ext4: fix data corruption caused by unwritten and delayed extents
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/buffer_head.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/mpage.h>
31 #include <linux/namei.h>
32 #include <linux/uio.h>
33 #include <linux/bio.h>
34 #include <linux/workqueue.h>
35 #include <linux/kernel.h>
36 #include <linux/printk.h>
37 #include <linux/slab.h>
38 #include <linux/aio.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52 {
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = le16_to_cpu(raw->i_checksum_lo);
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = cpu_to_le16(csum_lo);
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73
74 return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79 {
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !ext4_has_metadata_csum(inode->i_sb))
85 return 1;
86
87 provided = le16_to_cpu(raw->i_checksum_lo);
88 calculated = ext4_inode_csum(inode, raw, ei);
89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 else
93 calculated &= 0xFFFF;
94
95 return provided == calculated;
96 }
97
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 struct ext4_inode_info *ei)
100 {
101 __u32 csum;
102
103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 cpu_to_le32(EXT4_OS_LINUX) ||
105 !ext4_has_metadata_csum(inode->i_sb))
106 return;
107
108 csum = ext4_inode_csum(inode, raw, ei);
109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 loff_t new_size)
117 {
118 trace_ext4_begin_ordered_truncate(inode, new_size);
119 /*
120 * If jinode is zero, then we never opened the file for
121 * writing, so there's no need to call
122 * jbd2_journal_begin_ordered_truncate() since there's no
123 * outstanding writes we need to flush.
124 */
125 if (!EXT4_I(inode)->jinode)
126 return 0;
127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 EXT4_I(inode)->jinode,
129 new_size);
130 }
131
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 int pextents);
138
139 /*
140 * Test whether an inode is a fast symlink.
141 */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144 int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146
147 if (ext4_has_inline_data(inode))
148 return 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 int nblocks)
160 {
161 int ret;
162
163 /*
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 jbd_debug(2, "restarting handle %p\n", handle);
171 up_write(&EXT4_I(inode)->i_data_sem);
172 ret = ext4_journal_restart(handle, nblocks);
173 down_write(&EXT4_I(inode)->i_data_sem);
174 ext4_discard_preallocations(inode);
175
176 return ret;
177 }
178
179 /*
180 * Called at the last iput() if i_nlink is zero.
181 */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 handle_t *handle;
185 int err;
186
187 trace_ext4_evict_inode(inode);
188
189 if (inode->i_nlink) {
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214 jbd2_complete_transaction(journal, commit_tid);
215 filemap_write_and_wait(&inode->i_data);
216 }
217 truncate_inode_pages_final(&inode->i_data);
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220 goto no_delete;
221 }
222
223 if (is_bad_inode(inode))
224 goto no_delete;
225 dquot_initialize(inode);
226
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
229 truncate_inode_pages_final(&inode->i_data);
230
231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it
236 */
237 sb_start_intwrite(inode->i_sb);
238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 ext4_blocks_for_truncate(inode)+3);
240 if (IS_ERR(handle)) {
241 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 /*
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
245 * cleaned up.
246 */
247 ext4_orphan_del(NULL, inode);
248 sb_end_intwrite(inode->i_sb);
249 goto no_delete;
250 }
251
252 if (IS_SYNC(inode))
253 ext4_handle_sync(handle);
254 inode->i_size = 0;
255 err = ext4_mark_inode_dirty(handle, inode);
256 if (err) {
257 ext4_warning(inode->i_sb,
258 "couldn't mark inode dirty (err %d)", err);
259 goto stop_handle;
260 }
261 if (inode->i_blocks)
262 ext4_truncate(inode);
263
264 /*
265 * ext4_ext_truncate() doesn't reserve any slop when it
266 * restarts journal transactions; therefore there may not be
267 * enough credits left in the handle to remove the inode from
268 * the orphan list and set the dtime field.
269 */
270 if (!ext4_handle_has_enough_credits(handle, 3)) {
271 err = ext4_journal_extend(handle, 3);
272 if (err > 0)
273 err = ext4_journal_restart(handle, 3);
274 if (err != 0) {
275 ext4_warning(inode->i_sb,
276 "couldn't extend journal (err %d)", err);
277 stop_handle:
278 ext4_journal_stop(handle);
279 ext4_orphan_del(NULL, inode);
280 sb_end_intwrite(inode->i_sb);
281 goto no_delete;
282 }
283 }
284
285 /*
286 * Kill off the orphan record which ext4_truncate created.
287 * AKPM: I think this can be inside the above `if'.
288 * Note that ext4_orphan_del() has to be able to cope with the
289 * deletion of a non-existent orphan - this is because we don't
290 * know if ext4_truncate() actually created an orphan record.
291 * (Well, we could do this if we need to, but heck - it works)
292 */
293 ext4_orphan_del(handle, inode);
294 EXT4_I(inode)->i_dtime = get_seconds();
295
296 /*
297 * One subtle ordering requirement: if anything has gone wrong
298 * (transaction abort, IO errors, whatever), then we can still
299 * do these next steps (the fs will already have been marked as
300 * having errors), but we can't free the inode if the mark_dirty
301 * fails.
302 */
303 if (ext4_mark_inode_dirty(handle, inode))
304 /* If that failed, just do the required in-core inode clear. */
305 ext4_clear_inode(inode);
306 else
307 ext4_free_inode(handle, inode);
308 ext4_journal_stop(handle);
309 sb_end_intwrite(inode->i_sb);
310 return;
311 no_delete:
312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318 return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323 * Called with i_data_sem down, which is important since we can call
324 * ext4_discard_preallocations() from here.
325 */
326 void ext4_da_update_reserve_space(struct inode *inode,
327 int used, int quota_claim)
328 {
329 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
330 struct ext4_inode_info *ei = EXT4_I(inode);
331
332 spin_lock(&ei->i_block_reservation_lock);
333 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
334 if (unlikely(used > ei->i_reserved_data_blocks)) {
335 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
336 "with only %d reserved data blocks",
337 __func__, inode->i_ino, used,
338 ei->i_reserved_data_blocks);
339 WARN_ON(1);
340 used = ei->i_reserved_data_blocks;
341 }
342
343 /* Update per-inode reservations */
344 ei->i_reserved_data_blocks -= used;
345 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
346
347 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
348
349 /* Update quota subsystem for data blocks */
350 if (quota_claim)
351 dquot_claim_block(inode, EXT4_C2B(sbi, used));
352 else {
353 /*
354 * We did fallocate with an offset that is already delayed
355 * allocated. So on delayed allocated writeback we should
356 * not re-claim the quota for fallocated blocks.
357 */
358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
359 }
360
361 /*
362 * If we have done all the pending block allocations and if
363 * there aren't any writers on the inode, we can discard the
364 * inode's preallocations.
365 */
366 if ((ei->i_reserved_data_blocks == 0) &&
367 (atomic_read(&inode->i_writecount) == 0))
368 ext4_discard_preallocations(inode);
369 }
370
371 static int __check_block_validity(struct inode *inode, const char *func,
372 unsigned int line,
373 struct ext4_map_blocks *map)
374 {
375 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376 map->m_len)) {
377 ext4_error_inode(inode, func, line, map->m_pblk,
378 "lblock %lu mapped to illegal pblock "
379 "(length %d)", (unsigned long) map->m_lblk,
380 map->m_len);
381 return -EIO;
382 }
383 return 0;
384 }
385
386 #define check_block_validity(inode, map) \
387 __check_block_validity((inode), __func__, __LINE__, (map))
388
389 #ifdef ES_AGGRESSIVE_TEST
390 static void ext4_map_blocks_es_recheck(handle_t *handle,
391 struct inode *inode,
392 struct ext4_map_blocks *es_map,
393 struct ext4_map_blocks *map,
394 int flags)
395 {
396 int retval;
397
398 map->m_flags = 0;
399 /*
400 * There is a race window that the result is not the same.
401 * e.g. xfstests #223 when dioread_nolock enables. The reason
402 * is that we lookup a block mapping in extent status tree with
403 * out taking i_data_sem. So at the time the unwritten extent
404 * could be converted.
405 */
406 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
407 down_read(&EXT4_I(inode)->i_data_sem);
408 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
409 retval = ext4_ext_map_blocks(handle, inode, map, flags &
410 EXT4_GET_BLOCKS_KEEP_SIZE);
411 } else {
412 retval = ext4_ind_map_blocks(handle, inode, map, flags &
413 EXT4_GET_BLOCKS_KEEP_SIZE);
414 }
415 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
416 up_read((&EXT4_I(inode)->i_data_sem));
417
418 /*
419 * We don't check m_len because extent will be collpased in status
420 * tree. So the m_len might not equal.
421 */
422 if (es_map->m_lblk != map->m_lblk ||
423 es_map->m_flags != map->m_flags ||
424 es_map->m_pblk != map->m_pblk) {
425 printk("ES cache assertion failed for inode: %lu "
426 "es_cached ex [%d/%d/%llu/%x] != "
427 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
428 inode->i_ino, es_map->m_lblk, es_map->m_len,
429 es_map->m_pblk, es_map->m_flags, map->m_lblk,
430 map->m_len, map->m_pblk, map->m_flags,
431 retval, flags);
432 }
433 }
434 #endif /* ES_AGGRESSIVE_TEST */
435
436 /*
437 * The ext4_map_blocks() function tries to look up the requested blocks,
438 * and returns if the blocks are already mapped.
439 *
440 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
441 * and store the allocated blocks in the result buffer head and mark it
442 * mapped.
443 *
444 * If file type is extents based, it will call ext4_ext_map_blocks(),
445 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
446 * based files
447 *
448 * On success, it returns the number of blocks being mapped or allocated.
449 * if create==0 and the blocks are pre-allocated and unwritten block,
450 * the result buffer head is unmapped. If the create ==1, it will make sure
451 * the buffer head is mapped.
452 *
453 * It returns 0 if plain look up failed (blocks have not been allocated), in
454 * that case, buffer head is unmapped
455 *
456 * It returns the error in case of allocation failure.
457 */
458 int ext4_map_blocks(handle_t *handle, struct inode *inode,
459 struct ext4_map_blocks *map, int flags)
460 {
461 struct extent_status es;
462 int retval;
463 int ret = 0;
464 #ifdef ES_AGGRESSIVE_TEST
465 struct ext4_map_blocks orig_map;
466
467 memcpy(&orig_map, map, sizeof(*map));
468 #endif
469
470 map->m_flags = 0;
471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 "logical block %lu\n", inode->i_ino, flags, map->m_len,
473 (unsigned long) map->m_lblk);
474
475 /*
476 * ext4_map_blocks returns an int, and m_len is an unsigned int
477 */
478 if (unlikely(map->m_len > INT_MAX))
479 map->m_len = INT_MAX;
480
481 /* We can handle the block number less than EXT_MAX_BLOCKS */
482 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
483 return -EIO;
484
485 /* Lookup extent status tree firstly */
486 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
487 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
488 map->m_pblk = ext4_es_pblock(&es) +
489 map->m_lblk - es.es_lblk;
490 map->m_flags |= ext4_es_is_written(&es) ?
491 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
492 retval = es.es_len - (map->m_lblk - es.es_lblk);
493 if (retval > map->m_len)
494 retval = map->m_len;
495 map->m_len = retval;
496 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
497 retval = 0;
498 } else {
499 BUG_ON(1);
500 }
501 #ifdef ES_AGGRESSIVE_TEST
502 ext4_map_blocks_es_recheck(handle, inode, map,
503 &orig_map, flags);
504 #endif
505 goto found;
506 }
507
508 /*
509 * Try to see if we can get the block without requesting a new
510 * file system block.
511 */
512 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513 down_read(&EXT4_I(inode)->i_data_sem);
514 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
515 retval = ext4_ext_map_blocks(handle, inode, map, flags &
516 EXT4_GET_BLOCKS_KEEP_SIZE);
517 } else {
518 retval = ext4_ind_map_blocks(handle, inode, map, flags &
519 EXT4_GET_BLOCKS_KEEP_SIZE);
520 }
521 if (retval > 0) {
522 unsigned int status;
523
524 if (unlikely(retval != map->m_len)) {
525 ext4_warning(inode->i_sb,
526 "ES len assertion failed for inode "
527 "%lu: retval %d != map->m_len %d",
528 inode->i_ino, retval, map->m_len);
529 WARN_ON(1);
530 }
531
532 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
533 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
534 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
535 !(status & EXTENT_STATUS_WRITTEN) &&
536 ext4_find_delalloc_range(inode, map->m_lblk,
537 map->m_lblk + map->m_len - 1))
538 status |= EXTENT_STATUS_DELAYED;
539 ret = ext4_es_insert_extent(inode, map->m_lblk,
540 map->m_len, map->m_pblk, status);
541 if (ret < 0)
542 retval = ret;
543 }
544 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
545 up_read((&EXT4_I(inode)->i_data_sem));
546
547 found:
548 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
549 ret = check_block_validity(inode, map);
550 if (ret != 0)
551 return ret;
552 }
553
554 /* If it is only a block(s) look up */
555 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
556 return retval;
557
558 /*
559 * Returns if the blocks have already allocated
560 *
561 * Note that if blocks have been preallocated
562 * ext4_ext_get_block() returns the create = 0
563 * with buffer head unmapped.
564 */
565 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
566 /*
567 * If we need to convert extent to unwritten
568 * we continue and do the actual work in
569 * ext4_ext_map_blocks()
570 */
571 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
572 return retval;
573
574 /*
575 * Here we clear m_flags because after allocating an new extent,
576 * it will be set again.
577 */
578 map->m_flags &= ~EXT4_MAP_FLAGS;
579
580 /*
581 * New blocks allocate and/or writing to unwritten extent
582 * will possibly result in updating i_data, so we take
583 * the write lock of i_data_sem, and call get_block()
584 * with create == 1 flag.
585 */
586 down_write(&EXT4_I(inode)->i_data_sem);
587
588 /*
589 * We need to check for EXT4 here because migrate
590 * could have changed the inode type in between
591 */
592 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
593 retval = ext4_ext_map_blocks(handle, inode, map, flags);
594 } else {
595 retval = ext4_ind_map_blocks(handle, inode, map, flags);
596
597 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
598 /*
599 * We allocated new blocks which will result in
600 * i_data's format changing. Force the migrate
601 * to fail by clearing migrate flags
602 */
603 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
604 }
605
606 /*
607 * Update reserved blocks/metadata blocks after successful
608 * block allocation which had been deferred till now. We don't
609 * support fallocate for non extent files. So we can update
610 * reserve space here.
611 */
612 if ((retval > 0) &&
613 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
614 ext4_da_update_reserve_space(inode, retval, 1);
615 }
616
617 if (retval > 0) {
618 unsigned int status;
619
620 if (unlikely(retval != map->m_len)) {
621 ext4_warning(inode->i_sb,
622 "ES len assertion failed for inode "
623 "%lu: retval %d != map->m_len %d",
624 inode->i_ino, retval, map->m_len);
625 WARN_ON(1);
626 }
627
628 /*
629 * If the extent has been zeroed out, we don't need to update
630 * extent status tree.
631 */
632 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
633 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
634 if (ext4_es_is_written(&es))
635 goto has_zeroout;
636 }
637 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
638 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
639 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
640 !(status & EXTENT_STATUS_WRITTEN) &&
641 ext4_find_delalloc_range(inode, map->m_lblk,
642 map->m_lblk + map->m_len - 1))
643 status |= EXTENT_STATUS_DELAYED;
644 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
645 map->m_pblk, status);
646 if (ret < 0)
647 retval = ret;
648 }
649
650 has_zeroout:
651 up_write((&EXT4_I(inode)->i_data_sem));
652 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
653 ret = check_block_validity(inode, map);
654 if (ret != 0)
655 return ret;
656 }
657 return retval;
658 }
659
660 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
661 {
662 struct inode *inode = bh->b_assoc_map->host;
663 /* XXX: breaks on 32-bit > 16GB. Is that even supported? */
664 loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
665 int err;
666 if (!uptodate)
667 return;
668 WARN_ON(!buffer_unwritten(bh));
669 err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
670 }
671
672 /* Maximum number of blocks we map for direct IO at once. */
673 #define DIO_MAX_BLOCKS 4096
674
675 static int _ext4_get_block(struct inode *inode, sector_t iblock,
676 struct buffer_head *bh, int flags)
677 {
678 handle_t *handle = ext4_journal_current_handle();
679 struct ext4_map_blocks map;
680 int ret = 0, started = 0;
681 int dio_credits;
682
683 if (ext4_has_inline_data(inode))
684 return -ERANGE;
685
686 map.m_lblk = iblock;
687 map.m_len = bh->b_size >> inode->i_blkbits;
688
689 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
690 /* Direct IO write... */
691 if (map.m_len > DIO_MAX_BLOCKS)
692 map.m_len = DIO_MAX_BLOCKS;
693 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
694 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
695 dio_credits);
696 if (IS_ERR(handle)) {
697 ret = PTR_ERR(handle);
698 return ret;
699 }
700 started = 1;
701 }
702
703 ret = ext4_map_blocks(handle, inode, &map, flags);
704 if (ret > 0) {
705 ext4_io_end_t *io_end = ext4_inode_aio(inode);
706
707 map_bh(bh, inode->i_sb, map.m_pblk);
708 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
709 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
710 bh->b_assoc_map = inode->i_mapping;
711 bh->b_private = (void *)(unsigned long)iblock;
712 bh->b_end_io = ext4_end_io_unwritten;
713 }
714 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
715 set_buffer_defer_completion(bh);
716 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
717 ret = 0;
718 }
719 if (started)
720 ext4_journal_stop(handle);
721 return ret;
722 }
723
724 int ext4_get_block(struct inode *inode, sector_t iblock,
725 struct buffer_head *bh, int create)
726 {
727 return _ext4_get_block(inode, iblock, bh,
728 create ? EXT4_GET_BLOCKS_CREATE : 0);
729 }
730
731 /*
732 * `handle' can be NULL if create is zero
733 */
734 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
735 ext4_lblk_t block, int create)
736 {
737 struct ext4_map_blocks map;
738 struct buffer_head *bh;
739 int err;
740
741 J_ASSERT(handle != NULL || create == 0);
742
743 map.m_lblk = block;
744 map.m_len = 1;
745 err = ext4_map_blocks(handle, inode, &map,
746 create ? EXT4_GET_BLOCKS_CREATE : 0);
747
748 if (err == 0)
749 return create ? ERR_PTR(-ENOSPC) : NULL;
750 if (err < 0)
751 return ERR_PTR(err);
752
753 bh = sb_getblk(inode->i_sb, map.m_pblk);
754 if (unlikely(!bh))
755 return ERR_PTR(-ENOMEM);
756 if (map.m_flags & EXT4_MAP_NEW) {
757 J_ASSERT(create != 0);
758 J_ASSERT(handle != NULL);
759
760 /*
761 * Now that we do not always journal data, we should
762 * keep in mind whether this should always journal the
763 * new buffer as metadata. For now, regular file
764 * writes use ext4_get_block instead, so it's not a
765 * problem.
766 */
767 lock_buffer(bh);
768 BUFFER_TRACE(bh, "call get_create_access");
769 err = ext4_journal_get_create_access(handle, bh);
770 if (unlikely(err)) {
771 unlock_buffer(bh);
772 goto errout;
773 }
774 if (!buffer_uptodate(bh)) {
775 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
776 set_buffer_uptodate(bh);
777 }
778 unlock_buffer(bh);
779 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
780 err = ext4_handle_dirty_metadata(handle, inode, bh);
781 if (unlikely(err))
782 goto errout;
783 } else
784 BUFFER_TRACE(bh, "not a new buffer");
785 return bh;
786 errout:
787 brelse(bh);
788 return ERR_PTR(err);
789 }
790
791 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
792 ext4_lblk_t block, int create)
793 {
794 struct buffer_head *bh;
795
796 bh = ext4_getblk(handle, inode, block, create);
797 if (IS_ERR(bh))
798 return bh;
799 if (!bh || buffer_uptodate(bh))
800 return bh;
801 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
802 wait_on_buffer(bh);
803 if (buffer_uptodate(bh))
804 return bh;
805 put_bh(bh);
806 return ERR_PTR(-EIO);
807 }
808
809 int ext4_walk_page_buffers(handle_t *handle,
810 struct buffer_head *head,
811 unsigned from,
812 unsigned to,
813 int *partial,
814 int (*fn)(handle_t *handle,
815 struct buffer_head *bh))
816 {
817 struct buffer_head *bh;
818 unsigned block_start, block_end;
819 unsigned blocksize = head->b_size;
820 int err, ret = 0;
821 struct buffer_head *next;
822
823 for (bh = head, block_start = 0;
824 ret == 0 && (bh != head || !block_start);
825 block_start = block_end, bh = next) {
826 next = bh->b_this_page;
827 block_end = block_start + blocksize;
828 if (block_end <= from || block_start >= to) {
829 if (partial && !buffer_uptodate(bh))
830 *partial = 1;
831 continue;
832 }
833 err = (*fn)(handle, bh);
834 if (!ret)
835 ret = err;
836 }
837 return ret;
838 }
839
840 /*
841 * To preserve ordering, it is essential that the hole instantiation and
842 * the data write be encapsulated in a single transaction. We cannot
843 * close off a transaction and start a new one between the ext4_get_block()
844 * and the commit_write(). So doing the jbd2_journal_start at the start of
845 * prepare_write() is the right place.
846 *
847 * Also, this function can nest inside ext4_writepage(). In that case, we
848 * *know* that ext4_writepage() has generated enough buffer credits to do the
849 * whole page. So we won't block on the journal in that case, which is good,
850 * because the caller may be PF_MEMALLOC.
851 *
852 * By accident, ext4 can be reentered when a transaction is open via
853 * quota file writes. If we were to commit the transaction while thus
854 * reentered, there can be a deadlock - we would be holding a quota
855 * lock, and the commit would never complete if another thread had a
856 * transaction open and was blocking on the quota lock - a ranking
857 * violation.
858 *
859 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
860 * will _not_ run commit under these circumstances because handle->h_ref
861 * is elevated. We'll still have enough credits for the tiny quotafile
862 * write.
863 */
864 int do_journal_get_write_access(handle_t *handle,
865 struct buffer_head *bh)
866 {
867 int dirty = buffer_dirty(bh);
868 int ret;
869
870 if (!buffer_mapped(bh) || buffer_freed(bh))
871 return 0;
872 /*
873 * __block_write_begin() could have dirtied some buffers. Clean
874 * the dirty bit as jbd2_journal_get_write_access() could complain
875 * otherwise about fs integrity issues. Setting of the dirty bit
876 * by __block_write_begin() isn't a real problem here as we clear
877 * the bit before releasing a page lock and thus writeback cannot
878 * ever write the buffer.
879 */
880 if (dirty)
881 clear_buffer_dirty(bh);
882 BUFFER_TRACE(bh, "get write access");
883 ret = ext4_journal_get_write_access(handle, bh);
884 if (!ret && dirty)
885 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
886 return ret;
887 }
888
889 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
890 struct buffer_head *bh_result, int create);
891
892 #ifdef CONFIG_EXT4_FS_ENCRYPTION
893 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
894 get_block_t *get_block)
895 {
896 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
897 unsigned to = from + len;
898 struct inode *inode = page->mapping->host;
899 unsigned block_start, block_end;
900 sector_t block;
901 int err = 0;
902 unsigned blocksize = inode->i_sb->s_blocksize;
903 unsigned bbits;
904 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
905 bool decrypt = false;
906
907 BUG_ON(!PageLocked(page));
908 BUG_ON(from > PAGE_CACHE_SIZE);
909 BUG_ON(to > PAGE_CACHE_SIZE);
910 BUG_ON(from > to);
911
912 if (!page_has_buffers(page))
913 create_empty_buffers(page, blocksize, 0);
914 head = page_buffers(page);
915 bbits = ilog2(blocksize);
916 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
917
918 for (bh = head, block_start = 0; bh != head || !block_start;
919 block++, block_start = block_end, bh = bh->b_this_page) {
920 block_end = block_start + blocksize;
921 if (block_end <= from || block_start >= to) {
922 if (PageUptodate(page)) {
923 if (!buffer_uptodate(bh))
924 set_buffer_uptodate(bh);
925 }
926 continue;
927 }
928 if (buffer_new(bh))
929 clear_buffer_new(bh);
930 if (!buffer_mapped(bh)) {
931 WARN_ON(bh->b_size != blocksize);
932 err = get_block(inode, block, bh, 1);
933 if (err)
934 break;
935 if (buffer_new(bh)) {
936 unmap_underlying_metadata(bh->b_bdev,
937 bh->b_blocknr);
938 if (PageUptodate(page)) {
939 clear_buffer_new(bh);
940 set_buffer_uptodate(bh);
941 mark_buffer_dirty(bh);
942 continue;
943 }
944 if (block_end > to || block_start < from)
945 zero_user_segments(page, to, block_end,
946 block_start, from);
947 continue;
948 }
949 }
950 if (PageUptodate(page)) {
951 if (!buffer_uptodate(bh))
952 set_buffer_uptodate(bh);
953 continue;
954 }
955 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
956 !buffer_unwritten(bh) &&
957 (block_start < from || block_end > to)) {
958 ll_rw_block(READ, 1, &bh);
959 *wait_bh++ = bh;
960 decrypt = ext4_encrypted_inode(inode) &&
961 S_ISREG(inode->i_mode);
962 }
963 }
964 /*
965 * If we issued read requests, let them complete.
966 */
967 while (wait_bh > wait) {
968 wait_on_buffer(*--wait_bh);
969 if (!buffer_uptodate(*wait_bh))
970 err = -EIO;
971 }
972 if (unlikely(err))
973 page_zero_new_buffers(page, from, to);
974 else if (decrypt)
975 err = ext4_decrypt_one(inode, page);
976 return err;
977 }
978 #endif
979
980 static int ext4_write_begin(struct file *file, struct address_space *mapping,
981 loff_t pos, unsigned len, unsigned flags,
982 struct page **pagep, void **fsdata)
983 {
984 struct inode *inode = mapping->host;
985 int ret, needed_blocks;
986 handle_t *handle;
987 int retries = 0;
988 struct page *page;
989 pgoff_t index;
990 unsigned from, to;
991
992 trace_ext4_write_begin(inode, pos, len, flags);
993 /*
994 * Reserve one block more for addition to orphan list in case
995 * we allocate blocks but write fails for some reason
996 */
997 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
998 index = pos >> PAGE_CACHE_SHIFT;
999 from = pos & (PAGE_CACHE_SIZE - 1);
1000 to = from + len;
1001
1002 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1003 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1004 flags, pagep);
1005 if (ret < 0)
1006 return ret;
1007 if (ret == 1)
1008 return 0;
1009 }
1010
1011 /*
1012 * grab_cache_page_write_begin() can take a long time if the
1013 * system is thrashing due to memory pressure, or if the page
1014 * is being written back. So grab it first before we start
1015 * the transaction handle. This also allows us to allocate
1016 * the page (if needed) without using GFP_NOFS.
1017 */
1018 retry_grab:
1019 page = grab_cache_page_write_begin(mapping, index, flags);
1020 if (!page)
1021 return -ENOMEM;
1022 unlock_page(page);
1023
1024 retry_journal:
1025 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1026 if (IS_ERR(handle)) {
1027 page_cache_release(page);
1028 return PTR_ERR(handle);
1029 }
1030
1031 lock_page(page);
1032 if (page->mapping != mapping) {
1033 /* The page got truncated from under us */
1034 unlock_page(page);
1035 page_cache_release(page);
1036 ext4_journal_stop(handle);
1037 goto retry_grab;
1038 }
1039 /* In case writeback began while the page was unlocked */
1040 wait_for_stable_page(page);
1041
1042 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1043 if (ext4_should_dioread_nolock(inode))
1044 ret = ext4_block_write_begin(page, pos, len,
1045 ext4_get_block_write);
1046 else
1047 ret = ext4_block_write_begin(page, pos, len,
1048 ext4_get_block);
1049 #else
1050 if (ext4_should_dioread_nolock(inode))
1051 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1052 else
1053 ret = __block_write_begin(page, pos, len, ext4_get_block);
1054 #endif
1055 if (!ret && ext4_should_journal_data(inode)) {
1056 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1057 from, to, NULL,
1058 do_journal_get_write_access);
1059 }
1060
1061 if (ret) {
1062 unlock_page(page);
1063 /*
1064 * __block_write_begin may have instantiated a few blocks
1065 * outside i_size. Trim these off again. Don't need
1066 * i_size_read because we hold i_mutex.
1067 *
1068 * Add inode to orphan list in case we crash before
1069 * truncate finishes
1070 */
1071 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1072 ext4_orphan_add(handle, inode);
1073
1074 ext4_journal_stop(handle);
1075 if (pos + len > inode->i_size) {
1076 ext4_truncate_failed_write(inode);
1077 /*
1078 * If truncate failed early the inode might
1079 * still be on the orphan list; we need to
1080 * make sure the inode is removed from the
1081 * orphan list in that case.
1082 */
1083 if (inode->i_nlink)
1084 ext4_orphan_del(NULL, inode);
1085 }
1086
1087 if (ret == -ENOSPC &&
1088 ext4_should_retry_alloc(inode->i_sb, &retries))
1089 goto retry_journal;
1090 page_cache_release(page);
1091 return ret;
1092 }
1093 *pagep = page;
1094 return ret;
1095 }
1096
1097 /* For write_end() in data=journal mode */
1098 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1099 {
1100 int ret;
1101 if (!buffer_mapped(bh) || buffer_freed(bh))
1102 return 0;
1103 set_buffer_uptodate(bh);
1104 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1105 clear_buffer_meta(bh);
1106 clear_buffer_prio(bh);
1107 return ret;
1108 }
1109
1110 /*
1111 * We need to pick up the new inode size which generic_commit_write gave us
1112 * `file' can be NULL - eg, when called from page_symlink().
1113 *
1114 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1115 * buffers are managed internally.
1116 */
1117 static int ext4_write_end(struct file *file,
1118 struct address_space *mapping,
1119 loff_t pos, unsigned len, unsigned copied,
1120 struct page *page, void *fsdata)
1121 {
1122 handle_t *handle = ext4_journal_current_handle();
1123 struct inode *inode = mapping->host;
1124 loff_t old_size = inode->i_size;
1125 int ret = 0, ret2;
1126 int i_size_changed = 0;
1127
1128 trace_ext4_write_end(inode, pos, len, copied);
1129 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1130 ret = ext4_jbd2_file_inode(handle, inode);
1131 if (ret) {
1132 unlock_page(page);
1133 page_cache_release(page);
1134 goto errout;
1135 }
1136 }
1137
1138 if (ext4_has_inline_data(inode)) {
1139 ret = ext4_write_inline_data_end(inode, pos, len,
1140 copied, page);
1141 if (ret < 0)
1142 goto errout;
1143 copied = ret;
1144 } else
1145 copied = block_write_end(file, mapping, pos,
1146 len, copied, page, fsdata);
1147 /*
1148 * it's important to update i_size while still holding page lock:
1149 * page writeout could otherwise come in and zero beyond i_size.
1150 */
1151 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1152 unlock_page(page);
1153 page_cache_release(page);
1154
1155 if (old_size < pos)
1156 pagecache_isize_extended(inode, old_size, pos);
1157 /*
1158 * Don't mark the inode dirty under page lock. First, it unnecessarily
1159 * makes the holding time of page lock longer. Second, it forces lock
1160 * ordering of page lock and transaction start for journaling
1161 * filesystems.
1162 */
1163 if (i_size_changed)
1164 ext4_mark_inode_dirty(handle, inode);
1165
1166 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1167 /* if we have allocated more blocks and copied
1168 * less. We will have blocks allocated outside
1169 * inode->i_size. So truncate them
1170 */
1171 ext4_orphan_add(handle, inode);
1172 errout:
1173 ret2 = ext4_journal_stop(handle);
1174 if (!ret)
1175 ret = ret2;
1176
1177 if (pos + len > inode->i_size) {
1178 ext4_truncate_failed_write(inode);
1179 /*
1180 * If truncate failed early the inode might still be
1181 * on the orphan list; we need to make sure the inode
1182 * is removed from the orphan list in that case.
1183 */
1184 if (inode->i_nlink)
1185 ext4_orphan_del(NULL, inode);
1186 }
1187
1188 return ret ? ret : copied;
1189 }
1190
1191 static int ext4_journalled_write_end(struct file *file,
1192 struct address_space *mapping,
1193 loff_t pos, unsigned len, unsigned copied,
1194 struct page *page, void *fsdata)
1195 {
1196 handle_t *handle = ext4_journal_current_handle();
1197 struct inode *inode = mapping->host;
1198 loff_t old_size = inode->i_size;
1199 int ret = 0, ret2;
1200 int partial = 0;
1201 unsigned from, to;
1202 int size_changed = 0;
1203
1204 trace_ext4_journalled_write_end(inode, pos, len, copied);
1205 from = pos & (PAGE_CACHE_SIZE - 1);
1206 to = from + len;
1207
1208 BUG_ON(!ext4_handle_valid(handle));
1209
1210 if (ext4_has_inline_data(inode))
1211 copied = ext4_write_inline_data_end(inode, pos, len,
1212 copied, page);
1213 else {
1214 if (copied < len) {
1215 if (!PageUptodate(page))
1216 copied = 0;
1217 page_zero_new_buffers(page, from+copied, to);
1218 }
1219
1220 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1221 to, &partial, write_end_fn);
1222 if (!partial)
1223 SetPageUptodate(page);
1224 }
1225 size_changed = ext4_update_inode_size(inode, pos + copied);
1226 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1227 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1228 unlock_page(page);
1229 page_cache_release(page);
1230
1231 if (old_size < pos)
1232 pagecache_isize_extended(inode, old_size, pos);
1233
1234 if (size_changed) {
1235 ret2 = ext4_mark_inode_dirty(handle, inode);
1236 if (!ret)
1237 ret = ret2;
1238 }
1239
1240 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1241 /* if we have allocated more blocks and copied
1242 * less. We will have blocks allocated outside
1243 * inode->i_size. So truncate them
1244 */
1245 ext4_orphan_add(handle, inode);
1246
1247 ret2 = ext4_journal_stop(handle);
1248 if (!ret)
1249 ret = ret2;
1250 if (pos + len > inode->i_size) {
1251 ext4_truncate_failed_write(inode);
1252 /*
1253 * If truncate failed early the inode might still be
1254 * on the orphan list; we need to make sure the inode
1255 * is removed from the orphan list in that case.
1256 */
1257 if (inode->i_nlink)
1258 ext4_orphan_del(NULL, inode);
1259 }
1260
1261 return ret ? ret : copied;
1262 }
1263
1264 /*
1265 * Reserve a single cluster located at lblock
1266 */
1267 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1268 {
1269 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1270 struct ext4_inode_info *ei = EXT4_I(inode);
1271 unsigned int md_needed;
1272 int ret;
1273
1274 /*
1275 * We will charge metadata quota at writeout time; this saves
1276 * us from metadata over-estimation, though we may go over by
1277 * a small amount in the end. Here we just reserve for data.
1278 */
1279 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1280 if (ret)
1281 return ret;
1282
1283 /*
1284 * recalculate the amount of metadata blocks to reserve
1285 * in order to allocate nrblocks
1286 * worse case is one extent per block
1287 */
1288 spin_lock(&ei->i_block_reservation_lock);
1289 /*
1290 * ext4_calc_metadata_amount() has side effects, which we have
1291 * to be prepared undo if we fail to claim space.
1292 */
1293 md_needed = 0;
1294 trace_ext4_da_reserve_space(inode, 0);
1295
1296 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1297 spin_unlock(&ei->i_block_reservation_lock);
1298 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1299 return -ENOSPC;
1300 }
1301 ei->i_reserved_data_blocks++;
1302 spin_unlock(&ei->i_block_reservation_lock);
1303
1304 return 0; /* success */
1305 }
1306
1307 static void ext4_da_release_space(struct inode *inode, int to_free)
1308 {
1309 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1310 struct ext4_inode_info *ei = EXT4_I(inode);
1311
1312 if (!to_free)
1313 return; /* Nothing to release, exit */
1314
1315 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1316
1317 trace_ext4_da_release_space(inode, to_free);
1318 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1319 /*
1320 * if there aren't enough reserved blocks, then the
1321 * counter is messed up somewhere. Since this
1322 * function is called from invalidate page, it's
1323 * harmless to return without any action.
1324 */
1325 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1326 "ino %lu, to_free %d with only %d reserved "
1327 "data blocks", inode->i_ino, to_free,
1328 ei->i_reserved_data_blocks);
1329 WARN_ON(1);
1330 to_free = ei->i_reserved_data_blocks;
1331 }
1332 ei->i_reserved_data_blocks -= to_free;
1333
1334 /* update fs dirty data blocks counter */
1335 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1336
1337 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1338
1339 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1340 }
1341
1342 static void ext4_da_page_release_reservation(struct page *page,
1343 unsigned int offset,
1344 unsigned int length)
1345 {
1346 int to_release = 0;
1347 struct buffer_head *head, *bh;
1348 unsigned int curr_off = 0;
1349 struct inode *inode = page->mapping->host;
1350 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1351 unsigned int stop = offset + length;
1352 int num_clusters;
1353 ext4_fsblk_t lblk;
1354
1355 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1356
1357 head = page_buffers(page);
1358 bh = head;
1359 do {
1360 unsigned int next_off = curr_off + bh->b_size;
1361
1362 if (next_off > stop)
1363 break;
1364
1365 if ((offset <= curr_off) && (buffer_delay(bh))) {
1366 to_release++;
1367 clear_buffer_delay(bh);
1368 }
1369 curr_off = next_off;
1370 } while ((bh = bh->b_this_page) != head);
1371
1372 if (to_release) {
1373 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1374 ext4_es_remove_extent(inode, lblk, to_release);
1375 }
1376
1377 /* If we have released all the blocks belonging to a cluster, then we
1378 * need to release the reserved space for that cluster. */
1379 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1380 while (num_clusters > 0) {
1381 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1382 ((num_clusters - 1) << sbi->s_cluster_bits);
1383 if (sbi->s_cluster_ratio == 1 ||
1384 !ext4_find_delalloc_cluster(inode, lblk))
1385 ext4_da_release_space(inode, 1);
1386
1387 num_clusters--;
1388 }
1389 }
1390
1391 /*
1392 * Delayed allocation stuff
1393 */
1394
1395 struct mpage_da_data {
1396 struct inode *inode;
1397 struct writeback_control *wbc;
1398
1399 pgoff_t first_page; /* The first page to write */
1400 pgoff_t next_page; /* Current page to examine */
1401 pgoff_t last_page; /* Last page to examine */
1402 /*
1403 * Extent to map - this can be after first_page because that can be
1404 * fully mapped. We somewhat abuse m_flags to store whether the extent
1405 * is delalloc or unwritten.
1406 */
1407 struct ext4_map_blocks map;
1408 struct ext4_io_submit io_submit; /* IO submission data */
1409 };
1410
1411 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1412 bool invalidate)
1413 {
1414 int nr_pages, i;
1415 pgoff_t index, end;
1416 struct pagevec pvec;
1417 struct inode *inode = mpd->inode;
1418 struct address_space *mapping = inode->i_mapping;
1419
1420 /* This is necessary when next_page == 0. */
1421 if (mpd->first_page >= mpd->next_page)
1422 return;
1423
1424 index = mpd->first_page;
1425 end = mpd->next_page - 1;
1426 if (invalidate) {
1427 ext4_lblk_t start, last;
1428 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1429 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1430 ext4_es_remove_extent(inode, start, last - start + 1);
1431 }
1432
1433 pagevec_init(&pvec, 0);
1434 while (index <= end) {
1435 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1436 if (nr_pages == 0)
1437 break;
1438 for (i = 0; i < nr_pages; i++) {
1439 struct page *page = pvec.pages[i];
1440 if (page->index > end)
1441 break;
1442 BUG_ON(!PageLocked(page));
1443 BUG_ON(PageWriteback(page));
1444 if (invalidate) {
1445 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1446 ClearPageUptodate(page);
1447 }
1448 unlock_page(page);
1449 }
1450 index = pvec.pages[nr_pages - 1]->index + 1;
1451 pagevec_release(&pvec);
1452 }
1453 }
1454
1455 static void ext4_print_free_blocks(struct inode *inode)
1456 {
1457 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1458 struct super_block *sb = inode->i_sb;
1459 struct ext4_inode_info *ei = EXT4_I(inode);
1460
1461 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1462 EXT4_C2B(EXT4_SB(inode->i_sb),
1463 ext4_count_free_clusters(sb)));
1464 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1465 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1466 (long long) EXT4_C2B(EXT4_SB(sb),
1467 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1468 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1469 (long long) EXT4_C2B(EXT4_SB(sb),
1470 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1471 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1472 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1473 ei->i_reserved_data_blocks);
1474 return;
1475 }
1476
1477 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1478 {
1479 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1480 }
1481
1482 /*
1483 * This function is grabs code from the very beginning of
1484 * ext4_map_blocks, but assumes that the caller is from delayed write
1485 * time. This function looks up the requested blocks and sets the
1486 * buffer delay bit under the protection of i_data_sem.
1487 */
1488 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1489 struct ext4_map_blocks *map,
1490 struct buffer_head *bh)
1491 {
1492 struct extent_status es;
1493 int retval;
1494 sector_t invalid_block = ~((sector_t) 0xffff);
1495 #ifdef ES_AGGRESSIVE_TEST
1496 struct ext4_map_blocks orig_map;
1497
1498 memcpy(&orig_map, map, sizeof(*map));
1499 #endif
1500
1501 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1502 invalid_block = ~0;
1503
1504 map->m_flags = 0;
1505 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1506 "logical block %lu\n", inode->i_ino, map->m_len,
1507 (unsigned long) map->m_lblk);
1508
1509 /* Lookup extent status tree firstly */
1510 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1511 if (ext4_es_is_hole(&es)) {
1512 retval = 0;
1513 down_read(&EXT4_I(inode)->i_data_sem);
1514 goto add_delayed;
1515 }
1516
1517 /*
1518 * Delayed extent could be allocated by fallocate.
1519 * So we need to check it.
1520 */
1521 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1522 map_bh(bh, inode->i_sb, invalid_block);
1523 set_buffer_new(bh);
1524 set_buffer_delay(bh);
1525 return 0;
1526 }
1527
1528 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1529 retval = es.es_len - (iblock - es.es_lblk);
1530 if (retval > map->m_len)
1531 retval = map->m_len;
1532 map->m_len = retval;
1533 if (ext4_es_is_written(&es))
1534 map->m_flags |= EXT4_MAP_MAPPED;
1535 else if (ext4_es_is_unwritten(&es))
1536 map->m_flags |= EXT4_MAP_UNWRITTEN;
1537 else
1538 BUG_ON(1);
1539
1540 #ifdef ES_AGGRESSIVE_TEST
1541 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1542 #endif
1543 return retval;
1544 }
1545
1546 /*
1547 * Try to see if we can get the block without requesting a new
1548 * file system block.
1549 */
1550 down_read(&EXT4_I(inode)->i_data_sem);
1551 if (ext4_has_inline_data(inode))
1552 retval = 0;
1553 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1554 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1555 else
1556 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1557
1558 add_delayed:
1559 if (retval == 0) {
1560 int ret;
1561 /*
1562 * XXX: __block_prepare_write() unmaps passed block,
1563 * is it OK?
1564 */
1565 /*
1566 * If the block was allocated from previously allocated cluster,
1567 * then we don't need to reserve it again. However we still need
1568 * to reserve metadata for every block we're going to write.
1569 */
1570 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1571 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1572 ret = ext4_da_reserve_space(inode, iblock);
1573 if (ret) {
1574 /* not enough space to reserve */
1575 retval = ret;
1576 goto out_unlock;
1577 }
1578 }
1579
1580 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1581 ~0, EXTENT_STATUS_DELAYED);
1582 if (ret) {
1583 retval = ret;
1584 goto out_unlock;
1585 }
1586
1587 map_bh(bh, inode->i_sb, invalid_block);
1588 set_buffer_new(bh);
1589 set_buffer_delay(bh);
1590 } else if (retval > 0) {
1591 int ret;
1592 unsigned int status;
1593
1594 if (unlikely(retval != map->m_len)) {
1595 ext4_warning(inode->i_sb,
1596 "ES len assertion failed for inode "
1597 "%lu: retval %d != map->m_len %d",
1598 inode->i_ino, retval, map->m_len);
1599 WARN_ON(1);
1600 }
1601
1602 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1603 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1604 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1605 map->m_pblk, status);
1606 if (ret != 0)
1607 retval = ret;
1608 }
1609
1610 out_unlock:
1611 up_read((&EXT4_I(inode)->i_data_sem));
1612
1613 return retval;
1614 }
1615
1616 /*
1617 * This is a special get_block_t callback which is used by
1618 * ext4_da_write_begin(). It will either return mapped block or
1619 * reserve space for a single block.
1620 *
1621 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1622 * We also have b_blocknr = -1 and b_bdev initialized properly
1623 *
1624 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1625 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1626 * initialized properly.
1627 */
1628 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1629 struct buffer_head *bh, int create)
1630 {
1631 struct ext4_map_blocks map;
1632 int ret = 0;
1633
1634 BUG_ON(create == 0);
1635 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1636
1637 map.m_lblk = iblock;
1638 map.m_len = 1;
1639
1640 /*
1641 * first, we need to know whether the block is allocated already
1642 * preallocated blocks are unmapped but should treated
1643 * the same as allocated blocks.
1644 */
1645 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1646 if (ret <= 0)
1647 return ret;
1648
1649 map_bh(bh, inode->i_sb, map.m_pblk);
1650 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1651
1652 if (buffer_unwritten(bh)) {
1653 /* A delayed write to unwritten bh should be marked
1654 * new and mapped. Mapped ensures that we don't do
1655 * get_block multiple times when we write to the same
1656 * offset and new ensures that we do proper zero out
1657 * for partial write.
1658 */
1659 set_buffer_new(bh);
1660 set_buffer_mapped(bh);
1661 }
1662 return 0;
1663 }
1664
1665 static int bget_one(handle_t *handle, struct buffer_head *bh)
1666 {
1667 get_bh(bh);
1668 return 0;
1669 }
1670
1671 static int bput_one(handle_t *handle, struct buffer_head *bh)
1672 {
1673 put_bh(bh);
1674 return 0;
1675 }
1676
1677 static int __ext4_journalled_writepage(struct page *page,
1678 unsigned int len)
1679 {
1680 struct address_space *mapping = page->mapping;
1681 struct inode *inode = mapping->host;
1682 struct buffer_head *page_bufs = NULL;
1683 handle_t *handle = NULL;
1684 int ret = 0, err = 0;
1685 int inline_data = ext4_has_inline_data(inode);
1686 struct buffer_head *inode_bh = NULL;
1687
1688 ClearPageChecked(page);
1689
1690 if (inline_data) {
1691 BUG_ON(page->index != 0);
1692 BUG_ON(len > ext4_get_max_inline_size(inode));
1693 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1694 if (inode_bh == NULL)
1695 goto out;
1696 } else {
1697 page_bufs = page_buffers(page);
1698 if (!page_bufs) {
1699 BUG();
1700 goto out;
1701 }
1702 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1703 NULL, bget_one);
1704 }
1705 /* As soon as we unlock the page, it can go away, but we have
1706 * references to buffers so we are safe */
1707 unlock_page(page);
1708
1709 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1710 ext4_writepage_trans_blocks(inode));
1711 if (IS_ERR(handle)) {
1712 ret = PTR_ERR(handle);
1713 goto out;
1714 }
1715
1716 BUG_ON(!ext4_handle_valid(handle));
1717
1718 if (inline_data) {
1719 BUFFER_TRACE(inode_bh, "get write access");
1720 ret = ext4_journal_get_write_access(handle, inode_bh);
1721
1722 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1723
1724 } else {
1725 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1726 do_journal_get_write_access);
1727
1728 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1729 write_end_fn);
1730 }
1731 if (ret == 0)
1732 ret = err;
1733 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1734 err = ext4_journal_stop(handle);
1735 if (!ret)
1736 ret = err;
1737
1738 if (!ext4_has_inline_data(inode))
1739 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1740 NULL, bput_one);
1741 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1742 out:
1743 brelse(inode_bh);
1744 return ret;
1745 }
1746
1747 /*
1748 * Note that we don't need to start a transaction unless we're journaling data
1749 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1750 * need to file the inode to the transaction's list in ordered mode because if
1751 * we are writing back data added by write(), the inode is already there and if
1752 * we are writing back data modified via mmap(), no one guarantees in which
1753 * transaction the data will hit the disk. In case we are journaling data, we
1754 * cannot start transaction directly because transaction start ranks above page
1755 * lock so we have to do some magic.
1756 *
1757 * This function can get called via...
1758 * - ext4_writepages after taking page lock (have journal handle)
1759 * - journal_submit_inode_data_buffers (no journal handle)
1760 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1761 * - grab_page_cache when doing write_begin (have journal handle)
1762 *
1763 * We don't do any block allocation in this function. If we have page with
1764 * multiple blocks we need to write those buffer_heads that are mapped. This
1765 * is important for mmaped based write. So if we do with blocksize 1K
1766 * truncate(f, 1024);
1767 * a = mmap(f, 0, 4096);
1768 * a[0] = 'a';
1769 * truncate(f, 4096);
1770 * we have in the page first buffer_head mapped via page_mkwrite call back
1771 * but other buffer_heads would be unmapped but dirty (dirty done via the
1772 * do_wp_page). So writepage should write the first block. If we modify
1773 * the mmap area beyond 1024 we will again get a page_fault and the
1774 * page_mkwrite callback will do the block allocation and mark the
1775 * buffer_heads mapped.
1776 *
1777 * We redirty the page if we have any buffer_heads that is either delay or
1778 * unwritten in the page.
1779 *
1780 * We can get recursively called as show below.
1781 *
1782 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1783 * ext4_writepage()
1784 *
1785 * But since we don't do any block allocation we should not deadlock.
1786 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1787 */
1788 static int ext4_writepage(struct page *page,
1789 struct writeback_control *wbc)
1790 {
1791 int ret = 0;
1792 loff_t size;
1793 unsigned int len;
1794 struct buffer_head *page_bufs = NULL;
1795 struct inode *inode = page->mapping->host;
1796 struct ext4_io_submit io_submit;
1797 bool keep_towrite = false;
1798
1799 trace_ext4_writepage(page);
1800 size = i_size_read(inode);
1801 if (page->index == size >> PAGE_CACHE_SHIFT)
1802 len = size & ~PAGE_CACHE_MASK;
1803 else
1804 len = PAGE_CACHE_SIZE;
1805
1806 page_bufs = page_buffers(page);
1807 /*
1808 * We cannot do block allocation or other extent handling in this
1809 * function. If there are buffers needing that, we have to redirty
1810 * the page. But we may reach here when we do a journal commit via
1811 * journal_submit_inode_data_buffers() and in that case we must write
1812 * allocated buffers to achieve data=ordered mode guarantees.
1813 */
1814 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1815 ext4_bh_delay_or_unwritten)) {
1816 redirty_page_for_writepage(wbc, page);
1817 if (current->flags & PF_MEMALLOC) {
1818 /*
1819 * For memory cleaning there's no point in writing only
1820 * some buffers. So just bail out. Warn if we came here
1821 * from direct reclaim.
1822 */
1823 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1824 == PF_MEMALLOC);
1825 unlock_page(page);
1826 return 0;
1827 }
1828 keep_towrite = true;
1829 }
1830
1831 if (PageChecked(page) && ext4_should_journal_data(inode))
1832 /*
1833 * It's mmapped pagecache. Add buffers and journal it. There
1834 * doesn't seem much point in redirtying the page here.
1835 */
1836 return __ext4_journalled_writepage(page, len);
1837
1838 ext4_io_submit_init(&io_submit, wbc);
1839 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1840 if (!io_submit.io_end) {
1841 redirty_page_for_writepage(wbc, page);
1842 unlock_page(page);
1843 return -ENOMEM;
1844 }
1845 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1846 ext4_io_submit(&io_submit);
1847 /* Drop io_end reference we got from init */
1848 ext4_put_io_end_defer(io_submit.io_end);
1849 return ret;
1850 }
1851
1852 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1853 {
1854 int len;
1855 loff_t size = i_size_read(mpd->inode);
1856 int err;
1857
1858 BUG_ON(page->index != mpd->first_page);
1859 if (page->index == size >> PAGE_CACHE_SHIFT)
1860 len = size & ~PAGE_CACHE_MASK;
1861 else
1862 len = PAGE_CACHE_SIZE;
1863 clear_page_dirty_for_io(page);
1864 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1865 if (!err)
1866 mpd->wbc->nr_to_write--;
1867 mpd->first_page++;
1868
1869 return err;
1870 }
1871
1872 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1873
1874 /*
1875 * mballoc gives us at most this number of blocks...
1876 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1877 * The rest of mballoc seems to handle chunks up to full group size.
1878 */
1879 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1880
1881 /*
1882 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1883 *
1884 * @mpd - extent of blocks
1885 * @lblk - logical number of the block in the file
1886 * @bh - buffer head we want to add to the extent
1887 *
1888 * The function is used to collect contig. blocks in the same state. If the
1889 * buffer doesn't require mapping for writeback and we haven't started the
1890 * extent of buffers to map yet, the function returns 'true' immediately - the
1891 * caller can write the buffer right away. Otherwise the function returns true
1892 * if the block has been added to the extent, false if the block couldn't be
1893 * added.
1894 */
1895 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1896 struct buffer_head *bh)
1897 {
1898 struct ext4_map_blocks *map = &mpd->map;
1899
1900 /* Buffer that doesn't need mapping for writeback? */
1901 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1902 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1903 /* So far no extent to map => we write the buffer right away */
1904 if (map->m_len == 0)
1905 return true;
1906 return false;
1907 }
1908
1909 /* First block in the extent? */
1910 if (map->m_len == 0) {
1911 map->m_lblk = lblk;
1912 map->m_len = 1;
1913 map->m_flags = bh->b_state & BH_FLAGS;
1914 return true;
1915 }
1916
1917 /* Don't go larger than mballoc is willing to allocate */
1918 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1919 return false;
1920
1921 /* Can we merge the block to our big extent? */
1922 if (lblk == map->m_lblk + map->m_len &&
1923 (bh->b_state & BH_FLAGS) == map->m_flags) {
1924 map->m_len++;
1925 return true;
1926 }
1927 return false;
1928 }
1929
1930 /*
1931 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1932 *
1933 * @mpd - extent of blocks for mapping
1934 * @head - the first buffer in the page
1935 * @bh - buffer we should start processing from
1936 * @lblk - logical number of the block in the file corresponding to @bh
1937 *
1938 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1939 * the page for IO if all buffers in this page were mapped and there's no
1940 * accumulated extent of buffers to map or add buffers in the page to the
1941 * extent of buffers to map. The function returns 1 if the caller can continue
1942 * by processing the next page, 0 if it should stop adding buffers to the
1943 * extent to map because we cannot extend it anymore. It can also return value
1944 * < 0 in case of error during IO submission.
1945 */
1946 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1947 struct buffer_head *head,
1948 struct buffer_head *bh,
1949 ext4_lblk_t lblk)
1950 {
1951 struct inode *inode = mpd->inode;
1952 int err;
1953 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1954 >> inode->i_blkbits;
1955
1956 do {
1957 BUG_ON(buffer_locked(bh));
1958
1959 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1960 /* Found extent to map? */
1961 if (mpd->map.m_len)
1962 return 0;
1963 /* Everything mapped so far and we hit EOF */
1964 break;
1965 }
1966 } while (lblk++, (bh = bh->b_this_page) != head);
1967 /* So far everything mapped? Submit the page for IO. */
1968 if (mpd->map.m_len == 0) {
1969 err = mpage_submit_page(mpd, head->b_page);
1970 if (err < 0)
1971 return err;
1972 }
1973 return lblk < blocks;
1974 }
1975
1976 /*
1977 * mpage_map_buffers - update buffers corresponding to changed extent and
1978 * submit fully mapped pages for IO
1979 *
1980 * @mpd - description of extent to map, on return next extent to map
1981 *
1982 * Scan buffers corresponding to changed extent (we expect corresponding pages
1983 * to be already locked) and update buffer state according to new extent state.
1984 * We map delalloc buffers to their physical location, clear unwritten bits,
1985 * and mark buffers as uninit when we perform writes to unwritten extents
1986 * and do extent conversion after IO is finished. If the last page is not fully
1987 * mapped, we update @map to the next extent in the last page that needs
1988 * mapping. Otherwise we submit the page for IO.
1989 */
1990 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1991 {
1992 struct pagevec pvec;
1993 int nr_pages, i;
1994 struct inode *inode = mpd->inode;
1995 struct buffer_head *head, *bh;
1996 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1997 pgoff_t start, end;
1998 ext4_lblk_t lblk;
1999 sector_t pblock;
2000 int err;
2001
2002 start = mpd->map.m_lblk >> bpp_bits;
2003 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2004 lblk = start << bpp_bits;
2005 pblock = mpd->map.m_pblk;
2006
2007 pagevec_init(&pvec, 0);
2008 while (start <= end) {
2009 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2010 PAGEVEC_SIZE);
2011 if (nr_pages == 0)
2012 break;
2013 for (i = 0; i < nr_pages; i++) {
2014 struct page *page = pvec.pages[i];
2015
2016 if (page->index > end)
2017 break;
2018 /* Up to 'end' pages must be contiguous */
2019 BUG_ON(page->index != start);
2020 bh = head = page_buffers(page);
2021 do {
2022 if (lblk < mpd->map.m_lblk)
2023 continue;
2024 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2025 /*
2026 * Buffer after end of mapped extent.
2027 * Find next buffer in the page to map.
2028 */
2029 mpd->map.m_len = 0;
2030 mpd->map.m_flags = 0;
2031 /*
2032 * FIXME: If dioread_nolock supports
2033 * blocksize < pagesize, we need to make
2034 * sure we add size mapped so far to
2035 * io_end->size as the following call
2036 * can submit the page for IO.
2037 */
2038 err = mpage_process_page_bufs(mpd, head,
2039 bh, lblk);
2040 pagevec_release(&pvec);
2041 if (err > 0)
2042 err = 0;
2043 return err;
2044 }
2045 if (buffer_delay(bh)) {
2046 clear_buffer_delay(bh);
2047 bh->b_blocknr = pblock++;
2048 }
2049 clear_buffer_unwritten(bh);
2050 } while (lblk++, (bh = bh->b_this_page) != head);
2051
2052 /*
2053 * FIXME: This is going to break if dioread_nolock
2054 * supports blocksize < pagesize as we will try to
2055 * convert potentially unmapped parts of inode.
2056 */
2057 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2058 /* Page fully mapped - let IO run! */
2059 err = mpage_submit_page(mpd, page);
2060 if (err < 0) {
2061 pagevec_release(&pvec);
2062 return err;
2063 }
2064 start++;
2065 }
2066 pagevec_release(&pvec);
2067 }
2068 /* Extent fully mapped and matches with page boundary. We are done. */
2069 mpd->map.m_len = 0;
2070 mpd->map.m_flags = 0;
2071 return 0;
2072 }
2073
2074 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2075 {
2076 struct inode *inode = mpd->inode;
2077 struct ext4_map_blocks *map = &mpd->map;
2078 int get_blocks_flags;
2079 int err, dioread_nolock;
2080
2081 trace_ext4_da_write_pages_extent(inode, map);
2082 /*
2083 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2084 * to convert an unwritten extent to be initialized (in the case
2085 * where we have written into one or more preallocated blocks). It is
2086 * possible that we're going to need more metadata blocks than
2087 * previously reserved. However we must not fail because we're in
2088 * writeback and there is nothing we can do about it so it might result
2089 * in data loss. So use reserved blocks to allocate metadata if
2090 * possible.
2091 *
2092 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2093 * the blocks in question are delalloc blocks. This indicates
2094 * that the blocks and quotas has already been checked when
2095 * the data was copied into the page cache.
2096 */
2097 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2098 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2099 dioread_nolock = ext4_should_dioread_nolock(inode);
2100 if (dioread_nolock)
2101 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2102 if (map->m_flags & (1 << BH_Delay))
2103 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2104
2105 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2106 if (err < 0)
2107 return err;
2108 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2109 if (!mpd->io_submit.io_end->handle &&
2110 ext4_handle_valid(handle)) {
2111 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2112 handle->h_rsv_handle = NULL;
2113 }
2114 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2115 }
2116
2117 BUG_ON(map->m_len == 0);
2118 if (map->m_flags & EXT4_MAP_NEW) {
2119 struct block_device *bdev = inode->i_sb->s_bdev;
2120 int i;
2121
2122 for (i = 0; i < map->m_len; i++)
2123 unmap_underlying_metadata(bdev, map->m_pblk + i);
2124 }
2125 return 0;
2126 }
2127
2128 /*
2129 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2130 * mpd->len and submit pages underlying it for IO
2131 *
2132 * @handle - handle for journal operations
2133 * @mpd - extent to map
2134 * @give_up_on_write - we set this to true iff there is a fatal error and there
2135 * is no hope of writing the data. The caller should discard
2136 * dirty pages to avoid infinite loops.
2137 *
2138 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2139 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2140 * them to initialized or split the described range from larger unwritten
2141 * extent. Note that we need not map all the described range since allocation
2142 * can return less blocks or the range is covered by more unwritten extents. We
2143 * cannot map more because we are limited by reserved transaction credits. On
2144 * the other hand we always make sure that the last touched page is fully
2145 * mapped so that it can be written out (and thus forward progress is
2146 * guaranteed). After mapping we submit all mapped pages for IO.
2147 */
2148 static int mpage_map_and_submit_extent(handle_t *handle,
2149 struct mpage_da_data *mpd,
2150 bool *give_up_on_write)
2151 {
2152 struct inode *inode = mpd->inode;
2153 struct ext4_map_blocks *map = &mpd->map;
2154 int err;
2155 loff_t disksize;
2156 int progress = 0;
2157
2158 mpd->io_submit.io_end->offset =
2159 ((loff_t)map->m_lblk) << inode->i_blkbits;
2160 do {
2161 err = mpage_map_one_extent(handle, mpd);
2162 if (err < 0) {
2163 struct super_block *sb = inode->i_sb;
2164
2165 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2166 goto invalidate_dirty_pages;
2167 /*
2168 * Let the uper layers retry transient errors.
2169 * In the case of ENOSPC, if ext4_count_free_blocks()
2170 * is non-zero, a commit should free up blocks.
2171 */
2172 if ((err == -ENOMEM) ||
2173 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2174 if (progress)
2175 goto update_disksize;
2176 return err;
2177 }
2178 ext4_msg(sb, KERN_CRIT,
2179 "Delayed block allocation failed for "
2180 "inode %lu at logical offset %llu with"
2181 " max blocks %u with error %d",
2182 inode->i_ino,
2183 (unsigned long long)map->m_lblk,
2184 (unsigned)map->m_len, -err);
2185 ext4_msg(sb, KERN_CRIT,
2186 "This should not happen!! Data will "
2187 "be lost\n");
2188 if (err == -ENOSPC)
2189 ext4_print_free_blocks(inode);
2190 invalidate_dirty_pages:
2191 *give_up_on_write = true;
2192 return err;
2193 }
2194 progress = 1;
2195 /*
2196 * Update buffer state, submit mapped pages, and get us new
2197 * extent to map
2198 */
2199 err = mpage_map_and_submit_buffers(mpd);
2200 if (err < 0)
2201 goto update_disksize;
2202 } while (map->m_len);
2203
2204 update_disksize:
2205 /*
2206 * Update on-disk size after IO is submitted. Races with
2207 * truncate are avoided by checking i_size under i_data_sem.
2208 */
2209 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2210 if (disksize > EXT4_I(inode)->i_disksize) {
2211 int err2;
2212 loff_t i_size;
2213
2214 down_write(&EXT4_I(inode)->i_data_sem);
2215 i_size = i_size_read(inode);
2216 if (disksize > i_size)
2217 disksize = i_size;
2218 if (disksize > EXT4_I(inode)->i_disksize)
2219 EXT4_I(inode)->i_disksize = disksize;
2220 err2 = ext4_mark_inode_dirty(handle, inode);
2221 up_write(&EXT4_I(inode)->i_data_sem);
2222 if (err2)
2223 ext4_error(inode->i_sb,
2224 "Failed to mark inode %lu dirty",
2225 inode->i_ino);
2226 if (!err)
2227 err = err2;
2228 }
2229 return err;
2230 }
2231
2232 /*
2233 * Calculate the total number of credits to reserve for one writepages
2234 * iteration. This is called from ext4_writepages(). We map an extent of
2235 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2236 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2237 * bpp - 1 blocks in bpp different extents.
2238 */
2239 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2240 {
2241 int bpp = ext4_journal_blocks_per_page(inode);
2242
2243 return ext4_meta_trans_blocks(inode,
2244 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2245 }
2246
2247 /*
2248 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2249 * and underlying extent to map
2250 *
2251 * @mpd - where to look for pages
2252 *
2253 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2254 * IO immediately. When we find a page which isn't mapped we start accumulating
2255 * extent of buffers underlying these pages that needs mapping (formed by
2256 * either delayed or unwritten buffers). We also lock the pages containing
2257 * these buffers. The extent found is returned in @mpd structure (starting at
2258 * mpd->lblk with length mpd->len blocks).
2259 *
2260 * Note that this function can attach bios to one io_end structure which are
2261 * neither logically nor physically contiguous. Although it may seem as an
2262 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2263 * case as we need to track IO to all buffers underlying a page in one io_end.
2264 */
2265 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2266 {
2267 struct address_space *mapping = mpd->inode->i_mapping;
2268 struct pagevec pvec;
2269 unsigned int nr_pages;
2270 long left = mpd->wbc->nr_to_write;
2271 pgoff_t index = mpd->first_page;
2272 pgoff_t end = mpd->last_page;
2273 int tag;
2274 int i, err = 0;
2275 int blkbits = mpd->inode->i_blkbits;
2276 ext4_lblk_t lblk;
2277 struct buffer_head *head;
2278
2279 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2280 tag = PAGECACHE_TAG_TOWRITE;
2281 else
2282 tag = PAGECACHE_TAG_DIRTY;
2283
2284 pagevec_init(&pvec, 0);
2285 mpd->map.m_len = 0;
2286 mpd->next_page = index;
2287 while (index <= end) {
2288 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2289 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2290 if (nr_pages == 0)
2291 goto out;
2292
2293 for (i = 0; i < nr_pages; i++) {
2294 struct page *page = pvec.pages[i];
2295
2296 /*
2297 * At this point, the page may be truncated or
2298 * invalidated (changing page->mapping to NULL), or
2299 * even swizzled back from swapper_space to tmpfs file
2300 * mapping. However, page->index will not change
2301 * because we have a reference on the page.
2302 */
2303 if (page->index > end)
2304 goto out;
2305
2306 /*
2307 * Accumulated enough dirty pages? This doesn't apply
2308 * to WB_SYNC_ALL mode. For integrity sync we have to
2309 * keep going because someone may be concurrently
2310 * dirtying pages, and we might have synced a lot of
2311 * newly appeared dirty pages, but have not synced all
2312 * of the old dirty pages.
2313 */
2314 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2315 goto out;
2316
2317 /* If we can't merge this page, we are done. */
2318 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2319 goto out;
2320
2321 lock_page(page);
2322 /*
2323 * If the page is no longer dirty, or its mapping no
2324 * longer corresponds to inode we are writing (which
2325 * means it has been truncated or invalidated), or the
2326 * page is already under writeback and we are not doing
2327 * a data integrity writeback, skip the page
2328 */
2329 if (!PageDirty(page) ||
2330 (PageWriteback(page) &&
2331 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2332 unlikely(page->mapping != mapping)) {
2333 unlock_page(page);
2334 continue;
2335 }
2336
2337 wait_on_page_writeback(page);
2338 BUG_ON(PageWriteback(page));
2339
2340 if (mpd->map.m_len == 0)
2341 mpd->first_page = page->index;
2342 mpd->next_page = page->index + 1;
2343 /* Add all dirty buffers to mpd */
2344 lblk = ((ext4_lblk_t)page->index) <<
2345 (PAGE_CACHE_SHIFT - blkbits);
2346 head = page_buffers(page);
2347 err = mpage_process_page_bufs(mpd, head, head, lblk);
2348 if (err <= 0)
2349 goto out;
2350 err = 0;
2351 left--;
2352 }
2353 pagevec_release(&pvec);
2354 cond_resched();
2355 }
2356 return 0;
2357 out:
2358 pagevec_release(&pvec);
2359 return err;
2360 }
2361
2362 static int __writepage(struct page *page, struct writeback_control *wbc,
2363 void *data)
2364 {
2365 struct address_space *mapping = data;
2366 int ret = ext4_writepage(page, wbc);
2367 mapping_set_error(mapping, ret);
2368 return ret;
2369 }
2370
2371 static int ext4_writepages(struct address_space *mapping,
2372 struct writeback_control *wbc)
2373 {
2374 pgoff_t writeback_index = 0;
2375 long nr_to_write = wbc->nr_to_write;
2376 int range_whole = 0;
2377 int cycled = 1;
2378 handle_t *handle = NULL;
2379 struct mpage_da_data mpd;
2380 struct inode *inode = mapping->host;
2381 int needed_blocks, rsv_blocks = 0, ret = 0;
2382 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2383 bool done;
2384 struct blk_plug plug;
2385 bool give_up_on_write = false;
2386
2387 trace_ext4_writepages(inode, wbc);
2388
2389 /*
2390 * No pages to write? This is mainly a kludge to avoid starting
2391 * a transaction for special inodes like journal inode on last iput()
2392 * because that could violate lock ordering on umount
2393 */
2394 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2395 goto out_writepages;
2396
2397 if (ext4_should_journal_data(inode)) {
2398 struct blk_plug plug;
2399
2400 blk_start_plug(&plug);
2401 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2402 blk_finish_plug(&plug);
2403 goto out_writepages;
2404 }
2405
2406 /*
2407 * If the filesystem has aborted, it is read-only, so return
2408 * right away instead of dumping stack traces later on that
2409 * will obscure the real source of the problem. We test
2410 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2411 * the latter could be true if the filesystem is mounted
2412 * read-only, and in that case, ext4_writepages should
2413 * *never* be called, so if that ever happens, we would want
2414 * the stack trace.
2415 */
2416 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2417 ret = -EROFS;
2418 goto out_writepages;
2419 }
2420
2421 if (ext4_should_dioread_nolock(inode)) {
2422 /*
2423 * We may need to convert up to one extent per block in
2424 * the page and we may dirty the inode.
2425 */
2426 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2427 }
2428
2429 /*
2430 * If we have inline data and arrive here, it means that
2431 * we will soon create the block for the 1st page, so
2432 * we'd better clear the inline data here.
2433 */
2434 if (ext4_has_inline_data(inode)) {
2435 /* Just inode will be modified... */
2436 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2437 if (IS_ERR(handle)) {
2438 ret = PTR_ERR(handle);
2439 goto out_writepages;
2440 }
2441 BUG_ON(ext4_test_inode_state(inode,
2442 EXT4_STATE_MAY_INLINE_DATA));
2443 ext4_destroy_inline_data(handle, inode);
2444 ext4_journal_stop(handle);
2445 }
2446
2447 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2448 range_whole = 1;
2449
2450 if (wbc->range_cyclic) {
2451 writeback_index = mapping->writeback_index;
2452 if (writeback_index)
2453 cycled = 0;
2454 mpd.first_page = writeback_index;
2455 mpd.last_page = -1;
2456 } else {
2457 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2458 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2459 }
2460
2461 mpd.inode = inode;
2462 mpd.wbc = wbc;
2463 ext4_io_submit_init(&mpd.io_submit, wbc);
2464 retry:
2465 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2466 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2467 done = false;
2468 blk_start_plug(&plug);
2469 while (!done && mpd.first_page <= mpd.last_page) {
2470 /* For each extent of pages we use new io_end */
2471 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2472 if (!mpd.io_submit.io_end) {
2473 ret = -ENOMEM;
2474 break;
2475 }
2476
2477 /*
2478 * We have two constraints: We find one extent to map and we
2479 * must always write out whole page (makes a difference when
2480 * blocksize < pagesize) so that we don't block on IO when we
2481 * try to write out the rest of the page. Journalled mode is
2482 * not supported by delalloc.
2483 */
2484 BUG_ON(ext4_should_journal_data(inode));
2485 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2486
2487 /* start a new transaction */
2488 handle = ext4_journal_start_with_reserve(inode,
2489 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2490 if (IS_ERR(handle)) {
2491 ret = PTR_ERR(handle);
2492 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2493 "%ld pages, ino %lu; err %d", __func__,
2494 wbc->nr_to_write, inode->i_ino, ret);
2495 /* Release allocated io_end */
2496 ext4_put_io_end(mpd.io_submit.io_end);
2497 break;
2498 }
2499
2500 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2501 ret = mpage_prepare_extent_to_map(&mpd);
2502 if (!ret) {
2503 if (mpd.map.m_len)
2504 ret = mpage_map_and_submit_extent(handle, &mpd,
2505 &give_up_on_write);
2506 else {
2507 /*
2508 * We scanned the whole range (or exhausted
2509 * nr_to_write), submitted what was mapped and
2510 * didn't find anything needing mapping. We are
2511 * done.
2512 */
2513 done = true;
2514 }
2515 }
2516 ext4_journal_stop(handle);
2517 /* Submit prepared bio */
2518 ext4_io_submit(&mpd.io_submit);
2519 /* Unlock pages we didn't use */
2520 mpage_release_unused_pages(&mpd, give_up_on_write);
2521 /* Drop our io_end reference we got from init */
2522 ext4_put_io_end(mpd.io_submit.io_end);
2523
2524 if (ret == -ENOSPC && sbi->s_journal) {
2525 /*
2526 * Commit the transaction which would
2527 * free blocks released in the transaction
2528 * and try again
2529 */
2530 jbd2_journal_force_commit_nested(sbi->s_journal);
2531 ret = 0;
2532 continue;
2533 }
2534 /* Fatal error - ENOMEM, EIO... */
2535 if (ret)
2536 break;
2537 }
2538 blk_finish_plug(&plug);
2539 if (!ret && !cycled && wbc->nr_to_write > 0) {
2540 cycled = 1;
2541 mpd.last_page = writeback_index - 1;
2542 mpd.first_page = 0;
2543 goto retry;
2544 }
2545
2546 /* Update index */
2547 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2548 /*
2549 * Set the writeback_index so that range_cyclic
2550 * mode will write it back later
2551 */
2552 mapping->writeback_index = mpd.first_page;
2553
2554 out_writepages:
2555 trace_ext4_writepages_result(inode, wbc, ret,
2556 nr_to_write - wbc->nr_to_write);
2557 return ret;
2558 }
2559
2560 static int ext4_nonda_switch(struct super_block *sb)
2561 {
2562 s64 free_clusters, dirty_clusters;
2563 struct ext4_sb_info *sbi = EXT4_SB(sb);
2564
2565 /*
2566 * switch to non delalloc mode if we are running low
2567 * on free block. The free block accounting via percpu
2568 * counters can get slightly wrong with percpu_counter_batch getting
2569 * accumulated on each CPU without updating global counters
2570 * Delalloc need an accurate free block accounting. So switch
2571 * to non delalloc when we are near to error range.
2572 */
2573 free_clusters =
2574 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2575 dirty_clusters =
2576 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2577 /*
2578 * Start pushing delalloc when 1/2 of free blocks are dirty.
2579 */
2580 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2581 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2582
2583 if (2 * free_clusters < 3 * dirty_clusters ||
2584 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2585 /*
2586 * free block count is less than 150% of dirty blocks
2587 * or free blocks is less than watermark
2588 */
2589 return 1;
2590 }
2591 return 0;
2592 }
2593
2594 /* We always reserve for an inode update; the superblock could be there too */
2595 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2596 {
2597 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2598 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2599 return 1;
2600
2601 if (pos + len <= 0x7fffffffULL)
2602 return 1;
2603
2604 /* We might need to update the superblock to set LARGE_FILE */
2605 return 2;
2606 }
2607
2608 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2609 loff_t pos, unsigned len, unsigned flags,
2610 struct page **pagep, void **fsdata)
2611 {
2612 int ret, retries = 0;
2613 struct page *page;
2614 pgoff_t index;
2615 struct inode *inode = mapping->host;
2616 handle_t *handle;
2617
2618 index = pos >> PAGE_CACHE_SHIFT;
2619
2620 if (ext4_nonda_switch(inode->i_sb)) {
2621 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2622 return ext4_write_begin(file, mapping, pos,
2623 len, flags, pagep, fsdata);
2624 }
2625 *fsdata = (void *)0;
2626 trace_ext4_da_write_begin(inode, pos, len, flags);
2627
2628 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2629 ret = ext4_da_write_inline_data_begin(mapping, inode,
2630 pos, len, flags,
2631 pagep, fsdata);
2632 if (ret < 0)
2633 return ret;
2634 if (ret == 1)
2635 return 0;
2636 }
2637
2638 /*
2639 * grab_cache_page_write_begin() can take a long time if the
2640 * system is thrashing due to memory pressure, or if the page
2641 * is being written back. So grab it first before we start
2642 * the transaction handle. This also allows us to allocate
2643 * the page (if needed) without using GFP_NOFS.
2644 */
2645 retry_grab:
2646 page = grab_cache_page_write_begin(mapping, index, flags);
2647 if (!page)
2648 return -ENOMEM;
2649 unlock_page(page);
2650
2651 /*
2652 * With delayed allocation, we don't log the i_disksize update
2653 * if there is delayed block allocation. But we still need
2654 * to journalling the i_disksize update if writes to the end
2655 * of file which has an already mapped buffer.
2656 */
2657 retry_journal:
2658 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2659 ext4_da_write_credits(inode, pos, len));
2660 if (IS_ERR(handle)) {
2661 page_cache_release(page);
2662 return PTR_ERR(handle);
2663 }
2664
2665 lock_page(page);
2666 if (page->mapping != mapping) {
2667 /* The page got truncated from under us */
2668 unlock_page(page);
2669 page_cache_release(page);
2670 ext4_journal_stop(handle);
2671 goto retry_grab;
2672 }
2673 /* In case writeback began while the page was unlocked */
2674 wait_for_stable_page(page);
2675
2676 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2677 ret = ext4_block_write_begin(page, pos, len,
2678 ext4_da_get_block_prep);
2679 #else
2680 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2681 #endif
2682 if (ret < 0) {
2683 unlock_page(page);
2684 ext4_journal_stop(handle);
2685 /*
2686 * block_write_begin may have instantiated a few blocks
2687 * outside i_size. Trim these off again. Don't need
2688 * i_size_read because we hold i_mutex.
2689 */
2690 if (pos + len > inode->i_size)
2691 ext4_truncate_failed_write(inode);
2692
2693 if (ret == -ENOSPC &&
2694 ext4_should_retry_alloc(inode->i_sb, &retries))
2695 goto retry_journal;
2696
2697 page_cache_release(page);
2698 return ret;
2699 }
2700
2701 *pagep = page;
2702 return ret;
2703 }
2704
2705 /*
2706 * Check if we should update i_disksize
2707 * when write to the end of file but not require block allocation
2708 */
2709 static int ext4_da_should_update_i_disksize(struct page *page,
2710 unsigned long offset)
2711 {
2712 struct buffer_head *bh;
2713 struct inode *inode = page->mapping->host;
2714 unsigned int idx;
2715 int i;
2716
2717 bh = page_buffers(page);
2718 idx = offset >> inode->i_blkbits;
2719
2720 for (i = 0; i < idx; i++)
2721 bh = bh->b_this_page;
2722
2723 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2724 return 0;
2725 return 1;
2726 }
2727
2728 static int ext4_da_write_end(struct file *file,
2729 struct address_space *mapping,
2730 loff_t pos, unsigned len, unsigned copied,
2731 struct page *page, void *fsdata)
2732 {
2733 struct inode *inode = mapping->host;
2734 int ret = 0, ret2;
2735 handle_t *handle = ext4_journal_current_handle();
2736 loff_t new_i_size;
2737 unsigned long start, end;
2738 int write_mode = (int)(unsigned long)fsdata;
2739
2740 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2741 return ext4_write_end(file, mapping, pos,
2742 len, copied, page, fsdata);
2743
2744 trace_ext4_da_write_end(inode, pos, len, copied);
2745 start = pos & (PAGE_CACHE_SIZE - 1);
2746 end = start + copied - 1;
2747
2748 /*
2749 * generic_write_end() will run mark_inode_dirty() if i_size
2750 * changes. So let's piggyback the i_disksize mark_inode_dirty
2751 * into that.
2752 */
2753 new_i_size = pos + copied;
2754 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2755 if (ext4_has_inline_data(inode) ||
2756 ext4_da_should_update_i_disksize(page, end)) {
2757 ext4_update_i_disksize(inode, new_i_size);
2758 /* We need to mark inode dirty even if
2759 * new_i_size is less that inode->i_size
2760 * bu greater than i_disksize.(hint delalloc)
2761 */
2762 ext4_mark_inode_dirty(handle, inode);
2763 }
2764 }
2765
2766 if (write_mode != CONVERT_INLINE_DATA &&
2767 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2768 ext4_has_inline_data(inode))
2769 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2770 page);
2771 else
2772 ret2 = generic_write_end(file, mapping, pos, len, copied,
2773 page, fsdata);
2774
2775 copied = ret2;
2776 if (ret2 < 0)
2777 ret = ret2;
2778 ret2 = ext4_journal_stop(handle);
2779 if (!ret)
2780 ret = ret2;
2781
2782 return ret ? ret : copied;
2783 }
2784
2785 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2786 unsigned int length)
2787 {
2788 /*
2789 * Drop reserved blocks
2790 */
2791 BUG_ON(!PageLocked(page));
2792 if (!page_has_buffers(page))
2793 goto out;
2794
2795 ext4_da_page_release_reservation(page, offset, length);
2796
2797 out:
2798 ext4_invalidatepage(page, offset, length);
2799
2800 return;
2801 }
2802
2803 /*
2804 * Force all delayed allocation blocks to be allocated for a given inode.
2805 */
2806 int ext4_alloc_da_blocks(struct inode *inode)
2807 {
2808 trace_ext4_alloc_da_blocks(inode);
2809
2810 if (!EXT4_I(inode)->i_reserved_data_blocks)
2811 return 0;
2812
2813 /*
2814 * We do something simple for now. The filemap_flush() will
2815 * also start triggering a write of the data blocks, which is
2816 * not strictly speaking necessary (and for users of
2817 * laptop_mode, not even desirable). However, to do otherwise
2818 * would require replicating code paths in:
2819 *
2820 * ext4_writepages() ->
2821 * write_cache_pages() ---> (via passed in callback function)
2822 * __mpage_da_writepage() -->
2823 * mpage_add_bh_to_extent()
2824 * mpage_da_map_blocks()
2825 *
2826 * The problem is that write_cache_pages(), located in
2827 * mm/page-writeback.c, marks pages clean in preparation for
2828 * doing I/O, which is not desirable if we're not planning on
2829 * doing I/O at all.
2830 *
2831 * We could call write_cache_pages(), and then redirty all of
2832 * the pages by calling redirty_page_for_writepage() but that
2833 * would be ugly in the extreme. So instead we would need to
2834 * replicate parts of the code in the above functions,
2835 * simplifying them because we wouldn't actually intend to
2836 * write out the pages, but rather only collect contiguous
2837 * logical block extents, call the multi-block allocator, and
2838 * then update the buffer heads with the block allocations.
2839 *
2840 * For now, though, we'll cheat by calling filemap_flush(),
2841 * which will map the blocks, and start the I/O, but not
2842 * actually wait for the I/O to complete.
2843 */
2844 return filemap_flush(inode->i_mapping);
2845 }
2846
2847 /*
2848 * bmap() is special. It gets used by applications such as lilo and by
2849 * the swapper to find the on-disk block of a specific piece of data.
2850 *
2851 * Naturally, this is dangerous if the block concerned is still in the
2852 * journal. If somebody makes a swapfile on an ext4 data-journaling
2853 * filesystem and enables swap, then they may get a nasty shock when the
2854 * data getting swapped to that swapfile suddenly gets overwritten by
2855 * the original zero's written out previously to the journal and
2856 * awaiting writeback in the kernel's buffer cache.
2857 *
2858 * So, if we see any bmap calls here on a modified, data-journaled file,
2859 * take extra steps to flush any blocks which might be in the cache.
2860 */
2861 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2862 {
2863 struct inode *inode = mapping->host;
2864 journal_t *journal;
2865 int err;
2866
2867 /*
2868 * We can get here for an inline file via the FIBMAP ioctl
2869 */
2870 if (ext4_has_inline_data(inode))
2871 return 0;
2872
2873 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2874 test_opt(inode->i_sb, DELALLOC)) {
2875 /*
2876 * With delalloc we want to sync the file
2877 * so that we can make sure we allocate
2878 * blocks for file
2879 */
2880 filemap_write_and_wait(mapping);
2881 }
2882
2883 if (EXT4_JOURNAL(inode) &&
2884 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2885 /*
2886 * This is a REALLY heavyweight approach, but the use of
2887 * bmap on dirty files is expected to be extremely rare:
2888 * only if we run lilo or swapon on a freshly made file
2889 * do we expect this to happen.
2890 *
2891 * (bmap requires CAP_SYS_RAWIO so this does not
2892 * represent an unprivileged user DOS attack --- we'd be
2893 * in trouble if mortal users could trigger this path at
2894 * will.)
2895 *
2896 * NB. EXT4_STATE_JDATA is not set on files other than
2897 * regular files. If somebody wants to bmap a directory
2898 * or symlink and gets confused because the buffer
2899 * hasn't yet been flushed to disk, they deserve
2900 * everything they get.
2901 */
2902
2903 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2904 journal = EXT4_JOURNAL(inode);
2905 jbd2_journal_lock_updates(journal);
2906 err = jbd2_journal_flush(journal);
2907 jbd2_journal_unlock_updates(journal);
2908
2909 if (err)
2910 return 0;
2911 }
2912
2913 return generic_block_bmap(mapping, block, ext4_get_block);
2914 }
2915
2916 static int ext4_readpage(struct file *file, struct page *page)
2917 {
2918 int ret = -EAGAIN;
2919 struct inode *inode = page->mapping->host;
2920
2921 trace_ext4_readpage(page);
2922
2923 if (ext4_has_inline_data(inode))
2924 ret = ext4_readpage_inline(inode, page);
2925
2926 if (ret == -EAGAIN)
2927 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2928
2929 return ret;
2930 }
2931
2932 static int
2933 ext4_readpages(struct file *file, struct address_space *mapping,
2934 struct list_head *pages, unsigned nr_pages)
2935 {
2936 struct inode *inode = mapping->host;
2937
2938 /* If the file has inline data, no need to do readpages. */
2939 if (ext4_has_inline_data(inode))
2940 return 0;
2941
2942 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2943 }
2944
2945 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2946 unsigned int length)
2947 {
2948 trace_ext4_invalidatepage(page, offset, length);
2949
2950 /* No journalling happens on data buffers when this function is used */
2951 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2952
2953 block_invalidatepage(page, offset, length);
2954 }
2955
2956 static int __ext4_journalled_invalidatepage(struct page *page,
2957 unsigned int offset,
2958 unsigned int length)
2959 {
2960 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2961
2962 trace_ext4_journalled_invalidatepage(page, offset, length);
2963
2964 /*
2965 * If it's a full truncate we just forget about the pending dirtying
2966 */
2967 if (offset == 0 && length == PAGE_CACHE_SIZE)
2968 ClearPageChecked(page);
2969
2970 return jbd2_journal_invalidatepage(journal, page, offset, length);
2971 }
2972
2973 /* Wrapper for aops... */
2974 static void ext4_journalled_invalidatepage(struct page *page,
2975 unsigned int offset,
2976 unsigned int length)
2977 {
2978 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2979 }
2980
2981 static int ext4_releasepage(struct page *page, gfp_t wait)
2982 {
2983 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2984
2985 trace_ext4_releasepage(page);
2986
2987 /* Page has dirty journalled data -> cannot release */
2988 if (PageChecked(page))
2989 return 0;
2990 if (journal)
2991 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2992 else
2993 return try_to_free_buffers(page);
2994 }
2995
2996 /*
2997 * ext4_get_block used when preparing for a DIO write or buffer write.
2998 * We allocate an uinitialized extent if blocks haven't been allocated.
2999 * The extent will be converted to initialized after the IO is complete.
3000 */
3001 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3002 struct buffer_head *bh_result, int create)
3003 {
3004 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3005 inode->i_ino, create);
3006 return _ext4_get_block(inode, iblock, bh_result,
3007 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3008 }
3009
3010 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3011 struct buffer_head *bh_result, int create)
3012 {
3013 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3014 inode->i_ino, create);
3015 return _ext4_get_block(inode, iblock, bh_result,
3016 EXT4_GET_BLOCKS_NO_LOCK);
3017 }
3018
3019 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3020 ssize_t size, void *private)
3021 {
3022 ext4_io_end_t *io_end = iocb->private;
3023
3024 /* if not async direct IO just return */
3025 if (!io_end)
3026 return;
3027
3028 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3029 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3030 iocb->private, io_end->inode->i_ino, iocb, offset,
3031 size);
3032
3033 iocb->private = NULL;
3034 io_end->offset = offset;
3035 io_end->size = size;
3036 ext4_put_io_end(io_end);
3037 }
3038
3039 /*
3040 * For ext4 extent files, ext4 will do direct-io write to holes,
3041 * preallocated extents, and those write extend the file, no need to
3042 * fall back to buffered IO.
3043 *
3044 * For holes, we fallocate those blocks, mark them as unwritten
3045 * If those blocks were preallocated, we mark sure they are split, but
3046 * still keep the range to write as unwritten.
3047 *
3048 * The unwritten extents will be converted to written when DIO is completed.
3049 * For async direct IO, since the IO may still pending when return, we
3050 * set up an end_io call back function, which will do the conversion
3051 * when async direct IO completed.
3052 *
3053 * If the O_DIRECT write will extend the file then add this inode to the
3054 * orphan list. So recovery will truncate it back to the original size
3055 * if the machine crashes during the write.
3056 *
3057 */
3058 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3059 struct iov_iter *iter, loff_t offset)
3060 {
3061 struct file *file = iocb->ki_filp;
3062 struct inode *inode = file->f_mapping->host;
3063 ssize_t ret;
3064 size_t count = iov_iter_count(iter);
3065 int overwrite = 0;
3066 get_block_t *get_block_func = NULL;
3067 int dio_flags = 0;
3068 loff_t final_size = offset + count;
3069 ext4_io_end_t *io_end = NULL;
3070
3071 /* Use the old path for reads and writes beyond i_size. */
3072 if (rw != WRITE || final_size > inode->i_size)
3073 return ext4_ind_direct_IO(rw, iocb, iter, offset);
3074
3075 BUG_ON(iocb->private == NULL);
3076
3077 /*
3078 * Make all waiters for direct IO properly wait also for extent
3079 * conversion. This also disallows race between truncate() and
3080 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3081 */
3082 if (rw == WRITE)
3083 atomic_inc(&inode->i_dio_count);
3084
3085 /* If we do a overwrite dio, i_mutex locking can be released */
3086 overwrite = *((int *)iocb->private);
3087
3088 if (overwrite) {
3089 down_read(&EXT4_I(inode)->i_data_sem);
3090 mutex_unlock(&inode->i_mutex);
3091 }
3092
3093 /*
3094 * We could direct write to holes and fallocate.
3095 *
3096 * Allocated blocks to fill the hole are marked as
3097 * unwritten to prevent parallel buffered read to expose
3098 * the stale data before DIO complete the data IO.
3099 *
3100 * As to previously fallocated extents, ext4 get_block will
3101 * just simply mark the buffer mapped but still keep the
3102 * extents unwritten.
3103 *
3104 * For non AIO case, we will convert those unwritten extents
3105 * to written after return back from blockdev_direct_IO.
3106 *
3107 * For async DIO, the conversion needs to be deferred when the
3108 * IO is completed. The ext4 end_io callback function will be
3109 * called to take care of the conversion work. Here for async
3110 * case, we allocate an io_end structure to hook to the iocb.
3111 */
3112 iocb->private = NULL;
3113 ext4_inode_aio_set(inode, NULL);
3114 if (!is_sync_kiocb(iocb)) {
3115 io_end = ext4_init_io_end(inode, GFP_NOFS);
3116 if (!io_end) {
3117 ret = -ENOMEM;
3118 goto retake_lock;
3119 }
3120 /*
3121 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3122 */
3123 iocb->private = ext4_get_io_end(io_end);
3124 /*
3125 * we save the io structure for current async direct
3126 * IO, so that later ext4_map_blocks() could flag the
3127 * io structure whether there is a unwritten extents
3128 * needs to be converted when IO is completed.
3129 */
3130 ext4_inode_aio_set(inode, io_end);
3131 }
3132
3133 if (overwrite) {
3134 get_block_func = ext4_get_block_write_nolock;
3135 } else {
3136 get_block_func = ext4_get_block_write;
3137 dio_flags = DIO_LOCKING;
3138 }
3139 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3140 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3141 #endif
3142 if (IS_DAX(inode))
3143 ret = dax_do_io(rw, iocb, inode, iter, offset, get_block_func,
3144 ext4_end_io_dio, dio_flags);
3145 else
3146 ret = __blockdev_direct_IO(rw, iocb, inode,
3147 inode->i_sb->s_bdev, iter, offset,
3148 get_block_func,
3149 ext4_end_io_dio, NULL, dio_flags);
3150
3151 /*
3152 * Put our reference to io_end. This can free the io_end structure e.g.
3153 * in sync IO case or in case of error. It can even perform extent
3154 * conversion if all bios we submitted finished before we got here.
3155 * Note that in that case iocb->private can be already set to NULL
3156 * here.
3157 */
3158 if (io_end) {
3159 ext4_inode_aio_set(inode, NULL);
3160 ext4_put_io_end(io_end);
3161 /*
3162 * When no IO was submitted ext4_end_io_dio() was not
3163 * called so we have to put iocb's reference.
3164 */
3165 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3166 WARN_ON(iocb->private != io_end);
3167 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3168 ext4_put_io_end(io_end);
3169 iocb->private = NULL;
3170 }
3171 }
3172 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3173 EXT4_STATE_DIO_UNWRITTEN)) {
3174 int err;
3175 /*
3176 * for non AIO case, since the IO is already
3177 * completed, we could do the conversion right here
3178 */
3179 err = ext4_convert_unwritten_extents(NULL, inode,
3180 offset, ret);
3181 if (err < 0)
3182 ret = err;
3183 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3184 }
3185
3186 retake_lock:
3187 if (rw == WRITE)
3188 inode_dio_done(inode);
3189 /* take i_mutex locking again if we do a ovewrite dio */
3190 if (overwrite) {
3191 up_read(&EXT4_I(inode)->i_data_sem);
3192 mutex_lock(&inode->i_mutex);
3193 }
3194
3195 return ret;
3196 }
3197
3198 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3199 struct iov_iter *iter, loff_t offset)
3200 {
3201 struct file *file = iocb->ki_filp;
3202 struct inode *inode = file->f_mapping->host;
3203 size_t count = iov_iter_count(iter);
3204 ssize_t ret;
3205
3206 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3207 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3208 return 0;
3209 #endif
3210
3211 /*
3212 * If we are doing data journalling we don't support O_DIRECT
3213 */
3214 if (ext4_should_journal_data(inode))
3215 return 0;
3216
3217 /* Let buffer I/O handle the inline data case. */
3218 if (ext4_has_inline_data(inode))
3219 return 0;
3220
3221 trace_ext4_direct_IO_enter(inode, offset, count, rw);
3222 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3223 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3224 else
3225 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3226 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3227 return ret;
3228 }
3229
3230 /*
3231 * Pages can be marked dirty completely asynchronously from ext4's journalling
3232 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3233 * much here because ->set_page_dirty is called under VFS locks. The page is
3234 * not necessarily locked.
3235 *
3236 * We cannot just dirty the page and leave attached buffers clean, because the
3237 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3238 * or jbddirty because all the journalling code will explode.
3239 *
3240 * So what we do is to mark the page "pending dirty" and next time writepage
3241 * is called, propagate that into the buffers appropriately.
3242 */
3243 static int ext4_journalled_set_page_dirty(struct page *page)
3244 {
3245 SetPageChecked(page);
3246 return __set_page_dirty_nobuffers(page);
3247 }
3248
3249 static const struct address_space_operations ext4_aops = {
3250 .readpage = ext4_readpage,
3251 .readpages = ext4_readpages,
3252 .writepage = ext4_writepage,
3253 .writepages = ext4_writepages,
3254 .write_begin = ext4_write_begin,
3255 .write_end = ext4_write_end,
3256 .bmap = ext4_bmap,
3257 .invalidatepage = ext4_invalidatepage,
3258 .releasepage = ext4_releasepage,
3259 .direct_IO = ext4_direct_IO,
3260 .migratepage = buffer_migrate_page,
3261 .is_partially_uptodate = block_is_partially_uptodate,
3262 .error_remove_page = generic_error_remove_page,
3263 };
3264
3265 static const struct address_space_operations ext4_journalled_aops = {
3266 .readpage = ext4_readpage,
3267 .readpages = ext4_readpages,
3268 .writepage = ext4_writepage,
3269 .writepages = ext4_writepages,
3270 .write_begin = ext4_write_begin,
3271 .write_end = ext4_journalled_write_end,
3272 .set_page_dirty = ext4_journalled_set_page_dirty,
3273 .bmap = ext4_bmap,
3274 .invalidatepage = ext4_journalled_invalidatepage,
3275 .releasepage = ext4_releasepage,
3276 .direct_IO = ext4_direct_IO,
3277 .is_partially_uptodate = block_is_partially_uptodate,
3278 .error_remove_page = generic_error_remove_page,
3279 };
3280
3281 static const struct address_space_operations ext4_da_aops = {
3282 .readpage = ext4_readpage,
3283 .readpages = ext4_readpages,
3284 .writepage = ext4_writepage,
3285 .writepages = ext4_writepages,
3286 .write_begin = ext4_da_write_begin,
3287 .write_end = ext4_da_write_end,
3288 .bmap = ext4_bmap,
3289 .invalidatepage = ext4_da_invalidatepage,
3290 .releasepage = ext4_releasepage,
3291 .direct_IO = ext4_direct_IO,
3292 .migratepage = buffer_migrate_page,
3293 .is_partially_uptodate = block_is_partially_uptodate,
3294 .error_remove_page = generic_error_remove_page,
3295 };
3296
3297 void ext4_set_aops(struct inode *inode)
3298 {
3299 switch (ext4_inode_journal_mode(inode)) {
3300 case EXT4_INODE_ORDERED_DATA_MODE:
3301 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3302 break;
3303 case EXT4_INODE_WRITEBACK_DATA_MODE:
3304 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3305 break;
3306 case EXT4_INODE_JOURNAL_DATA_MODE:
3307 inode->i_mapping->a_ops = &ext4_journalled_aops;
3308 return;
3309 default:
3310 BUG();
3311 }
3312 if (test_opt(inode->i_sb, DELALLOC))
3313 inode->i_mapping->a_ops = &ext4_da_aops;
3314 else
3315 inode->i_mapping->a_ops = &ext4_aops;
3316 }
3317
3318 static int __ext4_block_zero_page_range(handle_t *handle,
3319 struct address_space *mapping, loff_t from, loff_t length)
3320 {
3321 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3322 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3323 unsigned blocksize, pos;
3324 ext4_lblk_t iblock;
3325 struct inode *inode = mapping->host;
3326 struct buffer_head *bh;
3327 struct page *page;
3328 int err = 0;
3329
3330 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3331 mapping_gfp_mask(mapping) & ~__GFP_FS);
3332 if (!page)
3333 return -ENOMEM;
3334
3335 blocksize = inode->i_sb->s_blocksize;
3336
3337 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3338
3339 if (!page_has_buffers(page))
3340 create_empty_buffers(page, blocksize, 0);
3341
3342 /* Find the buffer that contains "offset" */
3343 bh = page_buffers(page);
3344 pos = blocksize;
3345 while (offset >= pos) {
3346 bh = bh->b_this_page;
3347 iblock++;
3348 pos += blocksize;
3349 }
3350 if (buffer_freed(bh)) {
3351 BUFFER_TRACE(bh, "freed: skip");
3352 goto unlock;
3353 }
3354 if (!buffer_mapped(bh)) {
3355 BUFFER_TRACE(bh, "unmapped");
3356 ext4_get_block(inode, iblock, bh, 0);
3357 /* unmapped? It's a hole - nothing to do */
3358 if (!buffer_mapped(bh)) {
3359 BUFFER_TRACE(bh, "still unmapped");
3360 goto unlock;
3361 }
3362 }
3363
3364 /* Ok, it's mapped. Make sure it's up-to-date */
3365 if (PageUptodate(page))
3366 set_buffer_uptodate(bh);
3367
3368 if (!buffer_uptodate(bh)) {
3369 err = -EIO;
3370 ll_rw_block(READ, 1, &bh);
3371 wait_on_buffer(bh);
3372 /* Uhhuh. Read error. Complain and punt. */
3373 if (!buffer_uptodate(bh))
3374 goto unlock;
3375 if (S_ISREG(inode->i_mode) &&
3376 ext4_encrypted_inode(inode)) {
3377 /* We expect the key to be set. */
3378 BUG_ON(!ext4_has_encryption_key(inode));
3379 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3380 WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3381 }
3382 }
3383 if (ext4_should_journal_data(inode)) {
3384 BUFFER_TRACE(bh, "get write access");
3385 err = ext4_journal_get_write_access(handle, bh);
3386 if (err)
3387 goto unlock;
3388 }
3389 zero_user(page, offset, length);
3390 BUFFER_TRACE(bh, "zeroed end of block");
3391
3392 if (ext4_should_journal_data(inode)) {
3393 err = ext4_handle_dirty_metadata(handle, inode, bh);
3394 } else {
3395 err = 0;
3396 mark_buffer_dirty(bh);
3397 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3398 err = ext4_jbd2_file_inode(handle, inode);
3399 }
3400
3401 unlock:
3402 unlock_page(page);
3403 page_cache_release(page);
3404 return err;
3405 }
3406
3407 /*
3408 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3409 * starting from file offset 'from'. The range to be zero'd must
3410 * be contained with in one block. If the specified range exceeds
3411 * the end of the block it will be shortened to end of the block
3412 * that cooresponds to 'from'
3413 */
3414 static int ext4_block_zero_page_range(handle_t *handle,
3415 struct address_space *mapping, loff_t from, loff_t length)
3416 {
3417 struct inode *inode = mapping->host;
3418 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3419 unsigned blocksize = inode->i_sb->s_blocksize;
3420 unsigned max = blocksize - (offset & (blocksize - 1));
3421
3422 /*
3423 * correct length if it does not fall between
3424 * 'from' and the end of the block
3425 */
3426 if (length > max || length < 0)
3427 length = max;
3428
3429 if (IS_DAX(inode))
3430 return dax_zero_page_range(inode, from, length, ext4_get_block);
3431 return __ext4_block_zero_page_range(handle, mapping, from, length);
3432 }
3433
3434 /*
3435 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3436 * up to the end of the block which corresponds to `from'.
3437 * This required during truncate. We need to physically zero the tail end
3438 * of that block so it doesn't yield old data if the file is later grown.
3439 */
3440 static int ext4_block_truncate_page(handle_t *handle,
3441 struct address_space *mapping, loff_t from)
3442 {
3443 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3444 unsigned length;
3445 unsigned blocksize;
3446 struct inode *inode = mapping->host;
3447
3448 blocksize = inode->i_sb->s_blocksize;
3449 length = blocksize - (offset & (blocksize - 1));
3450
3451 return ext4_block_zero_page_range(handle, mapping, from, length);
3452 }
3453
3454 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3455 loff_t lstart, loff_t length)
3456 {
3457 struct super_block *sb = inode->i_sb;
3458 struct address_space *mapping = inode->i_mapping;
3459 unsigned partial_start, partial_end;
3460 ext4_fsblk_t start, end;
3461 loff_t byte_end = (lstart + length - 1);
3462 int err = 0;
3463
3464 partial_start = lstart & (sb->s_blocksize - 1);
3465 partial_end = byte_end & (sb->s_blocksize - 1);
3466
3467 start = lstart >> sb->s_blocksize_bits;
3468 end = byte_end >> sb->s_blocksize_bits;
3469
3470 /* Handle partial zero within the single block */
3471 if (start == end &&
3472 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3473 err = ext4_block_zero_page_range(handle, mapping,
3474 lstart, length);
3475 return err;
3476 }
3477 /* Handle partial zero out on the start of the range */
3478 if (partial_start) {
3479 err = ext4_block_zero_page_range(handle, mapping,
3480 lstart, sb->s_blocksize);
3481 if (err)
3482 return err;
3483 }
3484 /* Handle partial zero out on the end of the range */
3485 if (partial_end != sb->s_blocksize - 1)
3486 err = ext4_block_zero_page_range(handle, mapping,
3487 byte_end - partial_end,
3488 partial_end + 1);
3489 return err;
3490 }
3491
3492 int ext4_can_truncate(struct inode *inode)
3493 {
3494 if (S_ISREG(inode->i_mode))
3495 return 1;
3496 if (S_ISDIR(inode->i_mode))
3497 return 1;
3498 if (S_ISLNK(inode->i_mode))
3499 return !ext4_inode_is_fast_symlink(inode);
3500 return 0;
3501 }
3502
3503 /*
3504 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3505 * associated with the given offset and length
3506 *
3507 * @inode: File inode
3508 * @offset: The offset where the hole will begin
3509 * @len: The length of the hole
3510 *
3511 * Returns: 0 on success or negative on failure
3512 */
3513
3514 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3515 {
3516 struct super_block *sb = inode->i_sb;
3517 ext4_lblk_t first_block, stop_block;
3518 struct address_space *mapping = inode->i_mapping;
3519 loff_t first_block_offset, last_block_offset;
3520 handle_t *handle;
3521 unsigned int credits;
3522 int ret = 0;
3523
3524 if (!S_ISREG(inode->i_mode))
3525 return -EOPNOTSUPP;
3526
3527 trace_ext4_punch_hole(inode, offset, length, 0);
3528
3529 /*
3530 * Write out all dirty pages to avoid race conditions
3531 * Then release them.
3532 */
3533 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3534 ret = filemap_write_and_wait_range(mapping, offset,
3535 offset + length - 1);
3536 if (ret)
3537 return ret;
3538 }
3539
3540 mutex_lock(&inode->i_mutex);
3541
3542 /* No need to punch hole beyond i_size */
3543 if (offset >= inode->i_size)
3544 goto out_mutex;
3545
3546 /*
3547 * If the hole extends beyond i_size, set the hole
3548 * to end after the page that contains i_size
3549 */
3550 if (offset + length > inode->i_size) {
3551 length = inode->i_size +
3552 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3553 offset;
3554 }
3555
3556 if (offset & (sb->s_blocksize - 1) ||
3557 (offset + length) & (sb->s_blocksize - 1)) {
3558 /*
3559 * Attach jinode to inode for jbd2 if we do any zeroing of
3560 * partial block
3561 */
3562 ret = ext4_inode_attach_jinode(inode);
3563 if (ret < 0)
3564 goto out_mutex;
3565
3566 }
3567
3568 first_block_offset = round_up(offset, sb->s_blocksize);
3569 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3570
3571 /* Now release the pages and zero block aligned part of pages*/
3572 if (last_block_offset > first_block_offset)
3573 truncate_pagecache_range(inode, first_block_offset,
3574 last_block_offset);
3575
3576 /* Wait all existing dio workers, newcomers will block on i_mutex */
3577 ext4_inode_block_unlocked_dio(inode);
3578 inode_dio_wait(inode);
3579
3580 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3581 credits = ext4_writepage_trans_blocks(inode);
3582 else
3583 credits = ext4_blocks_for_truncate(inode);
3584 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3585 if (IS_ERR(handle)) {
3586 ret = PTR_ERR(handle);
3587 ext4_std_error(sb, ret);
3588 goto out_dio;
3589 }
3590
3591 ret = ext4_zero_partial_blocks(handle, inode, offset,
3592 length);
3593 if (ret)
3594 goto out_stop;
3595
3596 first_block = (offset + sb->s_blocksize - 1) >>
3597 EXT4_BLOCK_SIZE_BITS(sb);
3598 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3599
3600 /* If there are no blocks to remove, return now */
3601 if (first_block >= stop_block)
3602 goto out_stop;
3603
3604 down_write(&EXT4_I(inode)->i_data_sem);
3605 ext4_discard_preallocations(inode);
3606
3607 ret = ext4_es_remove_extent(inode, first_block,
3608 stop_block - first_block);
3609 if (ret) {
3610 up_write(&EXT4_I(inode)->i_data_sem);
3611 goto out_stop;
3612 }
3613
3614 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3615 ret = ext4_ext_remove_space(inode, first_block,
3616 stop_block - 1);
3617 else
3618 ret = ext4_ind_remove_space(handle, inode, first_block,
3619 stop_block);
3620
3621 up_write(&EXT4_I(inode)->i_data_sem);
3622 if (IS_SYNC(inode))
3623 ext4_handle_sync(handle);
3624
3625 /* Now release the pages again to reduce race window */
3626 if (last_block_offset > first_block_offset)
3627 truncate_pagecache_range(inode, first_block_offset,
3628 last_block_offset);
3629
3630 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3631 ext4_mark_inode_dirty(handle, inode);
3632 out_stop:
3633 ext4_journal_stop(handle);
3634 out_dio:
3635 ext4_inode_resume_unlocked_dio(inode);
3636 out_mutex:
3637 mutex_unlock(&inode->i_mutex);
3638 return ret;
3639 }
3640
3641 int ext4_inode_attach_jinode(struct inode *inode)
3642 {
3643 struct ext4_inode_info *ei = EXT4_I(inode);
3644 struct jbd2_inode *jinode;
3645
3646 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3647 return 0;
3648
3649 jinode = jbd2_alloc_inode(GFP_KERNEL);
3650 spin_lock(&inode->i_lock);
3651 if (!ei->jinode) {
3652 if (!jinode) {
3653 spin_unlock(&inode->i_lock);
3654 return -ENOMEM;
3655 }
3656 ei->jinode = jinode;
3657 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3658 jinode = NULL;
3659 }
3660 spin_unlock(&inode->i_lock);
3661 if (unlikely(jinode != NULL))
3662 jbd2_free_inode(jinode);
3663 return 0;
3664 }
3665
3666 /*
3667 * ext4_truncate()
3668 *
3669 * We block out ext4_get_block() block instantiations across the entire
3670 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3671 * simultaneously on behalf of the same inode.
3672 *
3673 * As we work through the truncate and commit bits of it to the journal there
3674 * is one core, guiding principle: the file's tree must always be consistent on
3675 * disk. We must be able to restart the truncate after a crash.
3676 *
3677 * The file's tree may be transiently inconsistent in memory (although it
3678 * probably isn't), but whenever we close off and commit a journal transaction,
3679 * the contents of (the filesystem + the journal) must be consistent and
3680 * restartable. It's pretty simple, really: bottom up, right to left (although
3681 * left-to-right works OK too).
3682 *
3683 * Note that at recovery time, journal replay occurs *before* the restart of
3684 * truncate against the orphan inode list.
3685 *
3686 * The committed inode has the new, desired i_size (which is the same as
3687 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3688 * that this inode's truncate did not complete and it will again call
3689 * ext4_truncate() to have another go. So there will be instantiated blocks
3690 * to the right of the truncation point in a crashed ext4 filesystem. But
3691 * that's fine - as long as they are linked from the inode, the post-crash
3692 * ext4_truncate() run will find them and release them.
3693 */
3694 void ext4_truncate(struct inode *inode)
3695 {
3696 struct ext4_inode_info *ei = EXT4_I(inode);
3697 unsigned int credits;
3698 handle_t *handle;
3699 struct address_space *mapping = inode->i_mapping;
3700
3701 /*
3702 * There is a possibility that we're either freeing the inode
3703 * or it's a completely new inode. In those cases we might not
3704 * have i_mutex locked because it's not necessary.
3705 */
3706 if (!(inode->i_state & (I_NEW|I_FREEING)))
3707 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3708 trace_ext4_truncate_enter(inode);
3709
3710 if (!ext4_can_truncate(inode))
3711 return;
3712
3713 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3714
3715 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3716 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3717
3718 if (ext4_has_inline_data(inode)) {
3719 int has_inline = 1;
3720
3721 ext4_inline_data_truncate(inode, &has_inline);
3722 if (has_inline)
3723 return;
3724 }
3725
3726 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3727 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3728 if (ext4_inode_attach_jinode(inode) < 0)
3729 return;
3730 }
3731
3732 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3733 credits = ext4_writepage_trans_blocks(inode);
3734 else
3735 credits = ext4_blocks_for_truncate(inode);
3736
3737 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3738 if (IS_ERR(handle)) {
3739 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3740 return;
3741 }
3742
3743 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3744 ext4_block_truncate_page(handle, mapping, inode->i_size);
3745
3746 /*
3747 * We add the inode to the orphan list, so that if this
3748 * truncate spans multiple transactions, and we crash, we will
3749 * resume the truncate when the filesystem recovers. It also
3750 * marks the inode dirty, to catch the new size.
3751 *
3752 * Implication: the file must always be in a sane, consistent
3753 * truncatable state while each transaction commits.
3754 */
3755 if (ext4_orphan_add(handle, inode))
3756 goto out_stop;
3757
3758 down_write(&EXT4_I(inode)->i_data_sem);
3759
3760 ext4_discard_preallocations(inode);
3761
3762 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3763 ext4_ext_truncate(handle, inode);
3764 else
3765 ext4_ind_truncate(handle, inode);
3766
3767 up_write(&ei->i_data_sem);
3768
3769 if (IS_SYNC(inode))
3770 ext4_handle_sync(handle);
3771
3772 out_stop:
3773 /*
3774 * If this was a simple ftruncate() and the file will remain alive,
3775 * then we need to clear up the orphan record which we created above.
3776 * However, if this was a real unlink then we were called by
3777 * ext4_evict_inode(), and we allow that function to clean up the
3778 * orphan info for us.
3779 */
3780 if (inode->i_nlink)
3781 ext4_orphan_del(handle, inode);
3782
3783 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3784 ext4_mark_inode_dirty(handle, inode);
3785 ext4_journal_stop(handle);
3786
3787 trace_ext4_truncate_exit(inode);
3788 }
3789
3790 /*
3791 * ext4_get_inode_loc returns with an extra refcount against the inode's
3792 * underlying buffer_head on success. If 'in_mem' is true, we have all
3793 * data in memory that is needed to recreate the on-disk version of this
3794 * inode.
3795 */
3796 static int __ext4_get_inode_loc(struct inode *inode,
3797 struct ext4_iloc *iloc, int in_mem)
3798 {
3799 struct ext4_group_desc *gdp;
3800 struct buffer_head *bh;
3801 struct super_block *sb = inode->i_sb;
3802 ext4_fsblk_t block;
3803 int inodes_per_block, inode_offset;
3804
3805 iloc->bh = NULL;
3806 if (!ext4_valid_inum(sb, inode->i_ino))
3807 return -EIO;
3808
3809 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3810 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3811 if (!gdp)
3812 return -EIO;
3813
3814 /*
3815 * Figure out the offset within the block group inode table
3816 */
3817 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3818 inode_offset = ((inode->i_ino - 1) %
3819 EXT4_INODES_PER_GROUP(sb));
3820 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3821 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3822
3823 bh = sb_getblk(sb, block);
3824 if (unlikely(!bh))
3825 return -ENOMEM;
3826 if (!buffer_uptodate(bh)) {
3827 lock_buffer(bh);
3828
3829 /*
3830 * If the buffer has the write error flag, we have failed
3831 * to write out another inode in the same block. In this
3832 * case, we don't have to read the block because we may
3833 * read the old inode data successfully.
3834 */
3835 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3836 set_buffer_uptodate(bh);
3837
3838 if (buffer_uptodate(bh)) {
3839 /* someone brought it uptodate while we waited */
3840 unlock_buffer(bh);
3841 goto has_buffer;
3842 }
3843
3844 /*
3845 * If we have all information of the inode in memory and this
3846 * is the only valid inode in the block, we need not read the
3847 * block.
3848 */
3849 if (in_mem) {
3850 struct buffer_head *bitmap_bh;
3851 int i, start;
3852
3853 start = inode_offset & ~(inodes_per_block - 1);
3854
3855 /* Is the inode bitmap in cache? */
3856 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3857 if (unlikely(!bitmap_bh))
3858 goto make_io;
3859
3860 /*
3861 * If the inode bitmap isn't in cache then the
3862 * optimisation may end up performing two reads instead
3863 * of one, so skip it.
3864 */
3865 if (!buffer_uptodate(bitmap_bh)) {
3866 brelse(bitmap_bh);
3867 goto make_io;
3868 }
3869 for (i = start; i < start + inodes_per_block; i++) {
3870 if (i == inode_offset)
3871 continue;
3872 if (ext4_test_bit(i, bitmap_bh->b_data))
3873 break;
3874 }
3875 brelse(bitmap_bh);
3876 if (i == start + inodes_per_block) {
3877 /* all other inodes are free, so skip I/O */
3878 memset(bh->b_data, 0, bh->b_size);
3879 set_buffer_uptodate(bh);
3880 unlock_buffer(bh);
3881 goto has_buffer;
3882 }
3883 }
3884
3885 make_io:
3886 /*
3887 * If we need to do any I/O, try to pre-readahead extra
3888 * blocks from the inode table.
3889 */
3890 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3891 ext4_fsblk_t b, end, table;
3892 unsigned num;
3893 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3894
3895 table = ext4_inode_table(sb, gdp);
3896 /* s_inode_readahead_blks is always a power of 2 */
3897 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3898 if (table > b)
3899 b = table;
3900 end = b + ra_blks;
3901 num = EXT4_INODES_PER_GROUP(sb);
3902 if (ext4_has_group_desc_csum(sb))
3903 num -= ext4_itable_unused_count(sb, gdp);
3904 table += num / inodes_per_block;
3905 if (end > table)
3906 end = table;
3907 while (b <= end)
3908 sb_breadahead(sb, b++);
3909 }
3910
3911 /*
3912 * There are other valid inodes in the buffer, this inode
3913 * has in-inode xattrs, or we don't have this inode in memory.
3914 * Read the block from disk.
3915 */
3916 trace_ext4_load_inode(inode);
3917 get_bh(bh);
3918 bh->b_end_io = end_buffer_read_sync;
3919 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3920 wait_on_buffer(bh);
3921 if (!buffer_uptodate(bh)) {
3922 EXT4_ERROR_INODE_BLOCK(inode, block,
3923 "unable to read itable block");
3924 brelse(bh);
3925 return -EIO;
3926 }
3927 }
3928 has_buffer:
3929 iloc->bh = bh;
3930 return 0;
3931 }
3932
3933 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3934 {
3935 /* We have all inode data except xattrs in memory here. */
3936 return __ext4_get_inode_loc(inode, iloc,
3937 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3938 }
3939
3940 void ext4_set_inode_flags(struct inode *inode)
3941 {
3942 unsigned int flags = EXT4_I(inode)->i_flags;
3943 unsigned int new_fl = 0;
3944
3945 if (flags & EXT4_SYNC_FL)
3946 new_fl |= S_SYNC;
3947 if (flags & EXT4_APPEND_FL)
3948 new_fl |= S_APPEND;
3949 if (flags & EXT4_IMMUTABLE_FL)
3950 new_fl |= S_IMMUTABLE;
3951 if (flags & EXT4_NOATIME_FL)
3952 new_fl |= S_NOATIME;
3953 if (flags & EXT4_DIRSYNC_FL)
3954 new_fl |= S_DIRSYNC;
3955 if (test_opt(inode->i_sb, DAX))
3956 new_fl |= S_DAX;
3957 inode_set_flags(inode, new_fl,
3958 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3959 }
3960
3961 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3962 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3963 {
3964 unsigned int vfs_fl;
3965 unsigned long old_fl, new_fl;
3966
3967 do {
3968 vfs_fl = ei->vfs_inode.i_flags;
3969 old_fl = ei->i_flags;
3970 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3971 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3972 EXT4_DIRSYNC_FL);
3973 if (vfs_fl & S_SYNC)
3974 new_fl |= EXT4_SYNC_FL;
3975 if (vfs_fl & S_APPEND)
3976 new_fl |= EXT4_APPEND_FL;
3977 if (vfs_fl & S_IMMUTABLE)
3978 new_fl |= EXT4_IMMUTABLE_FL;
3979 if (vfs_fl & S_NOATIME)
3980 new_fl |= EXT4_NOATIME_FL;
3981 if (vfs_fl & S_DIRSYNC)
3982 new_fl |= EXT4_DIRSYNC_FL;
3983 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3984 }
3985
3986 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3987 struct ext4_inode_info *ei)
3988 {
3989 blkcnt_t i_blocks ;
3990 struct inode *inode = &(ei->vfs_inode);
3991 struct super_block *sb = inode->i_sb;
3992
3993 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3994 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3995 /* we are using combined 48 bit field */
3996 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3997 le32_to_cpu(raw_inode->i_blocks_lo);
3998 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3999 /* i_blocks represent file system block size */
4000 return i_blocks << (inode->i_blkbits - 9);
4001 } else {
4002 return i_blocks;
4003 }
4004 } else {
4005 return le32_to_cpu(raw_inode->i_blocks_lo);
4006 }
4007 }
4008
4009 static inline void ext4_iget_extra_inode(struct inode *inode,
4010 struct ext4_inode *raw_inode,
4011 struct ext4_inode_info *ei)
4012 {
4013 __le32 *magic = (void *)raw_inode +
4014 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4015 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4016 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4017 ext4_find_inline_data_nolock(inode);
4018 } else
4019 EXT4_I(inode)->i_inline_off = 0;
4020 }
4021
4022 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4023 {
4024 struct ext4_iloc iloc;
4025 struct ext4_inode *raw_inode;
4026 struct ext4_inode_info *ei;
4027 struct inode *inode;
4028 journal_t *journal = EXT4_SB(sb)->s_journal;
4029 long ret;
4030 int block;
4031 uid_t i_uid;
4032 gid_t i_gid;
4033
4034 inode = iget_locked(sb, ino);
4035 if (!inode)
4036 return ERR_PTR(-ENOMEM);
4037 if (!(inode->i_state & I_NEW))
4038 return inode;
4039
4040 ei = EXT4_I(inode);
4041 iloc.bh = NULL;
4042
4043 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4044 if (ret < 0)
4045 goto bad_inode;
4046 raw_inode = ext4_raw_inode(&iloc);
4047
4048 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4049 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4050 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4051 EXT4_INODE_SIZE(inode->i_sb)) {
4052 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4053 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4054 EXT4_INODE_SIZE(inode->i_sb));
4055 ret = -EIO;
4056 goto bad_inode;
4057 }
4058 } else
4059 ei->i_extra_isize = 0;
4060
4061 /* Precompute checksum seed for inode metadata */
4062 if (ext4_has_metadata_csum(sb)) {
4063 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4064 __u32 csum;
4065 __le32 inum = cpu_to_le32(inode->i_ino);
4066 __le32 gen = raw_inode->i_generation;
4067 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4068 sizeof(inum));
4069 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4070 sizeof(gen));
4071 }
4072
4073 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4074 EXT4_ERROR_INODE(inode, "checksum invalid");
4075 ret = -EIO;
4076 goto bad_inode;
4077 }
4078
4079 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4080 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4081 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4082 if (!(test_opt(inode->i_sb, NO_UID32))) {
4083 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4084 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4085 }
4086 i_uid_write(inode, i_uid);
4087 i_gid_write(inode, i_gid);
4088 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4089
4090 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4091 ei->i_inline_off = 0;
4092 ei->i_dir_start_lookup = 0;
4093 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4094 /* We now have enough fields to check if the inode was active or not.
4095 * This is needed because nfsd might try to access dead inodes
4096 * the test is that same one that e2fsck uses
4097 * NeilBrown 1999oct15
4098 */
4099 if (inode->i_nlink == 0) {
4100 if ((inode->i_mode == 0 ||
4101 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4102 ino != EXT4_BOOT_LOADER_INO) {
4103 /* this inode is deleted */
4104 ret = -ESTALE;
4105 goto bad_inode;
4106 }
4107 /* The only unlinked inodes we let through here have
4108 * valid i_mode and are being read by the orphan
4109 * recovery code: that's fine, we're about to complete
4110 * the process of deleting those.
4111 * OR it is the EXT4_BOOT_LOADER_INO which is
4112 * not initialized on a new filesystem. */
4113 }
4114 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4115 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4116 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4117 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4118 ei->i_file_acl |=
4119 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4120 inode->i_size = ext4_isize(raw_inode);
4121 ei->i_disksize = inode->i_size;
4122 #ifdef CONFIG_QUOTA
4123 ei->i_reserved_quota = 0;
4124 #endif
4125 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4126 ei->i_block_group = iloc.block_group;
4127 ei->i_last_alloc_group = ~0;
4128 /*
4129 * NOTE! The in-memory inode i_data array is in little-endian order
4130 * even on big-endian machines: we do NOT byteswap the block numbers!
4131 */
4132 for (block = 0; block < EXT4_N_BLOCKS; block++)
4133 ei->i_data[block] = raw_inode->i_block[block];
4134 INIT_LIST_HEAD(&ei->i_orphan);
4135
4136 /*
4137 * Set transaction id's of transactions that have to be committed
4138 * to finish f[data]sync. We set them to currently running transaction
4139 * as we cannot be sure that the inode or some of its metadata isn't
4140 * part of the transaction - the inode could have been reclaimed and
4141 * now it is reread from disk.
4142 */
4143 if (journal) {
4144 transaction_t *transaction;
4145 tid_t tid;
4146
4147 read_lock(&journal->j_state_lock);
4148 if (journal->j_running_transaction)
4149 transaction = journal->j_running_transaction;
4150 else
4151 transaction = journal->j_committing_transaction;
4152 if (transaction)
4153 tid = transaction->t_tid;
4154 else
4155 tid = journal->j_commit_sequence;
4156 read_unlock(&journal->j_state_lock);
4157 ei->i_sync_tid = tid;
4158 ei->i_datasync_tid = tid;
4159 }
4160
4161 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4162 if (ei->i_extra_isize == 0) {
4163 /* The extra space is currently unused. Use it. */
4164 ei->i_extra_isize = sizeof(struct ext4_inode) -
4165 EXT4_GOOD_OLD_INODE_SIZE;
4166 } else {
4167 ext4_iget_extra_inode(inode, raw_inode, ei);
4168 }
4169 }
4170
4171 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4172 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4173 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4174 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4175
4176 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4177 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4178 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4179 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4180 inode->i_version |=
4181 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4182 }
4183 }
4184
4185 ret = 0;
4186 if (ei->i_file_acl &&
4187 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4188 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4189 ei->i_file_acl);
4190 ret = -EIO;
4191 goto bad_inode;
4192 } else if (!ext4_has_inline_data(inode)) {
4193 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4194 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4195 (S_ISLNK(inode->i_mode) &&
4196 !ext4_inode_is_fast_symlink(inode))))
4197 /* Validate extent which is part of inode */
4198 ret = ext4_ext_check_inode(inode);
4199 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4200 (S_ISLNK(inode->i_mode) &&
4201 !ext4_inode_is_fast_symlink(inode))) {
4202 /* Validate block references which are part of inode */
4203 ret = ext4_ind_check_inode(inode);
4204 }
4205 }
4206 if (ret)
4207 goto bad_inode;
4208
4209 if (S_ISREG(inode->i_mode)) {
4210 inode->i_op = &ext4_file_inode_operations;
4211 if (test_opt(inode->i_sb, DAX))
4212 inode->i_fop = &ext4_dax_file_operations;
4213 else
4214 inode->i_fop = &ext4_file_operations;
4215 ext4_set_aops(inode);
4216 } else if (S_ISDIR(inode->i_mode)) {
4217 inode->i_op = &ext4_dir_inode_operations;
4218 inode->i_fop = &ext4_dir_operations;
4219 } else if (S_ISLNK(inode->i_mode)) {
4220 if (ext4_inode_is_fast_symlink(inode) &&
4221 !ext4_encrypted_inode(inode)) {
4222 inode->i_op = &ext4_fast_symlink_inode_operations;
4223 nd_terminate_link(ei->i_data, inode->i_size,
4224 sizeof(ei->i_data) - 1);
4225 } else {
4226 inode->i_op = &ext4_symlink_inode_operations;
4227 ext4_set_aops(inode);
4228 }
4229 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4230 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4231 inode->i_op = &ext4_special_inode_operations;
4232 if (raw_inode->i_block[0])
4233 init_special_inode(inode, inode->i_mode,
4234 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4235 else
4236 init_special_inode(inode, inode->i_mode,
4237 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4238 } else if (ino == EXT4_BOOT_LOADER_INO) {
4239 make_bad_inode(inode);
4240 } else {
4241 ret = -EIO;
4242 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4243 goto bad_inode;
4244 }
4245 brelse(iloc.bh);
4246 ext4_set_inode_flags(inode);
4247 unlock_new_inode(inode);
4248 return inode;
4249
4250 bad_inode:
4251 brelse(iloc.bh);
4252 iget_failed(inode);
4253 return ERR_PTR(ret);
4254 }
4255
4256 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4257 {
4258 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4259 return ERR_PTR(-EIO);
4260 return ext4_iget(sb, ino);
4261 }
4262
4263 static int ext4_inode_blocks_set(handle_t *handle,
4264 struct ext4_inode *raw_inode,
4265 struct ext4_inode_info *ei)
4266 {
4267 struct inode *inode = &(ei->vfs_inode);
4268 u64 i_blocks = inode->i_blocks;
4269 struct super_block *sb = inode->i_sb;
4270
4271 if (i_blocks <= ~0U) {
4272 /*
4273 * i_blocks can be represented in a 32 bit variable
4274 * as multiple of 512 bytes
4275 */
4276 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4277 raw_inode->i_blocks_high = 0;
4278 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4279 return 0;
4280 }
4281 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4282 return -EFBIG;
4283
4284 if (i_blocks <= 0xffffffffffffULL) {
4285 /*
4286 * i_blocks can be represented in a 48 bit variable
4287 * as multiple of 512 bytes
4288 */
4289 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4290 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4291 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4292 } else {
4293 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4294 /* i_block is stored in file system block size */
4295 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4296 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4297 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4298 }
4299 return 0;
4300 }
4301
4302 struct other_inode {
4303 unsigned long orig_ino;
4304 struct ext4_inode *raw_inode;
4305 };
4306
4307 static int other_inode_match(struct inode * inode, unsigned long ino,
4308 void *data)
4309 {
4310 struct other_inode *oi = (struct other_inode *) data;
4311
4312 if ((inode->i_ino != ino) ||
4313 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4314 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4315 ((inode->i_state & I_DIRTY_TIME) == 0))
4316 return 0;
4317 spin_lock(&inode->i_lock);
4318 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4319 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4320 (inode->i_state & I_DIRTY_TIME)) {
4321 struct ext4_inode_info *ei = EXT4_I(inode);
4322
4323 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4324 spin_unlock(&inode->i_lock);
4325
4326 spin_lock(&ei->i_raw_lock);
4327 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4328 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4329 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4330 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4331 spin_unlock(&ei->i_raw_lock);
4332 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4333 return -1;
4334 }
4335 spin_unlock(&inode->i_lock);
4336 return -1;
4337 }
4338
4339 /*
4340 * Opportunistically update the other time fields for other inodes in
4341 * the same inode table block.
4342 */
4343 static void ext4_update_other_inodes_time(struct super_block *sb,
4344 unsigned long orig_ino, char *buf)
4345 {
4346 struct other_inode oi;
4347 unsigned long ino;
4348 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4349 int inode_size = EXT4_INODE_SIZE(sb);
4350
4351 oi.orig_ino = orig_ino;
4352 ino = orig_ino & ~(inodes_per_block - 1);
4353 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4354 if (ino == orig_ino)
4355 continue;
4356 oi.raw_inode = (struct ext4_inode *) buf;
4357 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4358 }
4359 }
4360
4361 /*
4362 * Post the struct inode info into an on-disk inode location in the
4363 * buffer-cache. This gobbles the caller's reference to the
4364 * buffer_head in the inode location struct.
4365 *
4366 * The caller must have write access to iloc->bh.
4367 */
4368 static int ext4_do_update_inode(handle_t *handle,
4369 struct inode *inode,
4370 struct ext4_iloc *iloc)
4371 {
4372 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4373 struct ext4_inode_info *ei = EXT4_I(inode);
4374 struct buffer_head *bh = iloc->bh;
4375 struct super_block *sb = inode->i_sb;
4376 int err = 0, rc, block;
4377 int need_datasync = 0, set_large_file = 0;
4378 uid_t i_uid;
4379 gid_t i_gid;
4380
4381 spin_lock(&ei->i_raw_lock);
4382
4383 /* For fields not tracked in the in-memory inode,
4384 * initialise them to zero for new inodes. */
4385 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4386 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4387
4388 ext4_get_inode_flags(ei);
4389 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4390 i_uid = i_uid_read(inode);
4391 i_gid = i_gid_read(inode);
4392 if (!(test_opt(inode->i_sb, NO_UID32))) {
4393 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4394 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4395 /*
4396 * Fix up interoperability with old kernels. Otherwise, old inodes get
4397 * re-used with the upper 16 bits of the uid/gid intact
4398 */
4399 if (!ei->i_dtime) {
4400 raw_inode->i_uid_high =
4401 cpu_to_le16(high_16_bits(i_uid));
4402 raw_inode->i_gid_high =
4403 cpu_to_le16(high_16_bits(i_gid));
4404 } else {
4405 raw_inode->i_uid_high = 0;
4406 raw_inode->i_gid_high = 0;
4407 }
4408 } else {
4409 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4410 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4411 raw_inode->i_uid_high = 0;
4412 raw_inode->i_gid_high = 0;
4413 }
4414 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4415
4416 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4417 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4418 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4419 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4420
4421 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4422 if (err) {
4423 spin_unlock(&ei->i_raw_lock);
4424 goto out_brelse;
4425 }
4426 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4427 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4428 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4429 raw_inode->i_file_acl_high =
4430 cpu_to_le16(ei->i_file_acl >> 32);
4431 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4432 if (ei->i_disksize != ext4_isize(raw_inode)) {
4433 ext4_isize_set(raw_inode, ei->i_disksize);
4434 need_datasync = 1;
4435 }
4436 if (ei->i_disksize > 0x7fffffffULL) {
4437 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4438 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4439 EXT4_SB(sb)->s_es->s_rev_level ==
4440 cpu_to_le32(EXT4_GOOD_OLD_REV))
4441 set_large_file = 1;
4442 }
4443 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4444 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4445 if (old_valid_dev(inode->i_rdev)) {
4446 raw_inode->i_block[0] =
4447 cpu_to_le32(old_encode_dev(inode->i_rdev));
4448 raw_inode->i_block[1] = 0;
4449 } else {
4450 raw_inode->i_block[0] = 0;
4451 raw_inode->i_block[1] =
4452 cpu_to_le32(new_encode_dev(inode->i_rdev));
4453 raw_inode->i_block[2] = 0;
4454 }
4455 } else if (!ext4_has_inline_data(inode)) {
4456 for (block = 0; block < EXT4_N_BLOCKS; block++)
4457 raw_inode->i_block[block] = ei->i_data[block];
4458 }
4459
4460 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4461 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4462 if (ei->i_extra_isize) {
4463 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4464 raw_inode->i_version_hi =
4465 cpu_to_le32(inode->i_version >> 32);
4466 raw_inode->i_extra_isize =
4467 cpu_to_le16(ei->i_extra_isize);
4468 }
4469 }
4470 ext4_inode_csum_set(inode, raw_inode, ei);
4471 spin_unlock(&ei->i_raw_lock);
4472 if (inode->i_sb->s_flags & MS_LAZYTIME)
4473 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4474 bh->b_data);
4475
4476 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4477 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4478 if (!err)
4479 err = rc;
4480 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4481 if (set_large_file) {
4482 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4483 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4484 if (err)
4485 goto out_brelse;
4486 ext4_update_dynamic_rev(sb);
4487 EXT4_SET_RO_COMPAT_FEATURE(sb,
4488 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4489 ext4_handle_sync(handle);
4490 err = ext4_handle_dirty_super(handle, sb);
4491 }
4492 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4493 out_brelse:
4494 brelse(bh);
4495 ext4_std_error(inode->i_sb, err);
4496 return err;
4497 }
4498
4499 /*
4500 * ext4_write_inode()
4501 *
4502 * We are called from a few places:
4503 *
4504 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4505 * Here, there will be no transaction running. We wait for any running
4506 * transaction to commit.
4507 *
4508 * - Within flush work (sys_sync(), kupdate and such).
4509 * We wait on commit, if told to.
4510 *
4511 * - Within iput_final() -> write_inode_now()
4512 * We wait on commit, if told to.
4513 *
4514 * In all cases it is actually safe for us to return without doing anything,
4515 * because the inode has been copied into a raw inode buffer in
4516 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4517 * writeback.
4518 *
4519 * Note that we are absolutely dependent upon all inode dirtiers doing the
4520 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4521 * which we are interested.
4522 *
4523 * It would be a bug for them to not do this. The code:
4524 *
4525 * mark_inode_dirty(inode)
4526 * stuff();
4527 * inode->i_size = expr;
4528 *
4529 * is in error because write_inode() could occur while `stuff()' is running,
4530 * and the new i_size will be lost. Plus the inode will no longer be on the
4531 * superblock's dirty inode list.
4532 */
4533 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4534 {
4535 int err;
4536
4537 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4538 return 0;
4539
4540 if (EXT4_SB(inode->i_sb)->s_journal) {
4541 if (ext4_journal_current_handle()) {
4542 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4543 dump_stack();
4544 return -EIO;
4545 }
4546
4547 /*
4548 * No need to force transaction in WB_SYNC_NONE mode. Also
4549 * ext4_sync_fs() will force the commit after everything is
4550 * written.
4551 */
4552 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4553 return 0;
4554
4555 err = ext4_force_commit(inode->i_sb);
4556 } else {
4557 struct ext4_iloc iloc;
4558
4559 err = __ext4_get_inode_loc(inode, &iloc, 0);
4560 if (err)
4561 return err;
4562 /*
4563 * sync(2) will flush the whole buffer cache. No need to do
4564 * it here separately for each inode.
4565 */
4566 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4567 sync_dirty_buffer(iloc.bh);
4568 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4569 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4570 "IO error syncing inode");
4571 err = -EIO;
4572 }
4573 brelse(iloc.bh);
4574 }
4575 return err;
4576 }
4577
4578 /*
4579 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4580 * buffers that are attached to a page stradding i_size and are undergoing
4581 * commit. In that case we have to wait for commit to finish and try again.
4582 */
4583 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4584 {
4585 struct page *page;
4586 unsigned offset;
4587 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4588 tid_t commit_tid = 0;
4589 int ret;
4590
4591 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4592 /*
4593 * All buffers in the last page remain valid? Then there's nothing to
4594 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4595 * blocksize case
4596 */
4597 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4598 return;
4599 while (1) {
4600 page = find_lock_page(inode->i_mapping,
4601 inode->i_size >> PAGE_CACHE_SHIFT);
4602 if (!page)
4603 return;
4604 ret = __ext4_journalled_invalidatepage(page, offset,
4605 PAGE_CACHE_SIZE - offset);
4606 unlock_page(page);
4607 page_cache_release(page);
4608 if (ret != -EBUSY)
4609 return;
4610 commit_tid = 0;
4611 read_lock(&journal->j_state_lock);
4612 if (journal->j_committing_transaction)
4613 commit_tid = journal->j_committing_transaction->t_tid;
4614 read_unlock(&journal->j_state_lock);
4615 if (commit_tid)
4616 jbd2_log_wait_commit(journal, commit_tid);
4617 }
4618 }
4619
4620 /*
4621 * ext4_setattr()
4622 *
4623 * Called from notify_change.
4624 *
4625 * We want to trap VFS attempts to truncate the file as soon as
4626 * possible. In particular, we want to make sure that when the VFS
4627 * shrinks i_size, we put the inode on the orphan list and modify
4628 * i_disksize immediately, so that during the subsequent flushing of
4629 * dirty pages and freeing of disk blocks, we can guarantee that any
4630 * commit will leave the blocks being flushed in an unused state on
4631 * disk. (On recovery, the inode will get truncated and the blocks will
4632 * be freed, so we have a strong guarantee that no future commit will
4633 * leave these blocks visible to the user.)
4634 *
4635 * Another thing we have to assure is that if we are in ordered mode
4636 * and inode is still attached to the committing transaction, we must
4637 * we start writeout of all the dirty pages which are being truncated.
4638 * This way we are sure that all the data written in the previous
4639 * transaction are already on disk (truncate waits for pages under
4640 * writeback).
4641 *
4642 * Called with inode->i_mutex down.
4643 */
4644 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4645 {
4646 struct inode *inode = dentry->d_inode;
4647 int error, rc = 0;
4648 int orphan = 0;
4649 const unsigned int ia_valid = attr->ia_valid;
4650
4651 error = inode_change_ok(inode, attr);
4652 if (error)
4653 return error;
4654
4655 if (is_quota_modification(inode, attr))
4656 dquot_initialize(inode);
4657 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4658 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4659 handle_t *handle;
4660
4661 /* (user+group)*(old+new) structure, inode write (sb,
4662 * inode block, ? - but truncate inode update has it) */
4663 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4664 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4665 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4666 if (IS_ERR(handle)) {
4667 error = PTR_ERR(handle);
4668 goto err_out;
4669 }
4670 error = dquot_transfer(inode, attr);
4671 if (error) {
4672 ext4_journal_stop(handle);
4673 return error;
4674 }
4675 /* Update corresponding info in inode so that everything is in
4676 * one transaction */
4677 if (attr->ia_valid & ATTR_UID)
4678 inode->i_uid = attr->ia_uid;
4679 if (attr->ia_valid & ATTR_GID)
4680 inode->i_gid = attr->ia_gid;
4681 error = ext4_mark_inode_dirty(handle, inode);
4682 ext4_journal_stop(handle);
4683 }
4684
4685 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4686 handle_t *handle;
4687
4688 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4689 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4690
4691 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4692 return -EFBIG;
4693 }
4694
4695 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4696 inode_inc_iversion(inode);
4697
4698 if (S_ISREG(inode->i_mode) &&
4699 (attr->ia_size < inode->i_size)) {
4700 if (ext4_should_order_data(inode)) {
4701 error = ext4_begin_ordered_truncate(inode,
4702 attr->ia_size);
4703 if (error)
4704 goto err_out;
4705 }
4706 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4707 if (IS_ERR(handle)) {
4708 error = PTR_ERR(handle);
4709 goto err_out;
4710 }
4711 if (ext4_handle_valid(handle)) {
4712 error = ext4_orphan_add(handle, inode);
4713 orphan = 1;
4714 }
4715 down_write(&EXT4_I(inode)->i_data_sem);
4716 EXT4_I(inode)->i_disksize = attr->ia_size;
4717 rc = ext4_mark_inode_dirty(handle, inode);
4718 if (!error)
4719 error = rc;
4720 /*
4721 * We have to update i_size under i_data_sem together
4722 * with i_disksize to avoid races with writeback code
4723 * running ext4_wb_update_i_disksize().
4724 */
4725 if (!error)
4726 i_size_write(inode, attr->ia_size);
4727 up_write(&EXT4_I(inode)->i_data_sem);
4728 ext4_journal_stop(handle);
4729 if (error) {
4730 ext4_orphan_del(NULL, inode);
4731 goto err_out;
4732 }
4733 } else {
4734 loff_t oldsize = inode->i_size;
4735
4736 i_size_write(inode, attr->ia_size);
4737 pagecache_isize_extended(inode, oldsize, inode->i_size);
4738 }
4739
4740 /*
4741 * Blocks are going to be removed from the inode. Wait
4742 * for dio in flight. Temporarily disable
4743 * dioread_nolock to prevent livelock.
4744 */
4745 if (orphan) {
4746 if (!ext4_should_journal_data(inode)) {
4747 ext4_inode_block_unlocked_dio(inode);
4748 inode_dio_wait(inode);
4749 ext4_inode_resume_unlocked_dio(inode);
4750 } else
4751 ext4_wait_for_tail_page_commit(inode);
4752 }
4753 /*
4754 * Truncate pagecache after we've waited for commit
4755 * in data=journal mode to make pages freeable.
4756 */
4757 truncate_pagecache(inode, inode->i_size);
4758 }
4759 /*
4760 * We want to call ext4_truncate() even if attr->ia_size ==
4761 * inode->i_size for cases like truncation of fallocated space
4762 */
4763 if (attr->ia_valid & ATTR_SIZE)
4764 ext4_truncate(inode);
4765
4766 if (!rc) {
4767 setattr_copy(inode, attr);
4768 mark_inode_dirty(inode);
4769 }
4770
4771 /*
4772 * If the call to ext4_truncate failed to get a transaction handle at
4773 * all, we need to clean up the in-core orphan list manually.
4774 */
4775 if (orphan && inode->i_nlink)
4776 ext4_orphan_del(NULL, inode);
4777
4778 if (!rc && (ia_valid & ATTR_MODE))
4779 rc = posix_acl_chmod(inode, inode->i_mode);
4780
4781 err_out:
4782 ext4_std_error(inode->i_sb, error);
4783 if (!error)
4784 error = rc;
4785 return error;
4786 }
4787
4788 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4789 struct kstat *stat)
4790 {
4791 struct inode *inode;
4792 unsigned long long delalloc_blocks;
4793
4794 inode = dentry->d_inode;
4795 generic_fillattr(inode, stat);
4796
4797 /*
4798 * If there is inline data in the inode, the inode will normally not
4799 * have data blocks allocated (it may have an external xattr block).
4800 * Report at least one sector for such files, so tools like tar, rsync,
4801 * others doen't incorrectly think the file is completely sparse.
4802 */
4803 if (unlikely(ext4_has_inline_data(inode)))
4804 stat->blocks += (stat->size + 511) >> 9;
4805
4806 /*
4807 * We can't update i_blocks if the block allocation is delayed
4808 * otherwise in the case of system crash before the real block
4809 * allocation is done, we will have i_blocks inconsistent with
4810 * on-disk file blocks.
4811 * We always keep i_blocks updated together with real
4812 * allocation. But to not confuse with user, stat
4813 * will return the blocks that include the delayed allocation
4814 * blocks for this file.
4815 */
4816 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4817 EXT4_I(inode)->i_reserved_data_blocks);
4818 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4819 return 0;
4820 }
4821
4822 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4823 int pextents)
4824 {
4825 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4826 return ext4_ind_trans_blocks(inode, lblocks);
4827 return ext4_ext_index_trans_blocks(inode, pextents);
4828 }
4829
4830 /*
4831 * Account for index blocks, block groups bitmaps and block group
4832 * descriptor blocks if modify datablocks and index blocks
4833 * worse case, the indexs blocks spread over different block groups
4834 *
4835 * If datablocks are discontiguous, they are possible to spread over
4836 * different block groups too. If they are contiguous, with flexbg,
4837 * they could still across block group boundary.
4838 *
4839 * Also account for superblock, inode, quota and xattr blocks
4840 */
4841 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4842 int pextents)
4843 {
4844 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4845 int gdpblocks;
4846 int idxblocks;
4847 int ret = 0;
4848
4849 /*
4850 * How many index blocks need to touch to map @lblocks logical blocks
4851 * to @pextents physical extents?
4852 */
4853 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4854
4855 ret = idxblocks;
4856
4857 /*
4858 * Now let's see how many group bitmaps and group descriptors need
4859 * to account
4860 */
4861 groups = idxblocks + pextents;
4862 gdpblocks = groups;
4863 if (groups > ngroups)
4864 groups = ngroups;
4865 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4866 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4867
4868 /* bitmaps and block group descriptor blocks */
4869 ret += groups + gdpblocks;
4870
4871 /* Blocks for super block, inode, quota and xattr blocks */
4872 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4873
4874 return ret;
4875 }
4876
4877 /*
4878 * Calculate the total number of credits to reserve to fit
4879 * the modification of a single pages into a single transaction,
4880 * which may include multiple chunks of block allocations.
4881 *
4882 * This could be called via ext4_write_begin()
4883 *
4884 * We need to consider the worse case, when
4885 * one new block per extent.
4886 */
4887 int ext4_writepage_trans_blocks(struct inode *inode)
4888 {
4889 int bpp = ext4_journal_blocks_per_page(inode);
4890 int ret;
4891
4892 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4893
4894 /* Account for data blocks for journalled mode */
4895 if (ext4_should_journal_data(inode))
4896 ret += bpp;
4897 return ret;
4898 }
4899
4900 /*
4901 * Calculate the journal credits for a chunk of data modification.
4902 *
4903 * This is called from DIO, fallocate or whoever calling
4904 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4905 *
4906 * journal buffers for data blocks are not included here, as DIO
4907 * and fallocate do no need to journal data buffers.
4908 */
4909 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4910 {
4911 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4912 }
4913
4914 /*
4915 * The caller must have previously called ext4_reserve_inode_write().
4916 * Give this, we know that the caller already has write access to iloc->bh.
4917 */
4918 int ext4_mark_iloc_dirty(handle_t *handle,
4919 struct inode *inode, struct ext4_iloc *iloc)
4920 {
4921 int err = 0;
4922
4923 if (IS_I_VERSION(inode))
4924 inode_inc_iversion(inode);
4925
4926 /* the do_update_inode consumes one bh->b_count */
4927 get_bh(iloc->bh);
4928
4929 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4930 err = ext4_do_update_inode(handle, inode, iloc);
4931 put_bh(iloc->bh);
4932 return err;
4933 }
4934
4935 /*
4936 * On success, We end up with an outstanding reference count against
4937 * iloc->bh. This _must_ be cleaned up later.
4938 */
4939
4940 int
4941 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4942 struct ext4_iloc *iloc)
4943 {
4944 int err;
4945
4946 err = ext4_get_inode_loc(inode, iloc);
4947 if (!err) {
4948 BUFFER_TRACE(iloc->bh, "get_write_access");
4949 err = ext4_journal_get_write_access(handle, iloc->bh);
4950 if (err) {
4951 brelse(iloc->bh);
4952 iloc->bh = NULL;
4953 }
4954 }
4955 ext4_std_error(inode->i_sb, err);
4956 return err;
4957 }
4958
4959 /*
4960 * Expand an inode by new_extra_isize bytes.
4961 * Returns 0 on success or negative error number on failure.
4962 */
4963 static int ext4_expand_extra_isize(struct inode *inode,
4964 unsigned int new_extra_isize,
4965 struct ext4_iloc iloc,
4966 handle_t *handle)
4967 {
4968 struct ext4_inode *raw_inode;
4969 struct ext4_xattr_ibody_header *header;
4970
4971 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4972 return 0;
4973
4974 raw_inode = ext4_raw_inode(&iloc);
4975
4976 header = IHDR(inode, raw_inode);
4977
4978 /* No extended attributes present */
4979 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4980 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4981 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4982 new_extra_isize);
4983 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4984 return 0;
4985 }
4986
4987 /* try to expand with EAs present */
4988 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4989 raw_inode, handle);
4990 }
4991
4992 /*
4993 * What we do here is to mark the in-core inode as clean with respect to inode
4994 * dirtiness (it may still be data-dirty).
4995 * This means that the in-core inode may be reaped by prune_icache
4996 * without having to perform any I/O. This is a very good thing,
4997 * because *any* task may call prune_icache - even ones which
4998 * have a transaction open against a different journal.
4999 *
5000 * Is this cheating? Not really. Sure, we haven't written the
5001 * inode out, but prune_icache isn't a user-visible syncing function.
5002 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5003 * we start and wait on commits.
5004 */
5005 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5006 {
5007 struct ext4_iloc iloc;
5008 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5009 static unsigned int mnt_count;
5010 int err, ret;
5011
5012 might_sleep();
5013 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5014 err = ext4_reserve_inode_write(handle, inode, &iloc);
5015 if (ext4_handle_valid(handle) &&
5016 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5017 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5018 /*
5019 * We need extra buffer credits since we may write into EA block
5020 * with this same handle. If journal_extend fails, then it will
5021 * only result in a minor loss of functionality for that inode.
5022 * If this is felt to be critical, then e2fsck should be run to
5023 * force a large enough s_min_extra_isize.
5024 */
5025 if ((jbd2_journal_extend(handle,
5026 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5027 ret = ext4_expand_extra_isize(inode,
5028 sbi->s_want_extra_isize,
5029 iloc, handle);
5030 if (ret) {
5031 ext4_set_inode_state(inode,
5032 EXT4_STATE_NO_EXPAND);
5033 if (mnt_count !=
5034 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5035 ext4_warning(inode->i_sb,
5036 "Unable to expand inode %lu. Delete"
5037 " some EAs or run e2fsck.",
5038 inode->i_ino);
5039 mnt_count =
5040 le16_to_cpu(sbi->s_es->s_mnt_count);
5041 }
5042 }
5043 }
5044 }
5045 if (!err)
5046 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5047 return err;
5048 }
5049
5050 /*
5051 * ext4_dirty_inode() is called from __mark_inode_dirty()
5052 *
5053 * We're really interested in the case where a file is being extended.
5054 * i_size has been changed by generic_commit_write() and we thus need
5055 * to include the updated inode in the current transaction.
5056 *
5057 * Also, dquot_alloc_block() will always dirty the inode when blocks
5058 * are allocated to the file.
5059 *
5060 * If the inode is marked synchronous, we don't honour that here - doing
5061 * so would cause a commit on atime updates, which we don't bother doing.
5062 * We handle synchronous inodes at the highest possible level.
5063 *
5064 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5065 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5066 * to copy into the on-disk inode structure are the timestamp files.
5067 */
5068 void ext4_dirty_inode(struct inode *inode, int flags)
5069 {
5070 handle_t *handle;
5071
5072 if (flags == I_DIRTY_TIME)
5073 return;
5074 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5075 if (IS_ERR(handle))
5076 goto out;
5077
5078 ext4_mark_inode_dirty(handle, inode);
5079
5080 ext4_journal_stop(handle);
5081 out:
5082 return;
5083 }
5084
5085 #if 0
5086 /*
5087 * Bind an inode's backing buffer_head into this transaction, to prevent
5088 * it from being flushed to disk early. Unlike
5089 * ext4_reserve_inode_write, this leaves behind no bh reference and
5090 * returns no iloc structure, so the caller needs to repeat the iloc
5091 * lookup to mark the inode dirty later.
5092 */
5093 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5094 {
5095 struct ext4_iloc iloc;
5096
5097 int err = 0;
5098 if (handle) {
5099 err = ext4_get_inode_loc(inode, &iloc);
5100 if (!err) {
5101 BUFFER_TRACE(iloc.bh, "get_write_access");
5102 err = jbd2_journal_get_write_access(handle, iloc.bh);
5103 if (!err)
5104 err = ext4_handle_dirty_metadata(handle,
5105 NULL,
5106 iloc.bh);
5107 brelse(iloc.bh);
5108 }
5109 }
5110 ext4_std_error(inode->i_sb, err);
5111 return err;
5112 }
5113 #endif
5114
5115 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5116 {
5117 journal_t *journal;
5118 handle_t *handle;
5119 int err;
5120
5121 /*
5122 * We have to be very careful here: changing a data block's
5123 * journaling status dynamically is dangerous. If we write a
5124 * data block to the journal, change the status and then delete
5125 * that block, we risk forgetting to revoke the old log record
5126 * from the journal and so a subsequent replay can corrupt data.
5127 * So, first we make sure that the journal is empty and that
5128 * nobody is changing anything.
5129 */
5130
5131 journal = EXT4_JOURNAL(inode);
5132 if (!journal)
5133 return 0;
5134 if (is_journal_aborted(journal))
5135 return -EROFS;
5136 /* We have to allocate physical blocks for delalloc blocks
5137 * before flushing journal. otherwise delalloc blocks can not
5138 * be allocated any more. even more truncate on delalloc blocks
5139 * could trigger BUG by flushing delalloc blocks in journal.
5140 * There is no delalloc block in non-journal data mode.
5141 */
5142 if (val && test_opt(inode->i_sb, DELALLOC)) {
5143 err = ext4_alloc_da_blocks(inode);
5144 if (err < 0)
5145 return err;
5146 }
5147
5148 /* Wait for all existing dio workers */
5149 ext4_inode_block_unlocked_dio(inode);
5150 inode_dio_wait(inode);
5151
5152 jbd2_journal_lock_updates(journal);
5153
5154 /*
5155 * OK, there are no updates running now, and all cached data is
5156 * synced to disk. We are now in a completely consistent state
5157 * which doesn't have anything in the journal, and we know that
5158 * no filesystem updates are running, so it is safe to modify
5159 * the inode's in-core data-journaling state flag now.
5160 */
5161
5162 if (val)
5163 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5164 else {
5165 err = jbd2_journal_flush(journal);
5166 if (err < 0) {
5167 jbd2_journal_unlock_updates(journal);
5168 ext4_inode_resume_unlocked_dio(inode);
5169 return err;
5170 }
5171 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5172 }
5173 ext4_set_aops(inode);
5174
5175 jbd2_journal_unlock_updates(journal);
5176 ext4_inode_resume_unlocked_dio(inode);
5177
5178 /* Finally we can mark the inode as dirty. */
5179
5180 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5181 if (IS_ERR(handle))
5182 return PTR_ERR(handle);
5183
5184 err = ext4_mark_inode_dirty(handle, inode);
5185 ext4_handle_sync(handle);
5186 ext4_journal_stop(handle);
5187 ext4_std_error(inode->i_sb, err);
5188
5189 return err;
5190 }
5191
5192 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5193 {
5194 return !buffer_mapped(bh);
5195 }
5196
5197 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5198 {
5199 struct page *page = vmf->page;
5200 loff_t size;
5201 unsigned long len;
5202 int ret;
5203 struct file *file = vma->vm_file;
5204 struct inode *inode = file_inode(file);
5205 struct address_space *mapping = inode->i_mapping;
5206 handle_t *handle;
5207 get_block_t *get_block;
5208 int retries = 0;
5209
5210 sb_start_pagefault(inode->i_sb);
5211 file_update_time(vma->vm_file);
5212 /* Delalloc case is easy... */
5213 if (test_opt(inode->i_sb, DELALLOC) &&
5214 !ext4_should_journal_data(inode) &&
5215 !ext4_nonda_switch(inode->i_sb)) {
5216 do {
5217 ret = __block_page_mkwrite(vma, vmf,
5218 ext4_da_get_block_prep);
5219 } while (ret == -ENOSPC &&
5220 ext4_should_retry_alloc(inode->i_sb, &retries));
5221 goto out_ret;
5222 }
5223
5224 lock_page(page);
5225 size = i_size_read(inode);
5226 /* Page got truncated from under us? */
5227 if (page->mapping != mapping || page_offset(page) > size) {
5228 unlock_page(page);
5229 ret = VM_FAULT_NOPAGE;
5230 goto out;
5231 }
5232
5233 if (page->index == size >> PAGE_CACHE_SHIFT)
5234 len = size & ~PAGE_CACHE_MASK;
5235 else
5236 len = PAGE_CACHE_SIZE;
5237 /*
5238 * Return if we have all the buffers mapped. This avoids the need to do
5239 * journal_start/journal_stop which can block and take a long time
5240 */
5241 if (page_has_buffers(page)) {
5242 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5243 0, len, NULL,
5244 ext4_bh_unmapped)) {
5245 /* Wait so that we don't change page under IO */
5246 wait_for_stable_page(page);
5247 ret = VM_FAULT_LOCKED;
5248 goto out;
5249 }
5250 }
5251 unlock_page(page);
5252 /* OK, we need to fill the hole... */
5253 if (ext4_should_dioread_nolock(inode))
5254 get_block = ext4_get_block_write;
5255 else
5256 get_block = ext4_get_block;
5257 retry_alloc:
5258 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5259 ext4_writepage_trans_blocks(inode));
5260 if (IS_ERR(handle)) {
5261 ret = VM_FAULT_SIGBUS;
5262 goto out;
5263 }
5264 ret = __block_page_mkwrite(vma, vmf, get_block);
5265 if (!ret && ext4_should_journal_data(inode)) {
5266 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5267 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5268 unlock_page(page);
5269 ret = VM_FAULT_SIGBUS;
5270 ext4_journal_stop(handle);
5271 goto out;
5272 }
5273 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5274 }
5275 ext4_journal_stop(handle);
5276 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5277 goto retry_alloc;
5278 out_ret:
5279 ret = block_page_mkwrite_return(ret);
5280 out:
5281 sb_end_pagefault(inode->i_sb);
5282 return ret;
5283 }
This page took 0.147684 seconds and 6 git commands to generate.