Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53 {
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75 return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80 {
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102 {
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120 {
121 trace_ext4_begin_ordered_truncate(inode, new_size);
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 int pextents);
141
142 /*
143 * Test whether an inode is a fast symlink.
144 */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
148 (inode->i_sb->s_blocksize >> 9) : 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 int nblocks)
160 {
161 int ret;
162
163 /*
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 jbd_debug(2, "restarting handle %p\n", handle);
171 up_write(&EXT4_I(inode)->i_data_sem);
172 ret = ext4_journal_restart(handle, nblocks);
173 down_write(&EXT4_I(inode)->i_data_sem);
174 ext4_discard_preallocations(inode);
175
176 return ret;
177 }
178
179 /*
180 * Called at the last iput() if i_nlink is zero.
181 */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 handle_t *handle;
185 int err;
186
187 trace_ext4_evict_inode(inode);
188
189 if (inode->i_nlink) {
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214 jbd2_complete_transaction(journal, commit_tid);
215 filemap_write_and_wait(&inode->i_data);
216 }
217 truncate_inode_pages(&inode->i_data, 0);
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220 goto no_delete;
221 }
222
223 if (!is_bad_inode(inode))
224 dquot_initialize(inode);
225
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
228 truncate_inode_pages(&inode->i_data, 0);
229
230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231 if (is_bad_inode(inode))
232 goto no_delete;
233
234 /*
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
237 */
238 sb_start_intwrite(inode->i_sb);
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
241 if (IS_ERR(handle)) {
242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243 /*
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
246 * cleaned up.
247 */
248 ext4_orphan_del(NULL, inode);
249 sb_end_intwrite(inode->i_sb);
250 goto no_delete;
251 }
252
253 if (IS_SYNC(inode))
254 ext4_handle_sync(handle);
255 inode->i_size = 0;
256 err = ext4_mark_inode_dirty(handle, inode);
257 if (err) {
258 ext4_warning(inode->i_sb,
259 "couldn't mark inode dirty (err %d)", err);
260 goto stop_handle;
261 }
262 if (inode->i_blocks)
263 ext4_truncate(inode);
264
265 /*
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
270 */
271 if (!ext4_handle_has_enough_credits(handle, 3)) {
272 err = ext4_journal_extend(handle, 3);
273 if (err > 0)
274 err = ext4_journal_restart(handle, 3);
275 if (err != 0) {
276 ext4_warning(inode->i_sb,
277 "couldn't extend journal (err %d)", err);
278 stop_handle:
279 ext4_journal_stop(handle);
280 ext4_orphan_del(NULL, inode);
281 sb_end_intwrite(inode->i_sb);
282 goto no_delete;
283 }
284 }
285
286 /*
287 * Kill off the orphan record which ext4_truncate created.
288 * AKPM: I think this can be inside the above `if'.
289 * Note that ext4_orphan_del() has to be able to cope with the
290 * deletion of a non-existent orphan - this is because we don't
291 * know if ext4_truncate() actually created an orphan record.
292 * (Well, we could do this if we need to, but heck - it works)
293 */
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
296
297 /*
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
302 * fails.
303 */
304 if (ext4_mark_inode_dirty(handle, inode))
305 /* If that failed, just do the required in-core inode clear. */
306 ext4_clear_inode(inode);
307 else
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
310 sb_end_intwrite(inode->i_sb);
311 return;
312 no_delete:
313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319 return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324 * Calculate the number of metadata blocks need to reserve
325 * to allocate a block located at @lblock
326 */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332 return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
338 */
339 void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
341 {
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343 struct ext4_inode_info *ei = EXT4_I(inode);
344
345 spin_lock(&ei->i_block_reservation_lock);
346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347 if (unlikely(used > ei->i_reserved_data_blocks)) {
348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349 "with only %d reserved data blocks",
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
352 WARN_ON(1);
353 used = ei->i_reserved_data_blocks;
354 }
355
356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
363 WARN_ON(1);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 }
366
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371 used + ei->i_allocated_meta_blocks);
372 ei->i_allocated_meta_blocks = 0;
373
374 if (ei->i_reserved_data_blocks == 0) {
375 /*
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
378 * allocation blocks.
379 */
380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381 ei->i_reserved_meta_blocks);
382 ei->i_reserved_meta_blocks = 0;
383 ei->i_da_metadata_calc_len = 0;
384 }
385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387 /* Update quota subsystem for data blocks */
388 if (quota_claim)
389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390 else {
391 /*
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
394 * not re-claim the quota for fallocated blocks.
395 */
396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397 }
398
399 /*
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
403 */
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
406 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410 unsigned int line,
411 struct ext4_map_blocks *map)
412 {
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 map->m_len)) {
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
418 map->m_len);
419 return -EIO;
420 }
421 return 0;
422 }
423
424 #define check_block_validity(inode, map) \
425 __check_block_validity((inode), __func__, __LINE__, (map))
426
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429 struct inode *inode,
430 struct ext4_map_blocks *es_map,
431 struct ext4_map_blocks *map,
432 int flags)
433 {
434 int retval;
435
436 map->m_flags = 0;
437 /*
438 * There is a race window that the result is not the same.
439 * e.g. xfstests #223 when dioread_nolock enables. The reason
440 * is that we lookup a block mapping in extent status tree with
441 * out taking i_data_sem. So at the time the unwritten extent
442 * could be converted.
443 */
444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 down_read((&EXT4_I(inode)->i_data_sem));
446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 EXT4_GET_BLOCKS_KEEP_SIZE);
449 } else {
450 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 }
453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 up_read((&EXT4_I(inode)->i_data_sem));
455 /*
456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 * because it shouldn't be marked in es_map->m_flags.
458 */
459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461 /*
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
464 */
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
468 printk("ES cache assertion failed for inode: %lu "
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
474 retval, flags);
475 }
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478
479 /*
480 * The ext4_map_blocks() function tries to look up the requested blocks,
481 * and returns if the blocks are already mapped.
482 *
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
485 * mapped.
486 *
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489 * based files
490 *
491 * On success, it returns the number of blocks being mapped or allocate.
492 * if create==0 and the blocks are pre-allocated and uninitialized block,
493 * the result buffer head is unmapped. If the create ==1, it will make sure
494 * the buffer head is mapped.
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
497 * that case, buffer head is unmapped
498 *
499 * It returns the error in case of allocation failure.
500 */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
503 {
504 struct extent_status es;
505 int retval;
506 #ifdef ES_AGGRESSIVE_TEST
507 struct ext4_map_blocks orig_map;
508
509 memcpy(&orig_map, map, sizeof(*map));
510 #endif
511
512 map->m_flags = 0;
513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 (unsigned long) map->m_lblk);
516
517 /* Lookup extent status tree firstly */
518 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
519 ext4_es_lru_add(inode);
520 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521 map->m_pblk = ext4_es_pblock(&es) +
522 map->m_lblk - es.es_lblk;
523 map->m_flags |= ext4_es_is_written(&es) ?
524 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525 retval = es.es_len - (map->m_lblk - es.es_lblk);
526 if (retval > map->m_len)
527 retval = map->m_len;
528 map->m_len = retval;
529 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530 retval = 0;
531 } else {
532 BUG_ON(1);
533 }
534 #ifdef ES_AGGRESSIVE_TEST
535 ext4_map_blocks_es_recheck(handle, inode, map,
536 &orig_map, flags);
537 #endif
538 goto found;
539 }
540
541 /*
542 * Try to see if we can get the block without requesting a new
543 * file system block.
544 */
545 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546 down_read((&EXT4_I(inode)->i_data_sem));
547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 EXT4_GET_BLOCKS_KEEP_SIZE);
550 } else {
551 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 EXT4_GET_BLOCKS_KEEP_SIZE);
553 }
554 if (retval > 0) {
555 int ret;
556 unsigned long long status;
557
558 #ifdef ES_AGGRESSIVE_TEST
559 if (retval != map->m_len) {
560 printk("ES len assertion failed for inode: %lu "
561 "retval %d != map->m_len %d "
562 "in %s (lookup)\n", inode->i_ino, retval,
563 map->m_len, __func__);
564 }
565 #endif
566
567 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
568 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
569 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
570 ext4_find_delalloc_range(inode, map->m_lblk,
571 map->m_lblk + map->m_len - 1))
572 status |= EXTENT_STATUS_DELAYED;
573 ret = ext4_es_insert_extent(inode, map->m_lblk,
574 map->m_len, map->m_pblk, status);
575 if (ret < 0)
576 retval = ret;
577 }
578 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
579 up_read((&EXT4_I(inode)->i_data_sem));
580
581 found:
582 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
583 int ret = check_block_validity(inode, map);
584 if (ret != 0)
585 return ret;
586 }
587
588 /* If it is only a block(s) look up */
589 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
590 return retval;
591
592 /*
593 * Returns if the blocks have already allocated
594 *
595 * Note that if blocks have been preallocated
596 * ext4_ext_get_block() returns the create = 0
597 * with buffer head unmapped.
598 */
599 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
600 return retval;
601
602 /*
603 * Here we clear m_flags because after allocating an new extent,
604 * it will be set again.
605 */
606 map->m_flags &= ~EXT4_MAP_FLAGS;
607
608 /*
609 * New blocks allocate and/or writing to uninitialized extent
610 * will possibly result in updating i_data, so we take
611 * the write lock of i_data_sem, and call get_blocks()
612 * with create == 1 flag.
613 */
614 down_write((&EXT4_I(inode)->i_data_sem));
615
616 /*
617 * if the caller is from delayed allocation writeout path
618 * we have already reserved fs blocks for allocation
619 * let the underlying get_block() function know to
620 * avoid double accounting
621 */
622 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
623 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
624 /*
625 * We need to check for EXT4 here because migrate
626 * could have changed the inode type in between
627 */
628 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
629 retval = ext4_ext_map_blocks(handle, inode, map, flags);
630 } else {
631 retval = ext4_ind_map_blocks(handle, inode, map, flags);
632
633 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
634 /*
635 * We allocated new blocks which will result in
636 * i_data's format changing. Force the migrate
637 * to fail by clearing migrate flags
638 */
639 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
640 }
641
642 /*
643 * Update reserved blocks/metadata blocks after successful
644 * block allocation which had been deferred till now. We don't
645 * support fallocate for non extent files. So we can update
646 * reserve space here.
647 */
648 if ((retval > 0) &&
649 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
650 ext4_da_update_reserve_space(inode, retval, 1);
651 }
652 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
653 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
654
655 if (retval > 0) {
656 int ret;
657 unsigned long long status;
658
659 #ifdef ES_AGGRESSIVE_TEST
660 if (retval != map->m_len) {
661 printk("ES len assertion failed for inode: %lu "
662 "retval %d != map->m_len %d "
663 "in %s (allocation)\n", inode->i_ino, retval,
664 map->m_len, __func__);
665 }
666 #endif
667
668 /*
669 * If the extent has been zeroed out, we don't need to update
670 * extent status tree.
671 */
672 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
673 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
674 if (ext4_es_is_written(&es))
675 goto has_zeroout;
676 }
677 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
678 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
679 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
680 ext4_find_delalloc_range(inode, map->m_lblk,
681 map->m_lblk + map->m_len - 1))
682 status |= EXTENT_STATUS_DELAYED;
683 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
684 map->m_pblk, status);
685 if (ret < 0)
686 retval = ret;
687 }
688
689 has_zeroout:
690 up_write((&EXT4_I(inode)->i_data_sem));
691 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
692 int ret = check_block_validity(inode, map);
693 if (ret != 0)
694 return ret;
695 }
696 return retval;
697 }
698
699 /* Maximum number of blocks we map for direct IO at once. */
700 #define DIO_MAX_BLOCKS 4096
701
702 static int _ext4_get_block(struct inode *inode, sector_t iblock,
703 struct buffer_head *bh, int flags)
704 {
705 handle_t *handle = ext4_journal_current_handle();
706 struct ext4_map_blocks map;
707 int ret = 0, started = 0;
708 int dio_credits;
709
710 if (ext4_has_inline_data(inode))
711 return -ERANGE;
712
713 map.m_lblk = iblock;
714 map.m_len = bh->b_size >> inode->i_blkbits;
715
716 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
717 /* Direct IO write... */
718 if (map.m_len > DIO_MAX_BLOCKS)
719 map.m_len = DIO_MAX_BLOCKS;
720 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
721 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
722 dio_credits);
723 if (IS_ERR(handle)) {
724 ret = PTR_ERR(handle);
725 return ret;
726 }
727 started = 1;
728 }
729
730 ret = ext4_map_blocks(handle, inode, &map, flags);
731 if (ret > 0) {
732 map_bh(bh, inode->i_sb, map.m_pblk);
733 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
734 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
735 ret = 0;
736 }
737 if (started)
738 ext4_journal_stop(handle);
739 return ret;
740 }
741
742 int ext4_get_block(struct inode *inode, sector_t iblock,
743 struct buffer_head *bh, int create)
744 {
745 return _ext4_get_block(inode, iblock, bh,
746 create ? EXT4_GET_BLOCKS_CREATE : 0);
747 }
748
749 /*
750 * `handle' can be NULL if create is zero
751 */
752 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
753 ext4_lblk_t block, int create, int *errp)
754 {
755 struct ext4_map_blocks map;
756 struct buffer_head *bh;
757 int fatal = 0, err;
758
759 J_ASSERT(handle != NULL || create == 0);
760
761 map.m_lblk = block;
762 map.m_len = 1;
763 err = ext4_map_blocks(handle, inode, &map,
764 create ? EXT4_GET_BLOCKS_CREATE : 0);
765
766 /* ensure we send some value back into *errp */
767 *errp = 0;
768
769 if (create && err == 0)
770 err = -ENOSPC; /* should never happen */
771 if (err < 0)
772 *errp = err;
773 if (err <= 0)
774 return NULL;
775
776 bh = sb_getblk(inode->i_sb, map.m_pblk);
777 if (unlikely(!bh)) {
778 *errp = -ENOMEM;
779 return NULL;
780 }
781 if (map.m_flags & EXT4_MAP_NEW) {
782 J_ASSERT(create != 0);
783 J_ASSERT(handle != NULL);
784
785 /*
786 * Now that we do not always journal data, we should
787 * keep in mind whether this should always journal the
788 * new buffer as metadata. For now, regular file
789 * writes use ext4_get_block instead, so it's not a
790 * problem.
791 */
792 lock_buffer(bh);
793 BUFFER_TRACE(bh, "call get_create_access");
794 fatal = ext4_journal_get_create_access(handle, bh);
795 if (!fatal && !buffer_uptodate(bh)) {
796 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
797 set_buffer_uptodate(bh);
798 }
799 unlock_buffer(bh);
800 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
801 err = ext4_handle_dirty_metadata(handle, inode, bh);
802 if (!fatal)
803 fatal = err;
804 } else {
805 BUFFER_TRACE(bh, "not a new buffer");
806 }
807 if (fatal) {
808 *errp = fatal;
809 brelse(bh);
810 bh = NULL;
811 }
812 return bh;
813 }
814
815 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
816 ext4_lblk_t block, int create, int *err)
817 {
818 struct buffer_head *bh;
819
820 bh = ext4_getblk(handle, inode, block, create, err);
821 if (!bh)
822 return bh;
823 if (buffer_uptodate(bh))
824 return bh;
825 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
826 wait_on_buffer(bh);
827 if (buffer_uptodate(bh))
828 return bh;
829 put_bh(bh);
830 *err = -EIO;
831 return NULL;
832 }
833
834 int ext4_walk_page_buffers(handle_t *handle,
835 struct buffer_head *head,
836 unsigned from,
837 unsigned to,
838 int *partial,
839 int (*fn)(handle_t *handle,
840 struct buffer_head *bh))
841 {
842 struct buffer_head *bh;
843 unsigned block_start, block_end;
844 unsigned blocksize = head->b_size;
845 int err, ret = 0;
846 struct buffer_head *next;
847
848 for (bh = head, block_start = 0;
849 ret == 0 && (bh != head || !block_start);
850 block_start = block_end, bh = next) {
851 next = bh->b_this_page;
852 block_end = block_start + blocksize;
853 if (block_end <= from || block_start >= to) {
854 if (partial && !buffer_uptodate(bh))
855 *partial = 1;
856 continue;
857 }
858 err = (*fn)(handle, bh);
859 if (!ret)
860 ret = err;
861 }
862 return ret;
863 }
864
865 /*
866 * To preserve ordering, it is essential that the hole instantiation and
867 * the data write be encapsulated in a single transaction. We cannot
868 * close off a transaction and start a new one between the ext4_get_block()
869 * and the commit_write(). So doing the jbd2_journal_start at the start of
870 * prepare_write() is the right place.
871 *
872 * Also, this function can nest inside ext4_writepage(). In that case, we
873 * *know* that ext4_writepage() has generated enough buffer credits to do the
874 * whole page. So we won't block on the journal in that case, which is good,
875 * because the caller may be PF_MEMALLOC.
876 *
877 * By accident, ext4 can be reentered when a transaction is open via
878 * quota file writes. If we were to commit the transaction while thus
879 * reentered, there can be a deadlock - we would be holding a quota
880 * lock, and the commit would never complete if another thread had a
881 * transaction open and was blocking on the quota lock - a ranking
882 * violation.
883 *
884 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
885 * will _not_ run commit under these circumstances because handle->h_ref
886 * is elevated. We'll still have enough credits for the tiny quotafile
887 * write.
888 */
889 int do_journal_get_write_access(handle_t *handle,
890 struct buffer_head *bh)
891 {
892 int dirty = buffer_dirty(bh);
893 int ret;
894
895 if (!buffer_mapped(bh) || buffer_freed(bh))
896 return 0;
897 /*
898 * __block_write_begin() could have dirtied some buffers. Clean
899 * the dirty bit as jbd2_journal_get_write_access() could complain
900 * otherwise about fs integrity issues. Setting of the dirty bit
901 * by __block_write_begin() isn't a real problem here as we clear
902 * the bit before releasing a page lock and thus writeback cannot
903 * ever write the buffer.
904 */
905 if (dirty)
906 clear_buffer_dirty(bh);
907 ret = ext4_journal_get_write_access(handle, bh);
908 if (!ret && dirty)
909 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
910 return ret;
911 }
912
913 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
914 struct buffer_head *bh_result, int create);
915 static int ext4_write_begin(struct file *file, struct address_space *mapping,
916 loff_t pos, unsigned len, unsigned flags,
917 struct page **pagep, void **fsdata)
918 {
919 struct inode *inode = mapping->host;
920 int ret, needed_blocks;
921 handle_t *handle;
922 int retries = 0;
923 struct page *page;
924 pgoff_t index;
925 unsigned from, to;
926
927 trace_ext4_write_begin(inode, pos, len, flags);
928 /*
929 * Reserve one block more for addition to orphan list in case
930 * we allocate blocks but write fails for some reason
931 */
932 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
933 index = pos >> PAGE_CACHE_SHIFT;
934 from = pos & (PAGE_CACHE_SIZE - 1);
935 to = from + len;
936
937 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
938 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
939 flags, pagep);
940 if (ret < 0)
941 return ret;
942 if (ret == 1)
943 return 0;
944 }
945
946 /*
947 * grab_cache_page_write_begin() can take a long time if the
948 * system is thrashing due to memory pressure, or if the page
949 * is being written back. So grab it first before we start
950 * the transaction handle. This also allows us to allocate
951 * the page (if needed) without using GFP_NOFS.
952 */
953 retry_grab:
954 page = grab_cache_page_write_begin(mapping, index, flags);
955 if (!page)
956 return -ENOMEM;
957 unlock_page(page);
958
959 retry_journal:
960 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
961 if (IS_ERR(handle)) {
962 page_cache_release(page);
963 return PTR_ERR(handle);
964 }
965
966 lock_page(page);
967 if (page->mapping != mapping) {
968 /* The page got truncated from under us */
969 unlock_page(page);
970 page_cache_release(page);
971 ext4_journal_stop(handle);
972 goto retry_grab;
973 }
974 wait_on_page_writeback(page);
975
976 if (ext4_should_dioread_nolock(inode))
977 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
978 else
979 ret = __block_write_begin(page, pos, len, ext4_get_block);
980
981 if (!ret && ext4_should_journal_data(inode)) {
982 ret = ext4_walk_page_buffers(handle, page_buffers(page),
983 from, to, NULL,
984 do_journal_get_write_access);
985 }
986
987 if (ret) {
988 unlock_page(page);
989 /*
990 * __block_write_begin may have instantiated a few blocks
991 * outside i_size. Trim these off again. Don't need
992 * i_size_read because we hold i_mutex.
993 *
994 * Add inode to orphan list in case we crash before
995 * truncate finishes
996 */
997 if (pos + len > inode->i_size && ext4_can_truncate(inode))
998 ext4_orphan_add(handle, inode);
999
1000 ext4_journal_stop(handle);
1001 if (pos + len > inode->i_size) {
1002 ext4_truncate_failed_write(inode);
1003 /*
1004 * If truncate failed early the inode might
1005 * still be on the orphan list; we need to
1006 * make sure the inode is removed from the
1007 * orphan list in that case.
1008 */
1009 if (inode->i_nlink)
1010 ext4_orphan_del(NULL, inode);
1011 }
1012
1013 if (ret == -ENOSPC &&
1014 ext4_should_retry_alloc(inode->i_sb, &retries))
1015 goto retry_journal;
1016 page_cache_release(page);
1017 return ret;
1018 }
1019 *pagep = page;
1020 return ret;
1021 }
1022
1023 /* For write_end() in data=journal mode */
1024 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1025 {
1026 int ret;
1027 if (!buffer_mapped(bh) || buffer_freed(bh))
1028 return 0;
1029 set_buffer_uptodate(bh);
1030 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1031 clear_buffer_meta(bh);
1032 clear_buffer_prio(bh);
1033 return ret;
1034 }
1035
1036 /*
1037 * We need to pick up the new inode size which generic_commit_write gave us
1038 * `file' can be NULL - eg, when called from page_symlink().
1039 *
1040 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1041 * buffers are managed internally.
1042 */
1043 static int ext4_write_end(struct file *file,
1044 struct address_space *mapping,
1045 loff_t pos, unsigned len, unsigned copied,
1046 struct page *page, void *fsdata)
1047 {
1048 handle_t *handle = ext4_journal_current_handle();
1049 struct inode *inode = mapping->host;
1050 int ret = 0, ret2;
1051 int i_size_changed = 0;
1052
1053 trace_ext4_write_end(inode, pos, len, copied);
1054 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1055 ret = ext4_jbd2_file_inode(handle, inode);
1056 if (ret) {
1057 unlock_page(page);
1058 page_cache_release(page);
1059 goto errout;
1060 }
1061 }
1062
1063 if (ext4_has_inline_data(inode)) {
1064 ret = ext4_write_inline_data_end(inode, pos, len,
1065 copied, page);
1066 if (ret < 0)
1067 goto errout;
1068 copied = ret;
1069 } else
1070 copied = block_write_end(file, mapping, pos,
1071 len, copied, page, fsdata);
1072
1073 /*
1074 * No need to use i_size_read() here, the i_size
1075 * cannot change under us because we hole i_mutex.
1076 *
1077 * But it's important to update i_size while still holding page lock:
1078 * page writeout could otherwise come in and zero beyond i_size.
1079 */
1080 if (pos + copied > inode->i_size) {
1081 i_size_write(inode, pos + copied);
1082 i_size_changed = 1;
1083 }
1084
1085 if (pos + copied > EXT4_I(inode)->i_disksize) {
1086 /* We need to mark inode dirty even if
1087 * new_i_size is less that inode->i_size
1088 * but greater than i_disksize. (hint delalloc)
1089 */
1090 ext4_update_i_disksize(inode, (pos + copied));
1091 i_size_changed = 1;
1092 }
1093 unlock_page(page);
1094 page_cache_release(page);
1095
1096 /*
1097 * Don't mark the inode dirty under page lock. First, it unnecessarily
1098 * makes the holding time of page lock longer. Second, it forces lock
1099 * ordering of page lock and transaction start for journaling
1100 * filesystems.
1101 */
1102 if (i_size_changed)
1103 ext4_mark_inode_dirty(handle, inode);
1104
1105 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1106 /* if we have allocated more blocks and copied
1107 * less. We will have blocks allocated outside
1108 * inode->i_size. So truncate them
1109 */
1110 ext4_orphan_add(handle, inode);
1111 errout:
1112 ret2 = ext4_journal_stop(handle);
1113 if (!ret)
1114 ret = ret2;
1115
1116 if (pos + len > inode->i_size) {
1117 ext4_truncate_failed_write(inode);
1118 /*
1119 * If truncate failed early the inode might still be
1120 * on the orphan list; we need to make sure the inode
1121 * is removed from the orphan list in that case.
1122 */
1123 if (inode->i_nlink)
1124 ext4_orphan_del(NULL, inode);
1125 }
1126
1127 return ret ? ret : copied;
1128 }
1129
1130 static int ext4_journalled_write_end(struct file *file,
1131 struct address_space *mapping,
1132 loff_t pos, unsigned len, unsigned copied,
1133 struct page *page, void *fsdata)
1134 {
1135 handle_t *handle = ext4_journal_current_handle();
1136 struct inode *inode = mapping->host;
1137 int ret = 0, ret2;
1138 int partial = 0;
1139 unsigned from, to;
1140 loff_t new_i_size;
1141
1142 trace_ext4_journalled_write_end(inode, pos, len, copied);
1143 from = pos & (PAGE_CACHE_SIZE - 1);
1144 to = from + len;
1145
1146 BUG_ON(!ext4_handle_valid(handle));
1147
1148 if (ext4_has_inline_data(inode))
1149 copied = ext4_write_inline_data_end(inode, pos, len,
1150 copied, page);
1151 else {
1152 if (copied < len) {
1153 if (!PageUptodate(page))
1154 copied = 0;
1155 page_zero_new_buffers(page, from+copied, to);
1156 }
1157
1158 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1159 to, &partial, write_end_fn);
1160 if (!partial)
1161 SetPageUptodate(page);
1162 }
1163 new_i_size = pos + copied;
1164 if (new_i_size > inode->i_size)
1165 i_size_write(inode, pos+copied);
1166 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1167 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1168 if (new_i_size > EXT4_I(inode)->i_disksize) {
1169 ext4_update_i_disksize(inode, new_i_size);
1170 ret2 = ext4_mark_inode_dirty(handle, inode);
1171 if (!ret)
1172 ret = ret2;
1173 }
1174
1175 unlock_page(page);
1176 page_cache_release(page);
1177 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1178 /* if we have allocated more blocks and copied
1179 * less. We will have blocks allocated outside
1180 * inode->i_size. So truncate them
1181 */
1182 ext4_orphan_add(handle, inode);
1183
1184 ret2 = ext4_journal_stop(handle);
1185 if (!ret)
1186 ret = ret2;
1187 if (pos + len > inode->i_size) {
1188 ext4_truncate_failed_write(inode);
1189 /*
1190 * If truncate failed early the inode might still be
1191 * on the orphan list; we need to make sure the inode
1192 * is removed from the orphan list in that case.
1193 */
1194 if (inode->i_nlink)
1195 ext4_orphan_del(NULL, inode);
1196 }
1197
1198 return ret ? ret : copied;
1199 }
1200
1201 /*
1202 * Reserve a metadata for a single block located at lblock
1203 */
1204 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1205 {
1206 int retries = 0;
1207 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1208 struct ext4_inode_info *ei = EXT4_I(inode);
1209 unsigned int md_needed;
1210 ext4_lblk_t save_last_lblock;
1211 int save_len;
1212
1213 /*
1214 * recalculate the amount of metadata blocks to reserve
1215 * in order to allocate nrblocks
1216 * worse case is one extent per block
1217 */
1218 repeat:
1219 spin_lock(&ei->i_block_reservation_lock);
1220 /*
1221 * ext4_calc_metadata_amount() has side effects, which we have
1222 * to be prepared undo if we fail to claim space.
1223 */
1224 save_len = ei->i_da_metadata_calc_len;
1225 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1226 md_needed = EXT4_NUM_B2C(sbi,
1227 ext4_calc_metadata_amount(inode, lblock));
1228 trace_ext4_da_reserve_space(inode, md_needed);
1229
1230 /*
1231 * We do still charge estimated metadata to the sb though;
1232 * we cannot afford to run out of free blocks.
1233 */
1234 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1235 ei->i_da_metadata_calc_len = save_len;
1236 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1237 spin_unlock(&ei->i_block_reservation_lock);
1238 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1239 cond_resched();
1240 goto repeat;
1241 }
1242 return -ENOSPC;
1243 }
1244 ei->i_reserved_meta_blocks += md_needed;
1245 spin_unlock(&ei->i_block_reservation_lock);
1246
1247 return 0; /* success */
1248 }
1249
1250 /*
1251 * Reserve a single cluster located at lblock
1252 */
1253 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1254 {
1255 int retries = 0;
1256 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1257 struct ext4_inode_info *ei = EXT4_I(inode);
1258 unsigned int md_needed;
1259 int ret;
1260 ext4_lblk_t save_last_lblock;
1261 int save_len;
1262
1263 /*
1264 * We will charge metadata quota at writeout time; this saves
1265 * us from metadata over-estimation, though we may go over by
1266 * a small amount in the end. Here we just reserve for data.
1267 */
1268 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1269 if (ret)
1270 return ret;
1271
1272 /*
1273 * recalculate the amount of metadata blocks to reserve
1274 * in order to allocate nrblocks
1275 * worse case is one extent per block
1276 */
1277 repeat:
1278 spin_lock(&ei->i_block_reservation_lock);
1279 /*
1280 * ext4_calc_metadata_amount() has side effects, which we have
1281 * to be prepared undo if we fail to claim space.
1282 */
1283 save_len = ei->i_da_metadata_calc_len;
1284 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1285 md_needed = EXT4_NUM_B2C(sbi,
1286 ext4_calc_metadata_amount(inode, lblock));
1287 trace_ext4_da_reserve_space(inode, md_needed);
1288
1289 /*
1290 * We do still charge estimated metadata to the sb though;
1291 * we cannot afford to run out of free blocks.
1292 */
1293 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1294 ei->i_da_metadata_calc_len = save_len;
1295 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1296 spin_unlock(&ei->i_block_reservation_lock);
1297 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1298 cond_resched();
1299 goto repeat;
1300 }
1301 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1302 return -ENOSPC;
1303 }
1304 ei->i_reserved_data_blocks++;
1305 ei->i_reserved_meta_blocks += md_needed;
1306 spin_unlock(&ei->i_block_reservation_lock);
1307
1308 return 0; /* success */
1309 }
1310
1311 static void ext4_da_release_space(struct inode *inode, int to_free)
1312 {
1313 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1314 struct ext4_inode_info *ei = EXT4_I(inode);
1315
1316 if (!to_free)
1317 return; /* Nothing to release, exit */
1318
1319 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1320
1321 trace_ext4_da_release_space(inode, to_free);
1322 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1323 /*
1324 * if there aren't enough reserved blocks, then the
1325 * counter is messed up somewhere. Since this
1326 * function is called from invalidate page, it's
1327 * harmless to return without any action.
1328 */
1329 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1330 "ino %lu, to_free %d with only %d reserved "
1331 "data blocks", inode->i_ino, to_free,
1332 ei->i_reserved_data_blocks);
1333 WARN_ON(1);
1334 to_free = ei->i_reserved_data_blocks;
1335 }
1336 ei->i_reserved_data_blocks -= to_free;
1337
1338 if (ei->i_reserved_data_blocks == 0) {
1339 /*
1340 * We can release all of the reserved metadata blocks
1341 * only when we have written all of the delayed
1342 * allocation blocks.
1343 * Note that in case of bigalloc, i_reserved_meta_blocks,
1344 * i_reserved_data_blocks, etc. refer to number of clusters.
1345 */
1346 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1347 ei->i_reserved_meta_blocks);
1348 ei->i_reserved_meta_blocks = 0;
1349 ei->i_da_metadata_calc_len = 0;
1350 }
1351
1352 /* update fs dirty data blocks counter */
1353 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1354
1355 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1356
1357 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1358 }
1359
1360 static void ext4_da_page_release_reservation(struct page *page,
1361 unsigned int offset,
1362 unsigned int length)
1363 {
1364 int to_release = 0;
1365 struct buffer_head *head, *bh;
1366 unsigned int curr_off = 0;
1367 struct inode *inode = page->mapping->host;
1368 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1369 unsigned int stop = offset + length;
1370 int num_clusters;
1371 ext4_fsblk_t lblk;
1372
1373 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1374
1375 head = page_buffers(page);
1376 bh = head;
1377 do {
1378 unsigned int next_off = curr_off + bh->b_size;
1379
1380 if (next_off > stop)
1381 break;
1382
1383 if ((offset <= curr_off) && (buffer_delay(bh))) {
1384 to_release++;
1385 clear_buffer_delay(bh);
1386 }
1387 curr_off = next_off;
1388 } while ((bh = bh->b_this_page) != head);
1389
1390 if (to_release) {
1391 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1392 ext4_es_remove_extent(inode, lblk, to_release);
1393 }
1394
1395 /* If we have released all the blocks belonging to a cluster, then we
1396 * need to release the reserved space for that cluster. */
1397 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1398 while (num_clusters > 0) {
1399 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1400 ((num_clusters - 1) << sbi->s_cluster_bits);
1401 if (sbi->s_cluster_ratio == 1 ||
1402 !ext4_find_delalloc_cluster(inode, lblk))
1403 ext4_da_release_space(inode, 1);
1404
1405 num_clusters--;
1406 }
1407 }
1408
1409 /*
1410 * Delayed allocation stuff
1411 */
1412
1413 struct mpage_da_data {
1414 struct inode *inode;
1415 struct writeback_control *wbc;
1416
1417 pgoff_t first_page; /* The first page to write */
1418 pgoff_t next_page; /* Current page to examine */
1419 pgoff_t last_page; /* Last page to examine */
1420 /*
1421 * Extent to map - this can be after first_page because that can be
1422 * fully mapped. We somewhat abuse m_flags to store whether the extent
1423 * is delalloc or unwritten.
1424 */
1425 struct ext4_map_blocks map;
1426 struct ext4_io_submit io_submit; /* IO submission data */
1427 };
1428
1429 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1430 bool invalidate)
1431 {
1432 int nr_pages, i;
1433 pgoff_t index, end;
1434 struct pagevec pvec;
1435 struct inode *inode = mpd->inode;
1436 struct address_space *mapping = inode->i_mapping;
1437
1438 /* This is necessary when next_page == 0. */
1439 if (mpd->first_page >= mpd->next_page)
1440 return;
1441
1442 index = mpd->first_page;
1443 end = mpd->next_page - 1;
1444 if (invalidate) {
1445 ext4_lblk_t start, last;
1446 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1447 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1448 ext4_es_remove_extent(inode, start, last - start + 1);
1449 }
1450
1451 pagevec_init(&pvec, 0);
1452 while (index <= end) {
1453 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1454 if (nr_pages == 0)
1455 break;
1456 for (i = 0; i < nr_pages; i++) {
1457 struct page *page = pvec.pages[i];
1458 if (page->index > end)
1459 break;
1460 BUG_ON(!PageLocked(page));
1461 BUG_ON(PageWriteback(page));
1462 if (invalidate) {
1463 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1464 ClearPageUptodate(page);
1465 }
1466 unlock_page(page);
1467 }
1468 index = pvec.pages[nr_pages - 1]->index + 1;
1469 pagevec_release(&pvec);
1470 }
1471 }
1472
1473 static void ext4_print_free_blocks(struct inode *inode)
1474 {
1475 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1476 struct super_block *sb = inode->i_sb;
1477 struct ext4_inode_info *ei = EXT4_I(inode);
1478
1479 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1480 EXT4_C2B(EXT4_SB(inode->i_sb),
1481 ext4_count_free_clusters(sb)));
1482 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1483 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1484 (long long) EXT4_C2B(EXT4_SB(sb),
1485 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1486 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1487 (long long) EXT4_C2B(EXT4_SB(sb),
1488 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1489 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1490 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1491 ei->i_reserved_data_blocks);
1492 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1493 ei->i_reserved_meta_blocks);
1494 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1495 ei->i_allocated_meta_blocks);
1496 return;
1497 }
1498
1499 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1500 {
1501 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1502 }
1503
1504 /*
1505 * This function is grabs code from the very beginning of
1506 * ext4_map_blocks, but assumes that the caller is from delayed write
1507 * time. This function looks up the requested blocks and sets the
1508 * buffer delay bit under the protection of i_data_sem.
1509 */
1510 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1511 struct ext4_map_blocks *map,
1512 struct buffer_head *bh)
1513 {
1514 struct extent_status es;
1515 int retval;
1516 sector_t invalid_block = ~((sector_t) 0xffff);
1517 #ifdef ES_AGGRESSIVE_TEST
1518 struct ext4_map_blocks orig_map;
1519
1520 memcpy(&orig_map, map, sizeof(*map));
1521 #endif
1522
1523 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1524 invalid_block = ~0;
1525
1526 map->m_flags = 0;
1527 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1528 "logical block %lu\n", inode->i_ino, map->m_len,
1529 (unsigned long) map->m_lblk);
1530
1531 /* Lookup extent status tree firstly */
1532 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1533 ext4_es_lru_add(inode);
1534 if (ext4_es_is_hole(&es)) {
1535 retval = 0;
1536 down_read((&EXT4_I(inode)->i_data_sem));
1537 goto add_delayed;
1538 }
1539
1540 /*
1541 * Delayed extent could be allocated by fallocate.
1542 * So we need to check it.
1543 */
1544 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1545 map_bh(bh, inode->i_sb, invalid_block);
1546 set_buffer_new(bh);
1547 set_buffer_delay(bh);
1548 return 0;
1549 }
1550
1551 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1552 retval = es.es_len - (iblock - es.es_lblk);
1553 if (retval > map->m_len)
1554 retval = map->m_len;
1555 map->m_len = retval;
1556 if (ext4_es_is_written(&es))
1557 map->m_flags |= EXT4_MAP_MAPPED;
1558 else if (ext4_es_is_unwritten(&es))
1559 map->m_flags |= EXT4_MAP_UNWRITTEN;
1560 else
1561 BUG_ON(1);
1562
1563 #ifdef ES_AGGRESSIVE_TEST
1564 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1565 #endif
1566 return retval;
1567 }
1568
1569 /*
1570 * Try to see if we can get the block without requesting a new
1571 * file system block.
1572 */
1573 down_read((&EXT4_I(inode)->i_data_sem));
1574 if (ext4_has_inline_data(inode)) {
1575 /*
1576 * We will soon create blocks for this page, and let
1577 * us pretend as if the blocks aren't allocated yet.
1578 * In case of clusters, we have to handle the work
1579 * of mapping from cluster so that the reserved space
1580 * is calculated properly.
1581 */
1582 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1583 ext4_find_delalloc_cluster(inode, map->m_lblk))
1584 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1585 retval = 0;
1586 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1587 retval = ext4_ext_map_blocks(NULL, inode, map,
1588 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1589 else
1590 retval = ext4_ind_map_blocks(NULL, inode, map,
1591 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1592
1593 add_delayed:
1594 if (retval == 0) {
1595 int ret;
1596 /*
1597 * XXX: __block_prepare_write() unmaps passed block,
1598 * is it OK?
1599 */
1600 /*
1601 * If the block was allocated from previously allocated cluster,
1602 * then we don't need to reserve it again. However we still need
1603 * to reserve metadata for every block we're going to write.
1604 */
1605 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1606 ret = ext4_da_reserve_space(inode, iblock);
1607 if (ret) {
1608 /* not enough space to reserve */
1609 retval = ret;
1610 goto out_unlock;
1611 }
1612 } else {
1613 ret = ext4_da_reserve_metadata(inode, iblock);
1614 if (ret) {
1615 /* not enough space to reserve */
1616 retval = ret;
1617 goto out_unlock;
1618 }
1619 }
1620
1621 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1622 ~0, EXTENT_STATUS_DELAYED);
1623 if (ret) {
1624 retval = ret;
1625 goto out_unlock;
1626 }
1627
1628 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1629 * and it should not appear on the bh->b_state.
1630 */
1631 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1632
1633 map_bh(bh, inode->i_sb, invalid_block);
1634 set_buffer_new(bh);
1635 set_buffer_delay(bh);
1636 } else if (retval > 0) {
1637 int ret;
1638 unsigned long long status;
1639
1640 #ifdef ES_AGGRESSIVE_TEST
1641 if (retval != map->m_len) {
1642 printk("ES len assertion failed for inode: %lu "
1643 "retval %d != map->m_len %d "
1644 "in %s (lookup)\n", inode->i_ino, retval,
1645 map->m_len, __func__);
1646 }
1647 #endif
1648
1649 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1650 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1651 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1652 map->m_pblk, status);
1653 if (ret != 0)
1654 retval = ret;
1655 }
1656
1657 out_unlock:
1658 up_read((&EXT4_I(inode)->i_data_sem));
1659
1660 return retval;
1661 }
1662
1663 /*
1664 * This is a special get_blocks_t callback which is used by
1665 * ext4_da_write_begin(). It will either return mapped block or
1666 * reserve space for a single block.
1667 *
1668 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1669 * We also have b_blocknr = -1 and b_bdev initialized properly
1670 *
1671 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1672 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1673 * initialized properly.
1674 */
1675 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1676 struct buffer_head *bh, int create)
1677 {
1678 struct ext4_map_blocks map;
1679 int ret = 0;
1680
1681 BUG_ON(create == 0);
1682 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1683
1684 map.m_lblk = iblock;
1685 map.m_len = 1;
1686
1687 /*
1688 * first, we need to know whether the block is allocated already
1689 * preallocated blocks are unmapped but should treated
1690 * the same as allocated blocks.
1691 */
1692 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1693 if (ret <= 0)
1694 return ret;
1695
1696 map_bh(bh, inode->i_sb, map.m_pblk);
1697 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1698
1699 if (buffer_unwritten(bh)) {
1700 /* A delayed write to unwritten bh should be marked
1701 * new and mapped. Mapped ensures that we don't do
1702 * get_block multiple times when we write to the same
1703 * offset and new ensures that we do proper zero out
1704 * for partial write.
1705 */
1706 set_buffer_new(bh);
1707 set_buffer_mapped(bh);
1708 }
1709 return 0;
1710 }
1711
1712 static int bget_one(handle_t *handle, struct buffer_head *bh)
1713 {
1714 get_bh(bh);
1715 return 0;
1716 }
1717
1718 static int bput_one(handle_t *handle, struct buffer_head *bh)
1719 {
1720 put_bh(bh);
1721 return 0;
1722 }
1723
1724 static int __ext4_journalled_writepage(struct page *page,
1725 unsigned int len)
1726 {
1727 struct address_space *mapping = page->mapping;
1728 struct inode *inode = mapping->host;
1729 struct buffer_head *page_bufs = NULL;
1730 handle_t *handle = NULL;
1731 int ret = 0, err = 0;
1732 int inline_data = ext4_has_inline_data(inode);
1733 struct buffer_head *inode_bh = NULL;
1734
1735 ClearPageChecked(page);
1736
1737 if (inline_data) {
1738 BUG_ON(page->index != 0);
1739 BUG_ON(len > ext4_get_max_inline_size(inode));
1740 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1741 if (inode_bh == NULL)
1742 goto out;
1743 } else {
1744 page_bufs = page_buffers(page);
1745 if (!page_bufs) {
1746 BUG();
1747 goto out;
1748 }
1749 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1750 NULL, bget_one);
1751 }
1752 /* As soon as we unlock the page, it can go away, but we have
1753 * references to buffers so we are safe */
1754 unlock_page(page);
1755
1756 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1757 ext4_writepage_trans_blocks(inode));
1758 if (IS_ERR(handle)) {
1759 ret = PTR_ERR(handle);
1760 goto out;
1761 }
1762
1763 BUG_ON(!ext4_handle_valid(handle));
1764
1765 if (inline_data) {
1766 ret = ext4_journal_get_write_access(handle, inode_bh);
1767
1768 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1769
1770 } else {
1771 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1772 do_journal_get_write_access);
1773
1774 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1775 write_end_fn);
1776 }
1777 if (ret == 0)
1778 ret = err;
1779 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1780 err = ext4_journal_stop(handle);
1781 if (!ret)
1782 ret = err;
1783
1784 if (!ext4_has_inline_data(inode))
1785 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1786 NULL, bput_one);
1787 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1788 out:
1789 brelse(inode_bh);
1790 return ret;
1791 }
1792
1793 /*
1794 * Note that we don't need to start a transaction unless we're journaling data
1795 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1796 * need to file the inode to the transaction's list in ordered mode because if
1797 * we are writing back data added by write(), the inode is already there and if
1798 * we are writing back data modified via mmap(), no one guarantees in which
1799 * transaction the data will hit the disk. In case we are journaling data, we
1800 * cannot start transaction directly because transaction start ranks above page
1801 * lock so we have to do some magic.
1802 *
1803 * This function can get called via...
1804 * - ext4_writepages after taking page lock (have journal handle)
1805 * - journal_submit_inode_data_buffers (no journal handle)
1806 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1807 * - grab_page_cache when doing write_begin (have journal handle)
1808 *
1809 * We don't do any block allocation in this function. If we have page with
1810 * multiple blocks we need to write those buffer_heads that are mapped. This
1811 * is important for mmaped based write. So if we do with blocksize 1K
1812 * truncate(f, 1024);
1813 * a = mmap(f, 0, 4096);
1814 * a[0] = 'a';
1815 * truncate(f, 4096);
1816 * we have in the page first buffer_head mapped via page_mkwrite call back
1817 * but other buffer_heads would be unmapped but dirty (dirty done via the
1818 * do_wp_page). So writepage should write the first block. If we modify
1819 * the mmap area beyond 1024 we will again get a page_fault and the
1820 * page_mkwrite callback will do the block allocation and mark the
1821 * buffer_heads mapped.
1822 *
1823 * We redirty the page if we have any buffer_heads that is either delay or
1824 * unwritten in the page.
1825 *
1826 * We can get recursively called as show below.
1827 *
1828 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1829 * ext4_writepage()
1830 *
1831 * But since we don't do any block allocation we should not deadlock.
1832 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1833 */
1834 static int ext4_writepage(struct page *page,
1835 struct writeback_control *wbc)
1836 {
1837 int ret = 0;
1838 loff_t size;
1839 unsigned int len;
1840 struct buffer_head *page_bufs = NULL;
1841 struct inode *inode = page->mapping->host;
1842 struct ext4_io_submit io_submit;
1843
1844 trace_ext4_writepage(page);
1845 size = i_size_read(inode);
1846 if (page->index == size >> PAGE_CACHE_SHIFT)
1847 len = size & ~PAGE_CACHE_MASK;
1848 else
1849 len = PAGE_CACHE_SIZE;
1850
1851 page_bufs = page_buffers(page);
1852 /*
1853 * We cannot do block allocation or other extent handling in this
1854 * function. If there are buffers needing that, we have to redirty
1855 * the page. But we may reach here when we do a journal commit via
1856 * journal_submit_inode_data_buffers() and in that case we must write
1857 * allocated buffers to achieve data=ordered mode guarantees.
1858 */
1859 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1860 ext4_bh_delay_or_unwritten)) {
1861 redirty_page_for_writepage(wbc, page);
1862 if (current->flags & PF_MEMALLOC) {
1863 /*
1864 * For memory cleaning there's no point in writing only
1865 * some buffers. So just bail out. Warn if we came here
1866 * from direct reclaim.
1867 */
1868 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1869 == PF_MEMALLOC);
1870 unlock_page(page);
1871 return 0;
1872 }
1873 }
1874
1875 if (PageChecked(page) && ext4_should_journal_data(inode))
1876 /*
1877 * It's mmapped pagecache. Add buffers and journal it. There
1878 * doesn't seem much point in redirtying the page here.
1879 */
1880 return __ext4_journalled_writepage(page, len);
1881
1882 ext4_io_submit_init(&io_submit, wbc);
1883 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1884 if (!io_submit.io_end) {
1885 redirty_page_for_writepage(wbc, page);
1886 unlock_page(page);
1887 return -ENOMEM;
1888 }
1889 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1890 ext4_io_submit(&io_submit);
1891 /* Drop io_end reference we got from init */
1892 ext4_put_io_end_defer(io_submit.io_end);
1893 return ret;
1894 }
1895
1896 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1897
1898 /*
1899 * mballoc gives us at most this number of blocks...
1900 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1901 * The rest of mballoc seems to handle chunks upto full group size.
1902 */
1903 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1904
1905 /*
1906 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1907 *
1908 * @mpd - extent of blocks
1909 * @lblk - logical number of the block in the file
1910 * @b_state - b_state of the buffer head added
1911 *
1912 * the function is used to collect contig. blocks in same state
1913 */
1914 static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1915 unsigned long b_state)
1916 {
1917 struct ext4_map_blocks *map = &mpd->map;
1918
1919 /* Don't go larger than mballoc is willing to allocate */
1920 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1921 return 0;
1922
1923 /* First block in the extent? */
1924 if (map->m_len == 0) {
1925 map->m_lblk = lblk;
1926 map->m_len = 1;
1927 map->m_flags = b_state & BH_FLAGS;
1928 return 1;
1929 }
1930
1931 /* Can we merge the block to our big extent? */
1932 if (lblk == map->m_lblk + map->m_len &&
1933 (b_state & BH_FLAGS) == map->m_flags) {
1934 map->m_len++;
1935 return 1;
1936 }
1937 return 0;
1938 }
1939
1940 static bool add_page_bufs_to_extent(struct mpage_da_data *mpd,
1941 struct buffer_head *head,
1942 struct buffer_head *bh,
1943 ext4_lblk_t lblk)
1944 {
1945 struct inode *inode = mpd->inode;
1946 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1947 >> inode->i_blkbits;
1948
1949 do {
1950 BUG_ON(buffer_locked(bh));
1951
1952 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1953 (!buffer_delay(bh) && !buffer_unwritten(bh)) ||
1954 lblk >= blocks) {
1955 /* Found extent to map? */
1956 if (mpd->map.m_len)
1957 return false;
1958 if (lblk >= blocks)
1959 return true;
1960 continue;
1961 }
1962 if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state))
1963 return false;
1964 } while (lblk++, (bh = bh->b_this_page) != head);
1965 return true;
1966 }
1967
1968 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1969 {
1970 int len;
1971 loff_t size = i_size_read(mpd->inode);
1972 int err;
1973
1974 BUG_ON(page->index != mpd->first_page);
1975 if (page->index == size >> PAGE_CACHE_SHIFT)
1976 len = size & ~PAGE_CACHE_MASK;
1977 else
1978 len = PAGE_CACHE_SIZE;
1979 clear_page_dirty_for_io(page);
1980 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1981 if (!err)
1982 mpd->wbc->nr_to_write--;
1983 mpd->first_page++;
1984
1985 return err;
1986 }
1987
1988 /*
1989 * mpage_map_buffers - update buffers corresponding to changed extent and
1990 * submit fully mapped pages for IO
1991 *
1992 * @mpd - description of extent to map, on return next extent to map
1993 *
1994 * Scan buffers corresponding to changed extent (we expect corresponding pages
1995 * to be already locked) and update buffer state according to new extent state.
1996 * We map delalloc buffers to their physical location, clear unwritten bits,
1997 * and mark buffers as uninit when we perform writes to uninitialized extents
1998 * and do extent conversion after IO is finished. If the last page is not fully
1999 * mapped, we update @map to the next extent in the last page that needs
2000 * mapping. Otherwise we submit the page for IO.
2001 */
2002 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2003 {
2004 struct pagevec pvec;
2005 int nr_pages, i;
2006 struct inode *inode = mpd->inode;
2007 struct buffer_head *head, *bh;
2008 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2009 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2010 >> inode->i_blkbits;
2011 pgoff_t start, end;
2012 ext4_lblk_t lblk;
2013 sector_t pblock;
2014 int err;
2015
2016 start = mpd->map.m_lblk >> bpp_bits;
2017 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2018 lblk = start << bpp_bits;
2019 pblock = mpd->map.m_pblk;
2020
2021 pagevec_init(&pvec, 0);
2022 while (start <= end) {
2023 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2024 PAGEVEC_SIZE);
2025 if (nr_pages == 0)
2026 break;
2027 for (i = 0; i < nr_pages; i++) {
2028 struct page *page = pvec.pages[i];
2029
2030 if (page->index > end)
2031 break;
2032 /* Upto 'end' pages must be contiguous */
2033 BUG_ON(page->index != start);
2034 bh = head = page_buffers(page);
2035 do {
2036 if (lblk < mpd->map.m_lblk)
2037 continue;
2038 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2039 /*
2040 * Buffer after end of mapped extent.
2041 * Find next buffer in the page to map.
2042 */
2043 mpd->map.m_len = 0;
2044 mpd->map.m_flags = 0;
2045 add_page_bufs_to_extent(mpd, head, bh,
2046 lblk);
2047 pagevec_release(&pvec);
2048 return 0;
2049 }
2050 if (buffer_delay(bh)) {
2051 clear_buffer_delay(bh);
2052 bh->b_blocknr = pblock++;
2053 }
2054 clear_buffer_unwritten(bh);
2055 } while (++lblk < blocks &&
2056 (bh = bh->b_this_page) != head);
2057
2058 /*
2059 * FIXME: This is going to break if dioread_nolock
2060 * supports blocksize < pagesize as we will try to
2061 * convert potentially unmapped parts of inode.
2062 */
2063 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2064 /* Page fully mapped - let IO run! */
2065 err = mpage_submit_page(mpd, page);
2066 if (err < 0) {
2067 pagevec_release(&pvec);
2068 return err;
2069 }
2070 start++;
2071 }
2072 pagevec_release(&pvec);
2073 }
2074 /* Extent fully mapped and matches with page boundary. We are done. */
2075 mpd->map.m_len = 0;
2076 mpd->map.m_flags = 0;
2077 return 0;
2078 }
2079
2080 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2081 {
2082 struct inode *inode = mpd->inode;
2083 struct ext4_map_blocks *map = &mpd->map;
2084 int get_blocks_flags;
2085 int err;
2086
2087 trace_ext4_da_write_pages_extent(inode, map);
2088 /*
2089 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2090 * to convert an uninitialized extent to be initialized (in the case
2091 * where we have written into one or more preallocated blocks). It is
2092 * possible that we're going to need more metadata blocks than
2093 * previously reserved. However we must not fail because we're in
2094 * writeback and there is nothing we can do about it so it might result
2095 * in data loss. So use reserved blocks to allocate metadata if
2096 * possible.
2097 *
2098 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2099 * in question are delalloc blocks. This affects functions in many
2100 * different parts of the allocation call path. This flag exists
2101 * primarily because we don't want to change *many* call functions, so
2102 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2103 * once the inode's allocation semaphore is taken.
2104 */
2105 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2106 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2107 if (ext4_should_dioread_nolock(inode))
2108 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2109 if (map->m_flags & (1 << BH_Delay))
2110 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2111
2112 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2113 if (err < 0)
2114 return err;
2115 if (map->m_flags & EXT4_MAP_UNINIT) {
2116 if (!mpd->io_submit.io_end->handle &&
2117 ext4_handle_valid(handle)) {
2118 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2119 handle->h_rsv_handle = NULL;
2120 }
2121 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2122 }
2123
2124 BUG_ON(map->m_len == 0);
2125 if (map->m_flags & EXT4_MAP_NEW) {
2126 struct block_device *bdev = inode->i_sb->s_bdev;
2127 int i;
2128
2129 for (i = 0; i < map->m_len; i++)
2130 unmap_underlying_metadata(bdev, map->m_pblk + i);
2131 }
2132 return 0;
2133 }
2134
2135 /*
2136 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2137 * mpd->len and submit pages underlying it for IO
2138 *
2139 * @handle - handle for journal operations
2140 * @mpd - extent to map
2141 *
2142 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2143 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2144 * them to initialized or split the described range from larger unwritten
2145 * extent. Note that we need not map all the described range since allocation
2146 * can return less blocks or the range is covered by more unwritten extents. We
2147 * cannot map more because we are limited by reserved transaction credits. On
2148 * the other hand we always make sure that the last touched page is fully
2149 * mapped so that it can be written out (and thus forward progress is
2150 * guaranteed). After mapping we submit all mapped pages for IO.
2151 */
2152 static int mpage_map_and_submit_extent(handle_t *handle,
2153 struct mpage_da_data *mpd,
2154 bool *give_up_on_write)
2155 {
2156 struct inode *inode = mpd->inode;
2157 struct ext4_map_blocks *map = &mpd->map;
2158 int err;
2159 loff_t disksize;
2160
2161 mpd->io_submit.io_end->offset =
2162 ((loff_t)map->m_lblk) << inode->i_blkbits;
2163 do {
2164 err = mpage_map_one_extent(handle, mpd);
2165 if (err < 0) {
2166 struct super_block *sb = inode->i_sb;
2167
2168 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2169 goto invalidate_dirty_pages;
2170 /*
2171 * Let the uper layers retry transient errors.
2172 * In the case of ENOSPC, if ext4_count_free_blocks()
2173 * is non-zero, a commit should free up blocks.
2174 */
2175 if ((err == -ENOMEM) ||
2176 (err == -ENOSPC && ext4_count_free_clusters(sb)))
2177 return err;
2178 ext4_msg(sb, KERN_CRIT,
2179 "Delayed block allocation failed for "
2180 "inode %lu at logical offset %llu with"
2181 " max blocks %u with error %d",
2182 inode->i_ino,
2183 (unsigned long long)map->m_lblk,
2184 (unsigned)map->m_len, -err);
2185 ext4_msg(sb, KERN_CRIT,
2186 "This should not happen!! Data will "
2187 "be lost\n");
2188 if (err == -ENOSPC)
2189 ext4_print_free_blocks(inode);
2190 invalidate_dirty_pages:
2191 *give_up_on_write = true;
2192 return err;
2193 }
2194 /*
2195 * Update buffer state, submit mapped pages, and get us new
2196 * extent to map
2197 */
2198 err = mpage_map_and_submit_buffers(mpd);
2199 if (err < 0)
2200 return err;
2201 } while (map->m_len);
2202
2203 /* Update on-disk size after IO is submitted */
2204 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2205 if (disksize > i_size_read(inode))
2206 disksize = i_size_read(inode);
2207 if (disksize > EXT4_I(inode)->i_disksize) {
2208 int err2;
2209
2210 ext4_update_i_disksize(inode, disksize);
2211 err2 = ext4_mark_inode_dirty(handle, inode);
2212 if (err2)
2213 ext4_error(inode->i_sb,
2214 "Failed to mark inode %lu dirty",
2215 inode->i_ino);
2216 if (!err)
2217 err = err2;
2218 }
2219 return err;
2220 }
2221
2222 /*
2223 * Calculate the total number of credits to reserve for one writepages
2224 * iteration. This is called from ext4_writepages(). We map an extent of
2225 * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2226 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2227 * bpp - 1 blocks in bpp different extents.
2228 */
2229 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2230 {
2231 int bpp = ext4_journal_blocks_per_page(inode);
2232
2233 return ext4_meta_trans_blocks(inode,
2234 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2235 }
2236
2237 /*
2238 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2239 * and underlying extent to map
2240 *
2241 * @mpd - where to look for pages
2242 *
2243 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2244 * IO immediately. When we find a page which isn't mapped we start accumulating
2245 * extent of buffers underlying these pages that needs mapping (formed by
2246 * either delayed or unwritten buffers). We also lock the pages containing
2247 * these buffers. The extent found is returned in @mpd structure (starting at
2248 * mpd->lblk with length mpd->len blocks).
2249 *
2250 * Note that this function can attach bios to one io_end structure which are
2251 * neither logically nor physically contiguous. Although it may seem as an
2252 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2253 * case as we need to track IO to all buffers underlying a page in one io_end.
2254 */
2255 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2256 {
2257 struct address_space *mapping = mpd->inode->i_mapping;
2258 struct pagevec pvec;
2259 unsigned int nr_pages;
2260 pgoff_t index = mpd->first_page;
2261 pgoff_t end = mpd->last_page;
2262 int tag;
2263 int i, err = 0;
2264 int blkbits = mpd->inode->i_blkbits;
2265 ext4_lblk_t lblk;
2266 struct buffer_head *head;
2267
2268 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2269 tag = PAGECACHE_TAG_TOWRITE;
2270 else
2271 tag = PAGECACHE_TAG_DIRTY;
2272
2273 pagevec_init(&pvec, 0);
2274 mpd->map.m_len = 0;
2275 mpd->next_page = index;
2276 while (index <= end) {
2277 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2278 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2279 if (nr_pages == 0)
2280 goto out;
2281
2282 for (i = 0; i < nr_pages; i++) {
2283 struct page *page = pvec.pages[i];
2284
2285 /*
2286 * At this point, the page may be truncated or
2287 * invalidated (changing page->mapping to NULL), or
2288 * even swizzled back from swapper_space to tmpfs file
2289 * mapping. However, page->index will not change
2290 * because we have a reference on the page.
2291 */
2292 if (page->index > end)
2293 goto out;
2294
2295 /* If we can't merge this page, we are done. */
2296 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2297 goto out;
2298
2299 lock_page(page);
2300 /*
2301 * If the page is no longer dirty, or its mapping no
2302 * longer corresponds to inode we are writing (which
2303 * means it has been truncated or invalidated), or the
2304 * page is already under writeback and we are not doing
2305 * a data integrity writeback, skip the page
2306 */
2307 if (!PageDirty(page) ||
2308 (PageWriteback(page) &&
2309 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2310 unlikely(page->mapping != mapping)) {
2311 unlock_page(page);
2312 continue;
2313 }
2314
2315 wait_on_page_writeback(page);
2316 BUG_ON(PageWriteback(page));
2317
2318 if (mpd->map.m_len == 0)
2319 mpd->first_page = page->index;
2320 mpd->next_page = page->index + 1;
2321 /* Add all dirty buffers to mpd */
2322 lblk = ((ext4_lblk_t)page->index) <<
2323 (PAGE_CACHE_SHIFT - blkbits);
2324 head = page_buffers(page);
2325 if (!add_page_bufs_to_extent(mpd, head, head, lblk))
2326 goto out;
2327 /* So far everything mapped? Submit the page for IO. */
2328 if (mpd->map.m_len == 0) {
2329 err = mpage_submit_page(mpd, page);
2330 if (err < 0)
2331 goto out;
2332 }
2333
2334 /*
2335 * Accumulated enough dirty pages? This doesn't apply
2336 * to WB_SYNC_ALL mode. For integrity sync we have to
2337 * keep going because someone may be concurrently
2338 * dirtying pages, and we might have synced a lot of
2339 * newly appeared dirty pages, but have not synced all
2340 * of the old dirty pages.
2341 */
2342 if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2343 mpd->next_page - mpd->first_page >=
2344 mpd->wbc->nr_to_write)
2345 goto out;
2346 }
2347 pagevec_release(&pvec);
2348 cond_resched();
2349 }
2350 return 0;
2351 out:
2352 pagevec_release(&pvec);
2353 return err;
2354 }
2355
2356 static int __writepage(struct page *page, struct writeback_control *wbc,
2357 void *data)
2358 {
2359 struct address_space *mapping = data;
2360 int ret = ext4_writepage(page, wbc);
2361 mapping_set_error(mapping, ret);
2362 return ret;
2363 }
2364
2365 static int ext4_writepages(struct address_space *mapping,
2366 struct writeback_control *wbc)
2367 {
2368 pgoff_t writeback_index = 0;
2369 long nr_to_write = wbc->nr_to_write;
2370 int range_whole = 0;
2371 int cycled = 1;
2372 handle_t *handle = NULL;
2373 struct mpage_da_data mpd;
2374 struct inode *inode = mapping->host;
2375 int needed_blocks, rsv_blocks = 0, ret = 0;
2376 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2377 bool done;
2378 struct blk_plug plug;
2379 bool give_up_on_write = false;
2380
2381 trace_ext4_writepages(inode, wbc);
2382
2383 /*
2384 * No pages to write? This is mainly a kludge to avoid starting
2385 * a transaction for special inodes like journal inode on last iput()
2386 * because that could violate lock ordering on umount
2387 */
2388 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2389 return 0;
2390
2391 if (ext4_should_journal_data(inode)) {
2392 struct blk_plug plug;
2393 int ret;
2394
2395 blk_start_plug(&plug);
2396 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2397 blk_finish_plug(&plug);
2398 return ret;
2399 }
2400
2401 /*
2402 * If the filesystem has aborted, it is read-only, so return
2403 * right away instead of dumping stack traces later on that
2404 * will obscure the real source of the problem. We test
2405 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2406 * the latter could be true if the filesystem is mounted
2407 * read-only, and in that case, ext4_writepages should
2408 * *never* be called, so if that ever happens, we would want
2409 * the stack trace.
2410 */
2411 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2412 return -EROFS;
2413
2414 if (ext4_should_dioread_nolock(inode)) {
2415 /*
2416 * We may need to convert upto one extent per block in
2417 * the page and we may dirty the inode.
2418 */
2419 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2420 }
2421
2422 /*
2423 * If we have inline data and arrive here, it means that
2424 * we will soon create the block for the 1st page, so
2425 * we'd better clear the inline data here.
2426 */
2427 if (ext4_has_inline_data(inode)) {
2428 /* Just inode will be modified... */
2429 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2430 if (IS_ERR(handle)) {
2431 ret = PTR_ERR(handle);
2432 goto out_writepages;
2433 }
2434 BUG_ON(ext4_test_inode_state(inode,
2435 EXT4_STATE_MAY_INLINE_DATA));
2436 ext4_destroy_inline_data(handle, inode);
2437 ext4_journal_stop(handle);
2438 }
2439
2440 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2441 range_whole = 1;
2442
2443 if (wbc->range_cyclic) {
2444 writeback_index = mapping->writeback_index;
2445 if (writeback_index)
2446 cycled = 0;
2447 mpd.first_page = writeback_index;
2448 mpd.last_page = -1;
2449 } else {
2450 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2451 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2452 }
2453
2454 mpd.inode = inode;
2455 mpd.wbc = wbc;
2456 ext4_io_submit_init(&mpd.io_submit, wbc);
2457 retry:
2458 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2459 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2460 done = false;
2461 blk_start_plug(&plug);
2462 while (!done && mpd.first_page <= mpd.last_page) {
2463 /* For each extent of pages we use new io_end */
2464 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2465 if (!mpd.io_submit.io_end) {
2466 ret = -ENOMEM;
2467 break;
2468 }
2469
2470 /*
2471 * We have two constraints: We find one extent to map and we
2472 * must always write out whole page (makes a difference when
2473 * blocksize < pagesize) so that we don't block on IO when we
2474 * try to write out the rest of the page. Journalled mode is
2475 * not supported by delalloc.
2476 */
2477 BUG_ON(ext4_should_journal_data(inode));
2478 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2479
2480 /* start a new transaction */
2481 handle = ext4_journal_start_with_reserve(inode,
2482 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2483 if (IS_ERR(handle)) {
2484 ret = PTR_ERR(handle);
2485 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2486 "%ld pages, ino %lu; err %d", __func__,
2487 wbc->nr_to_write, inode->i_ino, ret);
2488 /* Release allocated io_end */
2489 ext4_put_io_end(mpd.io_submit.io_end);
2490 break;
2491 }
2492
2493 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2494 ret = mpage_prepare_extent_to_map(&mpd);
2495 if (!ret) {
2496 if (mpd.map.m_len)
2497 ret = mpage_map_and_submit_extent(handle, &mpd,
2498 &give_up_on_write);
2499 else {
2500 /*
2501 * We scanned the whole range (or exhausted
2502 * nr_to_write), submitted what was mapped and
2503 * didn't find anything needing mapping. We are
2504 * done.
2505 */
2506 done = true;
2507 }
2508 }
2509 ext4_journal_stop(handle);
2510 /* Submit prepared bio */
2511 ext4_io_submit(&mpd.io_submit);
2512 /* Unlock pages we didn't use */
2513 mpage_release_unused_pages(&mpd, give_up_on_write);
2514 /* Drop our io_end reference we got from init */
2515 ext4_put_io_end(mpd.io_submit.io_end);
2516
2517 if (ret == -ENOSPC && sbi->s_journal) {
2518 /*
2519 * Commit the transaction which would
2520 * free blocks released in the transaction
2521 * and try again
2522 */
2523 jbd2_journal_force_commit_nested(sbi->s_journal);
2524 ret = 0;
2525 continue;
2526 }
2527 /* Fatal error - ENOMEM, EIO... */
2528 if (ret)
2529 break;
2530 }
2531 blk_finish_plug(&plug);
2532 if (!ret && !cycled) {
2533 cycled = 1;
2534 mpd.last_page = writeback_index - 1;
2535 mpd.first_page = 0;
2536 goto retry;
2537 }
2538
2539 /* Update index */
2540 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2541 /*
2542 * Set the writeback_index so that range_cyclic
2543 * mode will write it back later
2544 */
2545 mapping->writeback_index = mpd.first_page;
2546
2547 out_writepages:
2548 trace_ext4_writepages_result(inode, wbc, ret,
2549 nr_to_write - wbc->nr_to_write);
2550 return ret;
2551 }
2552
2553 static int ext4_nonda_switch(struct super_block *sb)
2554 {
2555 s64 free_clusters, dirty_clusters;
2556 struct ext4_sb_info *sbi = EXT4_SB(sb);
2557
2558 /*
2559 * switch to non delalloc mode if we are running low
2560 * on free block. The free block accounting via percpu
2561 * counters can get slightly wrong with percpu_counter_batch getting
2562 * accumulated on each CPU without updating global counters
2563 * Delalloc need an accurate free block accounting. So switch
2564 * to non delalloc when we are near to error range.
2565 */
2566 free_clusters =
2567 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2568 dirty_clusters =
2569 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2570 /*
2571 * Start pushing delalloc when 1/2 of free blocks are dirty.
2572 */
2573 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2574 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2575
2576 if (2 * free_clusters < 3 * dirty_clusters ||
2577 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2578 /*
2579 * free block count is less than 150% of dirty blocks
2580 * or free blocks is less than watermark
2581 */
2582 return 1;
2583 }
2584 return 0;
2585 }
2586
2587 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2588 loff_t pos, unsigned len, unsigned flags,
2589 struct page **pagep, void **fsdata)
2590 {
2591 int ret, retries = 0;
2592 struct page *page;
2593 pgoff_t index;
2594 struct inode *inode = mapping->host;
2595 handle_t *handle;
2596
2597 index = pos >> PAGE_CACHE_SHIFT;
2598
2599 if (ext4_nonda_switch(inode->i_sb)) {
2600 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2601 return ext4_write_begin(file, mapping, pos,
2602 len, flags, pagep, fsdata);
2603 }
2604 *fsdata = (void *)0;
2605 trace_ext4_da_write_begin(inode, pos, len, flags);
2606
2607 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2608 ret = ext4_da_write_inline_data_begin(mapping, inode,
2609 pos, len, flags,
2610 pagep, fsdata);
2611 if (ret < 0)
2612 return ret;
2613 if (ret == 1)
2614 return 0;
2615 }
2616
2617 /*
2618 * grab_cache_page_write_begin() can take a long time if the
2619 * system is thrashing due to memory pressure, or if the page
2620 * is being written back. So grab it first before we start
2621 * the transaction handle. This also allows us to allocate
2622 * the page (if needed) without using GFP_NOFS.
2623 */
2624 retry_grab:
2625 page = grab_cache_page_write_begin(mapping, index, flags);
2626 if (!page)
2627 return -ENOMEM;
2628 unlock_page(page);
2629
2630 /*
2631 * With delayed allocation, we don't log the i_disksize update
2632 * if there is delayed block allocation. But we still need
2633 * to journalling the i_disksize update if writes to the end
2634 * of file which has an already mapped buffer.
2635 */
2636 retry_journal:
2637 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2638 if (IS_ERR(handle)) {
2639 page_cache_release(page);
2640 return PTR_ERR(handle);
2641 }
2642
2643 lock_page(page);
2644 if (page->mapping != mapping) {
2645 /* The page got truncated from under us */
2646 unlock_page(page);
2647 page_cache_release(page);
2648 ext4_journal_stop(handle);
2649 goto retry_grab;
2650 }
2651 /* In case writeback began while the page was unlocked */
2652 wait_on_page_writeback(page);
2653
2654 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2655 if (ret < 0) {
2656 unlock_page(page);
2657 ext4_journal_stop(handle);
2658 /*
2659 * block_write_begin may have instantiated a few blocks
2660 * outside i_size. Trim these off again. Don't need
2661 * i_size_read because we hold i_mutex.
2662 */
2663 if (pos + len > inode->i_size)
2664 ext4_truncate_failed_write(inode);
2665
2666 if (ret == -ENOSPC &&
2667 ext4_should_retry_alloc(inode->i_sb, &retries))
2668 goto retry_journal;
2669
2670 page_cache_release(page);
2671 return ret;
2672 }
2673
2674 *pagep = page;
2675 return ret;
2676 }
2677
2678 /*
2679 * Check if we should update i_disksize
2680 * when write to the end of file but not require block allocation
2681 */
2682 static int ext4_da_should_update_i_disksize(struct page *page,
2683 unsigned long offset)
2684 {
2685 struct buffer_head *bh;
2686 struct inode *inode = page->mapping->host;
2687 unsigned int idx;
2688 int i;
2689
2690 bh = page_buffers(page);
2691 idx = offset >> inode->i_blkbits;
2692
2693 for (i = 0; i < idx; i++)
2694 bh = bh->b_this_page;
2695
2696 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2697 return 0;
2698 return 1;
2699 }
2700
2701 static int ext4_da_write_end(struct file *file,
2702 struct address_space *mapping,
2703 loff_t pos, unsigned len, unsigned copied,
2704 struct page *page, void *fsdata)
2705 {
2706 struct inode *inode = mapping->host;
2707 int ret = 0, ret2;
2708 handle_t *handle = ext4_journal_current_handle();
2709 loff_t new_i_size;
2710 unsigned long start, end;
2711 int write_mode = (int)(unsigned long)fsdata;
2712
2713 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2714 return ext4_write_end(file, mapping, pos,
2715 len, copied, page, fsdata);
2716
2717 trace_ext4_da_write_end(inode, pos, len, copied);
2718 start = pos & (PAGE_CACHE_SIZE - 1);
2719 end = start + copied - 1;
2720
2721 /*
2722 * generic_write_end() will run mark_inode_dirty() if i_size
2723 * changes. So let's piggyback the i_disksize mark_inode_dirty
2724 * into that.
2725 */
2726 new_i_size = pos + copied;
2727 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2728 if (ext4_has_inline_data(inode) ||
2729 ext4_da_should_update_i_disksize(page, end)) {
2730 down_write(&EXT4_I(inode)->i_data_sem);
2731 if (new_i_size > EXT4_I(inode)->i_disksize)
2732 EXT4_I(inode)->i_disksize = new_i_size;
2733 up_write(&EXT4_I(inode)->i_data_sem);
2734 /* We need to mark inode dirty even if
2735 * new_i_size is less that inode->i_size
2736 * bu greater than i_disksize.(hint delalloc)
2737 */
2738 ext4_mark_inode_dirty(handle, inode);
2739 }
2740 }
2741
2742 if (write_mode != CONVERT_INLINE_DATA &&
2743 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2744 ext4_has_inline_data(inode))
2745 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2746 page);
2747 else
2748 ret2 = generic_write_end(file, mapping, pos, len, copied,
2749 page, fsdata);
2750
2751 copied = ret2;
2752 if (ret2 < 0)
2753 ret = ret2;
2754 ret2 = ext4_journal_stop(handle);
2755 if (!ret)
2756 ret = ret2;
2757
2758 return ret ? ret : copied;
2759 }
2760
2761 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2762 unsigned int length)
2763 {
2764 /*
2765 * Drop reserved blocks
2766 */
2767 BUG_ON(!PageLocked(page));
2768 if (!page_has_buffers(page))
2769 goto out;
2770
2771 ext4_da_page_release_reservation(page, offset, length);
2772
2773 out:
2774 ext4_invalidatepage(page, offset, length);
2775
2776 return;
2777 }
2778
2779 /*
2780 * Force all delayed allocation blocks to be allocated for a given inode.
2781 */
2782 int ext4_alloc_da_blocks(struct inode *inode)
2783 {
2784 trace_ext4_alloc_da_blocks(inode);
2785
2786 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2787 !EXT4_I(inode)->i_reserved_meta_blocks)
2788 return 0;
2789
2790 /*
2791 * We do something simple for now. The filemap_flush() will
2792 * also start triggering a write of the data blocks, which is
2793 * not strictly speaking necessary (and for users of
2794 * laptop_mode, not even desirable). However, to do otherwise
2795 * would require replicating code paths in:
2796 *
2797 * ext4_writepages() ->
2798 * write_cache_pages() ---> (via passed in callback function)
2799 * __mpage_da_writepage() -->
2800 * mpage_add_bh_to_extent()
2801 * mpage_da_map_blocks()
2802 *
2803 * The problem is that write_cache_pages(), located in
2804 * mm/page-writeback.c, marks pages clean in preparation for
2805 * doing I/O, which is not desirable if we're not planning on
2806 * doing I/O at all.
2807 *
2808 * We could call write_cache_pages(), and then redirty all of
2809 * the pages by calling redirty_page_for_writepage() but that
2810 * would be ugly in the extreme. So instead we would need to
2811 * replicate parts of the code in the above functions,
2812 * simplifying them because we wouldn't actually intend to
2813 * write out the pages, but rather only collect contiguous
2814 * logical block extents, call the multi-block allocator, and
2815 * then update the buffer heads with the block allocations.
2816 *
2817 * For now, though, we'll cheat by calling filemap_flush(),
2818 * which will map the blocks, and start the I/O, but not
2819 * actually wait for the I/O to complete.
2820 */
2821 return filemap_flush(inode->i_mapping);
2822 }
2823
2824 /*
2825 * bmap() is special. It gets used by applications such as lilo and by
2826 * the swapper to find the on-disk block of a specific piece of data.
2827 *
2828 * Naturally, this is dangerous if the block concerned is still in the
2829 * journal. If somebody makes a swapfile on an ext4 data-journaling
2830 * filesystem and enables swap, then they may get a nasty shock when the
2831 * data getting swapped to that swapfile suddenly gets overwritten by
2832 * the original zero's written out previously to the journal and
2833 * awaiting writeback in the kernel's buffer cache.
2834 *
2835 * So, if we see any bmap calls here on a modified, data-journaled file,
2836 * take extra steps to flush any blocks which might be in the cache.
2837 */
2838 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2839 {
2840 struct inode *inode = mapping->host;
2841 journal_t *journal;
2842 int err;
2843
2844 /*
2845 * We can get here for an inline file via the FIBMAP ioctl
2846 */
2847 if (ext4_has_inline_data(inode))
2848 return 0;
2849
2850 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2851 test_opt(inode->i_sb, DELALLOC)) {
2852 /*
2853 * With delalloc we want to sync the file
2854 * so that we can make sure we allocate
2855 * blocks for file
2856 */
2857 filemap_write_and_wait(mapping);
2858 }
2859
2860 if (EXT4_JOURNAL(inode) &&
2861 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2862 /*
2863 * This is a REALLY heavyweight approach, but the use of
2864 * bmap on dirty files is expected to be extremely rare:
2865 * only if we run lilo or swapon on a freshly made file
2866 * do we expect this to happen.
2867 *
2868 * (bmap requires CAP_SYS_RAWIO so this does not
2869 * represent an unprivileged user DOS attack --- we'd be
2870 * in trouble if mortal users could trigger this path at
2871 * will.)
2872 *
2873 * NB. EXT4_STATE_JDATA is not set on files other than
2874 * regular files. If somebody wants to bmap a directory
2875 * or symlink and gets confused because the buffer
2876 * hasn't yet been flushed to disk, they deserve
2877 * everything they get.
2878 */
2879
2880 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2881 journal = EXT4_JOURNAL(inode);
2882 jbd2_journal_lock_updates(journal);
2883 err = jbd2_journal_flush(journal);
2884 jbd2_journal_unlock_updates(journal);
2885
2886 if (err)
2887 return 0;
2888 }
2889
2890 return generic_block_bmap(mapping, block, ext4_get_block);
2891 }
2892
2893 static int ext4_readpage(struct file *file, struct page *page)
2894 {
2895 int ret = -EAGAIN;
2896 struct inode *inode = page->mapping->host;
2897
2898 trace_ext4_readpage(page);
2899
2900 if (ext4_has_inline_data(inode))
2901 ret = ext4_readpage_inline(inode, page);
2902
2903 if (ret == -EAGAIN)
2904 return mpage_readpage(page, ext4_get_block);
2905
2906 return ret;
2907 }
2908
2909 static int
2910 ext4_readpages(struct file *file, struct address_space *mapping,
2911 struct list_head *pages, unsigned nr_pages)
2912 {
2913 struct inode *inode = mapping->host;
2914
2915 /* If the file has inline data, no need to do readpages. */
2916 if (ext4_has_inline_data(inode))
2917 return 0;
2918
2919 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2920 }
2921
2922 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2923 unsigned int length)
2924 {
2925 trace_ext4_invalidatepage(page, offset, length);
2926
2927 /* No journalling happens on data buffers when this function is used */
2928 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2929
2930 block_invalidatepage(page, offset, length);
2931 }
2932
2933 static int __ext4_journalled_invalidatepage(struct page *page,
2934 unsigned int offset,
2935 unsigned int length)
2936 {
2937 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2938
2939 trace_ext4_journalled_invalidatepage(page, offset, length);
2940
2941 /*
2942 * If it's a full truncate we just forget about the pending dirtying
2943 */
2944 if (offset == 0 && length == PAGE_CACHE_SIZE)
2945 ClearPageChecked(page);
2946
2947 return jbd2_journal_invalidatepage(journal, page, offset, length);
2948 }
2949
2950 /* Wrapper for aops... */
2951 static void ext4_journalled_invalidatepage(struct page *page,
2952 unsigned int offset,
2953 unsigned int length)
2954 {
2955 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2956 }
2957
2958 static int ext4_releasepage(struct page *page, gfp_t wait)
2959 {
2960 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2961
2962 trace_ext4_releasepage(page);
2963
2964 /* Page has dirty journalled data -> cannot release */
2965 if (PageChecked(page))
2966 return 0;
2967 if (journal)
2968 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2969 else
2970 return try_to_free_buffers(page);
2971 }
2972
2973 /*
2974 * ext4_get_block used when preparing for a DIO write or buffer write.
2975 * We allocate an uinitialized extent if blocks haven't been allocated.
2976 * The extent will be converted to initialized after the IO is complete.
2977 */
2978 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2979 struct buffer_head *bh_result, int create)
2980 {
2981 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2982 inode->i_ino, create);
2983 return _ext4_get_block(inode, iblock, bh_result,
2984 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2985 }
2986
2987 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2988 struct buffer_head *bh_result, int create)
2989 {
2990 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2991 inode->i_ino, create);
2992 return _ext4_get_block(inode, iblock, bh_result,
2993 EXT4_GET_BLOCKS_NO_LOCK);
2994 }
2995
2996 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2997 ssize_t size, void *private, int ret,
2998 bool is_async)
2999 {
3000 struct inode *inode = file_inode(iocb->ki_filp);
3001 ext4_io_end_t *io_end = iocb->private;
3002
3003 /* if not async direct IO just return */
3004 if (!io_end) {
3005 inode_dio_done(inode);
3006 if (is_async)
3007 aio_complete(iocb, ret, 0);
3008 return;
3009 }
3010
3011 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3012 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3013 iocb->private, io_end->inode->i_ino, iocb, offset,
3014 size);
3015
3016 iocb->private = NULL;
3017 io_end->offset = offset;
3018 io_end->size = size;
3019 if (is_async) {
3020 io_end->iocb = iocb;
3021 io_end->result = ret;
3022 }
3023 ext4_put_io_end_defer(io_end);
3024 }
3025
3026 /*
3027 * For ext4 extent files, ext4 will do direct-io write to holes,
3028 * preallocated extents, and those write extend the file, no need to
3029 * fall back to buffered IO.
3030 *
3031 * For holes, we fallocate those blocks, mark them as uninitialized
3032 * If those blocks were preallocated, we mark sure they are split, but
3033 * still keep the range to write as uninitialized.
3034 *
3035 * The unwritten extents will be converted to written when DIO is completed.
3036 * For async direct IO, since the IO may still pending when return, we
3037 * set up an end_io call back function, which will do the conversion
3038 * when async direct IO completed.
3039 *
3040 * If the O_DIRECT write will extend the file then add this inode to the
3041 * orphan list. So recovery will truncate it back to the original size
3042 * if the machine crashes during the write.
3043 *
3044 */
3045 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3046 const struct iovec *iov, loff_t offset,
3047 unsigned long nr_segs)
3048 {
3049 struct file *file = iocb->ki_filp;
3050 struct inode *inode = file->f_mapping->host;
3051 ssize_t ret;
3052 size_t count = iov_length(iov, nr_segs);
3053 int overwrite = 0;
3054 get_block_t *get_block_func = NULL;
3055 int dio_flags = 0;
3056 loff_t final_size = offset + count;
3057 ext4_io_end_t *io_end = NULL;
3058
3059 /* Use the old path for reads and writes beyond i_size. */
3060 if (rw != WRITE || final_size > inode->i_size)
3061 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3062
3063 BUG_ON(iocb->private == NULL);
3064
3065 /*
3066 * Make all waiters for direct IO properly wait also for extent
3067 * conversion. This also disallows race between truncate() and
3068 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3069 */
3070 if (rw == WRITE)
3071 atomic_inc(&inode->i_dio_count);
3072
3073 /* If we do a overwrite dio, i_mutex locking can be released */
3074 overwrite = *((int *)iocb->private);
3075
3076 if (overwrite) {
3077 down_read(&EXT4_I(inode)->i_data_sem);
3078 mutex_unlock(&inode->i_mutex);
3079 }
3080
3081 /*
3082 * We could direct write to holes and fallocate.
3083 *
3084 * Allocated blocks to fill the hole are marked as
3085 * uninitialized to prevent parallel buffered read to expose
3086 * the stale data before DIO complete the data IO.
3087 *
3088 * As to previously fallocated extents, ext4 get_block will
3089 * just simply mark the buffer mapped but still keep the
3090 * extents uninitialized.
3091 *
3092 * For non AIO case, we will convert those unwritten extents
3093 * to written after return back from blockdev_direct_IO.
3094 *
3095 * For async DIO, the conversion needs to be deferred when the
3096 * IO is completed. The ext4 end_io callback function will be
3097 * called to take care of the conversion work. Here for async
3098 * case, we allocate an io_end structure to hook to the iocb.
3099 */
3100 iocb->private = NULL;
3101 ext4_inode_aio_set(inode, NULL);
3102 if (!is_sync_kiocb(iocb)) {
3103 io_end = ext4_init_io_end(inode, GFP_NOFS);
3104 if (!io_end) {
3105 ret = -ENOMEM;
3106 goto retake_lock;
3107 }
3108 io_end->flag |= EXT4_IO_END_DIRECT;
3109 /*
3110 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3111 */
3112 iocb->private = ext4_get_io_end(io_end);
3113 /*
3114 * we save the io structure for current async direct
3115 * IO, so that later ext4_map_blocks() could flag the
3116 * io structure whether there is a unwritten extents
3117 * needs to be converted when IO is completed.
3118 */
3119 ext4_inode_aio_set(inode, io_end);
3120 }
3121
3122 if (overwrite) {
3123 get_block_func = ext4_get_block_write_nolock;
3124 } else {
3125 get_block_func = ext4_get_block_write;
3126 dio_flags = DIO_LOCKING;
3127 }
3128 ret = __blockdev_direct_IO(rw, iocb, inode,
3129 inode->i_sb->s_bdev, iov,
3130 offset, nr_segs,
3131 get_block_func,
3132 ext4_end_io_dio,
3133 NULL,
3134 dio_flags);
3135
3136 /*
3137 * Put our reference to io_end. This can free the io_end structure e.g.
3138 * in sync IO case or in case of error. It can even perform extent
3139 * conversion if all bios we submitted finished before we got here.
3140 * Note that in that case iocb->private can be already set to NULL
3141 * here.
3142 */
3143 if (io_end) {
3144 ext4_inode_aio_set(inode, NULL);
3145 ext4_put_io_end(io_end);
3146 /*
3147 * When no IO was submitted ext4_end_io_dio() was not
3148 * called so we have to put iocb's reference.
3149 */
3150 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3151 WARN_ON(iocb->private != io_end);
3152 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3153 WARN_ON(io_end->iocb);
3154 /*
3155 * Generic code already did inode_dio_done() so we
3156 * have to clear EXT4_IO_END_DIRECT to not do it for
3157 * the second time.
3158 */
3159 io_end->flag = 0;
3160 ext4_put_io_end(io_end);
3161 iocb->private = NULL;
3162 }
3163 }
3164 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3165 EXT4_STATE_DIO_UNWRITTEN)) {
3166 int err;
3167 /*
3168 * for non AIO case, since the IO is already
3169 * completed, we could do the conversion right here
3170 */
3171 err = ext4_convert_unwritten_extents(NULL, inode,
3172 offset, ret);
3173 if (err < 0)
3174 ret = err;
3175 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3176 }
3177
3178 retake_lock:
3179 if (rw == WRITE)
3180 inode_dio_done(inode);
3181 /* take i_mutex locking again if we do a ovewrite dio */
3182 if (overwrite) {
3183 up_read(&EXT4_I(inode)->i_data_sem);
3184 mutex_lock(&inode->i_mutex);
3185 }
3186
3187 return ret;
3188 }
3189
3190 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3191 const struct iovec *iov, loff_t offset,
3192 unsigned long nr_segs)
3193 {
3194 struct file *file = iocb->ki_filp;
3195 struct inode *inode = file->f_mapping->host;
3196 ssize_t ret;
3197
3198 /*
3199 * If we are doing data journalling we don't support O_DIRECT
3200 */
3201 if (ext4_should_journal_data(inode))
3202 return 0;
3203
3204 /* Let buffer I/O handle the inline data case. */
3205 if (ext4_has_inline_data(inode))
3206 return 0;
3207
3208 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3209 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3210 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3211 else
3212 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3213 trace_ext4_direct_IO_exit(inode, offset,
3214 iov_length(iov, nr_segs), rw, ret);
3215 return ret;
3216 }
3217
3218 /*
3219 * Pages can be marked dirty completely asynchronously from ext4's journalling
3220 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3221 * much here because ->set_page_dirty is called under VFS locks. The page is
3222 * not necessarily locked.
3223 *
3224 * We cannot just dirty the page and leave attached buffers clean, because the
3225 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3226 * or jbddirty because all the journalling code will explode.
3227 *
3228 * So what we do is to mark the page "pending dirty" and next time writepage
3229 * is called, propagate that into the buffers appropriately.
3230 */
3231 static int ext4_journalled_set_page_dirty(struct page *page)
3232 {
3233 SetPageChecked(page);
3234 return __set_page_dirty_nobuffers(page);
3235 }
3236
3237 static const struct address_space_operations ext4_aops = {
3238 .readpage = ext4_readpage,
3239 .readpages = ext4_readpages,
3240 .writepage = ext4_writepage,
3241 .writepages = ext4_writepages,
3242 .write_begin = ext4_write_begin,
3243 .write_end = ext4_write_end,
3244 .bmap = ext4_bmap,
3245 .invalidatepage = ext4_invalidatepage,
3246 .releasepage = ext4_releasepage,
3247 .direct_IO = ext4_direct_IO,
3248 .migratepage = buffer_migrate_page,
3249 .is_partially_uptodate = block_is_partially_uptodate,
3250 .error_remove_page = generic_error_remove_page,
3251 };
3252
3253 static const struct address_space_operations ext4_journalled_aops = {
3254 .readpage = ext4_readpage,
3255 .readpages = ext4_readpages,
3256 .writepage = ext4_writepage,
3257 .writepages = ext4_writepages,
3258 .write_begin = ext4_write_begin,
3259 .write_end = ext4_journalled_write_end,
3260 .set_page_dirty = ext4_journalled_set_page_dirty,
3261 .bmap = ext4_bmap,
3262 .invalidatepage = ext4_journalled_invalidatepage,
3263 .releasepage = ext4_releasepage,
3264 .direct_IO = ext4_direct_IO,
3265 .is_partially_uptodate = block_is_partially_uptodate,
3266 .error_remove_page = generic_error_remove_page,
3267 };
3268
3269 static const struct address_space_operations ext4_da_aops = {
3270 .readpage = ext4_readpage,
3271 .readpages = ext4_readpages,
3272 .writepage = ext4_writepage,
3273 .writepages = ext4_writepages,
3274 .write_begin = ext4_da_write_begin,
3275 .write_end = ext4_da_write_end,
3276 .bmap = ext4_bmap,
3277 .invalidatepage = ext4_da_invalidatepage,
3278 .releasepage = ext4_releasepage,
3279 .direct_IO = ext4_direct_IO,
3280 .migratepage = buffer_migrate_page,
3281 .is_partially_uptodate = block_is_partially_uptodate,
3282 .error_remove_page = generic_error_remove_page,
3283 };
3284
3285 void ext4_set_aops(struct inode *inode)
3286 {
3287 switch (ext4_inode_journal_mode(inode)) {
3288 case EXT4_INODE_ORDERED_DATA_MODE:
3289 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3290 break;
3291 case EXT4_INODE_WRITEBACK_DATA_MODE:
3292 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3293 break;
3294 case EXT4_INODE_JOURNAL_DATA_MODE:
3295 inode->i_mapping->a_ops = &ext4_journalled_aops;
3296 return;
3297 default:
3298 BUG();
3299 }
3300 if (test_opt(inode->i_sb, DELALLOC))
3301 inode->i_mapping->a_ops = &ext4_da_aops;
3302 else
3303 inode->i_mapping->a_ops = &ext4_aops;
3304 }
3305
3306 /*
3307 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3308 * up to the end of the block which corresponds to `from'.
3309 * This required during truncate. We need to physically zero the tail end
3310 * of that block so it doesn't yield old data if the file is later grown.
3311 */
3312 int ext4_block_truncate_page(handle_t *handle,
3313 struct address_space *mapping, loff_t from)
3314 {
3315 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3316 unsigned length;
3317 unsigned blocksize;
3318 struct inode *inode = mapping->host;
3319
3320 blocksize = inode->i_sb->s_blocksize;
3321 length = blocksize - (offset & (blocksize - 1));
3322
3323 return ext4_block_zero_page_range(handle, mapping, from, length);
3324 }
3325
3326 /*
3327 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3328 * starting from file offset 'from'. The range to be zero'd must
3329 * be contained with in one block. If the specified range exceeds
3330 * the end of the block it will be shortened to end of the block
3331 * that cooresponds to 'from'
3332 */
3333 int ext4_block_zero_page_range(handle_t *handle,
3334 struct address_space *mapping, loff_t from, loff_t length)
3335 {
3336 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3337 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3338 unsigned blocksize, max, pos;
3339 ext4_lblk_t iblock;
3340 struct inode *inode = mapping->host;
3341 struct buffer_head *bh;
3342 struct page *page;
3343 int err = 0;
3344
3345 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3346 mapping_gfp_mask(mapping) & ~__GFP_FS);
3347 if (!page)
3348 return -ENOMEM;
3349
3350 blocksize = inode->i_sb->s_blocksize;
3351 max = blocksize - (offset & (blocksize - 1));
3352
3353 /*
3354 * correct length if it does not fall between
3355 * 'from' and the end of the block
3356 */
3357 if (length > max || length < 0)
3358 length = max;
3359
3360 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3361
3362 if (!page_has_buffers(page))
3363 create_empty_buffers(page, blocksize, 0);
3364
3365 /* Find the buffer that contains "offset" */
3366 bh = page_buffers(page);
3367 pos = blocksize;
3368 while (offset >= pos) {
3369 bh = bh->b_this_page;
3370 iblock++;
3371 pos += blocksize;
3372 }
3373 if (buffer_freed(bh)) {
3374 BUFFER_TRACE(bh, "freed: skip");
3375 goto unlock;
3376 }
3377 if (!buffer_mapped(bh)) {
3378 BUFFER_TRACE(bh, "unmapped");
3379 ext4_get_block(inode, iblock, bh, 0);
3380 /* unmapped? It's a hole - nothing to do */
3381 if (!buffer_mapped(bh)) {
3382 BUFFER_TRACE(bh, "still unmapped");
3383 goto unlock;
3384 }
3385 }
3386
3387 /* Ok, it's mapped. Make sure it's up-to-date */
3388 if (PageUptodate(page))
3389 set_buffer_uptodate(bh);
3390
3391 if (!buffer_uptodate(bh)) {
3392 err = -EIO;
3393 ll_rw_block(READ, 1, &bh);
3394 wait_on_buffer(bh);
3395 /* Uhhuh. Read error. Complain and punt. */
3396 if (!buffer_uptodate(bh))
3397 goto unlock;
3398 }
3399 if (ext4_should_journal_data(inode)) {
3400 BUFFER_TRACE(bh, "get write access");
3401 err = ext4_journal_get_write_access(handle, bh);
3402 if (err)
3403 goto unlock;
3404 }
3405 zero_user(page, offset, length);
3406 BUFFER_TRACE(bh, "zeroed end of block");
3407
3408 if (ext4_should_journal_data(inode)) {
3409 err = ext4_handle_dirty_metadata(handle, inode, bh);
3410 } else {
3411 err = 0;
3412 mark_buffer_dirty(bh);
3413 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3414 err = ext4_jbd2_file_inode(handle, inode);
3415 }
3416
3417 unlock:
3418 unlock_page(page);
3419 page_cache_release(page);
3420 return err;
3421 }
3422
3423 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3424 loff_t lstart, loff_t length)
3425 {
3426 struct super_block *sb = inode->i_sb;
3427 struct address_space *mapping = inode->i_mapping;
3428 unsigned partial_start, partial_end;
3429 ext4_fsblk_t start, end;
3430 loff_t byte_end = (lstart + length - 1);
3431 int err = 0;
3432
3433 partial_start = lstart & (sb->s_blocksize - 1);
3434 partial_end = byte_end & (sb->s_blocksize - 1);
3435
3436 start = lstart >> sb->s_blocksize_bits;
3437 end = byte_end >> sb->s_blocksize_bits;
3438
3439 /* Handle partial zero within the single block */
3440 if (start == end &&
3441 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3442 err = ext4_block_zero_page_range(handle, mapping,
3443 lstart, length);
3444 return err;
3445 }
3446 /* Handle partial zero out on the start of the range */
3447 if (partial_start) {
3448 err = ext4_block_zero_page_range(handle, mapping,
3449 lstart, sb->s_blocksize);
3450 if (err)
3451 return err;
3452 }
3453 /* Handle partial zero out on the end of the range */
3454 if (partial_end != sb->s_blocksize - 1)
3455 err = ext4_block_zero_page_range(handle, mapping,
3456 byte_end - partial_end,
3457 partial_end + 1);
3458 return err;
3459 }
3460
3461 int ext4_can_truncate(struct inode *inode)
3462 {
3463 if (S_ISREG(inode->i_mode))
3464 return 1;
3465 if (S_ISDIR(inode->i_mode))
3466 return 1;
3467 if (S_ISLNK(inode->i_mode))
3468 return !ext4_inode_is_fast_symlink(inode);
3469 return 0;
3470 }
3471
3472 /*
3473 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3474 * associated with the given offset and length
3475 *
3476 * @inode: File inode
3477 * @offset: The offset where the hole will begin
3478 * @len: The length of the hole
3479 *
3480 * Returns: 0 on success or negative on failure
3481 */
3482
3483 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3484 {
3485 struct super_block *sb = inode->i_sb;
3486 ext4_lblk_t first_block, stop_block;
3487 struct address_space *mapping = inode->i_mapping;
3488 loff_t first_block_offset, last_block_offset;
3489 handle_t *handle;
3490 unsigned int credits;
3491 int ret = 0;
3492
3493 if (!S_ISREG(inode->i_mode))
3494 return -EOPNOTSUPP;
3495
3496 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3497 /* TODO: Add support for bigalloc file systems */
3498 return -EOPNOTSUPP;
3499 }
3500
3501 trace_ext4_punch_hole(inode, offset, length);
3502
3503 /*
3504 * Write out all dirty pages to avoid race conditions
3505 * Then release them.
3506 */
3507 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3508 ret = filemap_write_and_wait_range(mapping, offset,
3509 offset + length - 1);
3510 if (ret)
3511 return ret;
3512 }
3513
3514 mutex_lock(&inode->i_mutex);
3515 /* It's not possible punch hole on append only file */
3516 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3517 ret = -EPERM;
3518 goto out_mutex;
3519 }
3520 if (IS_SWAPFILE(inode)) {
3521 ret = -ETXTBSY;
3522 goto out_mutex;
3523 }
3524
3525 /* No need to punch hole beyond i_size */
3526 if (offset >= inode->i_size)
3527 goto out_mutex;
3528
3529 /*
3530 * If the hole extends beyond i_size, set the hole
3531 * to end after the page that contains i_size
3532 */
3533 if (offset + length > inode->i_size) {
3534 length = inode->i_size +
3535 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3536 offset;
3537 }
3538
3539 first_block_offset = round_up(offset, sb->s_blocksize);
3540 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3541
3542 /* Now release the pages and zero block aligned part of pages*/
3543 if (last_block_offset > first_block_offset)
3544 truncate_pagecache_range(inode, first_block_offset,
3545 last_block_offset);
3546
3547 /* Wait all existing dio workers, newcomers will block on i_mutex */
3548 ext4_inode_block_unlocked_dio(inode);
3549 inode_dio_wait(inode);
3550
3551 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3552 credits = ext4_writepage_trans_blocks(inode);
3553 else
3554 credits = ext4_blocks_for_truncate(inode);
3555 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3556 if (IS_ERR(handle)) {
3557 ret = PTR_ERR(handle);
3558 ext4_std_error(sb, ret);
3559 goto out_dio;
3560 }
3561
3562 ret = ext4_zero_partial_blocks(handle, inode, offset,
3563 length);
3564 if (ret)
3565 goto out_stop;
3566
3567 first_block = (offset + sb->s_blocksize - 1) >>
3568 EXT4_BLOCK_SIZE_BITS(sb);
3569 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3570
3571 /* If there are no blocks to remove, return now */
3572 if (first_block >= stop_block)
3573 goto out_stop;
3574
3575 down_write(&EXT4_I(inode)->i_data_sem);
3576 ext4_discard_preallocations(inode);
3577
3578 ret = ext4_es_remove_extent(inode, first_block,
3579 stop_block - first_block);
3580 if (ret) {
3581 up_write(&EXT4_I(inode)->i_data_sem);
3582 goto out_stop;
3583 }
3584
3585 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3586 ret = ext4_ext_remove_space(inode, first_block,
3587 stop_block - 1);
3588 else
3589 ret = ext4_free_hole_blocks(handle, inode, first_block,
3590 stop_block);
3591
3592 ext4_discard_preallocations(inode);
3593 up_write(&EXT4_I(inode)->i_data_sem);
3594 if (IS_SYNC(inode))
3595 ext4_handle_sync(handle);
3596 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3597 ext4_mark_inode_dirty(handle, inode);
3598 out_stop:
3599 ext4_journal_stop(handle);
3600 out_dio:
3601 ext4_inode_resume_unlocked_dio(inode);
3602 out_mutex:
3603 mutex_unlock(&inode->i_mutex);
3604 return ret;
3605 }
3606
3607 /*
3608 * ext4_truncate()
3609 *
3610 * We block out ext4_get_block() block instantiations across the entire
3611 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3612 * simultaneously on behalf of the same inode.
3613 *
3614 * As we work through the truncate and commit bits of it to the journal there
3615 * is one core, guiding principle: the file's tree must always be consistent on
3616 * disk. We must be able to restart the truncate after a crash.
3617 *
3618 * The file's tree may be transiently inconsistent in memory (although it
3619 * probably isn't), but whenever we close off and commit a journal transaction,
3620 * the contents of (the filesystem + the journal) must be consistent and
3621 * restartable. It's pretty simple, really: bottom up, right to left (although
3622 * left-to-right works OK too).
3623 *
3624 * Note that at recovery time, journal replay occurs *before* the restart of
3625 * truncate against the orphan inode list.
3626 *
3627 * The committed inode has the new, desired i_size (which is the same as
3628 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3629 * that this inode's truncate did not complete and it will again call
3630 * ext4_truncate() to have another go. So there will be instantiated blocks
3631 * to the right of the truncation point in a crashed ext4 filesystem. But
3632 * that's fine - as long as they are linked from the inode, the post-crash
3633 * ext4_truncate() run will find them and release them.
3634 */
3635 void ext4_truncate(struct inode *inode)
3636 {
3637 struct ext4_inode_info *ei = EXT4_I(inode);
3638 unsigned int credits;
3639 handle_t *handle;
3640 struct address_space *mapping = inode->i_mapping;
3641
3642 /*
3643 * There is a possibility that we're either freeing the inode
3644 * or it completely new indode. In those cases we might not
3645 * have i_mutex locked because it's not necessary.
3646 */
3647 if (!(inode->i_state & (I_NEW|I_FREEING)))
3648 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3649 trace_ext4_truncate_enter(inode);
3650
3651 if (!ext4_can_truncate(inode))
3652 return;
3653
3654 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3655
3656 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3657 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3658
3659 if (ext4_has_inline_data(inode)) {
3660 int has_inline = 1;
3661
3662 ext4_inline_data_truncate(inode, &has_inline);
3663 if (has_inline)
3664 return;
3665 }
3666
3667 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3668 credits = ext4_writepage_trans_blocks(inode);
3669 else
3670 credits = ext4_blocks_for_truncate(inode);
3671
3672 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3673 if (IS_ERR(handle)) {
3674 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3675 return;
3676 }
3677
3678 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3679 ext4_block_truncate_page(handle, mapping, inode->i_size);
3680
3681 /*
3682 * We add the inode to the orphan list, so that if this
3683 * truncate spans multiple transactions, and we crash, we will
3684 * resume the truncate when the filesystem recovers. It also
3685 * marks the inode dirty, to catch the new size.
3686 *
3687 * Implication: the file must always be in a sane, consistent
3688 * truncatable state while each transaction commits.
3689 */
3690 if (ext4_orphan_add(handle, inode))
3691 goto out_stop;
3692
3693 down_write(&EXT4_I(inode)->i_data_sem);
3694
3695 ext4_discard_preallocations(inode);
3696
3697 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3698 ext4_ext_truncate(handle, inode);
3699 else
3700 ext4_ind_truncate(handle, inode);
3701
3702 up_write(&ei->i_data_sem);
3703
3704 if (IS_SYNC(inode))
3705 ext4_handle_sync(handle);
3706
3707 out_stop:
3708 /*
3709 * If this was a simple ftruncate() and the file will remain alive,
3710 * then we need to clear up the orphan record which we created above.
3711 * However, if this was a real unlink then we were called by
3712 * ext4_delete_inode(), and we allow that function to clean up the
3713 * orphan info for us.
3714 */
3715 if (inode->i_nlink)
3716 ext4_orphan_del(handle, inode);
3717
3718 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3719 ext4_mark_inode_dirty(handle, inode);
3720 ext4_journal_stop(handle);
3721
3722 trace_ext4_truncate_exit(inode);
3723 }
3724
3725 /*
3726 * ext4_get_inode_loc returns with an extra refcount against the inode's
3727 * underlying buffer_head on success. If 'in_mem' is true, we have all
3728 * data in memory that is needed to recreate the on-disk version of this
3729 * inode.
3730 */
3731 static int __ext4_get_inode_loc(struct inode *inode,
3732 struct ext4_iloc *iloc, int in_mem)
3733 {
3734 struct ext4_group_desc *gdp;
3735 struct buffer_head *bh;
3736 struct super_block *sb = inode->i_sb;
3737 ext4_fsblk_t block;
3738 int inodes_per_block, inode_offset;
3739
3740 iloc->bh = NULL;
3741 if (!ext4_valid_inum(sb, inode->i_ino))
3742 return -EIO;
3743
3744 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3745 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3746 if (!gdp)
3747 return -EIO;
3748
3749 /*
3750 * Figure out the offset within the block group inode table
3751 */
3752 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3753 inode_offset = ((inode->i_ino - 1) %
3754 EXT4_INODES_PER_GROUP(sb));
3755 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3756 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3757
3758 bh = sb_getblk(sb, block);
3759 if (unlikely(!bh))
3760 return -ENOMEM;
3761 if (!buffer_uptodate(bh)) {
3762 lock_buffer(bh);
3763
3764 /*
3765 * If the buffer has the write error flag, we have failed
3766 * to write out another inode in the same block. In this
3767 * case, we don't have to read the block because we may
3768 * read the old inode data successfully.
3769 */
3770 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3771 set_buffer_uptodate(bh);
3772
3773 if (buffer_uptodate(bh)) {
3774 /* someone brought it uptodate while we waited */
3775 unlock_buffer(bh);
3776 goto has_buffer;
3777 }
3778
3779 /*
3780 * If we have all information of the inode in memory and this
3781 * is the only valid inode in the block, we need not read the
3782 * block.
3783 */
3784 if (in_mem) {
3785 struct buffer_head *bitmap_bh;
3786 int i, start;
3787
3788 start = inode_offset & ~(inodes_per_block - 1);
3789
3790 /* Is the inode bitmap in cache? */
3791 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3792 if (unlikely(!bitmap_bh))
3793 goto make_io;
3794
3795 /*
3796 * If the inode bitmap isn't in cache then the
3797 * optimisation may end up performing two reads instead
3798 * of one, so skip it.
3799 */
3800 if (!buffer_uptodate(bitmap_bh)) {
3801 brelse(bitmap_bh);
3802 goto make_io;
3803 }
3804 for (i = start; i < start + inodes_per_block; i++) {
3805 if (i == inode_offset)
3806 continue;
3807 if (ext4_test_bit(i, bitmap_bh->b_data))
3808 break;
3809 }
3810 brelse(bitmap_bh);
3811 if (i == start + inodes_per_block) {
3812 /* all other inodes are free, so skip I/O */
3813 memset(bh->b_data, 0, bh->b_size);
3814 set_buffer_uptodate(bh);
3815 unlock_buffer(bh);
3816 goto has_buffer;
3817 }
3818 }
3819
3820 make_io:
3821 /*
3822 * If we need to do any I/O, try to pre-readahead extra
3823 * blocks from the inode table.
3824 */
3825 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3826 ext4_fsblk_t b, end, table;
3827 unsigned num;
3828 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3829
3830 table = ext4_inode_table(sb, gdp);
3831 /* s_inode_readahead_blks is always a power of 2 */
3832 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3833 if (table > b)
3834 b = table;
3835 end = b + ra_blks;
3836 num = EXT4_INODES_PER_GROUP(sb);
3837 if (ext4_has_group_desc_csum(sb))
3838 num -= ext4_itable_unused_count(sb, gdp);
3839 table += num / inodes_per_block;
3840 if (end > table)
3841 end = table;
3842 while (b <= end)
3843 sb_breadahead(sb, b++);
3844 }
3845
3846 /*
3847 * There are other valid inodes in the buffer, this inode
3848 * has in-inode xattrs, or we don't have this inode in memory.
3849 * Read the block from disk.
3850 */
3851 trace_ext4_load_inode(inode);
3852 get_bh(bh);
3853 bh->b_end_io = end_buffer_read_sync;
3854 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3855 wait_on_buffer(bh);
3856 if (!buffer_uptodate(bh)) {
3857 EXT4_ERROR_INODE_BLOCK(inode, block,
3858 "unable to read itable block");
3859 brelse(bh);
3860 return -EIO;
3861 }
3862 }
3863 has_buffer:
3864 iloc->bh = bh;
3865 return 0;
3866 }
3867
3868 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3869 {
3870 /* We have all inode data except xattrs in memory here. */
3871 return __ext4_get_inode_loc(inode, iloc,
3872 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3873 }
3874
3875 void ext4_set_inode_flags(struct inode *inode)
3876 {
3877 unsigned int flags = EXT4_I(inode)->i_flags;
3878
3879 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3880 if (flags & EXT4_SYNC_FL)
3881 inode->i_flags |= S_SYNC;
3882 if (flags & EXT4_APPEND_FL)
3883 inode->i_flags |= S_APPEND;
3884 if (flags & EXT4_IMMUTABLE_FL)
3885 inode->i_flags |= S_IMMUTABLE;
3886 if (flags & EXT4_NOATIME_FL)
3887 inode->i_flags |= S_NOATIME;
3888 if (flags & EXT4_DIRSYNC_FL)
3889 inode->i_flags |= S_DIRSYNC;
3890 }
3891
3892 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3893 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3894 {
3895 unsigned int vfs_fl;
3896 unsigned long old_fl, new_fl;
3897
3898 do {
3899 vfs_fl = ei->vfs_inode.i_flags;
3900 old_fl = ei->i_flags;
3901 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3902 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3903 EXT4_DIRSYNC_FL);
3904 if (vfs_fl & S_SYNC)
3905 new_fl |= EXT4_SYNC_FL;
3906 if (vfs_fl & S_APPEND)
3907 new_fl |= EXT4_APPEND_FL;
3908 if (vfs_fl & S_IMMUTABLE)
3909 new_fl |= EXT4_IMMUTABLE_FL;
3910 if (vfs_fl & S_NOATIME)
3911 new_fl |= EXT4_NOATIME_FL;
3912 if (vfs_fl & S_DIRSYNC)
3913 new_fl |= EXT4_DIRSYNC_FL;
3914 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3915 }
3916
3917 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3918 struct ext4_inode_info *ei)
3919 {
3920 blkcnt_t i_blocks ;
3921 struct inode *inode = &(ei->vfs_inode);
3922 struct super_block *sb = inode->i_sb;
3923
3924 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3925 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3926 /* we are using combined 48 bit field */
3927 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3928 le32_to_cpu(raw_inode->i_blocks_lo);
3929 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3930 /* i_blocks represent file system block size */
3931 return i_blocks << (inode->i_blkbits - 9);
3932 } else {
3933 return i_blocks;
3934 }
3935 } else {
3936 return le32_to_cpu(raw_inode->i_blocks_lo);
3937 }
3938 }
3939
3940 static inline void ext4_iget_extra_inode(struct inode *inode,
3941 struct ext4_inode *raw_inode,
3942 struct ext4_inode_info *ei)
3943 {
3944 __le32 *magic = (void *)raw_inode +
3945 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3946 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3947 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3948 ext4_find_inline_data_nolock(inode);
3949 } else
3950 EXT4_I(inode)->i_inline_off = 0;
3951 }
3952
3953 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3954 {
3955 struct ext4_iloc iloc;
3956 struct ext4_inode *raw_inode;
3957 struct ext4_inode_info *ei;
3958 struct inode *inode;
3959 journal_t *journal = EXT4_SB(sb)->s_journal;
3960 long ret;
3961 int block;
3962 uid_t i_uid;
3963 gid_t i_gid;
3964
3965 inode = iget_locked(sb, ino);
3966 if (!inode)
3967 return ERR_PTR(-ENOMEM);
3968 if (!(inode->i_state & I_NEW))
3969 return inode;
3970
3971 ei = EXT4_I(inode);
3972 iloc.bh = NULL;
3973
3974 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3975 if (ret < 0)
3976 goto bad_inode;
3977 raw_inode = ext4_raw_inode(&iloc);
3978
3979 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3980 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3981 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3982 EXT4_INODE_SIZE(inode->i_sb)) {
3983 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3984 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3985 EXT4_INODE_SIZE(inode->i_sb));
3986 ret = -EIO;
3987 goto bad_inode;
3988 }
3989 } else
3990 ei->i_extra_isize = 0;
3991
3992 /* Precompute checksum seed for inode metadata */
3993 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3994 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3995 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3996 __u32 csum;
3997 __le32 inum = cpu_to_le32(inode->i_ino);
3998 __le32 gen = raw_inode->i_generation;
3999 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4000 sizeof(inum));
4001 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4002 sizeof(gen));
4003 }
4004
4005 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4006 EXT4_ERROR_INODE(inode, "checksum invalid");
4007 ret = -EIO;
4008 goto bad_inode;
4009 }
4010
4011 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4012 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4013 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4014 if (!(test_opt(inode->i_sb, NO_UID32))) {
4015 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4016 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4017 }
4018 i_uid_write(inode, i_uid);
4019 i_gid_write(inode, i_gid);
4020 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4021
4022 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4023 ei->i_inline_off = 0;
4024 ei->i_dir_start_lookup = 0;
4025 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4026 /* We now have enough fields to check if the inode was active or not.
4027 * This is needed because nfsd might try to access dead inodes
4028 * the test is that same one that e2fsck uses
4029 * NeilBrown 1999oct15
4030 */
4031 if (inode->i_nlink == 0) {
4032 if ((inode->i_mode == 0 ||
4033 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4034 ino != EXT4_BOOT_LOADER_INO) {
4035 /* this inode is deleted */
4036 ret = -ESTALE;
4037 goto bad_inode;
4038 }
4039 /* The only unlinked inodes we let through here have
4040 * valid i_mode and are being read by the orphan
4041 * recovery code: that's fine, we're about to complete
4042 * the process of deleting those.
4043 * OR it is the EXT4_BOOT_LOADER_INO which is
4044 * not initialized on a new filesystem. */
4045 }
4046 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4047 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4048 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4049 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4050 ei->i_file_acl |=
4051 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4052 inode->i_size = ext4_isize(raw_inode);
4053 ei->i_disksize = inode->i_size;
4054 #ifdef CONFIG_QUOTA
4055 ei->i_reserved_quota = 0;
4056 #endif
4057 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4058 ei->i_block_group = iloc.block_group;
4059 ei->i_last_alloc_group = ~0;
4060 /*
4061 * NOTE! The in-memory inode i_data array is in little-endian order
4062 * even on big-endian machines: we do NOT byteswap the block numbers!
4063 */
4064 for (block = 0; block < EXT4_N_BLOCKS; block++)
4065 ei->i_data[block] = raw_inode->i_block[block];
4066 INIT_LIST_HEAD(&ei->i_orphan);
4067
4068 /*
4069 * Set transaction id's of transactions that have to be committed
4070 * to finish f[data]sync. We set them to currently running transaction
4071 * as we cannot be sure that the inode or some of its metadata isn't
4072 * part of the transaction - the inode could have been reclaimed and
4073 * now it is reread from disk.
4074 */
4075 if (journal) {
4076 transaction_t *transaction;
4077 tid_t tid;
4078
4079 read_lock(&journal->j_state_lock);
4080 if (journal->j_running_transaction)
4081 transaction = journal->j_running_transaction;
4082 else
4083 transaction = journal->j_committing_transaction;
4084 if (transaction)
4085 tid = transaction->t_tid;
4086 else
4087 tid = journal->j_commit_sequence;
4088 read_unlock(&journal->j_state_lock);
4089 ei->i_sync_tid = tid;
4090 ei->i_datasync_tid = tid;
4091 }
4092
4093 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4094 if (ei->i_extra_isize == 0) {
4095 /* The extra space is currently unused. Use it. */
4096 ei->i_extra_isize = sizeof(struct ext4_inode) -
4097 EXT4_GOOD_OLD_INODE_SIZE;
4098 } else {
4099 ext4_iget_extra_inode(inode, raw_inode, ei);
4100 }
4101 }
4102
4103 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4104 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4105 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4106 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4107
4108 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4109 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4110 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4111 inode->i_version |=
4112 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4113 }
4114
4115 ret = 0;
4116 if (ei->i_file_acl &&
4117 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4118 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4119 ei->i_file_acl);
4120 ret = -EIO;
4121 goto bad_inode;
4122 } else if (!ext4_has_inline_data(inode)) {
4123 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4124 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4125 (S_ISLNK(inode->i_mode) &&
4126 !ext4_inode_is_fast_symlink(inode))))
4127 /* Validate extent which is part of inode */
4128 ret = ext4_ext_check_inode(inode);
4129 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4130 (S_ISLNK(inode->i_mode) &&
4131 !ext4_inode_is_fast_symlink(inode))) {
4132 /* Validate block references which are part of inode */
4133 ret = ext4_ind_check_inode(inode);
4134 }
4135 }
4136 if (ret)
4137 goto bad_inode;
4138
4139 if (S_ISREG(inode->i_mode)) {
4140 inode->i_op = &ext4_file_inode_operations;
4141 inode->i_fop = &ext4_file_operations;
4142 ext4_set_aops(inode);
4143 } else if (S_ISDIR(inode->i_mode)) {
4144 inode->i_op = &ext4_dir_inode_operations;
4145 inode->i_fop = &ext4_dir_operations;
4146 } else if (S_ISLNK(inode->i_mode)) {
4147 if (ext4_inode_is_fast_symlink(inode)) {
4148 inode->i_op = &ext4_fast_symlink_inode_operations;
4149 nd_terminate_link(ei->i_data, inode->i_size,
4150 sizeof(ei->i_data) - 1);
4151 } else {
4152 inode->i_op = &ext4_symlink_inode_operations;
4153 ext4_set_aops(inode);
4154 }
4155 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4156 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4157 inode->i_op = &ext4_special_inode_operations;
4158 if (raw_inode->i_block[0])
4159 init_special_inode(inode, inode->i_mode,
4160 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4161 else
4162 init_special_inode(inode, inode->i_mode,
4163 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4164 } else if (ino == EXT4_BOOT_LOADER_INO) {
4165 make_bad_inode(inode);
4166 } else {
4167 ret = -EIO;
4168 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4169 goto bad_inode;
4170 }
4171 brelse(iloc.bh);
4172 ext4_set_inode_flags(inode);
4173 unlock_new_inode(inode);
4174 return inode;
4175
4176 bad_inode:
4177 brelse(iloc.bh);
4178 iget_failed(inode);
4179 return ERR_PTR(ret);
4180 }
4181
4182 static int ext4_inode_blocks_set(handle_t *handle,
4183 struct ext4_inode *raw_inode,
4184 struct ext4_inode_info *ei)
4185 {
4186 struct inode *inode = &(ei->vfs_inode);
4187 u64 i_blocks = inode->i_blocks;
4188 struct super_block *sb = inode->i_sb;
4189
4190 if (i_blocks <= ~0U) {
4191 /*
4192 * i_blocks can be represented in a 32 bit variable
4193 * as multiple of 512 bytes
4194 */
4195 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4196 raw_inode->i_blocks_high = 0;
4197 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4198 return 0;
4199 }
4200 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4201 return -EFBIG;
4202
4203 if (i_blocks <= 0xffffffffffffULL) {
4204 /*
4205 * i_blocks can be represented in a 48 bit variable
4206 * as multiple of 512 bytes
4207 */
4208 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4209 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4210 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4211 } else {
4212 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4213 /* i_block is stored in file system block size */
4214 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4215 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4216 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4217 }
4218 return 0;
4219 }
4220
4221 /*
4222 * Post the struct inode info into an on-disk inode location in the
4223 * buffer-cache. This gobbles the caller's reference to the
4224 * buffer_head in the inode location struct.
4225 *
4226 * The caller must have write access to iloc->bh.
4227 */
4228 static int ext4_do_update_inode(handle_t *handle,
4229 struct inode *inode,
4230 struct ext4_iloc *iloc)
4231 {
4232 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4233 struct ext4_inode_info *ei = EXT4_I(inode);
4234 struct buffer_head *bh = iloc->bh;
4235 int err = 0, rc, block;
4236 int need_datasync = 0;
4237 uid_t i_uid;
4238 gid_t i_gid;
4239
4240 /* For fields not not tracking in the in-memory inode,
4241 * initialise them to zero for new inodes. */
4242 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4243 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4244
4245 ext4_get_inode_flags(ei);
4246 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4247 i_uid = i_uid_read(inode);
4248 i_gid = i_gid_read(inode);
4249 if (!(test_opt(inode->i_sb, NO_UID32))) {
4250 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4251 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4252 /*
4253 * Fix up interoperability with old kernels. Otherwise, old inodes get
4254 * re-used with the upper 16 bits of the uid/gid intact
4255 */
4256 if (!ei->i_dtime) {
4257 raw_inode->i_uid_high =
4258 cpu_to_le16(high_16_bits(i_uid));
4259 raw_inode->i_gid_high =
4260 cpu_to_le16(high_16_bits(i_gid));
4261 } else {
4262 raw_inode->i_uid_high = 0;
4263 raw_inode->i_gid_high = 0;
4264 }
4265 } else {
4266 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4267 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4268 raw_inode->i_uid_high = 0;
4269 raw_inode->i_gid_high = 0;
4270 }
4271 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4272
4273 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4274 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4275 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4276 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4277
4278 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4279 goto out_brelse;
4280 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4281 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4282 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4283 cpu_to_le32(EXT4_OS_HURD))
4284 raw_inode->i_file_acl_high =
4285 cpu_to_le16(ei->i_file_acl >> 32);
4286 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4287 if (ei->i_disksize != ext4_isize(raw_inode)) {
4288 ext4_isize_set(raw_inode, ei->i_disksize);
4289 need_datasync = 1;
4290 }
4291 if (ei->i_disksize > 0x7fffffffULL) {
4292 struct super_block *sb = inode->i_sb;
4293 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4294 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4295 EXT4_SB(sb)->s_es->s_rev_level ==
4296 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4297 /* If this is the first large file
4298 * created, add a flag to the superblock.
4299 */
4300 err = ext4_journal_get_write_access(handle,
4301 EXT4_SB(sb)->s_sbh);
4302 if (err)
4303 goto out_brelse;
4304 ext4_update_dynamic_rev(sb);
4305 EXT4_SET_RO_COMPAT_FEATURE(sb,
4306 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4307 ext4_handle_sync(handle);
4308 err = ext4_handle_dirty_super(handle, sb);
4309 }
4310 }
4311 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4312 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4313 if (old_valid_dev(inode->i_rdev)) {
4314 raw_inode->i_block[0] =
4315 cpu_to_le32(old_encode_dev(inode->i_rdev));
4316 raw_inode->i_block[1] = 0;
4317 } else {
4318 raw_inode->i_block[0] = 0;
4319 raw_inode->i_block[1] =
4320 cpu_to_le32(new_encode_dev(inode->i_rdev));
4321 raw_inode->i_block[2] = 0;
4322 }
4323 } else if (!ext4_has_inline_data(inode)) {
4324 for (block = 0; block < EXT4_N_BLOCKS; block++)
4325 raw_inode->i_block[block] = ei->i_data[block];
4326 }
4327
4328 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4329 if (ei->i_extra_isize) {
4330 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4331 raw_inode->i_version_hi =
4332 cpu_to_le32(inode->i_version >> 32);
4333 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4334 }
4335
4336 ext4_inode_csum_set(inode, raw_inode, ei);
4337
4338 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4339 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4340 if (!err)
4341 err = rc;
4342 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4343
4344 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4345 out_brelse:
4346 brelse(bh);
4347 ext4_std_error(inode->i_sb, err);
4348 return err;
4349 }
4350
4351 /*
4352 * ext4_write_inode()
4353 *
4354 * We are called from a few places:
4355 *
4356 * - Within generic_file_write() for O_SYNC files.
4357 * Here, there will be no transaction running. We wait for any running
4358 * transaction to commit.
4359 *
4360 * - Within sys_sync(), kupdate and such.
4361 * We wait on commit, if tol to.
4362 *
4363 * - Within prune_icache() (PF_MEMALLOC == true)
4364 * Here we simply return. We can't afford to block kswapd on the
4365 * journal commit.
4366 *
4367 * In all cases it is actually safe for us to return without doing anything,
4368 * because the inode has been copied into a raw inode buffer in
4369 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4370 * knfsd.
4371 *
4372 * Note that we are absolutely dependent upon all inode dirtiers doing the
4373 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4374 * which we are interested.
4375 *
4376 * It would be a bug for them to not do this. The code:
4377 *
4378 * mark_inode_dirty(inode)
4379 * stuff();
4380 * inode->i_size = expr;
4381 *
4382 * is in error because a kswapd-driven write_inode() could occur while
4383 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4384 * will no longer be on the superblock's dirty inode list.
4385 */
4386 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4387 {
4388 int err;
4389
4390 if (current->flags & PF_MEMALLOC)
4391 return 0;
4392
4393 if (EXT4_SB(inode->i_sb)->s_journal) {
4394 if (ext4_journal_current_handle()) {
4395 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4396 dump_stack();
4397 return -EIO;
4398 }
4399
4400 if (wbc->sync_mode != WB_SYNC_ALL)
4401 return 0;
4402
4403 err = ext4_force_commit(inode->i_sb);
4404 } else {
4405 struct ext4_iloc iloc;
4406
4407 err = __ext4_get_inode_loc(inode, &iloc, 0);
4408 if (err)
4409 return err;
4410 if (wbc->sync_mode == WB_SYNC_ALL)
4411 sync_dirty_buffer(iloc.bh);
4412 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4413 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4414 "IO error syncing inode");
4415 err = -EIO;
4416 }
4417 brelse(iloc.bh);
4418 }
4419 return err;
4420 }
4421
4422 /*
4423 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4424 * buffers that are attached to a page stradding i_size and are undergoing
4425 * commit. In that case we have to wait for commit to finish and try again.
4426 */
4427 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4428 {
4429 struct page *page;
4430 unsigned offset;
4431 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4432 tid_t commit_tid = 0;
4433 int ret;
4434
4435 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4436 /*
4437 * All buffers in the last page remain valid? Then there's nothing to
4438 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4439 * blocksize case
4440 */
4441 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4442 return;
4443 while (1) {
4444 page = find_lock_page(inode->i_mapping,
4445 inode->i_size >> PAGE_CACHE_SHIFT);
4446 if (!page)
4447 return;
4448 ret = __ext4_journalled_invalidatepage(page, offset,
4449 PAGE_CACHE_SIZE - offset);
4450 unlock_page(page);
4451 page_cache_release(page);
4452 if (ret != -EBUSY)
4453 return;
4454 commit_tid = 0;
4455 read_lock(&journal->j_state_lock);
4456 if (journal->j_committing_transaction)
4457 commit_tid = journal->j_committing_transaction->t_tid;
4458 read_unlock(&journal->j_state_lock);
4459 if (commit_tid)
4460 jbd2_log_wait_commit(journal, commit_tid);
4461 }
4462 }
4463
4464 /*
4465 * ext4_setattr()
4466 *
4467 * Called from notify_change.
4468 *
4469 * We want to trap VFS attempts to truncate the file as soon as
4470 * possible. In particular, we want to make sure that when the VFS
4471 * shrinks i_size, we put the inode on the orphan list and modify
4472 * i_disksize immediately, so that during the subsequent flushing of
4473 * dirty pages and freeing of disk blocks, we can guarantee that any
4474 * commit will leave the blocks being flushed in an unused state on
4475 * disk. (On recovery, the inode will get truncated and the blocks will
4476 * be freed, so we have a strong guarantee that no future commit will
4477 * leave these blocks visible to the user.)
4478 *
4479 * Another thing we have to assure is that if we are in ordered mode
4480 * and inode is still attached to the committing transaction, we must
4481 * we start writeout of all the dirty pages which are being truncated.
4482 * This way we are sure that all the data written in the previous
4483 * transaction are already on disk (truncate waits for pages under
4484 * writeback).
4485 *
4486 * Called with inode->i_mutex down.
4487 */
4488 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4489 {
4490 struct inode *inode = dentry->d_inode;
4491 int error, rc = 0;
4492 int orphan = 0;
4493 const unsigned int ia_valid = attr->ia_valid;
4494
4495 error = inode_change_ok(inode, attr);
4496 if (error)
4497 return error;
4498
4499 if (is_quota_modification(inode, attr))
4500 dquot_initialize(inode);
4501 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4502 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4503 handle_t *handle;
4504
4505 /* (user+group)*(old+new) structure, inode write (sb,
4506 * inode block, ? - but truncate inode update has it) */
4507 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4508 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4509 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4510 if (IS_ERR(handle)) {
4511 error = PTR_ERR(handle);
4512 goto err_out;
4513 }
4514 error = dquot_transfer(inode, attr);
4515 if (error) {
4516 ext4_journal_stop(handle);
4517 return error;
4518 }
4519 /* Update corresponding info in inode so that everything is in
4520 * one transaction */
4521 if (attr->ia_valid & ATTR_UID)
4522 inode->i_uid = attr->ia_uid;
4523 if (attr->ia_valid & ATTR_GID)
4524 inode->i_gid = attr->ia_gid;
4525 error = ext4_mark_inode_dirty(handle, inode);
4526 ext4_journal_stop(handle);
4527 }
4528
4529 if (attr->ia_valid & ATTR_SIZE) {
4530
4531 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4532 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4533
4534 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4535 return -EFBIG;
4536 }
4537 }
4538
4539 if (S_ISREG(inode->i_mode) &&
4540 attr->ia_valid & ATTR_SIZE &&
4541 (attr->ia_size < inode->i_size)) {
4542 handle_t *handle;
4543
4544 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4545 if (IS_ERR(handle)) {
4546 error = PTR_ERR(handle);
4547 goto err_out;
4548 }
4549 if (ext4_handle_valid(handle)) {
4550 error = ext4_orphan_add(handle, inode);
4551 orphan = 1;
4552 }
4553 EXT4_I(inode)->i_disksize = attr->ia_size;
4554 rc = ext4_mark_inode_dirty(handle, inode);
4555 if (!error)
4556 error = rc;
4557 ext4_journal_stop(handle);
4558
4559 if (ext4_should_order_data(inode)) {
4560 error = ext4_begin_ordered_truncate(inode,
4561 attr->ia_size);
4562 if (error) {
4563 /* Do as much error cleanup as possible */
4564 handle = ext4_journal_start(inode,
4565 EXT4_HT_INODE, 3);
4566 if (IS_ERR(handle)) {
4567 ext4_orphan_del(NULL, inode);
4568 goto err_out;
4569 }
4570 ext4_orphan_del(handle, inode);
4571 orphan = 0;
4572 ext4_journal_stop(handle);
4573 goto err_out;
4574 }
4575 }
4576 }
4577
4578 if (attr->ia_valid & ATTR_SIZE) {
4579 if (attr->ia_size != inode->i_size) {
4580 loff_t oldsize = inode->i_size;
4581
4582 i_size_write(inode, attr->ia_size);
4583 /*
4584 * Blocks are going to be removed from the inode. Wait
4585 * for dio in flight. Temporarily disable
4586 * dioread_nolock to prevent livelock.
4587 */
4588 if (orphan) {
4589 if (!ext4_should_journal_data(inode)) {
4590 ext4_inode_block_unlocked_dio(inode);
4591 inode_dio_wait(inode);
4592 ext4_inode_resume_unlocked_dio(inode);
4593 } else
4594 ext4_wait_for_tail_page_commit(inode);
4595 }
4596 /*
4597 * Truncate pagecache after we've waited for commit
4598 * in data=journal mode to make pages freeable.
4599 */
4600 truncate_pagecache(inode, oldsize, inode->i_size);
4601 }
4602 ext4_truncate(inode);
4603 }
4604
4605 if (!rc) {
4606 setattr_copy(inode, attr);
4607 mark_inode_dirty(inode);
4608 }
4609
4610 /*
4611 * If the call to ext4_truncate failed to get a transaction handle at
4612 * all, we need to clean up the in-core orphan list manually.
4613 */
4614 if (orphan && inode->i_nlink)
4615 ext4_orphan_del(NULL, inode);
4616
4617 if (!rc && (ia_valid & ATTR_MODE))
4618 rc = ext4_acl_chmod(inode);
4619
4620 err_out:
4621 ext4_std_error(inode->i_sb, error);
4622 if (!error)
4623 error = rc;
4624 return error;
4625 }
4626
4627 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4628 struct kstat *stat)
4629 {
4630 struct inode *inode;
4631 unsigned long long delalloc_blocks;
4632
4633 inode = dentry->d_inode;
4634 generic_fillattr(inode, stat);
4635
4636 /*
4637 * We can't update i_blocks if the block allocation is delayed
4638 * otherwise in the case of system crash before the real block
4639 * allocation is done, we will have i_blocks inconsistent with
4640 * on-disk file blocks.
4641 * We always keep i_blocks updated together with real
4642 * allocation. But to not confuse with user, stat
4643 * will return the blocks that include the delayed allocation
4644 * blocks for this file.
4645 */
4646 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4647 EXT4_I(inode)->i_reserved_data_blocks);
4648
4649 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4650 return 0;
4651 }
4652
4653 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4654 int pextents)
4655 {
4656 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4657 return ext4_ind_trans_blocks(inode, lblocks);
4658 return ext4_ext_index_trans_blocks(inode, pextents);
4659 }
4660
4661 /*
4662 * Account for index blocks, block groups bitmaps and block group
4663 * descriptor blocks if modify datablocks and index blocks
4664 * worse case, the indexs blocks spread over different block groups
4665 *
4666 * If datablocks are discontiguous, they are possible to spread over
4667 * different block groups too. If they are contiguous, with flexbg,
4668 * they could still across block group boundary.
4669 *
4670 * Also account for superblock, inode, quota and xattr blocks
4671 */
4672 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4673 int pextents)
4674 {
4675 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4676 int gdpblocks;
4677 int idxblocks;
4678 int ret = 0;
4679
4680 /*
4681 * How many index blocks need to touch to map @lblocks logical blocks
4682 * to @pextents physical extents?
4683 */
4684 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4685
4686 ret = idxblocks;
4687
4688 /*
4689 * Now let's see how many group bitmaps and group descriptors need
4690 * to account
4691 */
4692 groups = idxblocks + pextents;
4693 gdpblocks = groups;
4694 if (groups > ngroups)
4695 groups = ngroups;
4696 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4697 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4698
4699 /* bitmaps and block group descriptor blocks */
4700 ret += groups + gdpblocks;
4701
4702 /* Blocks for super block, inode, quota and xattr blocks */
4703 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4704
4705 return ret;
4706 }
4707
4708 /*
4709 * Calculate the total number of credits to reserve to fit
4710 * the modification of a single pages into a single transaction,
4711 * which may include multiple chunks of block allocations.
4712 *
4713 * This could be called via ext4_write_begin()
4714 *
4715 * We need to consider the worse case, when
4716 * one new block per extent.
4717 */
4718 int ext4_writepage_trans_blocks(struct inode *inode)
4719 {
4720 int bpp = ext4_journal_blocks_per_page(inode);
4721 int ret;
4722
4723 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4724
4725 /* Account for data blocks for journalled mode */
4726 if (ext4_should_journal_data(inode))
4727 ret += bpp;
4728 return ret;
4729 }
4730
4731 /*
4732 * Calculate the journal credits for a chunk of data modification.
4733 *
4734 * This is called from DIO, fallocate or whoever calling
4735 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4736 *
4737 * journal buffers for data blocks are not included here, as DIO
4738 * and fallocate do no need to journal data buffers.
4739 */
4740 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4741 {
4742 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4743 }
4744
4745 /*
4746 * The caller must have previously called ext4_reserve_inode_write().
4747 * Give this, we know that the caller already has write access to iloc->bh.
4748 */
4749 int ext4_mark_iloc_dirty(handle_t *handle,
4750 struct inode *inode, struct ext4_iloc *iloc)
4751 {
4752 int err = 0;
4753
4754 if (IS_I_VERSION(inode))
4755 inode_inc_iversion(inode);
4756
4757 /* the do_update_inode consumes one bh->b_count */
4758 get_bh(iloc->bh);
4759
4760 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4761 err = ext4_do_update_inode(handle, inode, iloc);
4762 put_bh(iloc->bh);
4763 return err;
4764 }
4765
4766 /*
4767 * On success, We end up with an outstanding reference count against
4768 * iloc->bh. This _must_ be cleaned up later.
4769 */
4770
4771 int
4772 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4773 struct ext4_iloc *iloc)
4774 {
4775 int err;
4776
4777 err = ext4_get_inode_loc(inode, iloc);
4778 if (!err) {
4779 BUFFER_TRACE(iloc->bh, "get_write_access");
4780 err = ext4_journal_get_write_access(handle, iloc->bh);
4781 if (err) {
4782 brelse(iloc->bh);
4783 iloc->bh = NULL;
4784 }
4785 }
4786 ext4_std_error(inode->i_sb, err);
4787 return err;
4788 }
4789
4790 /*
4791 * Expand an inode by new_extra_isize bytes.
4792 * Returns 0 on success or negative error number on failure.
4793 */
4794 static int ext4_expand_extra_isize(struct inode *inode,
4795 unsigned int new_extra_isize,
4796 struct ext4_iloc iloc,
4797 handle_t *handle)
4798 {
4799 struct ext4_inode *raw_inode;
4800 struct ext4_xattr_ibody_header *header;
4801
4802 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4803 return 0;
4804
4805 raw_inode = ext4_raw_inode(&iloc);
4806
4807 header = IHDR(inode, raw_inode);
4808
4809 /* No extended attributes present */
4810 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4811 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4812 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4813 new_extra_isize);
4814 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4815 return 0;
4816 }
4817
4818 /* try to expand with EAs present */
4819 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4820 raw_inode, handle);
4821 }
4822
4823 /*
4824 * What we do here is to mark the in-core inode as clean with respect to inode
4825 * dirtiness (it may still be data-dirty).
4826 * This means that the in-core inode may be reaped by prune_icache
4827 * without having to perform any I/O. This is a very good thing,
4828 * because *any* task may call prune_icache - even ones which
4829 * have a transaction open against a different journal.
4830 *
4831 * Is this cheating? Not really. Sure, we haven't written the
4832 * inode out, but prune_icache isn't a user-visible syncing function.
4833 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4834 * we start and wait on commits.
4835 */
4836 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4837 {
4838 struct ext4_iloc iloc;
4839 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4840 static unsigned int mnt_count;
4841 int err, ret;
4842
4843 might_sleep();
4844 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4845 err = ext4_reserve_inode_write(handle, inode, &iloc);
4846 if (ext4_handle_valid(handle) &&
4847 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4848 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4849 /*
4850 * We need extra buffer credits since we may write into EA block
4851 * with this same handle. If journal_extend fails, then it will
4852 * only result in a minor loss of functionality for that inode.
4853 * If this is felt to be critical, then e2fsck should be run to
4854 * force a large enough s_min_extra_isize.
4855 */
4856 if ((jbd2_journal_extend(handle,
4857 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4858 ret = ext4_expand_extra_isize(inode,
4859 sbi->s_want_extra_isize,
4860 iloc, handle);
4861 if (ret) {
4862 ext4_set_inode_state(inode,
4863 EXT4_STATE_NO_EXPAND);
4864 if (mnt_count !=
4865 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4866 ext4_warning(inode->i_sb,
4867 "Unable to expand inode %lu. Delete"
4868 " some EAs or run e2fsck.",
4869 inode->i_ino);
4870 mnt_count =
4871 le16_to_cpu(sbi->s_es->s_mnt_count);
4872 }
4873 }
4874 }
4875 }
4876 if (!err)
4877 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4878 return err;
4879 }
4880
4881 /*
4882 * ext4_dirty_inode() is called from __mark_inode_dirty()
4883 *
4884 * We're really interested in the case where a file is being extended.
4885 * i_size has been changed by generic_commit_write() and we thus need
4886 * to include the updated inode in the current transaction.
4887 *
4888 * Also, dquot_alloc_block() will always dirty the inode when blocks
4889 * are allocated to the file.
4890 *
4891 * If the inode is marked synchronous, we don't honour that here - doing
4892 * so would cause a commit on atime updates, which we don't bother doing.
4893 * We handle synchronous inodes at the highest possible level.
4894 */
4895 void ext4_dirty_inode(struct inode *inode, int flags)
4896 {
4897 handle_t *handle;
4898
4899 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4900 if (IS_ERR(handle))
4901 goto out;
4902
4903 ext4_mark_inode_dirty(handle, inode);
4904
4905 ext4_journal_stop(handle);
4906 out:
4907 return;
4908 }
4909
4910 #if 0
4911 /*
4912 * Bind an inode's backing buffer_head into this transaction, to prevent
4913 * it from being flushed to disk early. Unlike
4914 * ext4_reserve_inode_write, this leaves behind no bh reference and
4915 * returns no iloc structure, so the caller needs to repeat the iloc
4916 * lookup to mark the inode dirty later.
4917 */
4918 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4919 {
4920 struct ext4_iloc iloc;
4921
4922 int err = 0;
4923 if (handle) {
4924 err = ext4_get_inode_loc(inode, &iloc);
4925 if (!err) {
4926 BUFFER_TRACE(iloc.bh, "get_write_access");
4927 err = jbd2_journal_get_write_access(handle, iloc.bh);
4928 if (!err)
4929 err = ext4_handle_dirty_metadata(handle,
4930 NULL,
4931 iloc.bh);
4932 brelse(iloc.bh);
4933 }
4934 }
4935 ext4_std_error(inode->i_sb, err);
4936 return err;
4937 }
4938 #endif
4939
4940 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4941 {
4942 journal_t *journal;
4943 handle_t *handle;
4944 int err;
4945
4946 /*
4947 * We have to be very careful here: changing a data block's
4948 * journaling status dynamically is dangerous. If we write a
4949 * data block to the journal, change the status and then delete
4950 * that block, we risk forgetting to revoke the old log record
4951 * from the journal and so a subsequent replay can corrupt data.
4952 * So, first we make sure that the journal is empty and that
4953 * nobody is changing anything.
4954 */
4955
4956 journal = EXT4_JOURNAL(inode);
4957 if (!journal)
4958 return 0;
4959 if (is_journal_aborted(journal))
4960 return -EROFS;
4961 /* We have to allocate physical blocks for delalloc blocks
4962 * before flushing journal. otherwise delalloc blocks can not
4963 * be allocated any more. even more truncate on delalloc blocks
4964 * could trigger BUG by flushing delalloc blocks in journal.
4965 * There is no delalloc block in non-journal data mode.
4966 */
4967 if (val && test_opt(inode->i_sb, DELALLOC)) {
4968 err = ext4_alloc_da_blocks(inode);
4969 if (err < 0)
4970 return err;
4971 }
4972
4973 /* Wait for all existing dio workers */
4974 ext4_inode_block_unlocked_dio(inode);
4975 inode_dio_wait(inode);
4976
4977 jbd2_journal_lock_updates(journal);
4978
4979 /*
4980 * OK, there are no updates running now, and all cached data is
4981 * synced to disk. We are now in a completely consistent state
4982 * which doesn't have anything in the journal, and we know that
4983 * no filesystem updates are running, so it is safe to modify
4984 * the inode's in-core data-journaling state flag now.
4985 */
4986
4987 if (val)
4988 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4989 else {
4990 jbd2_journal_flush(journal);
4991 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4992 }
4993 ext4_set_aops(inode);
4994
4995 jbd2_journal_unlock_updates(journal);
4996 ext4_inode_resume_unlocked_dio(inode);
4997
4998 /* Finally we can mark the inode as dirty. */
4999
5000 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5001 if (IS_ERR(handle))
5002 return PTR_ERR(handle);
5003
5004 err = ext4_mark_inode_dirty(handle, inode);
5005 ext4_handle_sync(handle);
5006 ext4_journal_stop(handle);
5007 ext4_std_error(inode->i_sb, err);
5008
5009 return err;
5010 }
5011
5012 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5013 {
5014 return !buffer_mapped(bh);
5015 }
5016
5017 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5018 {
5019 struct page *page = vmf->page;
5020 loff_t size;
5021 unsigned long len;
5022 int ret;
5023 struct file *file = vma->vm_file;
5024 struct inode *inode = file_inode(file);
5025 struct address_space *mapping = inode->i_mapping;
5026 handle_t *handle;
5027 get_block_t *get_block;
5028 int retries = 0;
5029
5030 sb_start_pagefault(inode->i_sb);
5031 file_update_time(vma->vm_file);
5032 /* Delalloc case is easy... */
5033 if (test_opt(inode->i_sb, DELALLOC) &&
5034 !ext4_should_journal_data(inode) &&
5035 !ext4_nonda_switch(inode->i_sb)) {
5036 do {
5037 ret = __block_page_mkwrite(vma, vmf,
5038 ext4_da_get_block_prep);
5039 } while (ret == -ENOSPC &&
5040 ext4_should_retry_alloc(inode->i_sb, &retries));
5041 goto out_ret;
5042 }
5043
5044 lock_page(page);
5045 size = i_size_read(inode);
5046 /* Page got truncated from under us? */
5047 if (page->mapping != mapping || page_offset(page) > size) {
5048 unlock_page(page);
5049 ret = VM_FAULT_NOPAGE;
5050 goto out;
5051 }
5052
5053 if (page->index == size >> PAGE_CACHE_SHIFT)
5054 len = size & ~PAGE_CACHE_MASK;
5055 else
5056 len = PAGE_CACHE_SIZE;
5057 /*
5058 * Return if we have all the buffers mapped. This avoids the need to do
5059 * journal_start/journal_stop which can block and take a long time
5060 */
5061 if (page_has_buffers(page)) {
5062 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5063 0, len, NULL,
5064 ext4_bh_unmapped)) {
5065 /* Wait so that we don't change page under IO */
5066 wait_for_stable_page(page);
5067 ret = VM_FAULT_LOCKED;
5068 goto out;
5069 }
5070 }
5071 unlock_page(page);
5072 /* OK, we need to fill the hole... */
5073 if (ext4_should_dioread_nolock(inode))
5074 get_block = ext4_get_block_write;
5075 else
5076 get_block = ext4_get_block;
5077 retry_alloc:
5078 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5079 ext4_writepage_trans_blocks(inode));
5080 if (IS_ERR(handle)) {
5081 ret = VM_FAULT_SIGBUS;
5082 goto out;
5083 }
5084 ret = __block_page_mkwrite(vma, vmf, get_block);
5085 if (!ret && ext4_should_journal_data(inode)) {
5086 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5087 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5088 unlock_page(page);
5089 ret = VM_FAULT_SIGBUS;
5090 ext4_journal_stop(handle);
5091 goto out;
5092 }
5093 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5094 }
5095 ext4_journal_stop(handle);
5096 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5097 goto retry_alloc;
5098 out_ret:
5099 ret = block_page_mkwrite_return(ret);
5100 out:
5101 sb_end_pagefault(inode->i_sb);
5102 return ret;
5103 }
This page took 0.172339 seconds and 6 git commands to generate.