Merge tag 'late-dt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53 {
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75 return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80 {
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102 {
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120 {
121 trace_ext4_begin_ordered_truncate(inode, new_size);
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 int pextents);
141
142 /*
143 * Test whether an inode is a fast symlink.
144 */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
148 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 int nblocks)
160 {
161 int ret;
162
163 /*
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 jbd_debug(2, "restarting handle %p\n", handle);
171 up_write(&EXT4_I(inode)->i_data_sem);
172 ret = ext4_journal_restart(handle, nblocks);
173 down_write(&EXT4_I(inode)->i_data_sem);
174 ext4_discard_preallocations(inode);
175
176 return ret;
177 }
178
179 /*
180 * Called at the last iput() if i_nlink is zero.
181 */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 handle_t *handle;
185 int err;
186
187 trace_ext4_evict_inode(inode);
188
189 if (inode->i_nlink) {
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214 jbd2_complete_transaction(journal, commit_tid);
215 filemap_write_and_wait(&inode->i_data);
216 }
217 truncate_inode_pages(&inode->i_data, 0);
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220 goto no_delete;
221 }
222
223 if (!is_bad_inode(inode))
224 dquot_initialize(inode);
225
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
228 truncate_inode_pages(&inode->i_data, 0);
229
230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231 if (is_bad_inode(inode))
232 goto no_delete;
233
234 /*
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
237 */
238 sb_start_intwrite(inode->i_sb);
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
241 if (IS_ERR(handle)) {
242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243 /*
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
246 * cleaned up.
247 */
248 ext4_orphan_del(NULL, inode);
249 sb_end_intwrite(inode->i_sb);
250 goto no_delete;
251 }
252
253 if (IS_SYNC(inode))
254 ext4_handle_sync(handle);
255 inode->i_size = 0;
256 err = ext4_mark_inode_dirty(handle, inode);
257 if (err) {
258 ext4_warning(inode->i_sb,
259 "couldn't mark inode dirty (err %d)", err);
260 goto stop_handle;
261 }
262 if (inode->i_blocks)
263 ext4_truncate(inode);
264
265 /*
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
270 */
271 if (!ext4_handle_has_enough_credits(handle, 3)) {
272 err = ext4_journal_extend(handle, 3);
273 if (err > 0)
274 err = ext4_journal_restart(handle, 3);
275 if (err != 0) {
276 ext4_warning(inode->i_sb,
277 "couldn't extend journal (err %d)", err);
278 stop_handle:
279 ext4_journal_stop(handle);
280 ext4_orphan_del(NULL, inode);
281 sb_end_intwrite(inode->i_sb);
282 goto no_delete;
283 }
284 }
285
286 /*
287 * Kill off the orphan record which ext4_truncate created.
288 * AKPM: I think this can be inside the above `if'.
289 * Note that ext4_orphan_del() has to be able to cope with the
290 * deletion of a non-existent orphan - this is because we don't
291 * know if ext4_truncate() actually created an orphan record.
292 * (Well, we could do this if we need to, but heck - it works)
293 */
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
296
297 /*
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
302 * fails.
303 */
304 if (ext4_mark_inode_dirty(handle, inode))
305 /* If that failed, just do the required in-core inode clear. */
306 ext4_clear_inode(inode);
307 else
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
310 sb_end_intwrite(inode->i_sb);
311 return;
312 no_delete:
313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319 return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324 * Calculate the number of metadata blocks need to reserve
325 * to allocate a block located at @lblock
326 */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332 return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
338 */
339 void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
341 {
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343 struct ext4_inode_info *ei = EXT4_I(inode);
344
345 spin_lock(&ei->i_block_reservation_lock);
346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347 if (unlikely(used > ei->i_reserved_data_blocks)) {
348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349 "with only %d reserved data blocks",
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
352 WARN_ON(1);
353 used = ei->i_reserved_data_blocks;
354 }
355
356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
363 WARN_ON(1);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 }
366
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371 used + ei->i_allocated_meta_blocks);
372 ei->i_allocated_meta_blocks = 0;
373
374 if (ei->i_reserved_data_blocks == 0) {
375 /*
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
378 * allocation blocks.
379 */
380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381 ei->i_reserved_meta_blocks);
382 ei->i_reserved_meta_blocks = 0;
383 ei->i_da_metadata_calc_len = 0;
384 }
385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387 /* Update quota subsystem for data blocks */
388 if (quota_claim)
389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390 else {
391 /*
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
394 * not re-claim the quota for fallocated blocks.
395 */
396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397 }
398
399 /*
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
403 */
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
406 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410 unsigned int line,
411 struct ext4_map_blocks *map)
412 {
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 map->m_len)) {
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
418 map->m_len);
419 return -EIO;
420 }
421 return 0;
422 }
423
424 #define check_block_validity(inode, map) \
425 __check_block_validity((inode), __func__, __LINE__, (map))
426
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429 struct inode *inode,
430 struct ext4_map_blocks *es_map,
431 struct ext4_map_blocks *map,
432 int flags)
433 {
434 int retval;
435
436 map->m_flags = 0;
437 /*
438 * There is a race window that the result is not the same.
439 * e.g. xfstests #223 when dioread_nolock enables. The reason
440 * is that we lookup a block mapping in extent status tree with
441 * out taking i_data_sem. So at the time the unwritten extent
442 * could be converted.
443 */
444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 down_read((&EXT4_I(inode)->i_data_sem));
446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 EXT4_GET_BLOCKS_KEEP_SIZE);
449 } else {
450 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 }
453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 up_read((&EXT4_I(inode)->i_data_sem));
455 /*
456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 * because it shouldn't be marked in es_map->m_flags.
458 */
459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461 /*
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
464 */
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
468 printk("ES cache assertion failed for inode: %lu "
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
474 retval, flags);
475 }
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478
479 /*
480 * The ext4_map_blocks() function tries to look up the requested blocks,
481 * and returns if the blocks are already mapped.
482 *
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
485 * mapped.
486 *
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489 * based files
490 *
491 * On success, it returns the number of blocks being mapped or allocate.
492 * if create==0 and the blocks are pre-allocated and uninitialized block,
493 * the result buffer head is unmapped. If the create ==1, it will make sure
494 * the buffer head is mapped.
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
497 * that case, buffer head is unmapped
498 *
499 * It returns the error in case of allocation failure.
500 */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
503 {
504 struct extent_status es;
505 int retval;
506 #ifdef ES_AGGRESSIVE_TEST
507 struct ext4_map_blocks orig_map;
508
509 memcpy(&orig_map, map, sizeof(*map));
510 #endif
511
512 map->m_flags = 0;
513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 (unsigned long) map->m_lblk);
516
517 /* Lookup extent status tree firstly */
518 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
519 ext4_es_lru_add(inode);
520 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521 map->m_pblk = ext4_es_pblock(&es) +
522 map->m_lblk - es.es_lblk;
523 map->m_flags |= ext4_es_is_written(&es) ?
524 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525 retval = es.es_len - (map->m_lblk - es.es_lblk);
526 if (retval > map->m_len)
527 retval = map->m_len;
528 map->m_len = retval;
529 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530 retval = 0;
531 } else {
532 BUG_ON(1);
533 }
534 #ifdef ES_AGGRESSIVE_TEST
535 ext4_map_blocks_es_recheck(handle, inode, map,
536 &orig_map, flags);
537 #endif
538 goto found;
539 }
540
541 /*
542 * Try to see if we can get the block without requesting a new
543 * file system block.
544 */
545 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546 down_read((&EXT4_I(inode)->i_data_sem));
547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 EXT4_GET_BLOCKS_KEEP_SIZE);
550 } else {
551 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 EXT4_GET_BLOCKS_KEEP_SIZE);
553 }
554 if (retval > 0) {
555 int ret;
556 unsigned int status;
557
558 if (unlikely(retval != map->m_len)) {
559 ext4_warning(inode->i_sb,
560 "ES len assertion failed for inode "
561 "%lu: retval %d != map->m_len %d",
562 inode->i_ino, retval, map->m_len);
563 WARN_ON(1);
564 }
565
566 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569 ext4_find_delalloc_range(inode, map->m_lblk,
570 map->m_lblk + map->m_len - 1))
571 status |= EXTENT_STATUS_DELAYED;
572 ret = ext4_es_insert_extent(inode, map->m_lblk,
573 map->m_len, map->m_pblk, status);
574 if (ret < 0)
575 retval = ret;
576 }
577 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
578 up_read((&EXT4_I(inode)->i_data_sem));
579
580 found:
581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582 int ret = check_block_validity(inode, map);
583 if (ret != 0)
584 return ret;
585 }
586
587 /* If it is only a block(s) look up */
588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589 return retval;
590
591 /*
592 * Returns if the blocks have already allocated
593 *
594 * Note that if blocks have been preallocated
595 * ext4_ext_get_block() returns the create = 0
596 * with buffer head unmapped.
597 */
598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599 return retval;
600
601 /*
602 * Here we clear m_flags because after allocating an new extent,
603 * it will be set again.
604 */
605 map->m_flags &= ~EXT4_MAP_FLAGS;
606
607 /*
608 * New blocks allocate and/or writing to uninitialized extent
609 * will possibly result in updating i_data, so we take
610 * the write lock of i_data_sem, and call get_blocks()
611 * with create == 1 flag.
612 */
613 down_write((&EXT4_I(inode)->i_data_sem));
614
615 /*
616 * if the caller is from delayed allocation writeout path
617 * we have already reserved fs blocks for allocation
618 * let the underlying get_block() function know to
619 * avoid double accounting
620 */
621 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
622 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
623 /*
624 * We need to check for EXT4 here because migrate
625 * could have changed the inode type in between
626 */
627 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
628 retval = ext4_ext_map_blocks(handle, inode, map, flags);
629 } else {
630 retval = ext4_ind_map_blocks(handle, inode, map, flags);
631
632 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
633 /*
634 * We allocated new blocks which will result in
635 * i_data's format changing. Force the migrate
636 * to fail by clearing migrate flags
637 */
638 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
639 }
640
641 /*
642 * Update reserved blocks/metadata blocks after successful
643 * block allocation which had been deferred till now. We don't
644 * support fallocate for non extent files. So we can update
645 * reserve space here.
646 */
647 if ((retval > 0) &&
648 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
649 ext4_da_update_reserve_space(inode, retval, 1);
650 }
651 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
652 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
653
654 if (retval > 0) {
655 int ret;
656 unsigned int status;
657
658 if (unlikely(retval != map->m_len)) {
659 ext4_warning(inode->i_sb,
660 "ES len assertion failed for inode "
661 "%lu: retval %d != map->m_len %d",
662 inode->i_ino, retval, map->m_len);
663 WARN_ON(1);
664 }
665
666 /*
667 * If the extent has been zeroed out, we don't need to update
668 * extent status tree.
669 */
670 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672 if (ext4_es_is_written(&es))
673 goto has_zeroout;
674 }
675 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678 ext4_find_delalloc_range(inode, map->m_lblk,
679 map->m_lblk + map->m_len - 1))
680 status |= EXTENT_STATUS_DELAYED;
681 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682 map->m_pblk, status);
683 if (ret < 0)
684 retval = ret;
685 }
686
687 has_zeroout:
688 up_write((&EXT4_I(inode)->i_data_sem));
689 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
690 int ret = check_block_validity(inode, map);
691 if (ret != 0)
692 return ret;
693 }
694 return retval;
695 }
696
697 /* Maximum number of blocks we map for direct IO at once. */
698 #define DIO_MAX_BLOCKS 4096
699
700 static int _ext4_get_block(struct inode *inode, sector_t iblock,
701 struct buffer_head *bh, int flags)
702 {
703 handle_t *handle = ext4_journal_current_handle();
704 struct ext4_map_blocks map;
705 int ret = 0, started = 0;
706 int dio_credits;
707
708 if (ext4_has_inline_data(inode))
709 return -ERANGE;
710
711 map.m_lblk = iblock;
712 map.m_len = bh->b_size >> inode->i_blkbits;
713
714 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
715 /* Direct IO write... */
716 if (map.m_len > DIO_MAX_BLOCKS)
717 map.m_len = DIO_MAX_BLOCKS;
718 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
719 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
720 dio_credits);
721 if (IS_ERR(handle)) {
722 ret = PTR_ERR(handle);
723 return ret;
724 }
725 started = 1;
726 }
727
728 ret = ext4_map_blocks(handle, inode, &map, flags);
729 if (ret > 0) {
730 ext4_io_end_t *io_end = ext4_inode_aio(inode);
731
732 map_bh(bh, inode->i_sb, map.m_pblk);
733 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
734 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
735 set_buffer_defer_completion(bh);
736 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
737 ret = 0;
738 }
739 if (started)
740 ext4_journal_stop(handle);
741 return ret;
742 }
743
744 int ext4_get_block(struct inode *inode, sector_t iblock,
745 struct buffer_head *bh, int create)
746 {
747 return _ext4_get_block(inode, iblock, bh,
748 create ? EXT4_GET_BLOCKS_CREATE : 0);
749 }
750
751 /*
752 * `handle' can be NULL if create is zero
753 */
754 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
755 ext4_lblk_t block, int create, int *errp)
756 {
757 struct ext4_map_blocks map;
758 struct buffer_head *bh;
759 int fatal = 0, err;
760
761 J_ASSERT(handle != NULL || create == 0);
762
763 map.m_lblk = block;
764 map.m_len = 1;
765 err = ext4_map_blocks(handle, inode, &map,
766 create ? EXT4_GET_BLOCKS_CREATE : 0);
767
768 /* ensure we send some value back into *errp */
769 *errp = 0;
770
771 if (create && err == 0)
772 err = -ENOSPC; /* should never happen */
773 if (err < 0)
774 *errp = err;
775 if (err <= 0)
776 return NULL;
777
778 bh = sb_getblk(inode->i_sb, map.m_pblk);
779 if (unlikely(!bh)) {
780 *errp = -ENOMEM;
781 return NULL;
782 }
783 if (map.m_flags & EXT4_MAP_NEW) {
784 J_ASSERT(create != 0);
785 J_ASSERT(handle != NULL);
786
787 /*
788 * Now that we do not always journal data, we should
789 * keep in mind whether this should always journal the
790 * new buffer as metadata. For now, regular file
791 * writes use ext4_get_block instead, so it's not a
792 * problem.
793 */
794 lock_buffer(bh);
795 BUFFER_TRACE(bh, "call get_create_access");
796 fatal = ext4_journal_get_create_access(handle, bh);
797 if (!fatal && !buffer_uptodate(bh)) {
798 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
799 set_buffer_uptodate(bh);
800 }
801 unlock_buffer(bh);
802 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
803 err = ext4_handle_dirty_metadata(handle, inode, bh);
804 if (!fatal)
805 fatal = err;
806 } else {
807 BUFFER_TRACE(bh, "not a new buffer");
808 }
809 if (fatal) {
810 *errp = fatal;
811 brelse(bh);
812 bh = NULL;
813 }
814 return bh;
815 }
816
817 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
818 ext4_lblk_t block, int create, int *err)
819 {
820 struct buffer_head *bh;
821
822 bh = ext4_getblk(handle, inode, block, create, err);
823 if (!bh)
824 return bh;
825 if (buffer_uptodate(bh))
826 return bh;
827 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
828 wait_on_buffer(bh);
829 if (buffer_uptodate(bh))
830 return bh;
831 put_bh(bh);
832 *err = -EIO;
833 return NULL;
834 }
835
836 int ext4_walk_page_buffers(handle_t *handle,
837 struct buffer_head *head,
838 unsigned from,
839 unsigned to,
840 int *partial,
841 int (*fn)(handle_t *handle,
842 struct buffer_head *bh))
843 {
844 struct buffer_head *bh;
845 unsigned block_start, block_end;
846 unsigned blocksize = head->b_size;
847 int err, ret = 0;
848 struct buffer_head *next;
849
850 for (bh = head, block_start = 0;
851 ret == 0 && (bh != head || !block_start);
852 block_start = block_end, bh = next) {
853 next = bh->b_this_page;
854 block_end = block_start + blocksize;
855 if (block_end <= from || block_start >= to) {
856 if (partial && !buffer_uptodate(bh))
857 *partial = 1;
858 continue;
859 }
860 err = (*fn)(handle, bh);
861 if (!ret)
862 ret = err;
863 }
864 return ret;
865 }
866
867 /*
868 * To preserve ordering, it is essential that the hole instantiation and
869 * the data write be encapsulated in a single transaction. We cannot
870 * close off a transaction and start a new one between the ext4_get_block()
871 * and the commit_write(). So doing the jbd2_journal_start at the start of
872 * prepare_write() is the right place.
873 *
874 * Also, this function can nest inside ext4_writepage(). In that case, we
875 * *know* that ext4_writepage() has generated enough buffer credits to do the
876 * whole page. So we won't block on the journal in that case, which is good,
877 * because the caller may be PF_MEMALLOC.
878 *
879 * By accident, ext4 can be reentered when a transaction is open via
880 * quota file writes. If we were to commit the transaction while thus
881 * reentered, there can be a deadlock - we would be holding a quota
882 * lock, and the commit would never complete if another thread had a
883 * transaction open and was blocking on the quota lock - a ranking
884 * violation.
885 *
886 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
887 * will _not_ run commit under these circumstances because handle->h_ref
888 * is elevated. We'll still have enough credits for the tiny quotafile
889 * write.
890 */
891 int do_journal_get_write_access(handle_t *handle,
892 struct buffer_head *bh)
893 {
894 int dirty = buffer_dirty(bh);
895 int ret;
896
897 if (!buffer_mapped(bh) || buffer_freed(bh))
898 return 0;
899 /*
900 * __block_write_begin() could have dirtied some buffers. Clean
901 * the dirty bit as jbd2_journal_get_write_access() could complain
902 * otherwise about fs integrity issues. Setting of the dirty bit
903 * by __block_write_begin() isn't a real problem here as we clear
904 * the bit before releasing a page lock and thus writeback cannot
905 * ever write the buffer.
906 */
907 if (dirty)
908 clear_buffer_dirty(bh);
909 ret = ext4_journal_get_write_access(handle, bh);
910 if (!ret && dirty)
911 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
912 return ret;
913 }
914
915 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
916 struct buffer_head *bh_result, int create);
917 static int ext4_write_begin(struct file *file, struct address_space *mapping,
918 loff_t pos, unsigned len, unsigned flags,
919 struct page **pagep, void **fsdata)
920 {
921 struct inode *inode = mapping->host;
922 int ret, needed_blocks;
923 handle_t *handle;
924 int retries = 0;
925 struct page *page;
926 pgoff_t index;
927 unsigned from, to;
928
929 trace_ext4_write_begin(inode, pos, len, flags);
930 /*
931 * Reserve one block more for addition to orphan list in case
932 * we allocate blocks but write fails for some reason
933 */
934 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
935 index = pos >> PAGE_CACHE_SHIFT;
936 from = pos & (PAGE_CACHE_SIZE - 1);
937 to = from + len;
938
939 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
940 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
941 flags, pagep);
942 if (ret < 0)
943 return ret;
944 if (ret == 1)
945 return 0;
946 }
947
948 /*
949 * grab_cache_page_write_begin() can take a long time if the
950 * system is thrashing due to memory pressure, or if the page
951 * is being written back. So grab it first before we start
952 * the transaction handle. This also allows us to allocate
953 * the page (if needed) without using GFP_NOFS.
954 */
955 retry_grab:
956 page = grab_cache_page_write_begin(mapping, index, flags);
957 if (!page)
958 return -ENOMEM;
959 unlock_page(page);
960
961 retry_journal:
962 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
963 if (IS_ERR(handle)) {
964 page_cache_release(page);
965 return PTR_ERR(handle);
966 }
967
968 lock_page(page);
969 if (page->mapping != mapping) {
970 /* The page got truncated from under us */
971 unlock_page(page);
972 page_cache_release(page);
973 ext4_journal_stop(handle);
974 goto retry_grab;
975 }
976 /* In case writeback began while the page was unlocked */
977 wait_for_stable_page(page);
978
979 if (ext4_should_dioread_nolock(inode))
980 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
981 else
982 ret = __block_write_begin(page, pos, len, ext4_get_block);
983
984 if (!ret && ext4_should_journal_data(inode)) {
985 ret = ext4_walk_page_buffers(handle, page_buffers(page),
986 from, to, NULL,
987 do_journal_get_write_access);
988 }
989
990 if (ret) {
991 unlock_page(page);
992 /*
993 * __block_write_begin may have instantiated a few blocks
994 * outside i_size. Trim these off again. Don't need
995 * i_size_read because we hold i_mutex.
996 *
997 * Add inode to orphan list in case we crash before
998 * truncate finishes
999 */
1000 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1001 ext4_orphan_add(handle, inode);
1002
1003 ext4_journal_stop(handle);
1004 if (pos + len > inode->i_size) {
1005 ext4_truncate_failed_write(inode);
1006 /*
1007 * If truncate failed early the inode might
1008 * still be on the orphan list; we need to
1009 * make sure the inode is removed from the
1010 * orphan list in that case.
1011 */
1012 if (inode->i_nlink)
1013 ext4_orphan_del(NULL, inode);
1014 }
1015
1016 if (ret == -ENOSPC &&
1017 ext4_should_retry_alloc(inode->i_sb, &retries))
1018 goto retry_journal;
1019 page_cache_release(page);
1020 return ret;
1021 }
1022 *pagep = page;
1023 return ret;
1024 }
1025
1026 /* For write_end() in data=journal mode */
1027 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1028 {
1029 int ret;
1030 if (!buffer_mapped(bh) || buffer_freed(bh))
1031 return 0;
1032 set_buffer_uptodate(bh);
1033 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1034 clear_buffer_meta(bh);
1035 clear_buffer_prio(bh);
1036 return ret;
1037 }
1038
1039 /*
1040 * We need to pick up the new inode size which generic_commit_write gave us
1041 * `file' can be NULL - eg, when called from page_symlink().
1042 *
1043 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1044 * buffers are managed internally.
1045 */
1046 static int ext4_write_end(struct file *file,
1047 struct address_space *mapping,
1048 loff_t pos, unsigned len, unsigned copied,
1049 struct page *page, void *fsdata)
1050 {
1051 handle_t *handle = ext4_journal_current_handle();
1052 struct inode *inode = mapping->host;
1053 int ret = 0, ret2;
1054 int i_size_changed = 0;
1055
1056 trace_ext4_write_end(inode, pos, len, copied);
1057 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1058 ret = ext4_jbd2_file_inode(handle, inode);
1059 if (ret) {
1060 unlock_page(page);
1061 page_cache_release(page);
1062 goto errout;
1063 }
1064 }
1065
1066 if (ext4_has_inline_data(inode)) {
1067 ret = ext4_write_inline_data_end(inode, pos, len,
1068 copied, page);
1069 if (ret < 0)
1070 goto errout;
1071 copied = ret;
1072 } else
1073 copied = block_write_end(file, mapping, pos,
1074 len, copied, page, fsdata);
1075
1076 /*
1077 * No need to use i_size_read() here, the i_size
1078 * cannot change under us because we hole i_mutex.
1079 *
1080 * But it's important to update i_size while still holding page lock:
1081 * page writeout could otherwise come in and zero beyond i_size.
1082 */
1083 if (pos + copied > inode->i_size) {
1084 i_size_write(inode, pos + copied);
1085 i_size_changed = 1;
1086 }
1087
1088 if (pos + copied > EXT4_I(inode)->i_disksize) {
1089 /* We need to mark inode dirty even if
1090 * new_i_size is less that inode->i_size
1091 * but greater than i_disksize. (hint delalloc)
1092 */
1093 ext4_update_i_disksize(inode, (pos + copied));
1094 i_size_changed = 1;
1095 }
1096 unlock_page(page);
1097 page_cache_release(page);
1098
1099 /*
1100 * Don't mark the inode dirty under page lock. First, it unnecessarily
1101 * makes the holding time of page lock longer. Second, it forces lock
1102 * ordering of page lock and transaction start for journaling
1103 * filesystems.
1104 */
1105 if (i_size_changed)
1106 ext4_mark_inode_dirty(handle, inode);
1107
1108 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1109 /* if we have allocated more blocks and copied
1110 * less. We will have blocks allocated outside
1111 * inode->i_size. So truncate them
1112 */
1113 ext4_orphan_add(handle, inode);
1114 errout:
1115 ret2 = ext4_journal_stop(handle);
1116 if (!ret)
1117 ret = ret2;
1118
1119 if (pos + len > inode->i_size) {
1120 ext4_truncate_failed_write(inode);
1121 /*
1122 * If truncate failed early the inode might still be
1123 * on the orphan list; we need to make sure the inode
1124 * is removed from the orphan list in that case.
1125 */
1126 if (inode->i_nlink)
1127 ext4_orphan_del(NULL, inode);
1128 }
1129
1130 return ret ? ret : copied;
1131 }
1132
1133 static int ext4_journalled_write_end(struct file *file,
1134 struct address_space *mapping,
1135 loff_t pos, unsigned len, unsigned copied,
1136 struct page *page, void *fsdata)
1137 {
1138 handle_t *handle = ext4_journal_current_handle();
1139 struct inode *inode = mapping->host;
1140 int ret = 0, ret2;
1141 int partial = 0;
1142 unsigned from, to;
1143 loff_t new_i_size;
1144
1145 trace_ext4_journalled_write_end(inode, pos, len, copied);
1146 from = pos & (PAGE_CACHE_SIZE - 1);
1147 to = from + len;
1148
1149 BUG_ON(!ext4_handle_valid(handle));
1150
1151 if (ext4_has_inline_data(inode))
1152 copied = ext4_write_inline_data_end(inode, pos, len,
1153 copied, page);
1154 else {
1155 if (copied < len) {
1156 if (!PageUptodate(page))
1157 copied = 0;
1158 page_zero_new_buffers(page, from+copied, to);
1159 }
1160
1161 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1162 to, &partial, write_end_fn);
1163 if (!partial)
1164 SetPageUptodate(page);
1165 }
1166 new_i_size = pos + copied;
1167 if (new_i_size > inode->i_size)
1168 i_size_write(inode, pos+copied);
1169 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1170 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1171 if (new_i_size > EXT4_I(inode)->i_disksize) {
1172 ext4_update_i_disksize(inode, new_i_size);
1173 ret2 = ext4_mark_inode_dirty(handle, inode);
1174 if (!ret)
1175 ret = ret2;
1176 }
1177
1178 unlock_page(page);
1179 page_cache_release(page);
1180 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1181 /* if we have allocated more blocks and copied
1182 * less. We will have blocks allocated outside
1183 * inode->i_size. So truncate them
1184 */
1185 ext4_orphan_add(handle, inode);
1186
1187 ret2 = ext4_journal_stop(handle);
1188 if (!ret)
1189 ret = ret2;
1190 if (pos + len > inode->i_size) {
1191 ext4_truncate_failed_write(inode);
1192 /*
1193 * If truncate failed early the inode might still be
1194 * on the orphan list; we need to make sure the inode
1195 * is removed from the orphan list in that case.
1196 */
1197 if (inode->i_nlink)
1198 ext4_orphan_del(NULL, inode);
1199 }
1200
1201 return ret ? ret : copied;
1202 }
1203
1204 /*
1205 * Reserve a metadata for a single block located at lblock
1206 */
1207 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1208 {
1209 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1210 struct ext4_inode_info *ei = EXT4_I(inode);
1211 unsigned int md_needed;
1212 ext4_lblk_t save_last_lblock;
1213 int save_len;
1214
1215 /*
1216 * recalculate the amount of metadata blocks to reserve
1217 * in order to allocate nrblocks
1218 * worse case is one extent per block
1219 */
1220 spin_lock(&ei->i_block_reservation_lock);
1221 /*
1222 * ext4_calc_metadata_amount() has side effects, which we have
1223 * to be prepared undo if we fail to claim space.
1224 */
1225 save_len = ei->i_da_metadata_calc_len;
1226 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1227 md_needed = EXT4_NUM_B2C(sbi,
1228 ext4_calc_metadata_amount(inode, lblock));
1229 trace_ext4_da_reserve_space(inode, md_needed);
1230
1231 /*
1232 * We do still charge estimated metadata to the sb though;
1233 * we cannot afford to run out of free blocks.
1234 */
1235 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1236 ei->i_da_metadata_calc_len = save_len;
1237 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1238 spin_unlock(&ei->i_block_reservation_lock);
1239 return -ENOSPC;
1240 }
1241 ei->i_reserved_meta_blocks += md_needed;
1242 spin_unlock(&ei->i_block_reservation_lock);
1243
1244 return 0; /* success */
1245 }
1246
1247 /*
1248 * Reserve a single cluster located at lblock
1249 */
1250 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1251 {
1252 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1253 struct ext4_inode_info *ei = EXT4_I(inode);
1254 unsigned int md_needed;
1255 int ret;
1256 ext4_lblk_t save_last_lblock;
1257 int save_len;
1258
1259 /*
1260 * We will charge metadata quota at writeout time; this saves
1261 * us from metadata over-estimation, though we may go over by
1262 * a small amount in the end. Here we just reserve for data.
1263 */
1264 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1265 if (ret)
1266 return ret;
1267
1268 /*
1269 * recalculate the amount of metadata blocks to reserve
1270 * in order to allocate nrblocks
1271 * worse case is one extent per block
1272 */
1273 spin_lock(&ei->i_block_reservation_lock);
1274 /*
1275 * ext4_calc_metadata_amount() has side effects, which we have
1276 * to be prepared undo if we fail to claim space.
1277 */
1278 save_len = ei->i_da_metadata_calc_len;
1279 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1280 md_needed = EXT4_NUM_B2C(sbi,
1281 ext4_calc_metadata_amount(inode, lblock));
1282 trace_ext4_da_reserve_space(inode, md_needed);
1283
1284 /*
1285 * We do still charge estimated metadata to the sb though;
1286 * we cannot afford to run out of free blocks.
1287 */
1288 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1289 ei->i_da_metadata_calc_len = save_len;
1290 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1291 spin_unlock(&ei->i_block_reservation_lock);
1292 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1293 return -ENOSPC;
1294 }
1295 ei->i_reserved_data_blocks++;
1296 ei->i_reserved_meta_blocks += md_needed;
1297 spin_unlock(&ei->i_block_reservation_lock);
1298
1299 return 0; /* success */
1300 }
1301
1302 static void ext4_da_release_space(struct inode *inode, int to_free)
1303 {
1304 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1305 struct ext4_inode_info *ei = EXT4_I(inode);
1306
1307 if (!to_free)
1308 return; /* Nothing to release, exit */
1309
1310 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1311
1312 trace_ext4_da_release_space(inode, to_free);
1313 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1314 /*
1315 * if there aren't enough reserved blocks, then the
1316 * counter is messed up somewhere. Since this
1317 * function is called from invalidate page, it's
1318 * harmless to return without any action.
1319 */
1320 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1321 "ino %lu, to_free %d with only %d reserved "
1322 "data blocks", inode->i_ino, to_free,
1323 ei->i_reserved_data_blocks);
1324 WARN_ON(1);
1325 to_free = ei->i_reserved_data_blocks;
1326 }
1327 ei->i_reserved_data_blocks -= to_free;
1328
1329 if (ei->i_reserved_data_blocks == 0) {
1330 /*
1331 * We can release all of the reserved metadata blocks
1332 * only when we have written all of the delayed
1333 * allocation blocks.
1334 * Note that in case of bigalloc, i_reserved_meta_blocks,
1335 * i_reserved_data_blocks, etc. refer to number of clusters.
1336 */
1337 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1338 ei->i_reserved_meta_blocks);
1339 ei->i_reserved_meta_blocks = 0;
1340 ei->i_da_metadata_calc_len = 0;
1341 }
1342
1343 /* update fs dirty data blocks counter */
1344 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1345
1346 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1347
1348 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1349 }
1350
1351 static void ext4_da_page_release_reservation(struct page *page,
1352 unsigned int offset,
1353 unsigned int length)
1354 {
1355 int to_release = 0;
1356 struct buffer_head *head, *bh;
1357 unsigned int curr_off = 0;
1358 struct inode *inode = page->mapping->host;
1359 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1360 unsigned int stop = offset + length;
1361 int num_clusters;
1362 ext4_fsblk_t lblk;
1363
1364 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1365
1366 head = page_buffers(page);
1367 bh = head;
1368 do {
1369 unsigned int next_off = curr_off + bh->b_size;
1370
1371 if (next_off > stop)
1372 break;
1373
1374 if ((offset <= curr_off) && (buffer_delay(bh))) {
1375 to_release++;
1376 clear_buffer_delay(bh);
1377 }
1378 curr_off = next_off;
1379 } while ((bh = bh->b_this_page) != head);
1380
1381 if (to_release) {
1382 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1383 ext4_es_remove_extent(inode, lblk, to_release);
1384 }
1385
1386 /* If we have released all the blocks belonging to a cluster, then we
1387 * need to release the reserved space for that cluster. */
1388 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1389 while (num_clusters > 0) {
1390 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1391 ((num_clusters - 1) << sbi->s_cluster_bits);
1392 if (sbi->s_cluster_ratio == 1 ||
1393 !ext4_find_delalloc_cluster(inode, lblk))
1394 ext4_da_release_space(inode, 1);
1395
1396 num_clusters--;
1397 }
1398 }
1399
1400 /*
1401 * Delayed allocation stuff
1402 */
1403
1404 struct mpage_da_data {
1405 struct inode *inode;
1406 struct writeback_control *wbc;
1407
1408 pgoff_t first_page; /* The first page to write */
1409 pgoff_t next_page; /* Current page to examine */
1410 pgoff_t last_page; /* Last page to examine */
1411 /*
1412 * Extent to map - this can be after first_page because that can be
1413 * fully mapped. We somewhat abuse m_flags to store whether the extent
1414 * is delalloc or unwritten.
1415 */
1416 struct ext4_map_blocks map;
1417 struct ext4_io_submit io_submit; /* IO submission data */
1418 };
1419
1420 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1421 bool invalidate)
1422 {
1423 int nr_pages, i;
1424 pgoff_t index, end;
1425 struct pagevec pvec;
1426 struct inode *inode = mpd->inode;
1427 struct address_space *mapping = inode->i_mapping;
1428
1429 /* This is necessary when next_page == 0. */
1430 if (mpd->first_page >= mpd->next_page)
1431 return;
1432
1433 index = mpd->first_page;
1434 end = mpd->next_page - 1;
1435 if (invalidate) {
1436 ext4_lblk_t start, last;
1437 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1438 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1439 ext4_es_remove_extent(inode, start, last - start + 1);
1440 }
1441
1442 pagevec_init(&pvec, 0);
1443 while (index <= end) {
1444 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1445 if (nr_pages == 0)
1446 break;
1447 for (i = 0; i < nr_pages; i++) {
1448 struct page *page = pvec.pages[i];
1449 if (page->index > end)
1450 break;
1451 BUG_ON(!PageLocked(page));
1452 BUG_ON(PageWriteback(page));
1453 if (invalidate) {
1454 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1455 ClearPageUptodate(page);
1456 }
1457 unlock_page(page);
1458 }
1459 index = pvec.pages[nr_pages - 1]->index + 1;
1460 pagevec_release(&pvec);
1461 }
1462 }
1463
1464 static void ext4_print_free_blocks(struct inode *inode)
1465 {
1466 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1467 struct super_block *sb = inode->i_sb;
1468 struct ext4_inode_info *ei = EXT4_I(inode);
1469
1470 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1471 EXT4_C2B(EXT4_SB(inode->i_sb),
1472 ext4_count_free_clusters(sb)));
1473 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1474 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1475 (long long) EXT4_C2B(EXT4_SB(sb),
1476 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1477 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1478 (long long) EXT4_C2B(EXT4_SB(sb),
1479 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1480 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1481 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1482 ei->i_reserved_data_blocks);
1483 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1484 ei->i_reserved_meta_blocks);
1485 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1486 ei->i_allocated_meta_blocks);
1487 return;
1488 }
1489
1490 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1491 {
1492 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1493 }
1494
1495 /*
1496 * This function is grabs code from the very beginning of
1497 * ext4_map_blocks, but assumes that the caller is from delayed write
1498 * time. This function looks up the requested blocks and sets the
1499 * buffer delay bit under the protection of i_data_sem.
1500 */
1501 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1502 struct ext4_map_blocks *map,
1503 struct buffer_head *bh)
1504 {
1505 struct extent_status es;
1506 int retval;
1507 sector_t invalid_block = ~((sector_t) 0xffff);
1508 #ifdef ES_AGGRESSIVE_TEST
1509 struct ext4_map_blocks orig_map;
1510
1511 memcpy(&orig_map, map, sizeof(*map));
1512 #endif
1513
1514 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1515 invalid_block = ~0;
1516
1517 map->m_flags = 0;
1518 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1519 "logical block %lu\n", inode->i_ino, map->m_len,
1520 (unsigned long) map->m_lblk);
1521
1522 /* Lookup extent status tree firstly */
1523 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1524 ext4_es_lru_add(inode);
1525 if (ext4_es_is_hole(&es)) {
1526 retval = 0;
1527 down_read((&EXT4_I(inode)->i_data_sem));
1528 goto add_delayed;
1529 }
1530
1531 /*
1532 * Delayed extent could be allocated by fallocate.
1533 * So we need to check it.
1534 */
1535 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1536 map_bh(bh, inode->i_sb, invalid_block);
1537 set_buffer_new(bh);
1538 set_buffer_delay(bh);
1539 return 0;
1540 }
1541
1542 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1543 retval = es.es_len - (iblock - es.es_lblk);
1544 if (retval > map->m_len)
1545 retval = map->m_len;
1546 map->m_len = retval;
1547 if (ext4_es_is_written(&es))
1548 map->m_flags |= EXT4_MAP_MAPPED;
1549 else if (ext4_es_is_unwritten(&es))
1550 map->m_flags |= EXT4_MAP_UNWRITTEN;
1551 else
1552 BUG_ON(1);
1553
1554 #ifdef ES_AGGRESSIVE_TEST
1555 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1556 #endif
1557 return retval;
1558 }
1559
1560 /*
1561 * Try to see if we can get the block without requesting a new
1562 * file system block.
1563 */
1564 down_read((&EXT4_I(inode)->i_data_sem));
1565 if (ext4_has_inline_data(inode)) {
1566 /*
1567 * We will soon create blocks for this page, and let
1568 * us pretend as if the blocks aren't allocated yet.
1569 * In case of clusters, we have to handle the work
1570 * of mapping from cluster so that the reserved space
1571 * is calculated properly.
1572 */
1573 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1574 ext4_find_delalloc_cluster(inode, map->m_lblk))
1575 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1576 retval = 0;
1577 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1578 retval = ext4_ext_map_blocks(NULL, inode, map,
1579 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1580 else
1581 retval = ext4_ind_map_blocks(NULL, inode, map,
1582 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1583
1584 add_delayed:
1585 if (retval == 0) {
1586 int ret;
1587 /*
1588 * XXX: __block_prepare_write() unmaps passed block,
1589 * is it OK?
1590 */
1591 /*
1592 * If the block was allocated from previously allocated cluster,
1593 * then we don't need to reserve it again. However we still need
1594 * to reserve metadata for every block we're going to write.
1595 */
1596 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1597 ret = ext4_da_reserve_space(inode, iblock);
1598 if (ret) {
1599 /* not enough space to reserve */
1600 retval = ret;
1601 goto out_unlock;
1602 }
1603 } else {
1604 ret = ext4_da_reserve_metadata(inode, iblock);
1605 if (ret) {
1606 /* not enough space to reserve */
1607 retval = ret;
1608 goto out_unlock;
1609 }
1610 }
1611
1612 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1613 ~0, EXTENT_STATUS_DELAYED);
1614 if (ret) {
1615 retval = ret;
1616 goto out_unlock;
1617 }
1618
1619 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1620 * and it should not appear on the bh->b_state.
1621 */
1622 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1623
1624 map_bh(bh, inode->i_sb, invalid_block);
1625 set_buffer_new(bh);
1626 set_buffer_delay(bh);
1627 } else if (retval > 0) {
1628 int ret;
1629 unsigned int status;
1630
1631 if (unlikely(retval != map->m_len)) {
1632 ext4_warning(inode->i_sb,
1633 "ES len assertion failed for inode "
1634 "%lu: retval %d != map->m_len %d",
1635 inode->i_ino, retval, map->m_len);
1636 WARN_ON(1);
1637 }
1638
1639 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1640 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1641 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1642 map->m_pblk, status);
1643 if (ret != 0)
1644 retval = ret;
1645 }
1646
1647 out_unlock:
1648 up_read((&EXT4_I(inode)->i_data_sem));
1649
1650 return retval;
1651 }
1652
1653 /*
1654 * This is a special get_blocks_t callback which is used by
1655 * ext4_da_write_begin(). It will either return mapped block or
1656 * reserve space for a single block.
1657 *
1658 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1659 * We also have b_blocknr = -1 and b_bdev initialized properly
1660 *
1661 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1662 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1663 * initialized properly.
1664 */
1665 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1666 struct buffer_head *bh, int create)
1667 {
1668 struct ext4_map_blocks map;
1669 int ret = 0;
1670
1671 BUG_ON(create == 0);
1672 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1673
1674 map.m_lblk = iblock;
1675 map.m_len = 1;
1676
1677 /*
1678 * first, we need to know whether the block is allocated already
1679 * preallocated blocks are unmapped but should treated
1680 * the same as allocated blocks.
1681 */
1682 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1683 if (ret <= 0)
1684 return ret;
1685
1686 map_bh(bh, inode->i_sb, map.m_pblk);
1687 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1688
1689 if (buffer_unwritten(bh)) {
1690 /* A delayed write to unwritten bh should be marked
1691 * new and mapped. Mapped ensures that we don't do
1692 * get_block multiple times when we write to the same
1693 * offset and new ensures that we do proper zero out
1694 * for partial write.
1695 */
1696 set_buffer_new(bh);
1697 set_buffer_mapped(bh);
1698 }
1699 return 0;
1700 }
1701
1702 static int bget_one(handle_t *handle, struct buffer_head *bh)
1703 {
1704 get_bh(bh);
1705 return 0;
1706 }
1707
1708 static int bput_one(handle_t *handle, struct buffer_head *bh)
1709 {
1710 put_bh(bh);
1711 return 0;
1712 }
1713
1714 static int __ext4_journalled_writepage(struct page *page,
1715 unsigned int len)
1716 {
1717 struct address_space *mapping = page->mapping;
1718 struct inode *inode = mapping->host;
1719 struct buffer_head *page_bufs = NULL;
1720 handle_t *handle = NULL;
1721 int ret = 0, err = 0;
1722 int inline_data = ext4_has_inline_data(inode);
1723 struct buffer_head *inode_bh = NULL;
1724
1725 ClearPageChecked(page);
1726
1727 if (inline_data) {
1728 BUG_ON(page->index != 0);
1729 BUG_ON(len > ext4_get_max_inline_size(inode));
1730 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1731 if (inode_bh == NULL)
1732 goto out;
1733 } else {
1734 page_bufs = page_buffers(page);
1735 if (!page_bufs) {
1736 BUG();
1737 goto out;
1738 }
1739 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1740 NULL, bget_one);
1741 }
1742 /* As soon as we unlock the page, it can go away, but we have
1743 * references to buffers so we are safe */
1744 unlock_page(page);
1745
1746 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1747 ext4_writepage_trans_blocks(inode));
1748 if (IS_ERR(handle)) {
1749 ret = PTR_ERR(handle);
1750 goto out;
1751 }
1752
1753 BUG_ON(!ext4_handle_valid(handle));
1754
1755 if (inline_data) {
1756 ret = ext4_journal_get_write_access(handle, inode_bh);
1757
1758 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1759
1760 } else {
1761 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1762 do_journal_get_write_access);
1763
1764 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1765 write_end_fn);
1766 }
1767 if (ret == 0)
1768 ret = err;
1769 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1770 err = ext4_journal_stop(handle);
1771 if (!ret)
1772 ret = err;
1773
1774 if (!ext4_has_inline_data(inode))
1775 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1776 NULL, bput_one);
1777 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1778 out:
1779 brelse(inode_bh);
1780 return ret;
1781 }
1782
1783 /*
1784 * Note that we don't need to start a transaction unless we're journaling data
1785 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1786 * need to file the inode to the transaction's list in ordered mode because if
1787 * we are writing back data added by write(), the inode is already there and if
1788 * we are writing back data modified via mmap(), no one guarantees in which
1789 * transaction the data will hit the disk. In case we are journaling data, we
1790 * cannot start transaction directly because transaction start ranks above page
1791 * lock so we have to do some magic.
1792 *
1793 * This function can get called via...
1794 * - ext4_writepages after taking page lock (have journal handle)
1795 * - journal_submit_inode_data_buffers (no journal handle)
1796 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1797 * - grab_page_cache when doing write_begin (have journal handle)
1798 *
1799 * We don't do any block allocation in this function. If we have page with
1800 * multiple blocks we need to write those buffer_heads that are mapped. This
1801 * is important for mmaped based write. So if we do with blocksize 1K
1802 * truncate(f, 1024);
1803 * a = mmap(f, 0, 4096);
1804 * a[0] = 'a';
1805 * truncate(f, 4096);
1806 * we have in the page first buffer_head mapped via page_mkwrite call back
1807 * but other buffer_heads would be unmapped but dirty (dirty done via the
1808 * do_wp_page). So writepage should write the first block. If we modify
1809 * the mmap area beyond 1024 we will again get a page_fault and the
1810 * page_mkwrite callback will do the block allocation and mark the
1811 * buffer_heads mapped.
1812 *
1813 * We redirty the page if we have any buffer_heads that is either delay or
1814 * unwritten in the page.
1815 *
1816 * We can get recursively called as show below.
1817 *
1818 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1819 * ext4_writepage()
1820 *
1821 * But since we don't do any block allocation we should not deadlock.
1822 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1823 */
1824 static int ext4_writepage(struct page *page,
1825 struct writeback_control *wbc)
1826 {
1827 int ret = 0;
1828 loff_t size;
1829 unsigned int len;
1830 struct buffer_head *page_bufs = NULL;
1831 struct inode *inode = page->mapping->host;
1832 struct ext4_io_submit io_submit;
1833
1834 trace_ext4_writepage(page);
1835 size = i_size_read(inode);
1836 if (page->index == size >> PAGE_CACHE_SHIFT)
1837 len = size & ~PAGE_CACHE_MASK;
1838 else
1839 len = PAGE_CACHE_SIZE;
1840
1841 page_bufs = page_buffers(page);
1842 /*
1843 * We cannot do block allocation or other extent handling in this
1844 * function. If there are buffers needing that, we have to redirty
1845 * the page. But we may reach here when we do a journal commit via
1846 * journal_submit_inode_data_buffers() and in that case we must write
1847 * allocated buffers to achieve data=ordered mode guarantees.
1848 */
1849 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1850 ext4_bh_delay_or_unwritten)) {
1851 redirty_page_for_writepage(wbc, page);
1852 if (current->flags & PF_MEMALLOC) {
1853 /*
1854 * For memory cleaning there's no point in writing only
1855 * some buffers. So just bail out. Warn if we came here
1856 * from direct reclaim.
1857 */
1858 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1859 == PF_MEMALLOC);
1860 unlock_page(page);
1861 return 0;
1862 }
1863 }
1864
1865 if (PageChecked(page) && ext4_should_journal_data(inode))
1866 /*
1867 * It's mmapped pagecache. Add buffers and journal it. There
1868 * doesn't seem much point in redirtying the page here.
1869 */
1870 return __ext4_journalled_writepage(page, len);
1871
1872 ext4_io_submit_init(&io_submit, wbc);
1873 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1874 if (!io_submit.io_end) {
1875 redirty_page_for_writepage(wbc, page);
1876 unlock_page(page);
1877 return -ENOMEM;
1878 }
1879 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1880 ext4_io_submit(&io_submit);
1881 /* Drop io_end reference we got from init */
1882 ext4_put_io_end_defer(io_submit.io_end);
1883 return ret;
1884 }
1885
1886 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1887 {
1888 int len;
1889 loff_t size = i_size_read(mpd->inode);
1890 int err;
1891
1892 BUG_ON(page->index != mpd->first_page);
1893 if (page->index == size >> PAGE_CACHE_SHIFT)
1894 len = size & ~PAGE_CACHE_MASK;
1895 else
1896 len = PAGE_CACHE_SIZE;
1897 clear_page_dirty_for_io(page);
1898 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1899 if (!err)
1900 mpd->wbc->nr_to_write--;
1901 mpd->first_page++;
1902
1903 return err;
1904 }
1905
1906 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1907
1908 /*
1909 * mballoc gives us at most this number of blocks...
1910 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1911 * The rest of mballoc seems to handle chunks up to full group size.
1912 */
1913 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1914
1915 /*
1916 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1917 *
1918 * @mpd - extent of blocks
1919 * @lblk - logical number of the block in the file
1920 * @bh - buffer head we want to add to the extent
1921 *
1922 * The function is used to collect contig. blocks in the same state. If the
1923 * buffer doesn't require mapping for writeback and we haven't started the
1924 * extent of buffers to map yet, the function returns 'true' immediately - the
1925 * caller can write the buffer right away. Otherwise the function returns true
1926 * if the block has been added to the extent, false if the block couldn't be
1927 * added.
1928 */
1929 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1930 struct buffer_head *bh)
1931 {
1932 struct ext4_map_blocks *map = &mpd->map;
1933
1934 /* Buffer that doesn't need mapping for writeback? */
1935 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1936 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1937 /* So far no extent to map => we write the buffer right away */
1938 if (map->m_len == 0)
1939 return true;
1940 return false;
1941 }
1942
1943 /* First block in the extent? */
1944 if (map->m_len == 0) {
1945 map->m_lblk = lblk;
1946 map->m_len = 1;
1947 map->m_flags = bh->b_state & BH_FLAGS;
1948 return true;
1949 }
1950
1951 /* Don't go larger than mballoc is willing to allocate */
1952 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1953 return false;
1954
1955 /* Can we merge the block to our big extent? */
1956 if (lblk == map->m_lblk + map->m_len &&
1957 (bh->b_state & BH_FLAGS) == map->m_flags) {
1958 map->m_len++;
1959 return true;
1960 }
1961 return false;
1962 }
1963
1964 /*
1965 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1966 *
1967 * @mpd - extent of blocks for mapping
1968 * @head - the first buffer in the page
1969 * @bh - buffer we should start processing from
1970 * @lblk - logical number of the block in the file corresponding to @bh
1971 *
1972 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1973 * the page for IO if all buffers in this page were mapped and there's no
1974 * accumulated extent of buffers to map or add buffers in the page to the
1975 * extent of buffers to map. The function returns 1 if the caller can continue
1976 * by processing the next page, 0 if it should stop adding buffers to the
1977 * extent to map because we cannot extend it anymore. It can also return value
1978 * < 0 in case of error during IO submission.
1979 */
1980 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1981 struct buffer_head *head,
1982 struct buffer_head *bh,
1983 ext4_lblk_t lblk)
1984 {
1985 struct inode *inode = mpd->inode;
1986 int err;
1987 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1988 >> inode->i_blkbits;
1989
1990 do {
1991 BUG_ON(buffer_locked(bh));
1992
1993 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1994 /* Found extent to map? */
1995 if (mpd->map.m_len)
1996 return 0;
1997 /* Everything mapped so far and we hit EOF */
1998 break;
1999 }
2000 } while (lblk++, (bh = bh->b_this_page) != head);
2001 /* So far everything mapped? Submit the page for IO. */
2002 if (mpd->map.m_len == 0) {
2003 err = mpage_submit_page(mpd, head->b_page);
2004 if (err < 0)
2005 return err;
2006 }
2007 return lblk < blocks;
2008 }
2009
2010 /*
2011 * mpage_map_buffers - update buffers corresponding to changed extent and
2012 * submit fully mapped pages for IO
2013 *
2014 * @mpd - description of extent to map, on return next extent to map
2015 *
2016 * Scan buffers corresponding to changed extent (we expect corresponding pages
2017 * to be already locked) and update buffer state according to new extent state.
2018 * We map delalloc buffers to their physical location, clear unwritten bits,
2019 * and mark buffers as uninit when we perform writes to uninitialized extents
2020 * and do extent conversion after IO is finished. If the last page is not fully
2021 * mapped, we update @map to the next extent in the last page that needs
2022 * mapping. Otherwise we submit the page for IO.
2023 */
2024 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2025 {
2026 struct pagevec pvec;
2027 int nr_pages, i;
2028 struct inode *inode = mpd->inode;
2029 struct buffer_head *head, *bh;
2030 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2031 pgoff_t start, end;
2032 ext4_lblk_t lblk;
2033 sector_t pblock;
2034 int err;
2035
2036 start = mpd->map.m_lblk >> bpp_bits;
2037 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2038 lblk = start << bpp_bits;
2039 pblock = mpd->map.m_pblk;
2040
2041 pagevec_init(&pvec, 0);
2042 while (start <= end) {
2043 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2044 PAGEVEC_SIZE);
2045 if (nr_pages == 0)
2046 break;
2047 for (i = 0; i < nr_pages; i++) {
2048 struct page *page = pvec.pages[i];
2049
2050 if (page->index > end)
2051 break;
2052 /* Up to 'end' pages must be contiguous */
2053 BUG_ON(page->index != start);
2054 bh = head = page_buffers(page);
2055 do {
2056 if (lblk < mpd->map.m_lblk)
2057 continue;
2058 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2059 /*
2060 * Buffer after end of mapped extent.
2061 * Find next buffer in the page to map.
2062 */
2063 mpd->map.m_len = 0;
2064 mpd->map.m_flags = 0;
2065 /*
2066 * FIXME: If dioread_nolock supports
2067 * blocksize < pagesize, we need to make
2068 * sure we add size mapped so far to
2069 * io_end->size as the following call
2070 * can submit the page for IO.
2071 */
2072 err = mpage_process_page_bufs(mpd, head,
2073 bh, lblk);
2074 pagevec_release(&pvec);
2075 if (err > 0)
2076 err = 0;
2077 return err;
2078 }
2079 if (buffer_delay(bh)) {
2080 clear_buffer_delay(bh);
2081 bh->b_blocknr = pblock++;
2082 }
2083 clear_buffer_unwritten(bh);
2084 } while (lblk++, (bh = bh->b_this_page) != head);
2085
2086 /*
2087 * FIXME: This is going to break if dioread_nolock
2088 * supports blocksize < pagesize as we will try to
2089 * convert potentially unmapped parts of inode.
2090 */
2091 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2092 /* Page fully mapped - let IO run! */
2093 err = mpage_submit_page(mpd, page);
2094 if (err < 0) {
2095 pagevec_release(&pvec);
2096 return err;
2097 }
2098 start++;
2099 }
2100 pagevec_release(&pvec);
2101 }
2102 /* Extent fully mapped and matches with page boundary. We are done. */
2103 mpd->map.m_len = 0;
2104 mpd->map.m_flags = 0;
2105 return 0;
2106 }
2107
2108 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2109 {
2110 struct inode *inode = mpd->inode;
2111 struct ext4_map_blocks *map = &mpd->map;
2112 int get_blocks_flags;
2113 int err;
2114
2115 trace_ext4_da_write_pages_extent(inode, map);
2116 /*
2117 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2118 * to convert an uninitialized extent to be initialized (in the case
2119 * where we have written into one or more preallocated blocks). It is
2120 * possible that we're going to need more metadata blocks than
2121 * previously reserved. However we must not fail because we're in
2122 * writeback and there is nothing we can do about it so it might result
2123 * in data loss. So use reserved blocks to allocate metadata if
2124 * possible.
2125 *
2126 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2127 * in question are delalloc blocks. This affects functions in many
2128 * different parts of the allocation call path. This flag exists
2129 * primarily because we don't want to change *many* call functions, so
2130 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2131 * once the inode's allocation semaphore is taken.
2132 */
2133 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2134 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2135 if (ext4_should_dioread_nolock(inode))
2136 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2137 if (map->m_flags & (1 << BH_Delay))
2138 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2139
2140 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2141 if (err < 0)
2142 return err;
2143 if (map->m_flags & EXT4_MAP_UNINIT) {
2144 if (!mpd->io_submit.io_end->handle &&
2145 ext4_handle_valid(handle)) {
2146 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2147 handle->h_rsv_handle = NULL;
2148 }
2149 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2150 }
2151
2152 BUG_ON(map->m_len == 0);
2153 if (map->m_flags & EXT4_MAP_NEW) {
2154 struct block_device *bdev = inode->i_sb->s_bdev;
2155 int i;
2156
2157 for (i = 0; i < map->m_len; i++)
2158 unmap_underlying_metadata(bdev, map->m_pblk + i);
2159 }
2160 return 0;
2161 }
2162
2163 /*
2164 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2165 * mpd->len and submit pages underlying it for IO
2166 *
2167 * @handle - handle for journal operations
2168 * @mpd - extent to map
2169 * @give_up_on_write - we set this to true iff there is a fatal error and there
2170 * is no hope of writing the data. The caller should discard
2171 * dirty pages to avoid infinite loops.
2172 *
2173 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2174 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2175 * them to initialized or split the described range from larger unwritten
2176 * extent. Note that we need not map all the described range since allocation
2177 * can return less blocks or the range is covered by more unwritten extents. We
2178 * cannot map more because we are limited by reserved transaction credits. On
2179 * the other hand we always make sure that the last touched page is fully
2180 * mapped so that it can be written out (and thus forward progress is
2181 * guaranteed). After mapping we submit all mapped pages for IO.
2182 */
2183 static int mpage_map_and_submit_extent(handle_t *handle,
2184 struct mpage_da_data *mpd,
2185 bool *give_up_on_write)
2186 {
2187 struct inode *inode = mpd->inode;
2188 struct ext4_map_blocks *map = &mpd->map;
2189 int err;
2190 loff_t disksize;
2191
2192 mpd->io_submit.io_end->offset =
2193 ((loff_t)map->m_lblk) << inode->i_blkbits;
2194 do {
2195 err = mpage_map_one_extent(handle, mpd);
2196 if (err < 0) {
2197 struct super_block *sb = inode->i_sb;
2198
2199 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2200 goto invalidate_dirty_pages;
2201 /*
2202 * Let the uper layers retry transient errors.
2203 * In the case of ENOSPC, if ext4_count_free_blocks()
2204 * is non-zero, a commit should free up blocks.
2205 */
2206 if ((err == -ENOMEM) ||
2207 (err == -ENOSPC && ext4_count_free_clusters(sb)))
2208 return err;
2209 ext4_msg(sb, KERN_CRIT,
2210 "Delayed block allocation failed for "
2211 "inode %lu at logical offset %llu with"
2212 " max blocks %u with error %d",
2213 inode->i_ino,
2214 (unsigned long long)map->m_lblk,
2215 (unsigned)map->m_len, -err);
2216 ext4_msg(sb, KERN_CRIT,
2217 "This should not happen!! Data will "
2218 "be lost\n");
2219 if (err == -ENOSPC)
2220 ext4_print_free_blocks(inode);
2221 invalidate_dirty_pages:
2222 *give_up_on_write = true;
2223 return err;
2224 }
2225 /*
2226 * Update buffer state, submit mapped pages, and get us new
2227 * extent to map
2228 */
2229 err = mpage_map_and_submit_buffers(mpd);
2230 if (err < 0)
2231 return err;
2232 } while (map->m_len);
2233
2234 /* Update on-disk size after IO is submitted */
2235 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2236 if (disksize > EXT4_I(inode)->i_disksize) {
2237 int err2;
2238
2239 ext4_wb_update_i_disksize(inode, disksize);
2240 err2 = ext4_mark_inode_dirty(handle, inode);
2241 if (err2)
2242 ext4_error(inode->i_sb,
2243 "Failed to mark inode %lu dirty",
2244 inode->i_ino);
2245 if (!err)
2246 err = err2;
2247 }
2248 return err;
2249 }
2250
2251 /*
2252 * Calculate the total number of credits to reserve for one writepages
2253 * iteration. This is called from ext4_writepages(). We map an extent of
2254 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2255 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2256 * bpp - 1 blocks in bpp different extents.
2257 */
2258 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2259 {
2260 int bpp = ext4_journal_blocks_per_page(inode);
2261
2262 return ext4_meta_trans_blocks(inode,
2263 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2264 }
2265
2266 /*
2267 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2268 * and underlying extent to map
2269 *
2270 * @mpd - where to look for pages
2271 *
2272 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2273 * IO immediately. When we find a page which isn't mapped we start accumulating
2274 * extent of buffers underlying these pages that needs mapping (formed by
2275 * either delayed or unwritten buffers). We also lock the pages containing
2276 * these buffers. The extent found is returned in @mpd structure (starting at
2277 * mpd->lblk with length mpd->len blocks).
2278 *
2279 * Note that this function can attach bios to one io_end structure which are
2280 * neither logically nor physically contiguous. Although it may seem as an
2281 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2282 * case as we need to track IO to all buffers underlying a page in one io_end.
2283 */
2284 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2285 {
2286 struct address_space *mapping = mpd->inode->i_mapping;
2287 struct pagevec pvec;
2288 unsigned int nr_pages;
2289 long left = mpd->wbc->nr_to_write;
2290 pgoff_t index = mpd->first_page;
2291 pgoff_t end = mpd->last_page;
2292 int tag;
2293 int i, err = 0;
2294 int blkbits = mpd->inode->i_blkbits;
2295 ext4_lblk_t lblk;
2296 struct buffer_head *head;
2297
2298 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2299 tag = PAGECACHE_TAG_TOWRITE;
2300 else
2301 tag = PAGECACHE_TAG_DIRTY;
2302
2303 pagevec_init(&pvec, 0);
2304 mpd->map.m_len = 0;
2305 mpd->next_page = index;
2306 while (index <= end) {
2307 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2308 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2309 if (nr_pages == 0)
2310 goto out;
2311
2312 for (i = 0; i < nr_pages; i++) {
2313 struct page *page = pvec.pages[i];
2314
2315 /*
2316 * At this point, the page may be truncated or
2317 * invalidated (changing page->mapping to NULL), or
2318 * even swizzled back from swapper_space to tmpfs file
2319 * mapping. However, page->index will not change
2320 * because we have a reference on the page.
2321 */
2322 if (page->index > end)
2323 goto out;
2324
2325 /*
2326 * Accumulated enough dirty pages? This doesn't apply
2327 * to WB_SYNC_ALL mode. For integrity sync we have to
2328 * keep going because someone may be concurrently
2329 * dirtying pages, and we might have synced a lot of
2330 * newly appeared dirty pages, but have not synced all
2331 * of the old dirty pages.
2332 */
2333 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2334 goto out;
2335
2336 /* If we can't merge this page, we are done. */
2337 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2338 goto out;
2339
2340 lock_page(page);
2341 /*
2342 * If the page is no longer dirty, or its mapping no
2343 * longer corresponds to inode we are writing (which
2344 * means it has been truncated or invalidated), or the
2345 * page is already under writeback and we are not doing
2346 * a data integrity writeback, skip the page
2347 */
2348 if (!PageDirty(page) ||
2349 (PageWriteback(page) &&
2350 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2351 unlikely(page->mapping != mapping)) {
2352 unlock_page(page);
2353 continue;
2354 }
2355
2356 wait_on_page_writeback(page);
2357 BUG_ON(PageWriteback(page));
2358
2359 if (mpd->map.m_len == 0)
2360 mpd->first_page = page->index;
2361 mpd->next_page = page->index + 1;
2362 /* Add all dirty buffers to mpd */
2363 lblk = ((ext4_lblk_t)page->index) <<
2364 (PAGE_CACHE_SHIFT - blkbits);
2365 head = page_buffers(page);
2366 err = mpage_process_page_bufs(mpd, head, head, lblk);
2367 if (err <= 0)
2368 goto out;
2369 err = 0;
2370 left--;
2371 }
2372 pagevec_release(&pvec);
2373 cond_resched();
2374 }
2375 return 0;
2376 out:
2377 pagevec_release(&pvec);
2378 return err;
2379 }
2380
2381 static int __writepage(struct page *page, struct writeback_control *wbc,
2382 void *data)
2383 {
2384 struct address_space *mapping = data;
2385 int ret = ext4_writepage(page, wbc);
2386 mapping_set_error(mapping, ret);
2387 return ret;
2388 }
2389
2390 static int ext4_writepages(struct address_space *mapping,
2391 struct writeback_control *wbc)
2392 {
2393 pgoff_t writeback_index = 0;
2394 long nr_to_write = wbc->nr_to_write;
2395 int range_whole = 0;
2396 int cycled = 1;
2397 handle_t *handle = NULL;
2398 struct mpage_da_data mpd;
2399 struct inode *inode = mapping->host;
2400 int needed_blocks, rsv_blocks = 0, ret = 0;
2401 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2402 bool done;
2403 struct blk_plug plug;
2404 bool give_up_on_write = false;
2405
2406 trace_ext4_writepages(inode, wbc);
2407
2408 /*
2409 * No pages to write? This is mainly a kludge to avoid starting
2410 * a transaction for special inodes like journal inode on last iput()
2411 * because that could violate lock ordering on umount
2412 */
2413 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2414 goto out_writepages;
2415
2416 if (ext4_should_journal_data(inode)) {
2417 struct blk_plug plug;
2418
2419 blk_start_plug(&plug);
2420 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2421 blk_finish_plug(&plug);
2422 goto out_writepages;
2423 }
2424
2425 /*
2426 * If the filesystem has aborted, it is read-only, so return
2427 * right away instead of dumping stack traces later on that
2428 * will obscure the real source of the problem. We test
2429 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2430 * the latter could be true if the filesystem is mounted
2431 * read-only, and in that case, ext4_writepages should
2432 * *never* be called, so if that ever happens, we would want
2433 * the stack trace.
2434 */
2435 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2436 ret = -EROFS;
2437 goto out_writepages;
2438 }
2439
2440 if (ext4_should_dioread_nolock(inode)) {
2441 /*
2442 * We may need to convert up to one extent per block in
2443 * the page and we may dirty the inode.
2444 */
2445 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2446 }
2447
2448 /*
2449 * If we have inline data and arrive here, it means that
2450 * we will soon create the block for the 1st page, so
2451 * we'd better clear the inline data here.
2452 */
2453 if (ext4_has_inline_data(inode)) {
2454 /* Just inode will be modified... */
2455 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2456 if (IS_ERR(handle)) {
2457 ret = PTR_ERR(handle);
2458 goto out_writepages;
2459 }
2460 BUG_ON(ext4_test_inode_state(inode,
2461 EXT4_STATE_MAY_INLINE_DATA));
2462 ext4_destroy_inline_data(handle, inode);
2463 ext4_journal_stop(handle);
2464 }
2465
2466 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2467 range_whole = 1;
2468
2469 if (wbc->range_cyclic) {
2470 writeback_index = mapping->writeback_index;
2471 if (writeback_index)
2472 cycled = 0;
2473 mpd.first_page = writeback_index;
2474 mpd.last_page = -1;
2475 } else {
2476 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2477 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2478 }
2479
2480 mpd.inode = inode;
2481 mpd.wbc = wbc;
2482 ext4_io_submit_init(&mpd.io_submit, wbc);
2483 retry:
2484 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2485 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2486 done = false;
2487 blk_start_plug(&plug);
2488 while (!done && mpd.first_page <= mpd.last_page) {
2489 /* For each extent of pages we use new io_end */
2490 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2491 if (!mpd.io_submit.io_end) {
2492 ret = -ENOMEM;
2493 break;
2494 }
2495
2496 /*
2497 * We have two constraints: We find one extent to map and we
2498 * must always write out whole page (makes a difference when
2499 * blocksize < pagesize) so that we don't block on IO when we
2500 * try to write out the rest of the page. Journalled mode is
2501 * not supported by delalloc.
2502 */
2503 BUG_ON(ext4_should_journal_data(inode));
2504 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2505
2506 /* start a new transaction */
2507 handle = ext4_journal_start_with_reserve(inode,
2508 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2509 if (IS_ERR(handle)) {
2510 ret = PTR_ERR(handle);
2511 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2512 "%ld pages, ino %lu; err %d", __func__,
2513 wbc->nr_to_write, inode->i_ino, ret);
2514 /* Release allocated io_end */
2515 ext4_put_io_end(mpd.io_submit.io_end);
2516 break;
2517 }
2518
2519 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2520 ret = mpage_prepare_extent_to_map(&mpd);
2521 if (!ret) {
2522 if (mpd.map.m_len)
2523 ret = mpage_map_and_submit_extent(handle, &mpd,
2524 &give_up_on_write);
2525 else {
2526 /*
2527 * We scanned the whole range (or exhausted
2528 * nr_to_write), submitted what was mapped and
2529 * didn't find anything needing mapping. We are
2530 * done.
2531 */
2532 done = true;
2533 }
2534 }
2535 ext4_journal_stop(handle);
2536 /* Submit prepared bio */
2537 ext4_io_submit(&mpd.io_submit);
2538 /* Unlock pages we didn't use */
2539 mpage_release_unused_pages(&mpd, give_up_on_write);
2540 /* Drop our io_end reference we got from init */
2541 ext4_put_io_end(mpd.io_submit.io_end);
2542
2543 if (ret == -ENOSPC && sbi->s_journal) {
2544 /*
2545 * Commit the transaction which would
2546 * free blocks released in the transaction
2547 * and try again
2548 */
2549 jbd2_journal_force_commit_nested(sbi->s_journal);
2550 ret = 0;
2551 continue;
2552 }
2553 /* Fatal error - ENOMEM, EIO... */
2554 if (ret)
2555 break;
2556 }
2557 blk_finish_plug(&plug);
2558 if (!ret && !cycled && wbc->nr_to_write > 0) {
2559 cycled = 1;
2560 mpd.last_page = writeback_index - 1;
2561 mpd.first_page = 0;
2562 goto retry;
2563 }
2564
2565 /* Update index */
2566 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2567 /*
2568 * Set the writeback_index so that range_cyclic
2569 * mode will write it back later
2570 */
2571 mapping->writeback_index = mpd.first_page;
2572
2573 out_writepages:
2574 trace_ext4_writepages_result(inode, wbc, ret,
2575 nr_to_write - wbc->nr_to_write);
2576 return ret;
2577 }
2578
2579 static int ext4_nonda_switch(struct super_block *sb)
2580 {
2581 s64 free_clusters, dirty_clusters;
2582 struct ext4_sb_info *sbi = EXT4_SB(sb);
2583
2584 /*
2585 * switch to non delalloc mode if we are running low
2586 * on free block. The free block accounting via percpu
2587 * counters can get slightly wrong with percpu_counter_batch getting
2588 * accumulated on each CPU without updating global counters
2589 * Delalloc need an accurate free block accounting. So switch
2590 * to non delalloc when we are near to error range.
2591 */
2592 free_clusters =
2593 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2594 dirty_clusters =
2595 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2596 /*
2597 * Start pushing delalloc when 1/2 of free blocks are dirty.
2598 */
2599 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2600 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2601
2602 if (2 * free_clusters < 3 * dirty_clusters ||
2603 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2604 /*
2605 * free block count is less than 150% of dirty blocks
2606 * or free blocks is less than watermark
2607 */
2608 return 1;
2609 }
2610 return 0;
2611 }
2612
2613 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2614 loff_t pos, unsigned len, unsigned flags,
2615 struct page **pagep, void **fsdata)
2616 {
2617 int ret, retries = 0;
2618 struct page *page;
2619 pgoff_t index;
2620 struct inode *inode = mapping->host;
2621 handle_t *handle;
2622
2623 index = pos >> PAGE_CACHE_SHIFT;
2624
2625 if (ext4_nonda_switch(inode->i_sb)) {
2626 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2627 return ext4_write_begin(file, mapping, pos,
2628 len, flags, pagep, fsdata);
2629 }
2630 *fsdata = (void *)0;
2631 trace_ext4_da_write_begin(inode, pos, len, flags);
2632
2633 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2634 ret = ext4_da_write_inline_data_begin(mapping, inode,
2635 pos, len, flags,
2636 pagep, fsdata);
2637 if (ret < 0)
2638 return ret;
2639 if (ret == 1)
2640 return 0;
2641 }
2642
2643 /*
2644 * grab_cache_page_write_begin() can take a long time if the
2645 * system is thrashing due to memory pressure, or if the page
2646 * is being written back. So grab it first before we start
2647 * the transaction handle. This also allows us to allocate
2648 * the page (if needed) without using GFP_NOFS.
2649 */
2650 retry_grab:
2651 page = grab_cache_page_write_begin(mapping, index, flags);
2652 if (!page)
2653 return -ENOMEM;
2654 unlock_page(page);
2655
2656 /*
2657 * With delayed allocation, we don't log the i_disksize update
2658 * if there is delayed block allocation. But we still need
2659 * to journalling the i_disksize update if writes to the end
2660 * of file which has an already mapped buffer.
2661 */
2662 retry_journal:
2663 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2664 if (IS_ERR(handle)) {
2665 page_cache_release(page);
2666 return PTR_ERR(handle);
2667 }
2668
2669 lock_page(page);
2670 if (page->mapping != mapping) {
2671 /* The page got truncated from under us */
2672 unlock_page(page);
2673 page_cache_release(page);
2674 ext4_journal_stop(handle);
2675 goto retry_grab;
2676 }
2677 /* In case writeback began while the page was unlocked */
2678 wait_for_stable_page(page);
2679
2680 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2681 if (ret < 0) {
2682 unlock_page(page);
2683 ext4_journal_stop(handle);
2684 /*
2685 * block_write_begin may have instantiated a few blocks
2686 * outside i_size. Trim these off again. Don't need
2687 * i_size_read because we hold i_mutex.
2688 */
2689 if (pos + len > inode->i_size)
2690 ext4_truncate_failed_write(inode);
2691
2692 if (ret == -ENOSPC &&
2693 ext4_should_retry_alloc(inode->i_sb, &retries))
2694 goto retry_journal;
2695
2696 page_cache_release(page);
2697 return ret;
2698 }
2699
2700 *pagep = page;
2701 return ret;
2702 }
2703
2704 /*
2705 * Check if we should update i_disksize
2706 * when write to the end of file but not require block allocation
2707 */
2708 static int ext4_da_should_update_i_disksize(struct page *page,
2709 unsigned long offset)
2710 {
2711 struct buffer_head *bh;
2712 struct inode *inode = page->mapping->host;
2713 unsigned int idx;
2714 int i;
2715
2716 bh = page_buffers(page);
2717 idx = offset >> inode->i_blkbits;
2718
2719 for (i = 0; i < idx; i++)
2720 bh = bh->b_this_page;
2721
2722 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2723 return 0;
2724 return 1;
2725 }
2726
2727 static int ext4_da_write_end(struct file *file,
2728 struct address_space *mapping,
2729 loff_t pos, unsigned len, unsigned copied,
2730 struct page *page, void *fsdata)
2731 {
2732 struct inode *inode = mapping->host;
2733 int ret = 0, ret2;
2734 handle_t *handle = ext4_journal_current_handle();
2735 loff_t new_i_size;
2736 unsigned long start, end;
2737 int write_mode = (int)(unsigned long)fsdata;
2738
2739 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2740 return ext4_write_end(file, mapping, pos,
2741 len, copied, page, fsdata);
2742
2743 trace_ext4_da_write_end(inode, pos, len, copied);
2744 start = pos & (PAGE_CACHE_SIZE - 1);
2745 end = start + copied - 1;
2746
2747 /*
2748 * generic_write_end() will run mark_inode_dirty() if i_size
2749 * changes. So let's piggyback the i_disksize mark_inode_dirty
2750 * into that.
2751 */
2752 new_i_size = pos + copied;
2753 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2754 if (ext4_has_inline_data(inode) ||
2755 ext4_da_should_update_i_disksize(page, end)) {
2756 down_write(&EXT4_I(inode)->i_data_sem);
2757 if (new_i_size > EXT4_I(inode)->i_disksize)
2758 EXT4_I(inode)->i_disksize = new_i_size;
2759 up_write(&EXT4_I(inode)->i_data_sem);
2760 /* We need to mark inode dirty even if
2761 * new_i_size is less that inode->i_size
2762 * bu greater than i_disksize.(hint delalloc)
2763 */
2764 ext4_mark_inode_dirty(handle, inode);
2765 }
2766 }
2767
2768 if (write_mode != CONVERT_INLINE_DATA &&
2769 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2770 ext4_has_inline_data(inode))
2771 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2772 page);
2773 else
2774 ret2 = generic_write_end(file, mapping, pos, len, copied,
2775 page, fsdata);
2776
2777 copied = ret2;
2778 if (ret2 < 0)
2779 ret = ret2;
2780 ret2 = ext4_journal_stop(handle);
2781 if (!ret)
2782 ret = ret2;
2783
2784 return ret ? ret : copied;
2785 }
2786
2787 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2788 unsigned int length)
2789 {
2790 /*
2791 * Drop reserved blocks
2792 */
2793 BUG_ON(!PageLocked(page));
2794 if (!page_has_buffers(page))
2795 goto out;
2796
2797 ext4_da_page_release_reservation(page, offset, length);
2798
2799 out:
2800 ext4_invalidatepage(page, offset, length);
2801
2802 return;
2803 }
2804
2805 /*
2806 * Force all delayed allocation blocks to be allocated for a given inode.
2807 */
2808 int ext4_alloc_da_blocks(struct inode *inode)
2809 {
2810 trace_ext4_alloc_da_blocks(inode);
2811
2812 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2813 !EXT4_I(inode)->i_reserved_meta_blocks)
2814 return 0;
2815
2816 /*
2817 * We do something simple for now. The filemap_flush() will
2818 * also start triggering a write of the data blocks, which is
2819 * not strictly speaking necessary (and for users of
2820 * laptop_mode, not even desirable). However, to do otherwise
2821 * would require replicating code paths in:
2822 *
2823 * ext4_writepages() ->
2824 * write_cache_pages() ---> (via passed in callback function)
2825 * __mpage_da_writepage() -->
2826 * mpage_add_bh_to_extent()
2827 * mpage_da_map_blocks()
2828 *
2829 * The problem is that write_cache_pages(), located in
2830 * mm/page-writeback.c, marks pages clean in preparation for
2831 * doing I/O, which is not desirable if we're not planning on
2832 * doing I/O at all.
2833 *
2834 * We could call write_cache_pages(), and then redirty all of
2835 * the pages by calling redirty_page_for_writepage() but that
2836 * would be ugly in the extreme. So instead we would need to
2837 * replicate parts of the code in the above functions,
2838 * simplifying them because we wouldn't actually intend to
2839 * write out the pages, but rather only collect contiguous
2840 * logical block extents, call the multi-block allocator, and
2841 * then update the buffer heads with the block allocations.
2842 *
2843 * For now, though, we'll cheat by calling filemap_flush(),
2844 * which will map the blocks, and start the I/O, but not
2845 * actually wait for the I/O to complete.
2846 */
2847 return filemap_flush(inode->i_mapping);
2848 }
2849
2850 /*
2851 * bmap() is special. It gets used by applications such as lilo and by
2852 * the swapper to find the on-disk block of a specific piece of data.
2853 *
2854 * Naturally, this is dangerous if the block concerned is still in the
2855 * journal. If somebody makes a swapfile on an ext4 data-journaling
2856 * filesystem and enables swap, then they may get a nasty shock when the
2857 * data getting swapped to that swapfile suddenly gets overwritten by
2858 * the original zero's written out previously to the journal and
2859 * awaiting writeback in the kernel's buffer cache.
2860 *
2861 * So, if we see any bmap calls here on a modified, data-journaled file,
2862 * take extra steps to flush any blocks which might be in the cache.
2863 */
2864 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2865 {
2866 struct inode *inode = mapping->host;
2867 journal_t *journal;
2868 int err;
2869
2870 /*
2871 * We can get here for an inline file via the FIBMAP ioctl
2872 */
2873 if (ext4_has_inline_data(inode))
2874 return 0;
2875
2876 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2877 test_opt(inode->i_sb, DELALLOC)) {
2878 /*
2879 * With delalloc we want to sync the file
2880 * so that we can make sure we allocate
2881 * blocks for file
2882 */
2883 filemap_write_and_wait(mapping);
2884 }
2885
2886 if (EXT4_JOURNAL(inode) &&
2887 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2888 /*
2889 * This is a REALLY heavyweight approach, but the use of
2890 * bmap on dirty files is expected to be extremely rare:
2891 * only if we run lilo or swapon on a freshly made file
2892 * do we expect this to happen.
2893 *
2894 * (bmap requires CAP_SYS_RAWIO so this does not
2895 * represent an unprivileged user DOS attack --- we'd be
2896 * in trouble if mortal users could trigger this path at
2897 * will.)
2898 *
2899 * NB. EXT4_STATE_JDATA is not set on files other than
2900 * regular files. If somebody wants to bmap a directory
2901 * or symlink and gets confused because the buffer
2902 * hasn't yet been flushed to disk, they deserve
2903 * everything they get.
2904 */
2905
2906 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2907 journal = EXT4_JOURNAL(inode);
2908 jbd2_journal_lock_updates(journal);
2909 err = jbd2_journal_flush(journal);
2910 jbd2_journal_unlock_updates(journal);
2911
2912 if (err)
2913 return 0;
2914 }
2915
2916 return generic_block_bmap(mapping, block, ext4_get_block);
2917 }
2918
2919 static int ext4_readpage(struct file *file, struct page *page)
2920 {
2921 int ret = -EAGAIN;
2922 struct inode *inode = page->mapping->host;
2923
2924 trace_ext4_readpage(page);
2925
2926 if (ext4_has_inline_data(inode))
2927 ret = ext4_readpage_inline(inode, page);
2928
2929 if (ret == -EAGAIN)
2930 return mpage_readpage(page, ext4_get_block);
2931
2932 return ret;
2933 }
2934
2935 static int
2936 ext4_readpages(struct file *file, struct address_space *mapping,
2937 struct list_head *pages, unsigned nr_pages)
2938 {
2939 struct inode *inode = mapping->host;
2940
2941 /* If the file has inline data, no need to do readpages. */
2942 if (ext4_has_inline_data(inode))
2943 return 0;
2944
2945 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2946 }
2947
2948 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2949 unsigned int length)
2950 {
2951 trace_ext4_invalidatepage(page, offset, length);
2952
2953 /* No journalling happens on data buffers when this function is used */
2954 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2955
2956 block_invalidatepage(page, offset, length);
2957 }
2958
2959 static int __ext4_journalled_invalidatepage(struct page *page,
2960 unsigned int offset,
2961 unsigned int length)
2962 {
2963 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2964
2965 trace_ext4_journalled_invalidatepage(page, offset, length);
2966
2967 /*
2968 * If it's a full truncate we just forget about the pending dirtying
2969 */
2970 if (offset == 0 && length == PAGE_CACHE_SIZE)
2971 ClearPageChecked(page);
2972
2973 return jbd2_journal_invalidatepage(journal, page, offset, length);
2974 }
2975
2976 /* Wrapper for aops... */
2977 static void ext4_journalled_invalidatepage(struct page *page,
2978 unsigned int offset,
2979 unsigned int length)
2980 {
2981 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2982 }
2983
2984 static int ext4_releasepage(struct page *page, gfp_t wait)
2985 {
2986 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2987
2988 trace_ext4_releasepage(page);
2989
2990 /* Page has dirty journalled data -> cannot release */
2991 if (PageChecked(page))
2992 return 0;
2993 if (journal)
2994 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2995 else
2996 return try_to_free_buffers(page);
2997 }
2998
2999 /*
3000 * ext4_get_block used when preparing for a DIO write or buffer write.
3001 * We allocate an uinitialized extent if blocks haven't been allocated.
3002 * The extent will be converted to initialized after the IO is complete.
3003 */
3004 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3005 struct buffer_head *bh_result, int create)
3006 {
3007 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3008 inode->i_ino, create);
3009 return _ext4_get_block(inode, iblock, bh_result,
3010 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3011 }
3012
3013 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3014 struct buffer_head *bh_result, int create)
3015 {
3016 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3017 inode->i_ino, create);
3018 return _ext4_get_block(inode, iblock, bh_result,
3019 EXT4_GET_BLOCKS_NO_LOCK);
3020 }
3021
3022 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3023 ssize_t size, void *private)
3024 {
3025 ext4_io_end_t *io_end = iocb->private;
3026
3027 /* if not async direct IO just return */
3028 if (!io_end)
3029 return;
3030
3031 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3032 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3033 iocb->private, io_end->inode->i_ino, iocb, offset,
3034 size);
3035
3036 iocb->private = NULL;
3037 io_end->offset = offset;
3038 io_end->size = size;
3039 ext4_put_io_end(io_end);
3040 }
3041
3042 /*
3043 * For ext4 extent files, ext4 will do direct-io write to holes,
3044 * preallocated extents, and those write extend the file, no need to
3045 * fall back to buffered IO.
3046 *
3047 * For holes, we fallocate those blocks, mark them as uninitialized
3048 * If those blocks were preallocated, we mark sure they are split, but
3049 * still keep the range to write as uninitialized.
3050 *
3051 * The unwritten extents will be converted to written when DIO is completed.
3052 * For async direct IO, since the IO may still pending when return, we
3053 * set up an end_io call back function, which will do the conversion
3054 * when async direct IO completed.
3055 *
3056 * If the O_DIRECT write will extend the file then add this inode to the
3057 * orphan list. So recovery will truncate it back to the original size
3058 * if the machine crashes during the write.
3059 *
3060 */
3061 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3062 const struct iovec *iov, loff_t offset,
3063 unsigned long nr_segs)
3064 {
3065 struct file *file = iocb->ki_filp;
3066 struct inode *inode = file->f_mapping->host;
3067 ssize_t ret;
3068 size_t count = iov_length(iov, nr_segs);
3069 int overwrite = 0;
3070 get_block_t *get_block_func = NULL;
3071 int dio_flags = 0;
3072 loff_t final_size = offset + count;
3073 ext4_io_end_t *io_end = NULL;
3074
3075 /* Use the old path for reads and writes beyond i_size. */
3076 if (rw != WRITE || final_size > inode->i_size)
3077 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3078
3079 BUG_ON(iocb->private == NULL);
3080
3081 /*
3082 * Make all waiters for direct IO properly wait also for extent
3083 * conversion. This also disallows race between truncate() and
3084 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3085 */
3086 if (rw == WRITE)
3087 atomic_inc(&inode->i_dio_count);
3088
3089 /* If we do a overwrite dio, i_mutex locking can be released */
3090 overwrite = *((int *)iocb->private);
3091
3092 if (overwrite) {
3093 down_read(&EXT4_I(inode)->i_data_sem);
3094 mutex_unlock(&inode->i_mutex);
3095 }
3096
3097 /*
3098 * We could direct write to holes and fallocate.
3099 *
3100 * Allocated blocks to fill the hole are marked as
3101 * uninitialized to prevent parallel buffered read to expose
3102 * the stale data before DIO complete the data IO.
3103 *
3104 * As to previously fallocated extents, ext4 get_block will
3105 * just simply mark the buffer mapped but still keep the
3106 * extents uninitialized.
3107 *
3108 * For non AIO case, we will convert those unwritten extents
3109 * to written after return back from blockdev_direct_IO.
3110 *
3111 * For async DIO, the conversion needs to be deferred when the
3112 * IO is completed. The ext4 end_io callback function will be
3113 * called to take care of the conversion work. Here for async
3114 * case, we allocate an io_end structure to hook to the iocb.
3115 */
3116 iocb->private = NULL;
3117 ext4_inode_aio_set(inode, NULL);
3118 if (!is_sync_kiocb(iocb)) {
3119 io_end = ext4_init_io_end(inode, GFP_NOFS);
3120 if (!io_end) {
3121 ret = -ENOMEM;
3122 goto retake_lock;
3123 }
3124 /*
3125 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3126 */
3127 iocb->private = ext4_get_io_end(io_end);
3128 /*
3129 * we save the io structure for current async direct
3130 * IO, so that later ext4_map_blocks() could flag the
3131 * io structure whether there is a unwritten extents
3132 * needs to be converted when IO is completed.
3133 */
3134 ext4_inode_aio_set(inode, io_end);
3135 }
3136
3137 if (overwrite) {
3138 get_block_func = ext4_get_block_write_nolock;
3139 } else {
3140 get_block_func = ext4_get_block_write;
3141 dio_flags = DIO_LOCKING;
3142 }
3143 ret = __blockdev_direct_IO(rw, iocb, inode,
3144 inode->i_sb->s_bdev, iov,
3145 offset, nr_segs,
3146 get_block_func,
3147 ext4_end_io_dio,
3148 NULL,
3149 dio_flags);
3150
3151 /*
3152 * Put our reference to io_end. This can free the io_end structure e.g.
3153 * in sync IO case or in case of error. It can even perform extent
3154 * conversion if all bios we submitted finished before we got here.
3155 * Note that in that case iocb->private can be already set to NULL
3156 * here.
3157 */
3158 if (io_end) {
3159 ext4_inode_aio_set(inode, NULL);
3160 ext4_put_io_end(io_end);
3161 /*
3162 * When no IO was submitted ext4_end_io_dio() was not
3163 * called so we have to put iocb's reference.
3164 */
3165 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3166 WARN_ON(iocb->private != io_end);
3167 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3168 ext4_put_io_end(io_end);
3169 iocb->private = NULL;
3170 }
3171 }
3172 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3173 EXT4_STATE_DIO_UNWRITTEN)) {
3174 int err;
3175 /*
3176 * for non AIO case, since the IO is already
3177 * completed, we could do the conversion right here
3178 */
3179 err = ext4_convert_unwritten_extents(NULL, inode,
3180 offset, ret);
3181 if (err < 0)
3182 ret = err;
3183 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3184 }
3185
3186 retake_lock:
3187 if (rw == WRITE)
3188 inode_dio_done(inode);
3189 /* take i_mutex locking again if we do a ovewrite dio */
3190 if (overwrite) {
3191 up_read(&EXT4_I(inode)->i_data_sem);
3192 mutex_lock(&inode->i_mutex);
3193 }
3194
3195 return ret;
3196 }
3197
3198 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3199 const struct iovec *iov, loff_t offset,
3200 unsigned long nr_segs)
3201 {
3202 struct file *file = iocb->ki_filp;
3203 struct inode *inode = file->f_mapping->host;
3204 ssize_t ret;
3205
3206 /*
3207 * If we are doing data journalling we don't support O_DIRECT
3208 */
3209 if (ext4_should_journal_data(inode))
3210 return 0;
3211
3212 /* Let buffer I/O handle the inline data case. */
3213 if (ext4_has_inline_data(inode))
3214 return 0;
3215
3216 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3217 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3218 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3219 else
3220 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3221 trace_ext4_direct_IO_exit(inode, offset,
3222 iov_length(iov, nr_segs), rw, ret);
3223 return ret;
3224 }
3225
3226 /*
3227 * Pages can be marked dirty completely asynchronously from ext4's journalling
3228 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3229 * much here because ->set_page_dirty is called under VFS locks. The page is
3230 * not necessarily locked.
3231 *
3232 * We cannot just dirty the page and leave attached buffers clean, because the
3233 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3234 * or jbddirty because all the journalling code will explode.
3235 *
3236 * So what we do is to mark the page "pending dirty" and next time writepage
3237 * is called, propagate that into the buffers appropriately.
3238 */
3239 static int ext4_journalled_set_page_dirty(struct page *page)
3240 {
3241 SetPageChecked(page);
3242 return __set_page_dirty_nobuffers(page);
3243 }
3244
3245 static const struct address_space_operations ext4_aops = {
3246 .readpage = ext4_readpage,
3247 .readpages = ext4_readpages,
3248 .writepage = ext4_writepage,
3249 .writepages = ext4_writepages,
3250 .write_begin = ext4_write_begin,
3251 .write_end = ext4_write_end,
3252 .bmap = ext4_bmap,
3253 .invalidatepage = ext4_invalidatepage,
3254 .releasepage = ext4_releasepage,
3255 .direct_IO = ext4_direct_IO,
3256 .migratepage = buffer_migrate_page,
3257 .is_partially_uptodate = block_is_partially_uptodate,
3258 .error_remove_page = generic_error_remove_page,
3259 };
3260
3261 static const struct address_space_operations ext4_journalled_aops = {
3262 .readpage = ext4_readpage,
3263 .readpages = ext4_readpages,
3264 .writepage = ext4_writepage,
3265 .writepages = ext4_writepages,
3266 .write_begin = ext4_write_begin,
3267 .write_end = ext4_journalled_write_end,
3268 .set_page_dirty = ext4_journalled_set_page_dirty,
3269 .bmap = ext4_bmap,
3270 .invalidatepage = ext4_journalled_invalidatepage,
3271 .releasepage = ext4_releasepage,
3272 .direct_IO = ext4_direct_IO,
3273 .is_partially_uptodate = block_is_partially_uptodate,
3274 .error_remove_page = generic_error_remove_page,
3275 };
3276
3277 static const struct address_space_operations ext4_da_aops = {
3278 .readpage = ext4_readpage,
3279 .readpages = ext4_readpages,
3280 .writepage = ext4_writepage,
3281 .writepages = ext4_writepages,
3282 .write_begin = ext4_da_write_begin,
3283 .write_end = ext4_da_write_end,
3284 .bmap = ext4_bmap,
3285 .invalidatepage = ext4_da_invalidatepage,
3286 .releasepage = ext4_releasepage,
3287 .direct_IO = ext4_direct_IO,
3288 .migratepage = buffer_migrate_page,
3289 .is_partially_uptodate = block_is_partially_uptodate,
3290 .error_remove_page = generic_error_remove_page,
3291 };
3292
3293 void ext4_set_aops(struct inode *inode)
3294 {
3295 switch (ext4_inode_journal_mode(inode)) {
3296 case EXT4_INODE_ORDERED_DATA_MODE:
3297 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3298 break;
3299 case EXT4_INODE_WRITEBACK_DATA_MODE:
3300 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3301 break;
3302 case EXT4_INODE_JOURNAL_DATA_MODE:
3303 inode->i_mapping->a_ops = &ext4_journalled_aops;
3304 return;
3305 default:
3306 BUG();
3307 }
3308 if (test_opt(inode->i_sb, DELALLOC))
3309 inode->i_mapping->a_ops = &ext4_da_aops;
3310 else
3311 inode->i_mapping->a_ops = &ext4_aops;
3312 }
3313
3314 /*
3315 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3316 * up to the end of the block which corresponds to `from'.
3317 * This required during truncate. We need to physically zero the tail end
3318 * of that block so it doesn't yield old data if the file is later grown.
3319 */
3320 int ext4_block_truncate_page(handle_t *handle,
3321 struct address_space *mapping, loff_t from)
3322 {
3323 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3324 unsigned length;
3325 unsigned blocksize;
3326 struct inode *inode = mapping->host;
3327
3328 blocksize = inode->i_sb->s_blocksize;
3329 length = blocksize - (offset & (blocksize - 1));
3330
3331 return ext4_block_zero_page_range(handle, mapping, from, length);
3332 }
3333
3334 /*
3335 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3336 * starting from file offset 'from'. The range to be zero'd must
3337 * be contained with in one block. If the specified range exceeds
3338 * the end of the block it will be shortened to end of the block
3339 * that cooresponds to 'from'
3340 */
3341 int ext4_block_zero_page_range(handle_t *handle,
3342 struct address_space *mapping, loff_t from, loff_t length)
3343 {
3344 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3345 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3346 unsigned blocksize, max, pos;
3347 ext4_lblk_t iblock;
3348 struct inode *inode = mapping->host;
3349 struct buffer_head *bh;
3350 struct page *page;
3351 int err = 0;
3352
3353 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3354 mapping_gfp_mask(mapping) & ~__GFP_FS);
3355 if (!page)
3356 return -ENOMEM;
3357
3358 blocksize = inode->i_sb->s_blocksize;
3359 max = blocksize - (offset & (blocksize - 1));
3360
3361 /*
3362 * correct length if it does not fall between
3363 * 'from' and the end of the block
3364 */
3365 if (length > max || length < 0)
3366 length = max;
3367
3368 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3369
3370 if (!page_has_buffers(page))
3371 create_empty_buffers(page, blocksize, 0);
3372
3373 /* Find the buffer that contains "offset" */
3374 bh = page_buffers(page);
3375 pos = blocksize;
3376 while (offset >= pos) {
3377 bh = bh->b_this_page;
3378 iblock++;
3379 pos += blocksize;
3380 }
3381 if (buffer_freed(bh)) {
3382 BUFFER_TRACE(bh, "freed: skip");
3383 goto unlock;
3384 }
3385 if (!buffer_mapped(bh)) {
3386 BUFFER_TRACE(bh, "unmapped");
3387 ext4_get_block(inode, iblock, bh, 0);
3388 /* unmapped? It's a hole - nothing to do */
3389 if (!buffer_mapped(bh)) {
3390 BUFFER_TRACE(bh, "still unmapped");
3391 goto unlock;
3392 }
3393 }
3394
3395 /* Ok, it's mapped. Make sure it's up-to-date */
3396 if (PageUptodate(page))
3397 set_buffer_uptodate(bh);
3398
3399 if (!buffer_uptodate(bh)) {
3400 err = -EIO;
3401 ll_rw_block(READ, 1, &bh);
3402 wait_on_buffer(bh);
3403 /* Uhhuh. Read error. Complain and punt. */
3404 if (!buffer_uptodate(bh))
3405 goto unlock;
3406 }
3407 if (ext4_should_journal_data(inode)) {
3408 BUFFER_TRACE(bh, "get write access");
3409 err = ext4_journal_get_write_access(handle, bh);
3410 if (err)
3411 goto unlock;
3412 }
3413 zero_user(page, offset, length);
3414 BUFFER_TRACE(bh, "zeroed end of block");
3415
3416 if (ext4_should_journal_data(inode)) {
3417 err = ext4_handle_dirty_metadata(handle, inode, bh);
3418 } else {
3419 err = 0;
3420 mark_buffer_dirty(bh);
3421 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3422 err = ext4_jbd2_file_inode(handle, inode);
3423 }
3424
3425 unlock:
3426 unlock_page(page);
3427 page_cache_release(page);
3428 return err;
3429 }
3430
3431 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3432 loff_t lstart, loff_t length)
3433 {
3434 struct super_block *sb = inode->i_sb;
3435 struct address_space *mapping = inode->i_mapping;
3436 unsigned partial_start, partial_end;
3437 ext4_fsblk_t start, end;
3438 loff_t byte_end = (lstart + length - 1);
3439 int err = 0;
3440
3441 partial_start = lstart & (sb->s_blocksize - 1);
3442 partial_end = byte_end & (sb->s_blocksize - 1);
3443
3444 start = lstart >> sb->s_blocksize_bits;
3445 end = byte_end >> sb->s_blocksize_bits;
3446
3447 /* Handle partial zero within the single block */
3448 if (start == end &&
3449 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3450 err = ext4_block_zero_page_range(handle, mapping,
3451 lstart, length);
3452 return err;
3453 }
3454 /* Handle partial zero out on the start of the range */
3455 if (partial_start) {
3456 err = ext4_block_zero_page_range(handle, mapping,
3457 lstart, sb->s_blocksize);
3458 if (err)
3459 return err;
3460 }
3461 /* Handle partial zero out on the end of the range */
3462 if (partial_end != sb->s_blocksize - 1)
3463 err = ext4_block_zero_page_range(handle, mapping,
3464 byte_end - partial_end,
3465 partial_end + 1);
3466 return err;
3467 }
3468
3469 int ext4_can_truncate(struct inode *inode)
3470 {
3471 if (S_ISREG(inode->i_mode))
3472 return 1;
3473 if (S_ISDIR(inode->i_mode))
3474 return 1;
3475 if (S_ISLNK(inode->i_mode))
3476 return !ext4_inode_is_fast_symlink(inode);
3477 return 0;
3478 }
3479
3480 /*
3481 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3482 * associated with the given offset and length
3483 *
3484 * @inode: File inode
3485 * @offset: The offset where the hole will begin
3486 * @len: The length of the hole
3487 *
3488 * Returns: 0 on success or negative on failure
3489 */
3490
3491 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3492 {
3493 struct super_block *sb = inode->i_sb;
3494 ext4_lblk_t first_block, stop_block;
3495 struct address_space *mapping = inode->i_mapping;
3496 loff_t first_block_offset, last_block_offset;
3497 handle_t *handle;
3498 unsigned int credits;
3499 int ret = 0;
3500
3501 if (!S_ISREG(inode->i_mode))
3502 return -EOPNOTSUPP;
3503
3504 trace_ext4_punch_hole(inode, offset, length);
3505
3506 /*
3507 * Write out all dirty pages to avoid race conditions
3508 * Then release them.
3509 */
3510 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3511 ret = filemap_write_and_wait_range(mapping, offset,
3512 offset + length - 1);
3513 if (ret)
3514 return ret;
3515 }
3516
3517 mutex_lock(&inode->i_mutex);
3518 /* It's not possible punch hole on append only file */
3519 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3520 ret = -EPERM;
3521 goto out_mutex;
3522 }
3523 if (IS_SWAPFILE(inode)) {
3524 ret = -ETXTBSY;
3525 goto out_mutex;
3526 }
3527
3528 /* No need to punch hole beyond i_size */
3529 if (offset >= inode->i_size)
3530 goto out_mutex;
3531
3532 /*
3533 * If the hole extends beyond i_size, set the hole
3534 * to end after the page that contains i_size
3535 */
3536 if (offset + length > inode->i_size) {
3537 length = inode->i_size +
3538 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3539 offset;
3540 }
3541
3542 if (offset & (sb->s_blocksize - 1) ||
3543 (offset + length) & (sb->s_blocksize - 1)) {
3544 /*
3545 * Attach jinode to inode for jbd2 if we do any zeroing of
3546 * partial block
3547 */
3548 ret = ext4_inode_attach_jinode(inode);
3549 if (ret < 0)
3550 goto out_mutex;
3551
3552 }
3553
3554 first_block_offset = round_up(offset, sb->s_blocksize);
3555 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3556
3557 /* Now release the pages and zero block aligned part of pages*/
3558 if (last_block_offset > first_block_offset)
3559 truncate_pagecache_range(inode, first_block_offset,
3560 last_block_offset);
3561
3562 /* Wait all existing dio workers, newcomers will block on i_mutex */
3563 ext4_inode_block_unlocked_dio(inode);
3564 inode_dio_wait(inode);
3565
3566 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3567 credits = ext4_writepage_trans_blocks(inode);
3568 else
3569 credits = ext4_blocks_for_truncate(inode);
3570 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3571 if (IS_ERR(handle)) {
3572 ret = PTR_ERR(handle);
3573 ext4_std_error(sb, ret);
3574 goto out_dio;
3575 }
3576
3577 ret = ext4_zero_partial_blocks(handle, inode, offset,
3578 length);
3579 if (ret)
3580 goto out_stop;
3581
3582 first_block = (offset + sb->s_blocksize - 1) >>
3583 EXT4_BLOCK_SIZE_BITS(sb);
3584 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3585
3586 /* If there are no blocks to remove, return now */
3587 if (first_block >= stop_block)
3588 goto out_stop;
3589
3590 down_write(&EXT4_I(inode)->i_data_sem);
3591 ext4_discard_preallocations(inode);
3592
3593 ret = ext4_es_remove_extent(inode, first_block,
3594 stop_block - first_block);
3595 if (ret) {
3596 up_write(&EXT4_I(inode)->i_data_sem);
3597 goto out_stop;
3598 }
3599
3600 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3601 ret = ext4_ext_remove_space(inode, first_block,
3602 stop_block - 1);
3603 else
3604 ret = ext4_free_hole_blocks(handle, inode, first_block,
3605 stop_block);
3606
3607 ext4_discard_preallocations(inode);
3608 up_write(&EXT4_I(inode)->i_data_sem);
3609 if (IS_SYNC(inode))
3610 ext4_handle_sync(handle);
3611 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3612 ext4_mark_inode_dirty(handle, inode);
3613 out_stop:
3614 ext4_journal_stop(handle);
3615 out_dio:
3616 ext4_inode_resume_unlocked_dio(inode);
3617 out_mutex:
3618 mutex_unlock(&inode->i_mutex);
3619 return ret;
3620 }
3621
3622 int ext4_inode_attach_jinode(struct inode *inode)
3623 {
3624 struct ext4_inode_info *ei = EXT4_I(inode);
3625 struct jbd2_inode *jinode;
3626
3627 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3628 return 0;
3629
3630 jinode = jbd2_alloc_inode(GFP_KERNEL);
3631 spin_lock(&inode->i_lock);
3632 if (!ei->jinode) {
3633 if (!jinode) {
3634 spin_unlock(&inode->i_lock);
3635 return -ENOMEM;
3636 }
3637 ei->jinode = jinode;
3638 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3639 jinode = NULL;
3640 }
3641 spin_unlock(&inode->i_lock);
3642 if (unlikely(jinode != NULL))
3643 jbd2_free_inode(jinode);
3644 return 0;
3645 }
3646
3647 /*
3648 * ext4_truncate()
3649 *
3650 * We block out ext4_get_block() block instantiations across the entire
3651 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3652 * simultaneously on behalf of the same inode.
3653 *
3654 * As we work through the truncate and commit bits of it to the journal there
3655 * is one core, guiding principle: the file's tree must always be consistent on
3656 * disk. We must be able to restart the truncate after a crash.
3657 *
3658 * The file's tree may be transiently inconsistent in memory (although it
3659 * probably isn't), but whenever we close off and commit a journal transaction,
3660 * the contents of (the filesystem + the journal) must be consistent and
3661 * restartable. It's pretty simple, really: bottom up, right to left (although
3662 * left-to-right works OK too).
3663 *
3664 * Note that at recovery time, journal replay occurs *before* the restart of
3665 * truncate against the orphan inode list.
3666 *
3667 * The committed inode has the new, desired i_size (which is the same as
3668 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3669 * that this inode's truncate did not complete and it will again call
3670 * ext4_truncate() to have another go. So there will be instantiated blocks
3671 * to the right of the truncation point in a crashed ext4 filesystem. But
3672 * that's fine - as long as they are linked from the inode, the post-crash
3673 * ext4_truncate() run will find them and release them.
3674 */
3675 void ext4_truncate(struct inode *inode)
3676 {
3677 struct ext4_inode_info *ei = EXT4_I(inode);
3678 unsigned int credits;
3679 handle_t *handle;
3680 struct address_space *mapping = inode->i_mapping;
3681
3682 /*
3683 * There is a possibility that we're either freeing the inode
3684 * or it completely new indode. In those cases we might not
3685 * have i_mutex locked because it's not necessary.
3686 */
3687 if (!(inode->i_state & (I_NEW|I_FREEING)))
3688 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3689 trace_ext4_truncate_enter(inode);
3690
3691 if (!ext4_can_truncate(inode))
3692 return;
3693
3694 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3695
3696 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3697 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3698
3699 if (ext4_has_inline_data(inode)) {
3700 int has_inline = 1;
3701
3702 ext4_inline_data_truncate(inode, &has_inline);
3703 if (has_inline)
3704 return;
3705 }
3706
3707 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3708 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3709 if (ext4_inode_attach_jinode(inode) < 0)
3710 return;
3711 }
3712
3713 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3714 credits = ext4_writepage_trans_blocks(inode);
3715 else
3716 credits = ext4_blocks_for_truncate(inode);
3717
3718 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3719 if (IS_ERR(handle)) {
3720 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3721 return;
3722 }
3723
3724 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3725 ext4_block_truncate_page(handle, mapping, inode->i_size);
3726
3727 /*
3728 * We add the inode to the orphan list, so that if this
3729 * truncate spans multiple transactions, and we crash, we will
3730 * resume the truncate when the filesystem recovers. It also
3731 * marks the inode dirty, to catch the new size.
3732 *
3733 * Implication: the file must always be in a sane, consistent
3734 * truncatable state while each transaction commits.
3735 */
3736 if (ext4_orphan_add(handle, inode))
3737 goto out_stop;
3738
3739 down_write(&EXT4_I(inode)->i_data_sem);
3740
3741 ext4_discard_preallocations(inode);
3742
3743 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3744 ext4_ext_truncate(handle, inode);
3745 else
3746 ext4_ind_truncate(handle, inode);
3747
3748 up_write(&ei->i_data_sem);
3749
3750 if (IS_SYNC(inode))
3751 ext4_handle_sync(handle);
3752
3753 out_stop:
3754 /*
3755 * If this was a simple ftruncate() and the file will remain alive,
3756 * then we need to clear up the orphan record which we created above.
3757 * However, if this was a real unlink then we were called by
3758 * ext4_delete_inode(), and we allow that function to clean up the
3759 * orphan info for us.
3760 */
3761 if (inode->i_nlink)
3762 ext4_orphan_del(handle, inode);
3763
3764 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3765 ext4_mark_inode_dirty(handle, inode);
3766 ext4_journal_stop(handle);
3767
3768 trace_ext4_truncate_exit(inode);
3769 }
3770
3771 /*
3772 * ext4_get_inode_loc returns with an extra refcount against the inode's
3773 * underlying buffer_head on success. If 'in_mem' is true, we have all
3774 * data in memory that is needed to recreate the on-disk version of this
3775 * inode.
3776 */
3777 static int __ext4_get_inode_loc(struct inode *inode,
3778 struct ext4_iloc *iloc, int in_mem)
3779 {
3780 struct ext4_group_desc *gdp;
3781 struct buffer_head *bh;
3782 struct super_block *sb = inode->i_sb;
3783 ext4_fsblk_t block;
3784 int inodes_per_block, inode_offset;
3785
3786 iloc->bh = NULL;
3787 if (!ext4_valid_inum(sb, inode->i_ino))
3788 return -EIO;
3789
3790 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3791 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3792 if (!gdp)
3793 return -EIO;
3794
3795 /*
3796 * Figure out the offset within the block group inode table
3797 */
3798 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3799 inode_offset = ((inode->i_ino - 1) %
3800 EXT4_INODES_PER_GROUP(sb));
3801 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3802 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3803
3804 bh = sb_getblk(sb, block);
3805 if (unlikely(!bh))
3806 return -ENOMEM;
3807 if (!buffer_uptodate(bh)) {
3808 lock_buffer(bh);
3809
3810 /*
3811 * If the buffer has the write error flag, we have failed
3812 * to write out another inode in the same block. In this
3813 * case, we don't have to read the block because we may
3814 * read the old inode data successfully.
3815 */
3816 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3817 set_buffer_uptodate(bh);
3818
3819 if (buffer_uptodate(bh)) {
3820 /* someone brought it uptodate while we waited */
3821 unlock_buffer(bh);
3822 goto has_buffer;
3823 }
3824
3825 /*
3826 * If we have all information of the inode in memory and this
3827 * is the only valid inode in the block, we need not read the
3828 * block.
3829 */
3830 if (in_mem) {
3831 struct buffer_head *bitmap_bh;
3832 int i, start;
3833
3834 start = inode_offset & ~(inodes_per_block - 1);
3835
3836 /* Is the inode bitmap in cache? */
3837 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3838 if (unlikely(!bitmap_bh))
3839 goto make_io;
3840
3841 /*
3842 * If the inode bitmap isn't in cache then the
3843 * optimisation may end up performing two reads instead
3844 * of one, so skip it.
3845 */
3846 if (!buffer_uptodate(bitmap_bh)) {
3847 brelse(bitmap_bh);
3848 goto make_io;
3849 }
3850 for (i = start; i < start + inodes_per_block; i++) {
3851 if (i == inode_offset)
3852 continue;
3853 if (ext4_test_bit(i, bitmap_bh->b_data))
3854 break;
3855 }
3856 brelse(bitmap_bh);
3857 if (i == start + inodes_per_block) {
3858 /* all other inodes are free, so skip I/O */
3859 memset(bh->b_data, 0, bh->b_size);
3860 set_buffer_uptodate(bh);
3861 unlock_buffer(bh);
3862 goto has_buffer;
3863 }
3864 }
3865
3866 make_io:
3867 /*
3868 * If we need to do any I/O, try to pre-readahead extra
3869 * blocks from the inode table.
3870 */
3871 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3872 ext4_fsblk_t b, end, table;
3873 unsigned num;
3874 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3875
3876 table = ext4_inode_table(sb, gdp);
3877 /* s_inode_readahead_blks is always a power of 2 */
3878 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3879 if (table > b)
3880 b = table;
3881 end = b + ra_blks;
3882 num = EXT4_INODES_PER_GROUP(sb);
3883 if (ext4_has_group_desc_csum(sb))
3884 num -= ext4_itable_unused_count(sb, gdp);
3885 table += num / inodes_per_block;
3886 if (end > table)
3887 end = table;
3888 while (b <= end)
3889 sb_breadahead(sb, b++);
3890 }
3891
3892 /*
3893 * There are other valid inodes in the buffer, this inode
3894 * has in-inode xattrs, or we don't have this inode in memory.
3895 * Read the block from disk.
3896 */
3897 trace_ext4_load_inode(inode);
3898 get_bh(bh);
3899 bh->b_end_io = end_buffer_read_sync;
3900 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3901 wait_on_buffer(bh);
3902 if (!buffer_uptodate(bh)) {
3903 EXT4_ERROR_INODE_BLOCK(inode, block,
3904 "unable to read itable block");
3905 brelse(bh);
3906 return -EIO;
3907 }
3908 }
3909 has_buffer:
3910 iloc->bh = bh;
3911 return 0;
3912 }
3913
3914 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3915 {
3916 /* We have all inode data except xattrs in memory here. */
3917 return __ext4_get_inode_loc(inode, iloc,
3918 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3919 }
3920
3921 void ext4_set_inode_flags(struct inode *inode)
3922 {
3923 unsigned int flags = EXT4_I(inode)->i_flags;
3924
3925 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3926 if (flags & EXT4_SYNC_FL)
3927 inode->i_flags |= S_SYNC;
3928 if (flags & EXT4_APPEND_FL)
3929 inode->i_flags |= S_APPEND;
3930 if (flags & EXT4_IMMUTABLE_FL)
3931 inode->i_flags |= S_IMMUTABLE;
3932 if (flags & EXT4_NOATIME_FL)
3933 inode->i_flags |= S_NOATIME;
3934 if (flags & EXT4_DIRSYNC_FL)
3935 inode->i_flags |= S_DIRSYNC;
3936 }
3937
3938 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3939 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3940 {
3941 unsigned int vfs_fl;
3942 unsigned long old_fl, new_fl;
3943
3944 do {
3945 vfs_fl = ei->vfs_inode.i_flags;
3946 old_fl = ei->i_flags;
3947 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3948 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3949 EXT4_DIRSYNC_FL);
3950 if (vfs_fl & S_SYNC)
3951 new_fl |= EXT4_SYNC_FL;
3952 if (vfs_fl & S_APPEND)
3953 new_fl |= EXT4_APPEND_FL;
3954 if (vfs_fl & S_IMMUTABLE)
3955 new_fl |= EXT4_IMMUTABLE_FL;
3956 if (vfs_fl & S_NOATIME)
3957 new_fl |= EXT4_NOATIME_FL;
3958 if (vfs_fl & S_DIRSYNC)
3959 new_fl |= EXT4_DIRSYNC_FL;
3960 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3961 }
3962
3963 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3964 struct ext4_inode_info *ei)
3965 {
3966 blkcnt_t i_blocks ;
3967 struct inode *inode = &(ei->vfs_inode);
3968 struct super_block *sb = inode->i_sb;
3969
3970 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3971 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3972 /* we are using combined 48 bit field */
3973 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3974 le32_to_cpu(raw_inode->i_blocks_lo);
3975 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3976 /* i_blocks represent file system block size */
3977 return i_blocks << (inode->i_blkbits - 9);
3978 } else {
3979 return i_blocks;
3980 }
3981 } else {
3982 return le32_to_cpu(raw_inode->i_blocks_lo);
3983 }
3984 }
3985
3986 static inline void ext4_iget_extra_inode(struct inode *inode,
3987 struct ext4_inode *raw_inode,
3988 struct ext4_inode_info *ei)
3989 {
3990 __le32 *magic = (void *)raw_inode +
3991 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3992 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3993 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3994 ext4_find_inline_data_nolock(inode);
3995 } else
3996 EXT4_I(inode)->i_inline_off = 0;
3997 }
3998
3999 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4000 {
4001 struct ext4_iloc iloc;
4002 struct ext4_inode *raw_inode;
4003 struct ext4_inode_info *ei;
4004 struct inode *inode;
4005 journal_t *journal = EXT4_SB(sb)->s_journal;
4006 long ret;
4007 int block;
4008 uid_t i_uid;
4009 gid_t i_gid;
4010
4011 inode = iget_locked(sb, ino);
4012 if (!inode)
4013 return ERR_PTR(-ENOMEM);
4014 if (!(inode->i_state & I_NEW))
4015 return inode;
4016
4017 ei = EXT4_I(inode);
4018 iloc.bh = NULL;
4019
4020 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4021 if (ret < 0)
4022 goto bad_inode;
4023 raw_inode = ext4_raw_inode(&iloc);
4024
4025 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4026 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4027 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4028 EXT4_INODE_SIZE(inode->i_sb)) {
4029 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4030 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4031 EXT4_INODE_SIZE(inode->i_sb));
4032 ret = -EIO;
4033 goto bad_inode;
4034 }
4035 } else
4036 ei->i_extra_isize = 0;
4037
4038 /* Precompute checksum seed for inode metadata */
4039 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4040 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4041 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4042 __u32 csum;
4043 __le32 inum = cpu_to_le32(inode->i_ino);
4044 __le32 gen = raw_inode->i_generation;
4045 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4046 sizeof(inum));
4047 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4048 sizeof(gen));
4049 }
4050
4051 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4052 EXT4_ERROR_INODE(inode, "checksum invalid");
4053 ret = -EIO;
4054 goto bad_inode;
4055 }
4056
4057 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4058 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4059 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4060 if (!(test_opt(inode->i_sb, NO_UID32))) {
4061 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4062 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4063 }
4064 i_uid_write(inode, i_uid);
4065 i_gid_write(inode, i_gid);
4066 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4067
4068 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4069 ei->i_inline_off = 0;
4070 ei->i_dir_start_lookup = 0;
4071 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4072 /* We now have enough fields to check if the inode was active or not.
4073 * This is needed because nfsd might try to access dead inodes
4074 * the test is that same one that e2fsck uses
4075 * NeilBrown 1999oct15
4076 */
4077 if (inode->i_nlink == 0) {
4078 if ((inode->i_mode == 0 ||
4079 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4080 ino != EXT4_BOOT_LOADER_INO) {
4081 /* this inode is deleted */
4082 ret = -ESTALE;
4083 goto bad_inode;
4084 }
4085 /* The only unlinked inodes we let through here have
4086 * valid i_mode and are being read by the orphan
4087 * recovery code: that's fine, we're about to complete
4088 * the process of deleting those.
4089 * OR it is the EXT4_BOOT_LOADER_INO which is
4090 * not initialized on a new filesystem. */
4091 }
4092 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4093 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4094 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4095 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4096 ei->i_file_acl |=
4097 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4098 inode->i_size = ext4_isize(raw_inode);
4099 ei->i_disksize = inode->i_size;
4100 #ifdef CONFIG_QUOTA
4101 ei->i_reserved_quota = 0;
4102 #endif
4103 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4104 ei->i_block_group = iloc.block_group;
4105 ei->i_last_alloc_group = ~0;
4106 /*
4107 * NOTE! The in-memory inode i_data array is in little-endian order
4108 * even on big-endian machines: we do NOT byteswap the block numbers!
4109 */
4110 for (block = 0; block < EXT4_N_BLOCKS; block++)
4111 ei->i_data[block] = raw_inode->i_block[block];
4112 INIT_LIST_HEAD(&ei->i_orphan);
4113
4114 /*
4115 * Set transaction id's of transactions that have to be committed
4116 * to finish f[data]sync. We set them to currently running transaction
4117 * as we cannot be sure that the inode or some of its metadata isn't
4118 * part of the transaction - the inode could have been reclaimed and
4119 * now it is reread from disk.
4120 */
4121 if (journal) {
4122 transaction_t *transaction;
4123 tid_t tid;
4124
4125 read_lock(&journal->j_state_lock);
4126 if (journal->j_running_transaction)
4127 transaction = journal->j_running_transaction;
4128 else
4129 transaction = journal->j_committing_transaction;
4130 if (transaction)
4131 tid = transaction->t_tid;
4132 else
4133 tid = journal->j_commit_sequence;
4134 read_unlock(&journal->j_state_lock);
4135 ei->i_sync_tid = tid;
4136 ei->i_datasync_tid = tid;
4137 }
4138
4139 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4140 if (ei->i_extra_isize == 0) {
4141 /* The extra space is currently unused. Use it. */
4142 ei->i_extra_isize = sizeof(struct ext4_inode) -
4143 EXT4_GOOD_OLD_INODE_SIZE;
4144 } else {
4145 ext4_iget_extra_inode(inode, raw_inode, ei);
4146 }
4147 }
4148
4149 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4150 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4151 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4152 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4153
4154 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4155 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4156 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4157 inode->i_version |=
4158 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4159 }
4160
4161 ret = 0;
4162 if (ei->i_file_acl &&
4163 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4164 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4165 ei->i_file_acl);
4166 ret = -EIO;
4167 goto bad_inode;
4168 } else if (!ext4_has_inline_data(inode)) {
4169 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4170 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4171 (S_ISLNK(inode->i_mode) &&
4172 !ext4_inode_is_fast_symlink(inode))))
4173 /* Validate extent which is part of inode */
4174 ret = ext4_ext_check_inode(inode);
4175 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4176 (S_ISLNK(inode->i_mode) &&
4177 !ext4_inode_is_fast_symlink(inode))) {
4178 /* Validate block references which are part of inode */
4179 ret = ext4_ind_check_inode(inode);
4180 }
4181 }
4182 if (ret)
4183 goto bad_inode;
4184
4185 if (S_ISREG(inode->i_mode)) {
4186 inode->i_op = &ext4_file_inode_operations;
4187 inode->i_fop = &ext4_file_operations;
4188 ext4_set_aops(inode);
4189 } else if (S_ISDIR(inode->i_mode)) {
4190 inode->i_op = &ext4_dir_inode_operations;
4191 inode->i_fop = &ext4_dir_operations;
4192 } else if (S_ISLNK(inode->i_mode)) {
4193 if (ext4_inode_is_fast_symlink(inode)) {
4194 inode->i_op = &ext4_fast_symlink_inode_operations;
4195 nd_terminate_link(ei->i_data, inode->i_size,
4196 sizeof(ei->i_data) - 1);
4197 } else {
4198 inode->i_op = &ext4_symlink_inode_operations;
4199 ext4_set_aops(inode);
4200 }
4201 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4202 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4203 inode->i_op = &ext4_special_inode_operations;
4204 if (raw_inode->i_block[0])
4205 init_special_inode(inode, inode->i_mode,
4206 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4207 else
4208 init_special_inode(inode, inode->i_mode,
4209 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4210 } else if (ino == EXT4_BOOT_LOADER_INO) {
4211 make_bad_inode(inode);
4212 } else {
4213 ret = -EIO;
4214 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4215 goto bad_inode;
4216 }
4217 brelse(iloc.bh);
4218 ext4_set_inode_flags(inode);
4219 unlock_new_inode(inode);
4220 return inode;
4221
4222 bad_inode:
4223 brelse(iloc.bh);
4224 iget_failed(inode);
4225 return ERR_PTR(ret);
4226 }
4227
4228 static int ext4_inode_blocks_set(handle_t *handle,
4229 struct ext4_inode *raw_inode,
4230 struct ext4_inode_info *ei)
4231 {
4232 struct inode *inode = &(ei->vfs_inode);
4233 u64 i_blocks = inode->i_blocks;
4234 struct super_block *sb = inode->i_sb;
4235
4236 if (i_blocks <= ~0U) {
4237 /*
4238 * i_blocks can be represented in a 32 bit variable
4239 * as multiple of 512 bytes
4240 */
4241 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4242 raw_inode->i_blocks_high = 0;
4243 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4244 return 0;
4245 }
4246 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4247 return -EFBIG;
4248
4249 if (i_blocks <= 0xffffffffffffULL) {
4250 /*
4251 * i_blocks can be represented in a 48 bit variable
4252 * as multiple of 512 bytes
4253 */
4254 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4255 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4256 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4257 } else {
4258 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4259 /* i_block is stored in file system block size */
4260 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4261 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4262 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4263 }
4264 return 0;
4265 }
4266
4267 /*
4268 * Post the struct inode info into an on-disk inode location in the
4269 * buffer-cache. This gobbles the caller's reference to the
4270 * buffer_head in the inode location struct.
4271 *
4272 * The caller must have write access to iloc->bh.
4273 */
4274 static int ext4_do_update_inode(handle_t *handle,
4275 struct inode *inode,
4276 struct ext4_iloc *iloc)
4277 {
4278 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4279 struct ext4_inode_info *ei = EXT4_I(inode);
4280 struct buffer_head *bh = iloc->bh;
4281 int err = 0, rc, block;
4282 int need_datasync = 0;
4283 uid_t i_uid;
4284 gid_t i_gid;
4285
4286 /* For fields not not tracking in the in-memory inode,
4287 * initialise them to zero for new inodes. */
4288 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4289 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4290
4291 ext4_get_inode_flags(ei);
4292 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4293 i_uid = i_uid_read(inode);
4294 i_gid = i_gid_read(inode);
4295 if (!(test_opt(inode->i_sb, NO_UID32))) {
4296 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4297 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4298 /*
4299 * Fix up interoperability with old kernels. Otherwise, old inodes get
4300 * re-used with the upper 16 bits of the uid/gid intact
4301 */
4302 if (!ei->i_dtime) {
4303 raw_inode->i_uid_high =
4304 cpu_to_le16(high_16_bits(i_uid));
4305 raw_inode->i_gid_high =
4306 cpu_to_le16(high_16_bits(i_gid));
4307 } else {
4308 raw_inode->i_uid_high = 0;
4309 raw_inode->i_gid_high = 0;
4310 }
4311 } else {
4312 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4313 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4314 raw_inode->i_uid_high = 0;
4315 raw_inode->i_gid_high = 0;
4316 }
4317 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4318
4319 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4320 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4321 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4322 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4323
4324 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4325 goto out_brelse;
4326 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4327 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4328 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4329 cpu_to_le32(EXT4_OS_HURD))
4330 raw_inode->i_file_acl_high =
4331 cpu_to_le16(ei->i_file_acl >> 32);
4332 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4333 if (ei->i_disksize != ext4_isize(raw_inode)) {
4334 ext4_isize_set(raw_inode, ei->i_disksize);
4335 need_datasync = 1;
4336 }
4337 if (ei->i_disksize > 0x7fffffffULL) {
4338 struct super_block *sb = inode->i_sb;
4339 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4340 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4341 EXT4_SB(sb)->s_es->s_rev_level ==
4342 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4343 /* If this is the first large file
4344 * created, add a flag to the superblock.
4345 */
4346 err = ext4_journal_get_write_access(handle,
4347 EXT4_SB(sb)->s_sbh);
4348 if (err)
4349 goto out_brelse;
4350 ext4_update_dynamic_rev(sb);
4351 EXT4_SET_RO_COMPAT_FEATURE(sb,
4352 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4353 ext4_handle_sync(handle);
4354 err = ext4_handle_dirty_super(handle, sb);
4355 }
4356 }
4357 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4358 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4359 if (old_valid_dev(inode->i_rdev)) {
4360 raw_inode->i_block[0] =
4361 cpu_to_le32(old_encode_dev(inode->i_rdev));
4362 raw_inode->i_block[1] = 0;
4363 } else {
4364 raw_inode->i_block[0] = 0;
4365 raw_inode->i_block[1] =
4366 cpu_to_le32(new_encode_dev(inode->i_rdev));
4367 raw_inode->i_block[2] = 0;
4368 }
4369 } else if (!ext4_has_inline_data(inode)) {
4370 for (block = 0; block < EXT4_N_BLOCKS; block++)
4371 raw_inode->i_block[block] = ei->i_data[block];
4372 }
4373
4374 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4375 if (ei->i_extra_isize) {
4376 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4377 raw_inode->i_version_hi =
4378 cpu_to_le32(inode->i_version >> 32);
4379 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4380 }
4381
4382 ext4_inode_csum_set(inode, raw_inode, ei);
4383
4384 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4385 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4386 if (!err)
4387 err = rc;
4388 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4389
4390 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4391 out_brelse:
4392 brelse(bh);
4393 ext4_std_error(inode->i_sb, err);
4394 return err;
4395 }
4396
4397 /*
4398 * ext4_write_inode()
4399 *
4400 * We are called from a few places:
4401 *
4402 * - Within generic_file_write() for O_SYNC files.
4403 * Here, there will be no transaction running. We wait for any running
4404 * transaction to commit.
4405 *
4406 * - Within sys_sync(), kupdate and such.
4407 * We wait on commit, if tol to.
4408 *
4409 * - Within prune_icache() (PF_MEMALLOC == true)
4410 * Here we simply return. We can't afford to block kswapd on the
4411 * journal commit.
4412 *
4413 * In all cases it is actually safe for us to return without doing anything,
4414 * because the inode has been copied into a raw inode buffer in
4415 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4416 * knfsd.
4417 *
4418 * Note that we are absolutely dependent upon all inode dirtiers doing the
4419 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4420 * which we are interested.
4421 *
4422 * It would be a bug for them to not do this. The code:
4423 *
4424 * mark_inode_dirty(inode)
4425 * stuff();
4426 * inode->i_size = expr;
4427 *
4428 * is in error because a kswapd-driven write_inode() could occur while
4429 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4430 * will no longer be on the superblock's dirty inode list.
4431 */
4432 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4433 {
4434 int err;
4435
4436 if (current->flags & PF_MEMALLOC)
4437 return 0;
4438
4439 if (EXT4_SB(inode->i_sb)->s_journal) {
4440 if (ext4_journal_current_handle()) {
4441 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4442 dump_stack();
4443 return -EIO;
4444 }
4445
4446 if (wbc->sync_mode != WB_SYNC_ALL)
4447 return 0;
4448
4449 err = ext4_force_commit(inode->i_sb);
4450 } else {
4451 struct ext4_iloc iloc;
4452
4453 err = __ext4_get_inode_loc(inode, &iloc, 0);
4454 if (err)
4455 return err;
4456 if (wbc->sync_mode == WB_SYNC_ALL)
4457 sync_dirty_buffer(iloc.bh);
4458 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4459 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4460 "IO error syncing inode");
4461 err = -EIO;
4462 }
4463 brelse(iloc.bh);
4464 }
4465 return err;
4466 }
4467
4468 /*
4469 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4470 * buffers that are attached to a page stradding i_size and are undergoing
4471 * commit. In that case we have to wait for commit to finish and try again.
4472 */
4473 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4474 {
4475 struct page *page;
4476 unsigned offset;
4477 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4478 tid_t commit_tid = 0;
4479 int ret;
4480
4481 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4482 /*
4483 * All buffers in the last page remain valid? Then there's nothing to
4484 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4485 * blocksize case
4486 */
4487 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4488 return;
4489 while (1) {
4490 page = find_lock_page(inode->i_mapping,
4491 inode->i_size >> PAGE_CACHE_SHIFT);
4492 if (!page)
4493 return;
4494 ret = __ext4_journalled_invalidatepage(page, offset,
4495 PAGE_CACHE_SIZE - offset);
4496 unlock_page(page);
4497 page_cache_release(page);
4498 if (ret != -EBUSY)
4499 return;
4500 commit_tid = 0;
4501 read_lock(&journal->j_state_lock);
4502 if (journal->j_committing_transaction)
4503 commit_tid = journal->j_committing_transaction->t_tid;
4504 read_unlock(&journal->j_state_lock);
4505 if (commit_tid)
4506 jbd2_log_wait_commit(journal, commit_tid);
4507 }
4508 }
4509
4510 /*
4511 * ext4_setattr()
4512 *
4513 * Called from notify_change.
4514 *
4515 * We want to trap VFS attempts to truncate the file as soon as
4516 * possible. In particular, we want to make sure that when the VFS
4517 * shrinks i_size, we put the inode on the orphan list and modify
4518 * i_disksize immediately, so that during the subsequent flushing of
4519 * dirty pages and freeing of disk blocks, we can guarantee that any
4520 * commit will leave the blocks being flushed in an unused state on
4521 * disk. (On recovery, the inode will get truncated and the blocks will
4522 * be freed, so we have a strong guarantee that no future commit will
4523 * leave these blocks visible to the user.)
4524 *
4525 * Another thing we have to assure is that if we are in ordered mode
4526 * and inode is still attached to the committing transaction, we must
4527 * we start writeout of all the dirty pages which are being truncated.
4528 * This way we are sure that all the data written in the previous
4529 * transaction are already on disk (truncate waits for pages under
4530 * writeback).
4531 *
4532 * Called with inode->i_mutex down.
4533 */
4534 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4535 {
4536 struct inode *inode = dentry->d_inode;
4537 int error, rc = 0;
4538 int orphan = 0;
4539 const unsigned int ia_valid = attr->ia_valid;
4540
4541 error = inode_change_ok(inode, attr);
4542 if (error)
4543 return error;
4544
4545 if (is_quota_modification(inode, attr))
4546 dquot_initialize(inode);
4547 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4548 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4549 handle_t *handle;
4550
4551 /* (user+group)*(old+new) structure, inode write (sb,
4552 * inode block, ? - but truncate inode update has it) */
4553 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4554 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4555 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4556 if (IS_ERR(handle)) {
4557 error = PTR_ERR(handle);
4558 goto err_out;
4559 }
4560 error = dquot_transfer(inode, attr);
4561 if (error) {
4562 ext4_journal_stop(handle);
4563 return error;
4564 }
4565 /* Update corresponding info in inode so that everything is in
4566 * one transaction */
4567 if (attr->ia_valid & ATTR_UID)
4568 inode->i_uid = attr->ia_uid;
4569 if (attr->ia_valid & ATTR_GID)
4570 inode->i_gid = attr->ia_gid;
4571 error = ext4_mark_inode_dirty(handle, inode);
4572 ext4_journal_stop(handle);
4573 }
4574
4575 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4576 handle_t *handle;
4577
4578 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4579 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4580
4581 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4582 return -EFBIG;
4583 }
4584
4585 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4586 inode_inc_iversion(inode);
4587
4588 if (S_ISREG(inode->i_mode) &&
4589 (attr->ia_size < inode->i_size)) {
4590 if (ext4_should_order_data(inode)) {
4591 error = ext4_begin_ordered_truncate(inode,
4592 attr->ia_size);
4593 if (error)
4594 goto err_out;
4595 }
4596 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4597 if (IS_ERR(handle)) {
4598 error = PTR_ERR(handle);
4599 goto err_out;
4600 }
4601 if (ext4_handle_valid(handle)) {
4602 error = ext4_orphan_add(handle, inode);
4603 orphan = 1;
4604 }
4605 down_write(&EXT4_I(inode)->i_data_sem);
4606 EXT4_I(inode)->i_disksize = attr->ia_size;
4607 rc = ext4_mark_inode_dirty(handle, inode);
4608 if (!error)
4609 error = rc;
4610 /*
4611 * We have to update i_size under i_data_sem together
4612 * with i_disksize to avoid races with writeback code
4613 * running ext4_wb_update_i_disksize().
4614 */
4615 if (!error)
4616 i_size_write(inode, attr->ia_size);
4617 up_write(&EXT4_I(inode)->i_data_sem);
4618 ext4_journal_stop(handle);
4619 if (error) {
4620 ext4_orphan_del(NULL, inode);
4621 goto err_out;
4622 }
4623 } else
4624 i_size_write(inode, attr->ia_size);
4625
4626 /*
4627 * Blocks are going to be removed from the inode. Wait
4628 * for dio in flight. Temporarily disable
4629 * dioread_nolock to prevent livelock.
4630 */
4631 if (orphan) {
4632 if (!ext4_should_journal_data(inode)) {
4633 ext4_inode_block_unlocked_dio(inode);
4634 inode_dio_wait(inode);
4635 ext4_inode_resume_unlocked_dio(inode);
4636 } else
4637 ext4_wait_for_tail_page_commit(inode);
4638 }
4639 /*
4640 * Truncate pagecache after we've waited for commit
4641 * in data=journal mode to make pages freeable.
4642 */
4643 truncate_pagecache(inode, inode->i_size);
4644 }
4645 /*
4646 * We want to call ext4_truncate() even if attr->ia_size ==
4647 * inode->i_size for cases like truncation of fallocated space
4648 */
4649 if (attr->ia_valid & ATTR_SIZE)
4650 ext4_truncate(inode);
4651
4652 if (!rc) {
4653 setattr_copy(inode, attr);
4654 mark_inode_dirty(inode);
4655 }
4656
4657 /*
4658 * If the call to ext4_truncate failed to get a transaction handle at
4659 * all, we need to clean up the in-core orphan list manually.
4660 */
4661 if (orphan && inode->i_nlink)
4662 ext4_orphan_del(NULL, inode);
4663
4664 if (!rc && (ia_valid & ATTR_MODE))
4665 rc = posix_acl_chmod(inode, inode->i_mode);
4666
4667 err_out:
4668 ext4_std_error(inode->i_sb, error);
4669 if (!error)
4670 error = rc;
4671 return error;
4672 }
4673
4674 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4675 struct kstat *stat)
4676 {
4677 struct inode *inode;
4678 unsigned long long delalloc_blocks;
4679
4680 inode = dentry->d_inode;
4681 generic_fillattr(inode, stat);
4682
4683 /*
4684 * If there is inline data in the inode, the inode will normally not
4685 * have data blocks allocated (it may have an external xattr block).
4686 * Report at least one sector for such files, so tools like tar, rsync,
4687 * others doen't incorrectly think the file is completely sparse.
4688 */
4689 if (unlikely(ext4_has_inline_data(inode)))
4690 stat->blocks += (stat->size + 511) >> 9;
4691
4692 /*
4693 * We can't update i_blocks if the block allocation is delayed
4694 * otherwise in the case of system crash before the real block
4695 * allocation is done, we will have i_blocks inconsistent with
4696 * on-disk file blocks.
4697 * We always keep i_blocks updated together with real
4698 * allocation. But to not confuse with user, stat
4699 * will return the blocks that include the delayed allocation
4700 * blocks for this file.
4701 */
4702 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4703 EXT4_I(inode)->i_reserved_data_blocks);
4704 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4705 return 0;
4706 }
4707
4708 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4709 int pextents)
4710 {
4711 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4712 return ext4_ind_trans_blocks(inode, lblocks);
4713 return ext4_ext_index_trans_blocks(inode, pextents);
4714 }
4715
4716 /*
4717 * Account for index blocks, block groups bitmaps and block group
4718 * descriptor blocks if modify datablocks and index blocks
4719 * worse case, the indexs blocks spread over different block groups
4720 *
4721 * If datablocks are discontiguous, they are possible to spread over
4722 * different block groups too. If they are contiguous, with flexbg,
4723 * they could still across block group boundary.
4724 *
4725 * Also account for superblock, inode, quota and xattr blocks
4726 */
4727 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4728 int pextents)
4729 {
4730 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4731 int gdpblocks;
4732 int idxblocks;
4733 int ret = 0;
4734
4735 /*
4736 * How many index blocks need to touch to map @lblocks logical blocks
4737 * to @pextents physical extents?
4738 */
4739 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4740
4741 ret = idxblocks;
4742
4743 /*
4744 * Now let's see how many group bitmaps and group descriptors need
4745 * to account
4746 */
4747 groups = idxblocks + pextents;
4748 gdpblocks = groups;
4749 if (groups > ngroups)
4750 groups = ngroups;
4751 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4752 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4753
4754 /* bitmaps and block group descriptor blocks */
4755 ret += groups + gdpblocks;
4756
4757 /* Blocks for super block, inode, quota and xattr blocks */
4758 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4759
4760 return ret;
4761 }
4762
4763 /*
4764 * Calculate the total number of credits to reserve to fit
4765 * the modification of a single pages into a single transaction,
4766 * which may include multiple chunks of block allocations.
4767 *
4768 * This could be called via ext4_write_begin()
4769 *
4770 * We need to consider the worse case, when
4771 * one new block per extent.
4772 */
4773 int ext4_writepage_trans_blocks(struct inode *inode)
4774 {
4775 int bpp = ext4_journal_blocks_per_page(inode);
4776 int ret;
4777
4778 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4779
4780 /* Account for data blocks for journalled mode */
4781 if (ext4_should_journal_data(inode))
4782 ret += bpp;
4783 return ret;
4784 }
4785
4786 /*
4787 * Calculate the journal credits for a chunk of data modification.
4788 *
4789 * This is called from DIO, fallocate or whoever calling
4790 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4791 *
4792 * journal buffers for data blocks are not included here, as DIO
4793 * and fallocate do no need to journal data buffers.
4794 */
4795 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4796 {
4797 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4798 }
4799
4800 /*
4801 * The caller must have previously called ext4_reserve_inode_write().
4802 * Give this, we know that the caller already has write access to iloc->bh.
4803 */
4804 int ext4_mark_iloc_dirty(handle_t *handle,
4805 struct inode *inode, struct ext4_iloc *iloc)
4806 {
4807 int err = 0;
4808
4809 if (IS_I_VERSION(inode))
4810 inode_inc_iversion(inode);
4811
4812 /* the do_update_inode consumes one bh->b_count */
4813 get_bh(iloc->bh);
4814
4815 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4816 err = ext4_do_update_inode(handle, inode, iloc);
4817 put_bh(iloc->bh);
4818 return err;
4819 }
4820
4821 /*
4822 * On success, We end up with an outstanding reference count against
4823 * iloc->bh. This _must_ be cleaned up later.
4824 */
4825
4826 int
4827 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4828 struct ext4_iloc *iloc)
4829 {
4830 int err;
4831
4832 err = ext4_get_inode_loc(inode, iloc);
4833 if (!err) {
4834 BUFFER_TRACE(iloc->bh, "get_write_access");
4835 err = ext4_journal_get_write_access(handle, iloc->bh);
4836 if (err) {
4837 brelse(iloc->bh);
4838 iloc->bh = NULL;
4839 }
4840 }
4841 ext4_std_error(inode->i_sb, err);
4842 return err;
4843 }
4844
4845 /*
4846 * Expand an inode by new_extra_isize bytes.
4847 * Returns 0 on success or negative error number on failure.
4848 */
4849 static int ext4_expand_extra_isize(struct inode *inode,
4850 unsigned int new_extra_isize,
4851 struct ext4_iloc iloc,
4852 handle_t *handle)
4853 {
4854 struct ext4_inode *raw_inode;
4855 struct ext4_xattr_ibody_header *header;
4856
4857 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4858 return 0;
4859
4860 raw_inode = ext4_raw_inode(&iloc);
4861
4862 header = IHDR(inode, raw_inode);
4863
4864 /* No extended attributes present */
4865 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4866 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4867 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4868 new_extra_isize);
4869 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4870 return 0;
4871 }
4872
4873 /* try to expand with EAs present */
4874 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4875 raw_inode, handle);
4876 }
4877
4878 /*
4879 * What we do here is to mark the in-core inode as clean with respect to inode
4880 * dirtiness (it may still be data-dirty).
4881 * This means that the in-core inode may be reaped by prune_icache
4882 * without having to perform any I/O. This is a very good thing,
4883 * because *any* task may call prune_icache - even ones which
4884 * have a transaction open against a different journal.
4885 *
4886 * Is this cheating? Not really. Sure, we haven't written the
4887 * inode out, but prune_icache isn't a user-visible syncing function.
4888 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4889 * we start and wait on commits.
4890 */
4891 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4892 {
4893 struct ext4_iloc iloc;
4894 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4895 static unsigned int mnt_count;
4896 int err, ret;
4897
4898 might_sleep();
4899 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4900 err = ext4_reserve_inode_write(handle, inode, &iloc);
4901 if (ext4_handle_valid(handle) &&
4902 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4903 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4904 /*
4905 * We need extra buffer credits since we may write into EA block
4906 * with this same handle. If journal_extend fails, then it will
4907 * only result in a minor loss of functionality for that inode.
4908 * If this is felt to be critical, then e2fsck should be run to
4909 * force a large enough s_min_extra_isize.
4910 */
4911 if ((jbd2_journal_extend(handle,
4912 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4913 ret = ext4_expand_extra_isize(inode,
4914 sbi->s_want_extra_isize,
4915 iloc, handle);
4916 if (ret) {
4917 ext4_set_inode_state(inode,
4918 EXT4_STATE_NO_EXPAND);
4919 if (mnt_count !=
4920 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4921 ext4_warning(inode->i_sb,
4922 "Unable to expand inode %lu. Delete"
4923 " some EAs or run e2fsck.",
4924 inode->i_ino);
4925 mnt_count =
4926 le16_to_cpu(sbi->s_es->s_mnt_count);
4927 }
4928 }
4929 }
4930 }
4931 if (!err)
4932 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4933 return err;
4934 }
4935
4936 /*
4937 * ext4_dirty_inode() is called from __mark_inode_dirty()
4938 *
4939 * We're really interested in the case where a file is being extended.
4940 * i_size has been changed by generic_commit_write() and we thus need
4941 * to include the updated inode in the current transaction.
4942 *
4943 * Also, dquot_alloc_block() will always dirty the inode when blocks
4944 * are allocated to the file.
4945 *
4946 * If the inode is marked synchronous, we don't honour that here - doing
4947 * so would cause a commit on atime updates, which we don't bother doing.
4948 * We handle synchronous inodes at the highest possible level.
4949 */
4950 void ext4_dirty_inode(struct inode *inode, int flags)
4951 {
4952 handle_t *handle;
4953
4954 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4955 if (IS_ERR(handle))
4956 goto out;
4957
4958 ext4_mark_inode_dirty(handle, inode);
4959
4960 ext4_journal_stop(handle);
4961 out:
4962 return;
4963 }
4964
4965 #if 0
4966 /*
4967 * Bind an inode's backing buffer_head into this transaction, to prevent
4968 * it from being flushed to disk early. Unlike
4969 * ext4_reserve_inode_write, this leaves behind no bh reference and
4970 * returns no iloc structure, so the caller needs to repeat the iloc
4971 * lookup to mark the inode dirty later.
4972 */
4973 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4974 {
4975 struct ext4_iloc iloc;
4976
4977 int err = 0;
4978 if (handle) {
4979 err = ext4_get_inode_loc(inode, &iloc);
4980 if (!err) {
4981 BUFFER_TRACE(iloc.bh, "get_write_access");
4982 err = jbd2_journal_get_write_access(handle, iloc.bh);
4983 if (!err)
4984 err = ext4_handle_dirty_metadata(handle,
4985 NULL,
4986 iloc.bh);
4987 brelse(iloc.bh);
4988 }
4989 }
4990 ext4_std_error(inode->i_sb, err);
4991 return err;
4992 }
4993 #endif
4994
4995 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4996 {
4997 journal_t *journal;
4998 handle_t *handle;
4999 int err;
5000
5001 /*
5002 * We have to be very careful here: changing a data block's
5003 * journaling status dynamically is dangerous. If we write a
5004 * data block to the journal, change the status and then delete
5005 * that block, we risk forgetting to revoke the old log record
5006 * from the journal and so a subsequent replay can corrupt data.
5007 * So, first we make sure that the journal is empty and that
5008 * nobody is changing anything.
5009 */
5010
5011 journal = EXT4_JOURNAL(inode);
5012 if (!journal)
5013 return 0;
5014 if (is_journal_aborted(journal))
5015 return -EROFS;
5016 /* We have to allocate physical blocks for delalloc blocks
5017 * before flushing journal. otherwise delalloc blocks can not
5018 * be allocated any more. even more truncate on delalloc blocks
5019 * could trigger BUG by flushing delalloc blocks in journal.
5020 * There is no delalloc block in non-journal data mode.
5021 */
5022 if (val && test_opt(inode->i_sb, DELALLOC)) {
5023 err = ext4_alloc_da_blocks(inode);
5024 if (err < 0)
5025 return err;
5026 }
5027
5028 /* Wait for all existing dio workers */
5029 ext4_inode_block_unlocked_dio(inode);
5030 inode_dio_wait(inode);
5031
5032 jbd2_journal_lock_updates(journal);
5033
5034 /*
5035 * OK, there are no updates running now, and all cached data is
5036 * synced to disk. We are now in a completely consistent state
5037 * which doesn't have anything in the journal, and we know that
5038 * no filesystem updates are running, so it is safe to modify
5039 * the inode's in-core data-journaling state flag now.
5040 */
5041
5042 if (val)
5043 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5044 else {
5045 jbd2_journal_flush(journal);
5046 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5047 }
5048 ext4_set_aops(inode);
5049
5050 jbd2_journal_unlock_updates(journal);
5051 ext4_inode_resume_unlocked_dio(inode);
5052
5053 /* Finally we can mark the inode as dirty. */
5054
5055 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5056 if (IS_ERR(handle))
5057 return PTR_ERR(handle);
5058
5059 err = ext4_mark_inode_dirty(handle, inode);
5060 ext4_handle_sync(handle);
5061 ext4_journal_stop(handle);
5062 ext4_std_error(inode->i_sb, err);
5063
5064 return err;
5065 }
5066
5067 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5068 {
5069 return !buffer_mapped(bh);
5070 }
5071
5072 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5073 {
5074 struct page *page = vmf->page;
5075 loff_t size;
5076 unsigned long len;
5077 int ret;
5078 struct file *file = vma->vm_file;
5079 struct inode *inode = file_inode(file);
5080 struct address_space *mapping = inode->i_mapping;
5081 handle_t *handle;
5082 get_block_t *get_block;
5083 int retries = 0;
5084
5085 sb_start_pagefault(inode->i_sb);
5086 file_update_time(vma->vm_file);
5087 /* Delalloc case is easy... */
5088 if (test_opt(inode->i_sb, DELALLOC) &&
5089 !ext4_should_journal_data(inode) &&
5090 !ext4_nonda_switch(inode->i_sb)) {
5091 do {
5092 ret = __block_page_mkwrite(vma, vmf,
5093 ext4_da_get_block_prep);
5094 } while (ret == -ENOSPC &&
5095 ext4_should_retry_alloc(inode->i_sb, &retries));
5096 goto out_ret;
5097 }
5098
5099 lock_page(page);
5100 size = i_size_read(inode);
5101 /* Page got truncated from under us? */
5102 if (page->mapping != mapping || page_offset(page) > size) {
5103 unlock_page(page);
5104 ret = VM_FAULT_NOPAGE;
5105 goto out;
5106 }
5107
5108 if (page->index == size >> PAGE_CACHE_SHIFT)
5109 len = size & ~PAGE_CACHE_MASK;
5110 else
5111 len = PAGE_CACHE_SIZE;
5112 /*
5113 * Return if we have all the buffers mapped. This avoids the need to do
5114 * journal_start/journal_stop which can block and take a long time
5115 */
5116 if (page_has_buffers(page)) {
5117 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5118 0, len, NULL,
5119 ext4_bh_unmapped)) {
5120 /* Wait so that we don't change page under IO */
5121 wait_for_stable_page(page);
5122 ret = VM_FAULT_LOCKED;
5123 goto out;
5124 }
5125 }
5126 unlock_page(page);
5127 /* OK, we need to fill the hole... */
5128 if (ext4_should_dioread_nolock(inode))
5129 get_block = ext4_get_block_write;
5130 else
5131 get_block = ext4_get_block;
5132 retry_alloc:
5133 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5134 ext4_writepage_trans_blocks(inode));
5135 if (IS_ERR(handle)) {
5136 ret = VM_FAULT_SIGBUS;
5137 goto out;
5138 }
5139 ret = __block_page_mkwrite(vma, vmf, get_block);
5140 if (!ret && ext4_should_journal_data(inode)) {
5141 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5142 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5143 unlock_page(page);
5144 ret = VM_FAULT_SIGBUS;
5145 ext4_journal_stop(handle);
5146 goto out;
5147 }
5148 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5149 }
5150 ext4_journal_stop(handle);
5151 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5152 goto retry_alloc;
5153 out_ret:
5154 ret = block_page_mkwrite_return(ret);
5155 out:
5156 sb_end_pagefault(inode->i_sb);
5157 return ret;
5158 }
This page took 0.133428 seconds and 6 git commands to generate.