;
5029 else
5030 get_block = ext4_get_block;
5031 retry_alloc:
5032 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5033 ext4_writepage_trans_blocks(inode));
5034 if (IS_ERR(handle)) {
5035 ret = VM_FAULT_SIGBUS;
5036 goto out;
5037 }
5038 ret = __block_page_mkwrite(vma, vmf, get_block);
5039 if (!ret && ext4_should_journal_data(inode)) {
5040 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5041 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5042 unlock_page(page);
5043 ret = VM_FAULT_SIGBUS;
5044 ext4_journal_stop(handle);
5045 goto out;
5046 }
5047 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5048 }
5049 ext4_journal_stop(handle);
5050 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5051 goto retry_alloc;
5052 out_ret:
5053 ret = block_page_mkwrite_return(ret);
5054 out:
5055 sb_end_pagefault(inode->i_sb);
5056 return ret;
5057 }
This page took 0.126649 seconds and 6 git commands to generate.