Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[deliverable/linux.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h"
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static const char *ext4_decode_error(struct super_block *sb, int errno,
73 char nbuf[16]);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static void ext4_write_super(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84 static void ext4_destroy_lazyinit_thread(void);
85 static void ext4_unregister_li_request(struct super_block *sb);
86 static void ext4_clear_request_list(void);
87
88 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
89 static struct file_system_type ext2_fs_type = {
90 .owner = THIS_MODULE,
91 .name = "ext2",
92 .mount = ext4_mount,
93 .kill_sb = kill_block_super,
94 .fs_flags = FS_REQUIRES_DEV,
95 };
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100
101
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 .owner = THIS_MODULE,
105 .name = "ext3",
106 .mount = ext4_mount,
107 .kill_sb = kill_block_super,
108 .fs_flags = FS_REQUIRES_DEV,
109 };
110 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
111 #else
112 #define IS_EXT3_SB(sb) (0)
113 #endif
114
115 void *ext4_kvmalloc(size_t size, gfp_t flags)
116 {
117 void *ret;
118
119 ret = kmalloc(size, flags);
120 if (!ret)
121 ret = __vmalloc(size, flags, PAGE_KERNEL);
122 return ret;
123 }
124
125 void *ext4_kvzalloc(size_t size, gfp_t flags)
126 {
127 void *ret;
128
129 ret = kzalloc(size, flags);
130 if (!ret)
131 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
132 return ret;
133 }
134
135 void ext4_kvfree(void *ptr)
136 {
137 if (is_vmalloc_addr(ptr))
138 vfree(ptr);
139 else
140 kfree(ptr);
141
142 }
143
144 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
145 struct ext4_group_desc *bg)
146 {
147 return le32_to_cpu(bg->bg_block_bitmap_lo) |
148 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
149 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
150 }
151
152 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
153 struct ext4_group_desc *bg)
154 {
155 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
156 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
157 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
158 }
159
160 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
161 struct ext4_group_desc *bg)
162 {
163 return le32_to_cpu(bg->bg_inode_table_lo) |
164 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
165 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
166 }
167
168 __u32 ext4_free_group_clusters(struct super_block *sb,
169 struct ext4_group_desc *bg)
170 {
171 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
172 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
173 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
174 }
175
176 __u32 ext4_free_inodes_count(struct super_block *sb,
177 struct ext4_group_desc *bg)
178 {
179 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
180 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
181 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
182 }
183
184 __u32 ext4_used_dirs_count(struct super_block *sb,
185 struct ext4_group_desc *bg)
186 {
187 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
188 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
189 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
190 }
191
192 __u32 ext4_itable_unused_count(struct super_block *sb,
193 struct ext4_group_desc *bg)
194 {
195 return le16_to_cpu(bg->bg_itable_unused_lo) |
196 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
197 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
198 }
199
200 void ext4_block_bitmap_set(struct super_block *sb,
201 struct ext4_group_desc *bg, ext4_fsblk_t blk)
202 {
203 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
204 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
205 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
206 }
207
208 void ext4_inode_bitmap_set(struct super_block *sb,
209 struct ext4_group_desc *bg, ext4_fsblk_t blk)
210 {
211 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
212 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
213 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
214 }
215
216 void ext4_inode_table_set(struct super_block *sb,
217 struct ext4_group_desc *bg, ext4_fsblk_t blk)
218 {
219 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
220 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
221 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
222 }
223
224 void ext4_free_group_clusters_set(struct super_block *sb,
225 struct ext4_group_desc *bg, __u32 count)
226 {
227 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
228 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
229 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
230 }
231
232 void ext4_free_inodes_set(struct super_block *sb,
233 struct ext4_group_desc *bg, __u32 count)
234 {
235 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
236 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
237 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
238 }
239
240 void ext4_used_dirs_set(struct super_block *sb,
241 struct ext4_group_desc *bg, __u32 count)
242 {
243 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
244 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
245 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
246 }
247
248 void ext4_itable_unused_set(struct super_block *sb,
249 struct ext4_group_desc *bg, __u32 count)
250 {
251 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
252 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
253 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
254 }
255
256
257 /* Just increment the non-pointer handle value */
258 static handle_t *ext4_get_nojournal(void)
259 {
260 handle_t *handle = current->journal_info;
261 unsigned long ref_cnt = (unsigned long)handle;
262
263 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
264
265 ref_cnt++;
266 handle = (handle_t *)ref_cnt;
267
268 current->journal_info = handle;
269 return handle;
270 }
271
272
273 /* Decrement the non-pointer handle value */
274 static void ext4_put_nojournal(handle_t *handle)
275 {
276 unsigned long ref_cnt = (unsigned long)handle;
277
278 BUG_ON(ref_cnt == 0);
279
280 ref_cnt--;
281 handle = (handle_t *)ref_cnt;
282
283 current->journal_info = handle;
284 }
285
286 /*
287 * Wrappers for jbd2_journal_start/end.
288 *
289 * The only special thing we need to do here is to make sure that all
290 * journal_end calls result in the superblock being marked dirty, so
291 * that sync() will call the filesystem's write_super callback if
292 * appropriate.
293 *
294 * To avoid j_barrier hold in userspace when a user calls freeze(),
295 * ext4 prevents a new handle from being started by s_frozen, which
296 * is in an upper layer.
297 */
298 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
299 {
300 journal_t *journal;
301 handle_t *handle;
302
303 trace_ext4_journal_start(sb, nblocks, _RET_IP_);
304 if (sb->s_flags & MS_RDONLY)
305 return ERR_PTR(-EROFS);
306
307 journal = EXT4_SB(sb)->s_journal;
308 handle = ext4_journal_current_handle();
309
310 /*
311 * If a handle has been started, it should be allowed to
312 * finish, otherwise deadlock could happen between freeze
313 * and others(e.g. truncate) due to the restart of the
314 * journal handle if the filesystem is forzen and active
315 * handles are not stopped.
316 */
317 if (!handle)
318 vfs_check_frozen(sb, SB_FREEZE_TRANS);
319
320 if (!journal)
321 return ext4_get_nojournal();
322 /*
323 * Special case here: if the journal has aborted behind our
324 * backs (eg. EIO in the commit thread), then we still need to
325 * take the FS itself readonly cleanly.
326 */
327 if (is_journal_aborted(journal)) {
328 ext4_abort(sb, "Detected aborted journal");
329 return ERR_PTR(-EROFS);
330 }
331 return jbd2_journal_start(journal, nblocks);
332 }
333
334 /*
335 * The only special thing we need to do here is to make sure that all
336 * jbd2_journal_stop calls result in the superblock being marked dirty, so
337 * that sync() will call the filesystem's write_super callback if
338 * appropriate.
339 */
340 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
341 {
342 struct super_block *sb;
343 int err;
344 int rc;
345
346 if (!ext4_handle_valid(handle)) {
347 ext4_put_nojournal(handle);
348 return 0;
349 }
350 sb = handle->h_transaction->t_journal->j_private;
351 err = handle->h_err;
352 rc = jbd2_journal_stop(handle);
353
354 if (!err)
355 err = rc;
356 if (err)
357 __ext4_std_error(sb, where, line, err);
358 return err;
359 }
360
361 void ext4_journal_abort_handle(const char *caller, unsigned int line,
362 const char *err_fn, struct buffer_head *bh,
363 handle_t *handle, int err)
364 {
365 char nbuf[16];
366 const char *errstr = ext4_decode_error(NULL, err, nbuf);
367
368 BUG_ON(!ext4_handle_valid(handle));
369
370 if (bh)
371 BUFFER_TRACE(bh, "abort");
372
373 if (!handle->h_err)
374 handle->h_err = err;
375
376 if (is_handle_aborted(handle))
377 return;
378
379 printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n",
380 caller, line, errstr, err_fn);
381
382 jbd2_journal_abort_handle(handle);
383 }
384
385 static void __save_error_info(struct super_block *sb, const char *func,
386 unsigned int line)
387 {
388 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
389
390 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
391 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
392 es->s_last_error_time = cpu_to_le32(get_seconds());
393 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
394 es->s_last_error_line = cpu_to_le32(line);
395 if (!es->s_first_error_time) {
396 es->s_first_error_time = es->s_last_error_time;
397 strncpy(es->s_first_error_func, func,
398 sizeof(es->s_first_error_func));
399 es->s_first_error_line = cpu_to_le32(line);
400 es->s_first_error_ino = es->s_last_error_ino;
401 es->s_first_error_block = es->s_last_error_block;
402 }
403 /*
404 * Start the daily error reporting function if it hasn't been
405 * started already
406 */
407 if (!es->s_error_count)
408 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
409 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
410 }
411
412 static void save_error_info(struct super_block *sb, const char *func,
413 unsigned int line)
414 {
415 __save_error_info(sb, func, line);
416 ext4_commit_super(sb, 1);
417 }
418
419 /*
420 * The del_gendisk() function uninitializes the disk-specific data
421 * structures, including the bdi structure, without telling anyone
422 * else. Once this happens, any attempt to call mark_buffer_dirty()
423 * (for example, by ext4_commit_super), will cause a kernel OOPS.
424 * This is a kludge to prevent these oops until we can put in a proper
425 * hook in del_gendisk() to inform the VFS and file system layers.
426 */
427 static int block_device_ejected(struct super_block *sb)
428 {
429 struct inode *bd_inode = sb->s_bdev->bd_inode;
430 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
431
432 return bdi->dev == NULL;
433 }
434
435 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
436 {
437 struct super_block *sb = journal->j_private;
438 struct ext4_sb_info *sbi = EXT4_SB(sb);
439 int error = is_journal_aborted(journal);
440 struct ext4_journal_cb_entry *jce, *tmp;
441
442 spin_lock(&sbi->s_md_lock);
443 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) {
444 list_del_init(&jce->jce_list);
445 spin_unlock(&sbi->s_md_lock);
446 jce->jce_func(sb, jce, error);
447 spin_lock(&sbi->s_md_lock);
448 }
449 spin_unlock(&sbi->s_md_lock);
450 }
451
452 /* Deal with the reporting of failure conditions on a filesystem such as
453 * inconsistencies detected or read IO failures.
454 *
455 * On ext2, we can store the error state of the filesystem in the
456 * superblock. That is not possible on ext4, because we may have other
457 * write ordering constraints on the superblock which prevent us from
458 * writing it out straight away; and given that the journal is about to
459 * be aborted, we can't rely on the current, or future, transactions to
460 * write out the superblock safely.
461 *
462 * We'll just use the jbd2_journal_abort() error code to record an error in
463 * the journal instead. On recovery, the journal will complain about
464 * that error until we've noted it down and cleared it.
465 */
466
467 static void ext4_handle_error(struct super_block *sb)
468 {
469 if (sb->s_flags & MS_RDONLY)
470 return;
471
472 if (!test_opt(sb, ERRORS_CONT)) {
473 journal_t *journal = EXT4_SB(sb)->s_journal;
474
475 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
476 if (journal)
477 jbd2_journal_abort(journal, -EIO);
478 }
479 if (test_opt(sb, ERRORS_RO)) {
480 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
481 sb->s_flags |= MS_RDONLY;
482 }
483 if (test_opt(sb, ERRORS_PANIC))
484 panic("EXT4-fs (device %s): panic forced after error\n",
485 sb->s_id);
486 }
487
488 void __ext4_error(struct super_block *sb, const char *function,
489 unsigned int line, const char *fmt, ...)
490 {
491 struct va_format vaf;
492 va_list args;
493
494 va_start(args, fmt);
495 vaf.fmt = fmt;
496 vaf.va = &args;
497 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
498 sb->s_id, function, line, current->comm, &vaf);
499 va_end(args);
500
501 ext4_handle_error(sb);
502 }
503
504 void ext4_error_inode(struct inode *inode, const char *function,
505 unsigned int line, ext4_fsblk_t block,
506 const char *fmt, ...)
507 {
508 va_list args;
509 struct va_format vaf;
510 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
511
512 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
513 es->s_last_error_block = cpu_to_le64(block);
514 save_error_info(inode->i_sb, function, line);
515 va_start(args, fmt);
516 vaf.fmt = fmt;
517 vaf.va = &args;
518 if (block)
519 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
520 "inode #%lu: block %llu: comm %s: %pV\n",
521 inode->i_sb->s_id, function, line, inode->i_ino,
522 block, current->comm, &vaf);
523 else
524 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
525 "inode #%lu: comm %s: %pV\n",
526 inode->i_sb->s_id, function, line, inode->i_ino,
527 current->comm, &vaf);
528 va_end(args);
529
530 ext4_handle_error(inode->i_sb);
531 }
532
533 void ext4_error_file(struct file *file, const char *function,
534 unsigned int line, ext4_fsblk_t block,
535 const char *fmt, ...)
536 {
537 va_list args;
538 struct va_format vaf;
539 struct ext4_super_block *es;
540 struct inode *inode = file->f_dentry->d_inode;
541 char pathname[80], *path;
542
543 es = EXT4_SB(inode->i_sb)->s_es;
544 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
545 save_error_info(inode->i_sb, function, line);
546 path = d_path(&(file->f_path), pathname, sizeof(pathname));
547 if (IS_ERR(path))
548 path = "(unknown)";
549 va_start(args, fmt);
550 vaf.fmt = fmt;
551 vaf.va = &args;
552 if (block)
553 printk(KERN_CRIT
554 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
555 "block %llu: comm %s: path %s: %pV\n",
556 inode->i_sb->s_id, function, line, inode->i_ino,
557 block, current->comm, path, &vaf);
558 else
559 printk(KERN_CRIT
560 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
561 "comm %s: path %s: %pV\n",
562 inode->i_sb->s_id, function, line, inode->i_ino,
563 current->comm, path, &vaf);
564 va_end(args);
565
566 ext4_handle_error(inode->i_sb);
567 }
568
569 static const char *ext4_decode_error(struct super_block *sb, int errno,
570 char nbuf[16])
571 {
572 char *errstr = NULL;
573
574 switch (errno) {
575 case -EIO:
576 errstr = "IO failure";
577 break;
578 case -ENOMEM:
579 errstr = "Out of memory";
580 break;
581 case -EROFS:
582 if (!sb || (EXT4_SB(sb)->s_journal &&
583 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
584 errstr = "Journal has aborted";
585 else
586 errstr = "Readonly filesystem";
587 break;
588 default:
589 /* If the caller passed in an extra buffer for unknown
590 * errors, textualise them now. Else we just return
591 * NULL. */
592 if (nbuf) {
593 /* Check for truncated error codes... */
594 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
595 errstr = nbuf;
596 }
597 break;
598 }
599
600 return errstr;
601 }
602
603 /* __ext4_std_error decodes expected errors from journaling functions
604 * automatically and invokes the appropriate error response. */
605
606 void __ext4_std_error(struct super_block *sb, const char *function,
607 unsigned int line, int errno)
608 {
609 char nbuf[16];
610 const char *errstr;
611
612 /* Special case: if the error is EROFS, and we're not already
613 * inside a transaction, then there's really no point in logging
614 * an error. */
615 if (errno == -EROFS && journal_current_handle() == NULL &&
616 (sb->s_flags & MS_RDONLY))
617 return;
618
619 errstr = ext4_decode_error(sb, errno, nbuf);
620 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
621 sb->s_id, function, line, errstr);
622 save_error_info(sb, function, line);
623
624 ext4_handle_error(sb);
625 }
626
627 /*
628 * ext4_abort is a much stronger failure handler than ext4_error. The
629 * abort function may be used to deal with unrecoverable failures such
630 * as journal IO errors or ENOMEM at a critical moment in log management.
631 *
632 * We unconditionally force the filesystem into an ABORT|READONLY state,
633 * unless the error response on the fs has been set to panic in which
634 * case we take the easy way out and panic immediately.
635 */
636
637 void __ext4_abort(struct super_block *sb, const char *function,
638 unsigned int line, const char *fmt, ...)
639 {
640 va_list args;
641
642 save_error_info(sb, function, line);
643 va_start(args, fmt);
644 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
645 function, line);
646 vprintk(fmt, args);
647 printk("\n");
648 va_end(args);
649
650 if ((sb->s_flags & MS_RDONLY) == 0) {
651 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
652 sb->s_flags |= MS_RDONLY;
653 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
654 if (EXT4_SB(sb)->s_journal)
655 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
656 save_error_info(sb, function, line);
657 }
658 if (test_opt(sb, ERRORS_PANIC))
659 panic("EXT4-fs panic from previous error\n");
660 }
661
662 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
663 {
664 struct va_format vaf;
665 va_list args;
666
667 va_start(args, fmt);
668 vaf.fmt = fmt;
669 vaf.va = &args;
670 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
671 va_end(args);
672 }
673
674 void __ext4_warning(struct super_block *sb, const char *function,
675 unsigned int line, const char *fmt, ...)
676 {
677 struct va_format vaf;
678 va_list args;
679
680 va_start(args, fmt);
681 vaf.fmt = fmt;
682 vaf.va = &args;
683 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
684 sb->s_id, function, line, &vaf);
685 va_end(args);
686 }
687
688 void __ext4_grp_locked_error(const char *function, unsigned int line,
689 struct super_block *sb, ext4_group_t grp,
690 unsigned long ino, ext4_fsblk_t block,
691 const char *fmt, ...)
692 __releases(bitlock)
693 __acquires(bitlock)
694 {
695 struct va_format vaf;
696 va_list args;
697 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
698
699 es->s_last_error_ino = cpu_to_le32(ino);
700 es->s_last_error_block = cpu_to_le64(block);
701 __save_error_info(sb, function, line);
702
703 va_start(args, fmt);
704
705 vaf.fmt = fmt;
706 vaf.va = &args;
707 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
708 sb->s_id, function, line, grp);
709 if (ino)
710 printk(KERN_CONT "inode %lu: ", ino);
711 if (block)
712 printk(KERN_CONT "block %llu:", (unsigned long long) block);
713 printk(KERN_CONT "%pV\n", &vaf);
714 va_end(args);
715
716 if (test_opt(sb, ERRORS_CONT)) {
717 ext4_commit_super(sb, 0);
718 return;
719 }
720
721 ext4_unlock_group(sb, grp);
722 ext4_handle_error(sb);
723 /*
724 * We only get here in the ERRORS_RO case; relocking the group
725 * may be dangerous, but nothing bad will happen since the
726 * filesystem will have already been marked read/only and the
727 * journal has been aborted. We return 1 as a hint to callers
728 * who might what to use the return value from
729 * ext4_grp_locked_error() to distinguish between the
730 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
731 * aggressively from the ext4 function in question, with a
732 * more appropriate error code.
733 */
734 ext4_lock_group(sb, grp);
735 return;
736 }
737
738 void ext4_update_dynamic_rev(struct super_block *sb)
739 {
740 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
741
742 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
743 return;
744
745 ext4_warning(sb,
746 "updating to rev %d because of new feature flag, "
747 "running e2fsck is recommended",
748 EXT4_DYNAMIC_REV);
749
750 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
751 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
752 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
753 /* leave es->s_feature_*compat flags alone */
754 /* es->s_uuid will be set by e2fsck if empty */
755
756 /*
757 * The rest of the superblock fields should be zero, and if not it
758 * means they are likely already in use, so leave them alone. We
759 * can leave it up to e2fsck to clean up any inconsistencies there.
760 */
761 }
762
763 /*
764 * Open the external journal device
765 */
766 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
767 {
768 struct block_device *bdev;
769 char b[BDEVNAME_SIZE];
770
771 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
772 if (IS_ERR(bdev))
773 goto fail;
774 return bdev;
775
776 fail:
777 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
778 __bdevname(dev, b), PTR_ERR(bdev));
779 return NULL;
780 }
781
782 /*
783 * Release the journal device
784 */
785 static int ext4_blkdev_put(struct block_device *bdev)
786 {
787 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
788 }
789
790 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
791 {
792 struct block_device *bdev;
793 int ret = -ENODEV;
794
795 bdev = sbi->journal_bdev;
796 if (bdev) {
797 ret = ext4_blkdev_put(bdev);
798 sbi->journal_bdev = NULL;
799 }
800 return ret;
801 }
802
803 static inline struct inode *orphan_list_entry(struct list_head *l)
804 {
805 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
806 }
807
808 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
809 {
810 struct list_head *l;
811
812 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
813 le32_to_cpu(sbi->s_es->s_last_orphan));
814
815 printk(KERN_ERR "sb_info orphan list:\n");
816 list_for_each(l, &sbi->s_orphan) {
817 struct inode *inode = orphan_list_entry(l);
818 printk(KERN_ERR " "
819 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
820 inode->i_sb->s_id, inode->i_ino, inode,
821 inode->i_mode, inode->i_nlink,
822 NEXT_ORPHAN(inode));
823 }
824 }
825
826 static void ext4_put_super(struct super_block *sb)
827 {
828 struct ext4_sb_info *sbi = EXT4_SB(sb);
829 struct ext4_super_block *es = sbi->s_es;
830 int i, err;
831
832 ext4_unregister_li_request(sb);
833 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
834
835 flush_workqueue(sbi->dio_unwritten_wq);
836 destroy_workqueue(sbi->dio_unwritten_wq);
837
838 lock_super(sb);
839 if (sbi->s_journal) {
840 err = jbd2_journal_destroy(sbi->s_journal);
841 sbi->s_journal = NULL;
842 if (err < 0)
843 ext4_abort(sb, "Couldn't clean up the journal");
844 }
845
846 del_timer(&sbi->s_err_report);
847 ext4_release_system_zone(sb);
848 ext4_mb_release(sb);
849 ext4_ext_release(sb);
850 ext4_xattr_put_super(sb);
851
852 if (!(sb->s_flags & MS_RDONLY)) {
853 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
854 es->s_state = cpu_to_le16(sbi->s_mount_state);
855 }
856 if (sb->s_dirt || !(sb->s_flags & MS_RDONLY))
857 ext4_commit_super(sb, 1);
858
859 if (sbi->s_proc) {
860 remove_proc_entry("options", sbi->s_proc);
861 remove_proc_entry(sb->s_id, ext4_proc_root);
862 }
863 kobject_del(&sbi->s_kobj);
864
865 for (i = 0; i < sbi->s_gdb_count; i++)
866 brelse(sbi->s_group_desc[i]);
867 ext4_kvfree(sbi->s_group_desc);
868 ext4_kvfree(sbi->s_flex_groups);
869 percpu_counter_destroy(&sbi->s_freeclusters_counter);
870 percpu_counter_destroy(&sbi->s_freeinodes_counter);
871 percpu_counter_destroy(&sbi->s_dirs_counter);
872 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
873 brelse(sbi->s_sbh);
874 #ifdef CONFIG_QUOTA
875 for (i = 0; i < MAXQUOTAS; i++)
876 kfree(sbi->s_qf_names[i]);
877 #endif
878
879 /* Debugging code just in case the in-memory inode orphan list
880 * isn't empty. The on-disk one can be non-empty if we've
881 * detected an error and taken the fs readonly, but the
882 * in-memory list had better be clean by this point. */
883 if (!list_empty(&sbi->s_orphan))
884 dump_orphan_list(sb, sbi);
885 J_ASSERT(list_empty(&sbi->s_orphan));
886
887 invalidate_bdev(sb->s_bdev);
888 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
889 /*
890 * Invalidate the journal device's buffers. We don't want them
891 * floating about in memory - the physical journal device may
892 * hotswapped, and it breaks the `ro-after' testing code.
893 */
894 sync_blockdev(sbi->journal_bdev);
895 invalidate_bdev(sbi->journal_bdev);
896 ext4_blkdev_remove(sbi);
897 }
898 if (sbi->s_mmp_tsk)
899 kthread_stop(sbi->s_mmp_tsk);
900 sb->s_fs_info = NULL;
901 /*
902 * Now that we are completely done shutting down the
903 * superblock, we need to actually destroy the kobject.
904 */
905 unlock_super(sb);
906 kobject_put(&sbi->s_kobj);
907 wait_for_completion(&sbi->s_kobj_unregister);
908 kfree(sbi->s_blockgroup_lock);
909 kfree(sbi);
910 }
911
912 static struct kmem_cache *ext4_inode_cachep;
913
914 /*
915 * Called inside transaction, so use GFP_NOFS
916 */
917 static struct inode *ext4_alloc_inode(struct super_block *sb)
918 {
919 struct ext4_inode_info *ei;
920
921 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
922 if (!ei)
923 return NULL;
924
925 ei->vfs_inode.i_version = 1;
926 ei->vfs_inode.i_data.writeback_index = 0;
927 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
928 INIT_LIST_HEAD(&ei->i_prealloc_list);
929 spin_lock_init(&ei->i_prealloc_lock);
930 ei->i_reserved_data_blocks = 0;
931 ei->i_reserved_meta_blocks = 0;
932 ei->i_allocated_meta_blocks = 0;
933 ei->i_da_metadata_calc_len = 0;
934 spin_lock_init(&(ei->i_block_reservation_lock));
935 #ifdef CONFIG_QUOTA
936 ei->i_reserved_quota = 0;
937 #endif
938 ei->jinode = NULL;
939 INIT_LIST_HEAD(&ei->i_completed_io_list);
940 spin_lock_init(&ei->i_completed_io_lock);
941 ei->cur_aio_dio = NULL;
942 ei->i_sync_tid = 0;
943 ei->i_datasync_tid = 0;
944 atomic_set(&ei->i_ioend_count, 0);
945 atomic_set(&ei->i_aiodio_unwritten, 0);
946
947 return &ei->vfs_inode;
948 }
949
950 static int ext4_drop_inode(struct inode *inode)
951 {
952 int drop = generic_drop_inode(inode);
953
954 trace_ext4_drop_inode(inode, drop);
955 return drop;
956 }
957
958 static void ext4_i_callback(struct rcu_head *head)
959 {
960 struct inode *inode = container_of(head, struct inode, i_rcu);
961 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
962 }
963
964 static void ext4_destroy_inode(struct inode *inode)
965 {
966 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
967 ext4_msg(inode->i_sb, KERN_ERR,
968 "Inode %lu (%p): orphan list check failed!",
969 inode->i_ino, EXT4_I(inode));
970 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
971 EXT4_I(inode), sizeof(struct ext4_inode_info),
972 true);
973 dump_stack();
974 }
975 call_rcu(&inode->i_rcu, ext4_i_callback);
976 }
977
978 static void init_once(void *foo)
979 {
980 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
981
982 INIT_LIST_HEAD(&ei->i_orphan);
983 #ifdef CONFIG_EXT4_FS_XATTR
984 init_rwsem(&ei->xattr_sem);
985 #endif
986 init_rwsem(&ei->i_data_sem);
987 inode_init_once(&ei->vfs_inode);
988 }
989
990 static int init_inodecache(void)
991 {
992 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
993 sizeof(struct ext4_inode_info),
994 0, (SLAB_RECLAIM_ACCOUNT|
995 SLAB_MEM_SPREAD),
996 init_once);
997 if (ext4_inode_cachep == NULL)
998 return -ENOMEM;
999 return 0;
1000 }
1001
1002 static void destroy_inodecache(void)
1003 {
1004 kmem_cache_destroy(ext4_inode_cachep);
1005 }
1006
1007 void ext4_clear_inode(struct inode *inode)
1008 {
1009 invalidate_inode_buffers(inode);
1010 clear_inode(inode);
1011 dquot_drop(inode);
1012 ext4_discard_preallocations(inode);
1013 if (EXT4_I(inode)->jinode) {
1014 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1015 EXT4_I(inode)->jinode);
1016 jbd2_free_inode(EXT4_I(inode)->jinode);
1017 EXT4_I(inode)->jinode = NULL;
1018 }
1019 }
1020
1021 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1022 u64 ino, u32 generation)
1023 {
1024 struct inode *inode;
1025
1026 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1027 return ERR_PTR(-ESTALE);
1028 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1029 return ERR_PTR(-ESTALE);
1030
1031 /* iget isn't really right if the inode is currently unallocated!!
1032 *
1033 * ext4_read_inode will return a bad_inode if the inode had been
1034 * deleted, so we should be safe.
1035 *
1036 * Currently we don't know the generation for parent directory, so
1037 * a generation of 0 means "accept any"
1038 */
1039 inode = ext4_iget(sb, ino);
1040 if (IS_ERR(inode))
1041 return ERR_CAST(inode);
1042 if (generation && inode->i_generation != generation) {
1043 iput(inode);
1044 return ERR_PTR(-ESTALE);
1045 }
1046
1047 return inode;
1048 }
1049
1050 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1051 int fh_len, int fh_type)
1052 {
1053 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1054 ext4_nfs_get_inode);
1055 }
1056
1057 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1058 int fh_len, int fh_type)
1059 {
1060 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1061 ext4_nfs_get_inode);
1062 }
1063
1064 /*
1065 * Try to release metadata pages (indirect blocks, directories) which are
1066 * mapped via the block device. Since these pages could have journal heads
1067 * which would prevent try_to_free_buffers() from freeing them, we must use
1068 * jbd2 layer's try_to_free_buffers() function to release them.
1069 */
1070 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1071 gfp_t wait)
1072 {
1073 journal_t *journal = EXT4_SB(sb)->s_journal;
1074
1075 WARN_ON(PageChecked(page));
1076 if (!page_has_buffers(page))
1077 return 0;
1078 if (journal)
1079 return jbd2_journal_try_to_free_buffers(journal, page,
1080 wait & ~__GFP_WAIT);
1081 return try_to_free_buffers(page);
1082 }
1083
1084 #ifdef CONFIG_QUOTA
1085 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1086 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1087
1088 static int ext4_write_dquot(struct dquot *dquot);
1089 static int ext4_acquire_dquot(struct dquot *dquot);
1090 static int ext4_release_dquot(struct dquot *dquot);
1091 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1092 static int ext4_write_info(struct super_block *sb, int type);
1093 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1094 struct path *path);
1095 static int ext4_quota_off(struct super_block *sb, int type);
1096 static int ext4_quota_on_mount(struct super_block *sb, int type);
1097 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1098 size_t len, loff_t off);
1099 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1100 const char *data, size_t len, loff_t off);
1101
1102 static const struct dquot_operations ext4_quota_operations = {
1103 .get_reserved_space = ext4_get_reserved_space,
1104 .write_dquot = ext4_write_dquot,
1105 .acquire_dquot = ext4_acquire_dquot,
1106 .release_dquot = ext4_release_dquot,
1107 .mark_dirty = ext4_mark_dquot_dirty,
1108 .write_info = ext4_write_info,
1109 .alloc_dquot = dquot_alloc,
1110 .destroy_dquot = dquot_destroy,
1111 };
1112
1113 static const struct quotactl_ops ext4_qctl_operations = {
1114 .quota_on = ext4_quota_on,
1115 .quota_off = ext4_quota_off,
1116 .quota_sync = dquot_quota_sync,
1117 .get_info = dquot_get_dqinfo,
1118 .set_info = dquot_set_dqinfo,
1119 .get_dqblk = dquot_get_dqblk,
1120 .set_dqblk = dquot_set_dqblk
1121 };
1122 #endif
1123
1124 static const struct super_operations ext4_sops = {
1125 .alloc_inode = ext4_alloc_inode,
1126 .destroy_inode = ext4_destroy_inode,
1127 .write_inode = ext4_write_inode,
1128 .dirty_inode = ext4_dirty_inode,
1129 .drop_inode = ext4_drop_inode,
1130 .evict_inode = ext4_evict_inode,
1131 .put_super = ext4_put_super,
1132 .sync_fs = ext4_sync_fs,
1133 .freeze_fs = ext4_freeze,
1134 .unfreeze_fs = ext4_unfreeze,
1135 .statfs = ext4_statfs,
1136 .remount_fs = ext4_remount,
1137 .show_options = ext4_show_options,
1138 #ifdef CONFIG_QUOTA
1139 .quota_read = ext4_quota_read,
1140 .quota_write = ext4_quota_write,
1141 #endif
1142 .bdev_try_to_free_page = bdev_try_to_free_page,
1143 };
1144
1145 static const struct super_operations ext4_nojournal_sops = {
1146 .alloc_inode = ext4_alloc_inode,
1147 .destroy_inode = ext4_destroy_inode,
1148 .write_inode = ext4_write_inode,
1149 .dirty_inode = ext4_dirty_inode,
1150 .drop_inode = ext4_drop_inode,
1151 .evict_inode = ext4_evict_inode,
1152 .write_super = ext4_write_super,
1153 .put_super = ext4_put_super,
1154 .statfs = ext4_statfs,
1155 .remount_fs = ext4_remount,
1156 .show_options = ext4_show_options,
1157 #ifdef CONFIG_QUOTA
1158 .quota_read = ext4_quota_read,
1159 .quota_write = ext4_quota_write,
1160 #endif
1161 .bdev_try_to_free_page = bdev_try_to_free_page,
1162 };
1163
1164 static const struct export_operations ext4_export_ops = {
1165 .fh_to_dentry = ext4_fh_to_dentry,
1166 .fh_to_parent = ext4_fh_to_parent,
1167 .get_parent = ext4_get_parent,
1168 };
1169
1170 enum {
1171 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1172 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1173 Opt_nouid32, Opt_debug, Opt_removed,
1174 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1175 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1176 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1177 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1178 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1179 Opt_data_err_abort, Opt_data_err_ignore,
1180 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1181 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1182 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1183 Opt_usrquota, Opt_grpquota, Opt_i_version,
1184 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1185 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1186 Opt_inode_readahead_blks, Opt_journal_ioprio,
1187 Opt_dioread_nolock, Opt_dioread_lock,
1188 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1189 };
1190
1191 static const match_table_t tokens = {
1192 {Opt_bsd_df, "bsddf"},
1193 {Opt_minix_df, "minixdf"},
1194 {Opt_grpid, "grpid"},
1195 {Opt_grpid, "bsdgroups"},
1196 {Opt_nogrpid, "nogrpid"},
1197 {Opt_nogrpid, "sysvgroups"},
1198 {Opt_resgid, "resgid=%u"},
1199 {Opt_resuid, "resuid=%u"},
1200 {Opt_sb, "sb=%u"},
1201 {Opt_err_cont, "errors=continue"},
1202 {Opt_err_panic, "errors=panic"},
1203 {Opt_err_ro, "errors=remount-ro"},
1204 {Opt_nouid32, "nouid32"},
1205 {Opt_debug, "debug"},
1206 {Opt_removed, "oldalloc"},
1207 {Opt_removed, "orlov"},
1208 {Opt_user_xattr, "user_xattr"},
1209 {Opt_nouser_xattr, "nouser_xattr"},
1210 {Opt_acl, "acl"},
1211 {Opt_noacl, "noacl"},
1212 {Opt_noload, "norecovery"},
1213 {Opt_noload, "noload"},
1214 {Opt_removed, "nobh"},
1215 {Opt_removed, "bh"},
1216 {Opt_commit, "commit=%u"},
1217 {Opt_min_batch_time, "min_batch_time=%u"},
1218 {Opt_max_batch_time, "max_batch_time=%u"},
1219 {Opt_journal_dev, "journal_dev=%u"},
1220 {Opt_journal_checksum, "journal_checksum"},
1221 {Opt_journal_async_commit, "journal_async_commit"},
1222 {Opt_abort, "abort"},
1223 {Opt_data_journal, "data=journal"},
1224 {Opt_data_ordered, "data=ordered"},
1225 {Opt_data_writeback, "data=writeback"},
1226 {Opt_data_err_abort, "data_err=abort"},
1227 {Opt_data_err_ignore, "data_err=ignore"},
1228 {Opt_offusrjquota, "usrjquota="},
1229 {Opt_usrjquota, "usrjquota=%s"},
1230 {Opt_offgrpjquota, "grpjquota="},
1231 {Opt_grpjquota, "grpjquota=%s"},
1232 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1233 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1234 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1235 {Opt_grpquota, "grpquota"},
1236 {Opt_noquota, "noquota"},
1237 {Opt_quota, "quota"},
1238 {Opt_usrquota, "usrquota"},
1239 {Opt_barrier, "barrier=%u"},
1240 {Opt_barrier, "barrier"},
1241 {Opt_nobarrier, "nobarrier"},
1242 {Opt_i_version, "i_version"},
1243 {Opt_stripe, "stripe=%u"},
1244 {Opt_delalloc, "delalloc"},
1245 {Opt_nodelalloc, "nodelalloc"},
1246 {Opt_mblk_io_submit, "mblk_io_submit"},
1247 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1248 {Opt_block_validity, "block_validity"},
1249 {Opt_noblock_validity, "noblock_validity"},
1250 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1251 {Opt_journal_ioprio, "journal_ioprio=%u"},
1252 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1253 {Opt_auto_da_alloc, "auto_da_alloc"},
1254 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1255 {Opt_dioread_nolock, "dioread_nolock"},
1256 {Opt_dioread_lock, "dioread_lock"},
1257 {Opt_discard, "discard"},
1258 {Opt_nodiscard, "nodiscard"},
1259 {Opt_init_itable, "init_itable=%u"},
1260 {Opt_init_itable, "init_itable"},
1261 {Opt_noinit_itable, "noinit_itable"},
1262 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1263 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1264 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1265 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1266 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1267 {Opt_err, NULL},
1268 };
1269
1270 static ext4_fsblk_t get_sb_block(void **data)
1271 {
1272 ext4_fsblk_t sb_block;
1273 char *options = (char *) *data;
1274
1275 if (!options || strncmp(options, "sb=", 3) != 0)
1276 return 1; /* Default location */
1277
1278 options += 3;
1279 /* TODO: use simple_strtoll with >32bit ext4 */
1280 sb_block = simple_strtoul(options, &options, 0);
1281 if (*options && *options != ',') {
1282 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1283 (char *) *data);
1284 return 1;
1285 }
1286 if (*options == ',')
1287 options++;
1288 *data = (void *) options;
1289
1290 return sb_block;
1291 }
1292
1293 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1294 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1295 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1296
1297 #ifdef CONFIG_QUOTA
1298 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1299 {
1300 struct ext4_sb_info *sbi = EXT4_SB(sb);
1301 char *qname;
1302
1303 if (sb_any_quota_loaded(sb) &&
1304 !sbi->s_qf_names[qtype]) {
1305 ext4_msg(sb, KERN_ERR,
1306 "Cannot change journaled "
1307 "quota options when quota turned on");
1308 return -1;
1309 }
1310 qname = match_strdup(args);
1311 if (!qname) {
1312 ext4_msg(sb, KERN_ERR,
1313 "Not enough memory for storing quotafile name");
1314 return -1;
1315 }
1316 if (sbi->s_qf_names[qtype] &&
1317 strcmp(sbi->s_qf_names[qtype], qname)) {
1318 ext4_msg(sb, KERN_ERR,
1319 "%s quota file already specified", QTYPE2NAME(qtype));
1320 kfree(qname);
1321 return -1;
1322 }
1323 sbi->s_qf_names[qtype] = qname;
1324 if (strchr(sbi->s_qf_names[qtype], '/')) {
1325 ext4_msg(sb, KERN_ERR,
1326 "quotafile must be on filesystem root");
1327 kfree(sbi->s_qf_names[qtype]);
1328 sbi->s_qf_names[qtype] = NULL;
1329 return -1;
1330 }
1331 set_opt(sb, QUOTA);
1332 return 1;
1333 }
1334
1335 static int clear_qf_name(struct super_block *sb, int qtype)
1336 {
1337
1338 struct ext4_sb_info *sbi = EXT4_SB(sb);
1339
1340 if (sb_any_quota_loaded(sb) &&
1341 sbi->s_qf_names[qtype]) {
1342 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1343 " when quota turned on");
1344 return -1;
1345 }
1346 /*
1347 * The space will be released later when all options are confirmed
1348 * to be correct
1349 */
1350 sbi->s_qf_names[qtype] = NULL;
1351 return 1;
1352 }
1353 #endif
1354
1355 #define MOPT_SET 0x0001
1356 #define MOPT_CLEAR 0x0002
1357 #define MOPT_NOSUPPORT 0x0004
1358 #define MOPT_EXPLICIT 0x0008
1359 #define MOPT_CLEAR_ERR 0x0010
1360 #define MOPT_GTE0 0x0020
1361 #ifdef CONFIG_QUOTA
1362 #define MOPT_Q 0
1363 #define MOPT_QFMT 0x0040
1364 #else
1365 #define MOPT_Q MOPT_NOSUPPORT
1366 #define MOPT_QFMT MOPT_NOSUPPORT
1367 #endif
1368 #define MOPT_DATAJ 0x0080
1369
1370 static const struct mount_opts {
1371 int token;
1372 int mount_opt;
1373 int flags;
1374 } ext4_mount_opts[] = {
1375 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1376 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1377 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1378 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1379 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET},
1380 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR},
1381 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1382 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1383 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET},
1384 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR},
1385 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1386 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1387 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT},
1388 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT},
1389 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET},
1390 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1391 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET},
1392 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET},
1393 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1394 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1395 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1396 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET},
1397 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR},
1398 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1399 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1400 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1401 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1402 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1403 {Opt_commit, 0, MOPT_GTE0},
1404 {Opt_max_batch_time, 0, MOPT_GTE0},
1405 {Opt_min_batch_time, 0, MOPT_GTE0},
1406 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1407 {Opt_init_itable, 0, MOPT_GTE0},
1408 {Opt_stripe, 0, MOPT_GTE0},
1409 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ},
1410 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ},
1411 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ},
1412 #ifdef CONFIG_EXT4_FS_XATTR
1413 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1414 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1415 #else
1416 {Opt_user_xattr, 0, MOPT_NOSUPPORT},
1417 {Opt_nouser_xattr, 0, MOPT_NOSUPPORT},
1418 #endif
1419 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1420 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1421 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1422 #else
1423 {Opt_acl, 0, MOPT_NOSUPPORT},
1424 {Opt_noacl, 0, MOPT_NOSUPPORT},
1425 #endif
1426 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1427 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1428 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1429 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1430 MOPT_SET | MOPT_Q},
1431 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1432 MOPT_SET | MOPT_Q},
1433 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1434 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1435 {Opt_usrjquota, 0, MOPT_Q},
1436 {Opt_grpjquota, 0, MOPT_Q},
1437 {Opt_offusrjquota, 0, MOPT_Q},
1438 {Opt_offgrpjquota, 0, MOPT_Q},
1439 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1440 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1441 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1442 {Opt_err, 0, 0}
1443 };
1444
1445 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1446 substring_t *args, unsigned long *journal_devnum,
1447 unsigned int *journal_ioprio, int is_remount)
1448 {
1449 struct ext4_sb_info *sbi = EXT4_SB(sb);
1450 const struct mount_opts *m;
1451 kuid_t uid;
1452 kgid_t gid;
1453 int arg = 0;
1454
1455 #ifdef CONFIG_QUOTA
1456 if (token == Opt_usrjquota)
1457 return set_qf_name(sb, USRQUOTA, &args[0]);
1458 else if (token == Opt_grpjquota)
1459 return set_qf_name(sb, GRPQUOTA, &args[0]);
1460 else if (token == Opt_offusrjquota)
1461 return clear_qf_name(sb, USRQUOTA);
1462 else if (token == Opt_offgrpjquota)
1463 return clear_qf_name(sb, GRPQUOTA);
1464 #endif
1465 if (args->from && match_int(args, &arg))
1466 return -1;
1467 switch (token) {
1468 case Opt_noacl:
1469 case Opt_nouser_xattr:
1470 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1471 break;
1472 case Opt_sb:
1473 return 1; /* handled by get_sb_block() */
1474 case Opt_removed:
1475 ext4_msg(sb, KERN_WARNING,
1476 "Ignoring removed %s option", opt);
1477 return 1;
1478 case Opt_resuid:
1479 uid = make_kuid(current_user_ns(), arg);
1480 if (!uid_valid(uid)) {
1481 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1482 return -1;
1483 }
1484 sbi->s_resuid = uid;
1485 return 1;
1486 case Opt_resgid:
1487 gid = make_kgid(current_user_ns(), arg);
1488 if (!gid_valid(gid)) {
1489 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1490 return -1;
1491 }
1492 sbi->s_resgid = gid;
1493 return 1;
1494 case Opt_abort:
1495 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1496 return 1;
1497 case Opt_i_version:
1498 sb->s_flags |= MS_I_VERSION;
1499 return 1;
1500 case Opt_journal_dev:
1501 if (is_remount) {
1502 ext4_msg(sb, KERN_ERR,
1503 "Cannot specify journal on remount");
1504 return -1;
1505 }
1506 *journal_devnum = arg;
1507 return 1;
1508 case Opt_journal_ioprio:
1509 if (arg < 0 || arg > 7)
1510 return -1;
1511 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1512 return 1;
1513 }
1514
1515 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1516 if (token != m->token)
1517 continue;
1518 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1519 return -1;
1520 if (m->flags & MOPT_EXPLICIT)
1521 set_opt2(sb, EXPLICIT_DELALLOC);
1522 if (m->flags & MOPT_CLEAR_ERR)
1523 clear_opt(sb, ERRORS_MASK);
1524 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1525 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1526 "options when quota turned on");
1527 return -1;
1528 }
1529
1530 if (m->flags & MOPT_NOSUPPORT) {
1531 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1532 } else if (token == Opt_commit) {
1533 if (arg == 0)
1534 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1535 sbi->s_commit_interval = HZ * arg;
1536 } else if (token == Opt_max_batch_time) {
1537 if (arg == 0)
1538 arg = EXT4_DEF_MAX_BATCH_TIME;
1539 sbi->s_max_batch_time = arg;
1540 } else if (token == Opt_min_batch_time) {
1541 sbi->s_min_batch_time = arg;
1542 } else if (token == Opt_inode_readahead_blks) {
1543 if (arg > (1 << 30))
1544 return -1;
1545 if (arg && !is_power_of_2(arg)) {
1546 ext4_msg(sb, KERN_ERR,
1547 "EXT4-fs: inode_readahead_blks"
1548 " must be a power of 2");
1549 return -1;
1550 }
1551 sbi->s_inode_readahead_blks = arg;
1552 } else if (token == Opt_init_itable) {
1553 set_opt(sb, INIT_INODE_TABLE);
1554 if (!args->from)
1555 arg = EXT4_DEF_LI_WAIT_MULT;
1556 sbi->s_li_wait_mult = arg;
1557 } else if (token == Opt_stripe) {
1558 sbi->s_stripe = arg;
1559 } else if (m->flags & MOPT_DATAJ) {
1560 if (is_remount) {
1561 if (!sbi->s_journal)
1562 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1563 else if (test_opt(sb, DATA_FLAGS) !=
1564 m->mount_opt) {
1565 ext4_msg(sb, KERN_ERR,
1566 "Cannot change data mode on remount");
1567 return -1;
1568 }
1569 } else {
1570 clear_opt(sb, DATA_FLAGS);
1571 sbi->s_mount_opt |= m->mount_opt;
1572 }
1573 #ifdef CONFIG_QUOTA
1574 } else if (m->flags & MOPT_QFMT) {
1575 if (sb_any_quota_loaded(sb) &&
1576 sbi->s_jquota_fmt != m->mount_opt) {
1577 ext4_msg(sb, KERN_ERR, "Cannot "
1578 "change journaled quota options "
1579 "when quota turned on");
1580 return -1;
1581 }
1582 sbi->s_jquota_fmt = m->mount_opt;
1583 #endif
1584 } else {
1585 if (!args->from)
1586 arg = 1;
1587 if (m->flags & MOPT_CLEAR)
1588 arg = !arg;
1589 else if (unlikely(!(m->flags & MOPT_SET))) {
1590 ext4_msg(sb, KERN_WARNING,
1591 "buggy handling of option %s", opt);
1592 WARN_ON(1);
1593 return -1;
1594 }
1595 if (arg != 0)
1596 sbi->s_mount_opt |= m->mount_opt;
1597 else
1598 sbi->s_mount_opt &= ~m->mount_opt;
1599 }
1600 return 1;
1601 }
1602 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1603 "or missing value", opt);
1604 return -1;
1605 }
1606
1607 static int parse_options(char *options, struct super_block *sb,
1608 unsigned long *journal_devnum,
1609 unsigned int *journal_ioprio,
1610 int is_remount)
1611 {
1612 #ifdef CONFIG_QUOTA
1613 struct ext4_sb_info *sbi = EXT4_SB(sb);
1614 #endif
1615 char *p;
1616 substring_t args[MAX_OPT_ARGS];
1617 int token;
1618
1619 if (!options)
1620 return 1;
1621
1622 while ((p = strsep(&options, ",")) != NULL) {
1623 if (!*p)
1624 continue;
1625 /*
1626 * Initialize args struct so we know whether arg was
1627 * found; some options take optional arguments.
1628 */
1629 args[0].to = args[0].from = 0;
1630 token = match_token(p, tokens, args);
1631 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1632 journal_ioprio, is_remount) < 0)
1633 return 0;
1634 }
1635 #ifdef CONFIG_QUOTA
1636 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1637 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1638 clear_opt(sb, USRQUOTA);
1639
1640 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1641 clear_opt(sb, GRPQUOTA);
1642
1643 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1644 ext4_msg(sb, KERN_ERR, "old and new quota "
1645 "format mixing");
1646 return 0;
1647 }
1648
1649 if (!sbi->s_jquota_fmt) {
1650 ext4_msg(sb, KERN_ERR, "journaled quota format "
1651 "not specified");
1652 return 0;
1653 }
1654 } else {
1655 if (sbi->s_jquota_fmt) {
1656 ext4_msg(sb, KERN_ERR, "journaled quota format "
1657 "specified with no journaling "
1658 "enabled");
1659 return 0;
1660 }
1661 }
1662 #endif
1663 return 1;
1664 }
1665
1666 static inline void ext4_show_quota_options(struct seq_file *seq,
1667 struct super_block *sb)
1668 {
1669 #if defined(CONFIG_QUOTA)
1670 struct ext4_sb_info *sbi = EXT4_SB(sb);
1671
1672 if (sbi->s_jquota_fmt) {
1673 char *fmtname = "";
1674
1675 switch (sbi->s_jquota_fmt) {
1676 case QFMT_VFS_OLD:
1677 fmtname = "vfsold";
1678 break;
1679 case QFMT_VFS_V0:
1680 fmtname = "vfsv0";
1681 break;
1682 case QFMT_VFS_V1:
1683 fmtname = "vfsv1";
1684 break;
1685 }
1686 seq_printf(seq, ",jqfmt=%s", fmtname);
1687 }
1688
1689 if (sbi->s_qf_names[USRQUOTA])
1690 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1691
1692 if (sbi->s_qf_names[GRPQUOTA])
1693 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1694
1695 if (test_opt(sb, USRQUOTA))
1696 seq_puts(seq, ",usrquota");
1697
1698 if (test_opt(sb, GRPQUOTA))
1699 seq_puts(seq, ",grpquota");
1700 #endif
1701 }
1702
1703 static const char *token2str(int token)
1704 {
1705 static const struct match_token *t;
1706
1707 for (t = tokens; t->token != Opt_err; t++)
1708 if (t->token == token && !strchr(t->pattern, '='))
1709 break;
1710 return t->pattern;
1711 }
1712
1713 /*
1714 * Show an option if
1715 * - it's set to a non-default value OR
1716 * - if the per-sb default is different from the global default
1717 */
1718 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1719 int nodefs)
1720 {
1721 struct ext4_sb_info *sbi = EXT4_SB(sb);
1722 struct ext4_super_block *es = sbi->s_es;
1723 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1724 const struct mount_opts *m;
1725 char sep = nodefs ? '\n' : ',';
1726
1727 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1728 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1729
1730 if (sbi->s_sb_block != 1)
1731 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1732
1733 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1734 int want_set = m->flags & MOPT_SET;
1735 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1736 (m->flags & MOPT_CLEAR_ERR))
1737 continue;
1738 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1739 continue; /* skip if same as the default */
1740 if ((want_set &&
1741 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1742 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1743 continue; /* select Opt_noFoo vs Opt_Foo */
1744 SEQ_OPTS_PRINT("%s", token2str(m->token));
1745 }
1746
1747 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1748 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1749 SEQ_OPTS_PRINT("resuid=%u",
1750 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1751 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1752 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1753 SEQ_OPTS_PRINT("resgid=%u",
1754 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1755 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1756 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1757 SEQ_OPTS_PUTS("errors=remount-ro");
1758 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1759 SEQ_OPTS_PUTS("errors=continue");
1760 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1761 SEQ_OPTS_PUTS("errors=panic");
1762 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1763 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1764 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1765 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1766 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1767 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1768 if (sb->s_flags & MS_I_VERSION)
1769 SEQ_OPTS_PUTS("i_version");
1770 if (nodefs || sbi->s_stripe)
1771 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1772 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1773 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1774 SEQ_OPTS_PUTS("data=journal");
1775 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1776 SEQ_OPTS_PUTS("data=ordered");
1777 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1778 SEQ_OPTS_PUTS("data=writeback");
1779 }
1780 if (nodefs ||
1781 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1782 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1783 sbi->s_inode_readahead_blks);
1784
1785 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1786 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1787 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1788
1789 ext4_show_quota_options(seq, sb);
1790 return 0;
1791 }
1792
1793 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1794 {
1795 return _ext4_show_options(seq, root->d_sb, 0);
1796 }
1797
1798 static int options_seq_show(struct seq_file *seq, void *offset)
1799 {
1800 struct super_block *sb = seq->private;
1801 int rc;
1802
1803 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1804 rc = _ext4_show_options(seq, sb, 1);
1805 seq_puts(seq, "\n");
1806 return rc;
1807 }
1808
1809 static int options_open_fs(struct inode *inode, struct file *file)
1810 {
1811 return single_open(file, options_seq_show, PDE(inode)->data);
1812 }
1813
1814 static const struct file_operations ext4_seq_options_fops = {
1815 .owner = THIS_MODULE,
1816 .open = options_open_fs,
1817 .read = seq_read,
1818 .llseek = seq_lseek,
1819 .release = single_release,
1820 };
1821
1822 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1823 int read_only)
1824 {
1825 struct ext4_sb_info *sbi = EXT4_SB(sb);
1826 int res = 0;
1827
1828 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1829 ext4_msg(sb, KERN_ERR, "revision level too high, "
1830 "forcing read-only mode");
1831 res = MS_RDONLY;
1832 }
1833 if (read_only)
1834 goto done;
1835 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1836 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1837 "running e2fsck is recommended");
1838 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1839 ext4_msg(sb, KERN_WARNING,
1840 "warning: mounting fs with errors, "
1841 "running e2fsck is recommended");
1842 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1843 le16_to_cpu(es->s_mnt_count) >=
1844 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1845 ext4_msg(sb, KERN_WARNING,
1846 "warning: maximal mount count reached, "
1847 "running e2fsck is recommended");
1848 else if (le32_to_cpu(es->s_checkinterval) &&
1849 (le32_to_cpu(es->s_lastcheck) +
1850 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1851 ext4_msg(sb, KERN_WARNING,
1852 "warning: checktime reached, "
1853 "running e2fsck is recommended");
1854 if (!sbi->s_journal)
1855 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1856 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1857 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1858 le16_add_cpu(&es->s_mnt_count, 1);
1859 es->s_mtime = cpu_to_le32(get_seconds());
1860 ext4_update_dynamic_rev(sb);
1861 if (sbi->s_journal)
1862 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1863
1864 ext4_commit_super(sb, 1);
1865 done:
1866 if (test_opt(sb, DEBUG))
1867 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1868 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1869 sb->s_blocksize,
1870 sbi->s_groups_count,
1871 EXT4_BLOCKS_PER_GROUP(sb),
1872 EXT4_INODES_PER_GROUP(sb),
1873 sbi->s_mount_opt, sbi->s_mount_opt2);
1874
1875 cleancache_init_fs(sb);
1876 return res;
1877 }
1878
1879 static int ext4_fill_flex_info(struct super_block *sb)
1880 {
1881 struct ext4_sb_info *sbi = EXT4_SB(sb);
1882 struct ext4_group_desc *gdp = NULL;
1883 ext4_group_t flex_group_count;
1884 ext4_group_t flex_group;
1885 unsigned int groups_per_flex = 0;
1886 size_t size;
1887 int i;
1888
1889 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1890 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1891 sbi->s_log_groups_per_flex = 0;
1892 return 1;
1893 }
1894 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1895
1896 /* We allocate both existing and potentially added groups */
1897 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1898 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1899 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1900 size = flex_group_count * sizeof(struct flex_groups);
1901 sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL);
1902 if (sbi->s_flex_groups == NULL) {
1903 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups",
1904 flex_group_count);
1905 goto failed;
1906 }
1907
1908 for (i = 0; i < sbi->s_groups_count; i++) {
1909 gdp = ext4_get_group_desc(sb, i, NULL);
1910
1911 flex_group = ext4_flex_group(sbi, i);
1912 atomic_add(ext4_free_inodes_count(sb, gdp),
1913 &sbi->s_flex_groups[flex_group].free_inodes);
1914 atomic_add(ext4_free_group_clusters(sb, gdp),
1915 &sbi->s_flex_groups[flex_group].free_clusters);
1916 atomic_add(ext4_used_dirs_count(sb, gdp),
1917 &sbi->s_flex_groups[flex_group].used_dirs);
1918 }
1919
1920 return 1;
1921 failed:
1922 return 0;
1923 }
1924
1925 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1926 struct ext4_group_desc *gdp)
1927 {
1928 __u16 crc = 0;
1929
1930 if (sbi->s_es->s_feature_ro_compat &
1931 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1932 int offset = offsetof(struct ext4_group_desc, bg_checksum);
1933 __le32 le_group = cpu_to_le32(block_group);
1934
1935 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1936 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1937 crc = crc16(crc, (__u8 *)gdp, offset);
1938 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1939 /* for checksum of struct ext4_group_desc do the rest...*/
1940 if ((sbi->s_es->s_feature_incompat &
1941 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1942 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1943 crc = crc16(crc, (__u8 *)gdp + offset,
1944 le16_to_cpu(sbi->s_es->s_desc_size) -
1945 offset);
1946 }
1947
1948 return cpu_to_le16(crc);
1949 }
1950
1951 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1952 struct ext4_group_desc *gdp)
1953 {
1954 if ((sbi->s_es->s_feature_ro_compat &
1955 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1956 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1957 return 0;
1958
1959 return 1;
1960 }
1961
1962 /* Called at mount-time, super-block is locked */
1963 static int ext4_check_descriptors(struct super_block *sb,
1964 ext4_group_t *first_not_zeroed)
1965 {
1966 struct ext4_sb_info *sbi = EXT4_SB(sb);
1967 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
1968 ext4_fsblk_t last_block;
1969 ext4_fsblk_t block_bitmap;
1970 ext4_fsblk_t inode_bitmap;
1971 ext4_fsblk_t inode_table;
1972 int flexbg_flag = 0;
1973 ext4_group_t i, grp = sbi->s_groups_count;
1974
1975 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
1976 flexbg_flag = 1;
1977
1978 ext4_debug("Checking group descriptors");
1979
1980 for (i = 0; i < sbi->s_groups_count; i++) {
1981 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1982
1983 if (i == sbi->s_groups_count - 1 || flexbg_flag)
1984 last_block = ext4_blocks_count(sbi->s_es) - 1;
1985 else
1986 last_block = first_block +
1987 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1988
1989 if ((grp == sbi->s_groups_count) &&
1990 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
1991 grp = i;
1992
1993 block_bitmap = ext4_block_bitmap(sb, gdp);
1994 if (block_bitmap < first_block || block_bitmap > last_block) {
1995 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1996 "Block bitmap for group %u not in group "
1997 "(block %llu)!", i, block_bitmap);
1998 return 0;
1999 }
2000 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2001 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2002 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2003 "Inode bitmap for group %u not in group "
2004 "(block %llu)!", i, inode_bitmap);
2005 return 0;
2006 }
2007 inode_table = ext4_inode_table(sb, gdp);
2008 if (inode_table < first_block ||
2009 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2010 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2011 "Inode table for group %u not in group "
2012 "(block %llu)!", i, inode_table);
2013 return 0;
2014 }
2015 ext4_lock_group(sb, i);
2016 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2017 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2018 "Checksum for group %u failed (%u!=%u)",
2019 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2020 gdp)), le16_to_cpu(gdp->bg_checksum));
2021 if (!(sb->s_flags & MS_RDONLY)) {
2022 ext4_unlock_group(sb, i);
2023 return 0;
2024 }
2025 }
2026 ext4_unlock_group(sb, i);
2027 if (!flexbg_flag)
2028 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2029 }
2030 if (NULL != first_not_zeroed)
2031 *first_not_zeroed = grp;
2032
2033 ext4_free_blocks_count_set(sbi->s_es,
2034 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2035 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2036 return 1;
2037 }
2038
2039 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2040 * the superblock) which were deleted from all directories, but held open by
2041 * a process at the time of a crash. We walk the list and try to delete these
2042 * inodes at recovery time (only with a read-write filesystem).
2043 *
2044 * In order to keep the orphan inode chain consistent during traversal (in
2045 * case of crash during recovery), we link each inode into the superblock
2046 * orphan list_head and handle it the same way as an inode deletion during
2047 * normal operation (which journals the operations for us).
2048 *
2049 * We only do an iget() and an iput() on each inode, which is very safe if we
2050 * accidentally point at an in-use or already deleted inode. The worst that
2051 * can happen in this case is that we get a "bit already cleared" message from
2052 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2053 * e2fsck was run on this filesystem, and it must have already done the orphan
2054 * inode cleanup for us, so we can safely abort without any further action.
2055 */
2056 static void ext4_orphan_cleanup(struct super_block *sb,
2057 struct ext4_super_block *es)
2058 {
2059 unsigned int s_flags = sb->s_flags;
2060 int nr_orphans = 0, nr_truncates = 0;
2061 #ifdef CONFIG_QUOTA
2062 int i;
2063 #endif
2064 if (!es->s_last_orphan) {
2065 jbd_debug(4, "no orphan inodes to clean up\n");
2066 return;
2067 }
2068
2069 if (bdev_read_only(sb->s_bdev)) {
2070 ext4_msg(sb, KERN_ERR, "write access "
2071 "unavailable, skipping orphan cleanup");
2072 return;
2073 }
2074
2075 /* Check if feature set would not allow a r/w mount */
2076 if (!ext4_feature_set_ok(sb, 0)) {
2077 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2078 "unknown ROCOMPAT features");
2079 return;
2080 }
2081
2082 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2083 if (es->s_last_orphan)
2084 jbd_debug(1, "Errors on filesystem, "
2085 "clearing orphan list.\n");
2086 es->s_last_orphan = 0;
2087 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2088 return;
2089 }
2090
2091 if (s_flags & MS_RDONLY) {
2092 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2093 sb->s_flags &= ~MS_RDONLY;
2094 }
2095 #ifdef CONFIG_QUOTA
2096 /* Needed for iput() to work correctly and not trash data */
2097 sb->s_flags |= MS_ACTIVE;
2098 /* Turn on quotas so that they are updated correctly */
2099 for (i = 0; i < MAXQUOTAS; i++) {
2100 if (EXT4_SB(sb)->s_qf_names[i]) {
2101 int ret = ext4_quota_on_mount(sb, i);
2102 if (ret < 0)
2103 ext4_msg(sb, KERN_ERR,
2104 "Cannot turn on journaled "
2105 "quota: error %d", ret);
2106 }
2107 }
2108 #endif
2109
2110 while (es->s_last_orphan) {
2111 struct inode *inode;
2112
2113 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2114 if (IS_ERR(inode)) {
2115 es->s_last_orphan = 0;
2116 break;
2117 }
2118
2119 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2120 dquot_initialize(inode);
2121 if (inode->i_nlink) {
2122 ext4_msg(sb, KERN_DEBUG,
2123 "%s: truncating inode %lu to %lld bytes",
2124 __func__, inode->i_ino, inode->i_size);
2125 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2126 inode->i_ino, inode->i_size);
2127 ext4_truncate(inode);
2128 nr_truncates++;
2129 } else {
2130 ext4_msg(sb, KERN_DEBUG,
2131 "%s: deleting unreferenced inode %lu",
2132 __func__, inode->i_ino);
2133 jbd_debug(2, "deleting unreferenced inode %lu\n",
2134 inode->i_ino);
2135 nr_orphans++;
2136 }
2137 iput(inode); /* The delete magic happens here! */
2138 }
2139
2140 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2141
2142 if (nr_orphans)
2143 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2144 PLURAL(nr_orphans));
2145 if (nr_truncates)
2146 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2147 PLURAL(nr_truncates));
2148 #ifdef CONFIG_QUOTA
2149 /* Turn quotas off */
2150 for (i = 0; i < MAXQUOTAS; i++) {
2151 if (sb_dqopt(sb)->files[i])
2152 dquot_quota_off(sb, i);
2153 }
2154 #endif
2155 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2156 }
2157
2158 /*
2159 * Maximal extent format file size.
2160 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2161 * extent format containers, within a sector_t, and within i_blocks
2162 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2163 * so that won't be a limiting factor.
2164 *
2165 * However there is other limiting factor. We do store extents in the form
2166 * of starting block and length, hence the resulting length of the extent
2167 * covering maximum file size must fit into on-disk format containers as
2168 * well. Given that length is always by 1 unit bigger than max unit (because
2169 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2170 *
2171 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2172 */
2173 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2174 {
2175 loff_t res;
2176 loff_t upper_limit = MAX_LFS_FILESIZE;
2177
2178 /* small i_blocks in vfs inode? */
2179 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2180 /*
2181 * CONFIG_LBDAF is not enabled implies the inode
2182 * i_block represent total blocks in 512 bytes
2183 * 32 == size of vfs inode i_blocks * 8
2184 */
2185 upper_limit = (1LL << 32) - 1;
2186
2187 /* total blocks in file system block size */
2188 upper_limit >>= (blkbits - 9);
2189 upper_limit <<= blkbits;
2190 }
2191
2192 /*
2193 * 32-bit extent-start container, ee_block. We lower the maxbytes
2194 * by one fs block, so ee_len can cover the extent of maximum file
2195 * size
2196 */
2197 res = (1LL << 32) - 1;
2198 res <<= blkbits;
2199
2200 /* Sanity check against vm- & vfs- imposed limits */
2201 if (res > upper_limit)
2202 res = upper_limit;
2203
2204 return res;
2205 }
2206
2207 /*
2208 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2209 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2210 * We need to be 1 filesystem block less than the 2^48 sector limit.
2211 */
2212 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2213 {
2214 loff_t res = EXT4_NDIR_BLOCKS;
2215 int meta_blocks;
2216 loff_t upper_limit;
2217 /* This is calculated to be the largest file size for a dense, block
2218 * mapped file such that the file's total number of 512-byte sectors,
2219 * including data and all indirect blocks, does not exceed (2^48 - 1).
2220 *
2221 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2222 * number of 512-byte sectors of the file.
2223 */
2224
2225 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2226 /*
2227 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2228 * the inode i_block field represents total file blocks in
2229 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2230 */
2231 upper_limit = (1LL << 32) - 1;
2232
2233 /* total blocks in file system block size */
2234 upper_limit >>= (bits - 9);
2235
2236 } else {
2237 /*
2238 * We use 48 bit ext4_inode i_blocks
2239 * With EXT4_HUGE_FILE_FL set the i_blocks
2240 * represent total number of blocks in
2241 * file system block size
2242 */
2243 upper_limit = (1LL << 48) - 1;
2244
2245 }
2246
2247 /* indirect blocks */
2248 meta_blocks = 1;
2249 /* double indirect blocks */
2250 meta_blocks += 1 + (1LL << (bits-2));
2251 /* tripple indirect blocks */
2252 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2253
2254 upper_limit -= meta_blocks;
2255 upper_limit <<= bits;
2256
2257 res += 1LL << (bits-2);
2258 res += 1LL << (2*(bits-2));
2259 res += 1LL << (3*(bits-2));
2260 res <<= bits;
2261 if (res > upper_limit)
2262 res = upper_limit;
2263
2264 if (res > MAX_LFS_FILESIZE)
2265 res = MAX_LFS_FILESIZE;
2266
2267 return res;
2268 }
2269
2270 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2271 ext4_fsblk_t logical_sb_block, int nr)
2272 {
2273 struct ext4_sb_info *sbi = EXT4_SB(sb);
2274 ext4_group_t bg, first_meta_bg;
2275 int has_super = 0;
2276
2277 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2278
2279 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2280 nr < first_meta_bg)
2281 return logical_sb_block + nr + 1;
2282 bg = sbi->s_desc_per_block * nr;
2283 if (ext4_bg_has_super(sb, bg))
2284 has_super = 1;
2285
2286 return (has_super + ext4_group_first_block_no(sb, bg));
2287 }
2288
2289 /**
2290 * ext4_get_stripe_size: Get the stripe size.
2291 * @sbi: In memory super block info
2292 *
2293 * If we have specified it via mount option, then
2294 * use the mount option value. If the value specified at mount time is
2295 * greater than the blocks per group use the super block value.
2296 * If the super block value is greater than blocks per group return 0.
2297 * Allocator needs it be less than blocks per group.
2298 *
2299 */
2300 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2301 {
2302 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2303 unsigned long stripe_width =
2304 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2305 int ret;
2306
2307 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2308 ret = sbi->s_stripe;
2309 else if (stripe_width <= sbi->s_blocks_per_group)
2310 ret = stripe_width;
2311 else if (stride <= sbi->s_blocks_per_group)
2312 ret = stride;
2313 else
2314 ret = 0;
2315
2316 /*
2317 * If the stripe width is 1, this makes no sense and
2318 * we set it to 0 to turn off stripe handling code.
2319 */
2320 if (ret <= 1)
2321 ret = 0;
2322
2323 return ret;
2324 }
2325
2326 /* sysfs supprt */
2327
2328 struct ext4_attr {
2329 struct attribute attr;
2330 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2331 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2332 const char *, size_t);
2333 int offset;
2334 };
2335
2336 static int parse_strtoul(const char *buf,
2337 unsigned long max, unsigned long *value)
2338 {
2339 char *endp;
2340
2341 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2342 endp = skip_spaces(endp);
2343 if (*endp || *value > max)
2344 return -EINVAL;
2345
2346 return 0;
2347 }
2348
2349 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2350 struct ext4_sb_info *sbi,
2351 char *buf)
2352 {
2353 return snprintf(buf, PAGE_SIZE, "%llu\n",
2354 (s64) EXT4_C2B(sbi,
2355 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2356 }
2357
2358 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2359 struct ext4_sb_info *sbi, char *buf)
2360 {
2361 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2362
2363 if (!sb->s_bdev->bd_part)
2364 return snprintf(buf, PAGE_SIZE, "0\n");
2365 return snprintf(buf, PAGE_SIZE, "%lu\n",
2366 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2367 sbi->s_sectors_written_start) >> 1);
2368 }
2369
2370 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2371 struct ext4_sb_info *sbi, char *buf)
2372 {
2373 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2374
2375 if (!sb->s_bdev->bd_part)
2376 return snprintf(buf, PAGE_SIZE, "0\n");
2377 return snprintf(buf, PAGE_SIZE, "%llu\n",
2378 (unsigned long long)(sbi->s_kbytes_written +
2379 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2380 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2381 }
2382
2383 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2384 struct ext4_sb_info *sbi,
2385 const char *buf, size_t count)
2386 {
2387 unsigned long t;
2388
2389 if (parse_strtoul(buf, 0x40000000, &t))
2390 return -EINVAL;
2391
2392 if (t && !is_power_of_2(t))
2393 return -EINVAL;
2394
2395 sbi->s_inode_readahead_blks = t;
2396 return count;
2397 }
2398
2399 static ssize_t sbi_ui_show(struct ext4_attr *a,
2400 struct ext4_sb_info *sbi, char *buf)
2401 {
2402 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2403
2404 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2405 }
2406
2407 static ssize_t sbi_ui_store(struct ext4_attr *a,
2408 struct ext4_sb_info *sbi,
2409 const char *buf, size_t count)
2410 {
2411 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2412 unsigned long t;
2413
2414 if (parse_strtoul(buf, 0xffffffff, &t))
2415 return -EINVAL;
2416 *ui = t;
2417 return count;
2418 }
2419
2420 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2421 static struct ext4_attr ext4_attr_##_name = { \
2422 .attr = {.name = __stringify(_name), .mode = _mode }, \
2423 .show = _show, \
2424 .store = _store, \
2425 .offset = offsetof(struct ext4_sb_info, _elname), \
2426 }
2427 #define EXT4_ATTR(name, mode, show, store) \
2428 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2429
2430 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2431 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2432 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2433 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2434 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2435 #define ATTR_LIST(name) &ext4_attr_##name.attr
2436
2437 EXT4_RO_ATTR(delayed_allocation_blocks);
2438 EXT4_RO_ATTR(session_write_kbytes);
2439 EXT4_RO_ATTR(lifetime_write_kbytes);
2440 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2441 inode_readahead_blks_store, s_inode_readahead_blks);
2442 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2443 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2444 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2445 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2446 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2447 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2448 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2449 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2450
2451 static struct attribute *ext4_attrs[] = {
2452 ATTR_LIST(delayed_allocation_blocks),
2453 ATTR_LIST(session_write_kbytes),
2454 ATTR_LIST(lifetime_write_kbytes),
2455 ATTR_LIST(inode_readahead_blks),
2456 ATTR_LIST(inode_goal),
2457 ATTR_LIST(mb_stats),
2458 ATTR_LIST(mb_max_to_scan),
2459 ATTR_LIST(mb_min_to_scan),
2460 ATTR_LIST(mb_order2_req),
2461 ATTR_LIST(mb_stream_req),
2462 ATTR_LIST(mb_group_prealloc),
2463 ATTR_LIST(max_writeback_mb_bump),
2464 NULL,
2465 };
2466
2467 /* Features this copy of ext4 supports */
2468 EXT4_INFO_ATTR(lazy_itable_init);
2469 EXT4_INFO_ATTR(batched_discard);
2470
2471 static struct attribute *ext4_feat_attrs[] = {
2472 ATTR_LIST(lazy_itable_init),
2473 ATTR_LIST(batched_discard),
2474 NULL,
2475 };
2476
2477 static ssize_t ext4_attr_show(struct kobject *kobj,
2478 struct attribute *attr, char *buf)
2479 {
2480 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2481 s_kobj);
2482 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2483
2484 return a->show ? a->show(a, sbi, buf) : 0;
2485 }
2486
2487 static ssize_t ext4_attr_store(struct kobject *kobj,
2488 struct attribute *attr,
2489 const char *buf, size_t len)
2490 {
2491 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2492 s_kobj);
2493 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2494
2495 return a->store ? a->store(a, sbi, buf, len) : 0;
2496 }
2497
2498 static void ext4_sb_release(struct kobject *kobj)
2499 {
2500 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2501 s_kobj);
2502 complete(&sbi->s_kobj_unregister);
2503 }
2504
2505 static const struct sysfs_ops ext4_attr_ops = {
2506 .show = ext4_attr_show,
2507 .store = ext4_attr_store,
2508 };
2509
2510 static struct kobj_type ext4_ktype = {
2511 .default_attrs = ext4_attrs,
2512 .sysfs_ops = &ext4_attr_ops,
2513 .release = ext4_sb_release,
2514 };
2515
2516 static void ext4_feat_release(struct kobject *kobj)
2517 {
2518 complete(&ext4_feat->f_kobj_unregister);
2519 }
2520
2521 static struct kobj_type ext4_feat_ktype = {
2522 .default_attrs = ext4_feat_attrs,
2523 .sysfs_ops = &ext4_attr_ops,
2524 .release = ext4_feat_release,
2525 };
2526
2527 /*
2528 * Check whether this filesystem can be mounted based on
2529 * the features present and the RDONLY/RDWR mount requested.
2530 * Returns 1 if this filesystem can be mounted as requested,
2531 * 0 if it cannot be.
2532 */
2533 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2534 {
2535 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2536 ext4_msg(sb, KERN_ERR,
2537 "Couldn't mount because of "
2538 "unsupported optional features (%x)",
2539 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2540 ~EXT4_FEATURE_INCOMPAT_SUPP));
2541 return 0;
2542 }
2543
2544 if (readonly)
2545 return 1;
2546
2547 /* Check that feature set is OK for a read-write mount */
2548 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2549 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2550 "unsupported optional features (%x)",
2551 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2552 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2553 return 0;
2554 }
2555 /*
2556 * Large file size enabled file system can only be mounted
2557 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2558 */
2559 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2560 if (sizeof(blkcnt_t) < sizeof(u64)) {
2561 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2562 "cannot be mounted RDWR without "
2563 "CONFIG_LBDAF");
2564 return 0;
2565 }
2566 }
2567 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2568 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2569 ext4_msg(sb, KERN_ERR,
2570 "Can't support bigalloc feature without "
2571 "extents feature\n");
2572 return 0;
2573 }
2574 return 1;
2575 }
2576
2577 /*
2578 * This function is called once a day if we have errors logged
2579 * on the file system
2580 */
2581 static void print_daily_error_info(unsigned long arg)
2582 {
2583 struct super_block *sb = (struct super_block *) arg;
2584 struct ext4_sb_info *sbi;
2585 struct ext4_super_block *es;
2586
2587 sbi = EXT4_SB(sb);
2588 es = sbi->s_es;
2589
2590 if (es->s_error_count)
2591 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2592 le32_to_cpu(es->s_error_count));
2593 if (es->s_first_error_time) {
2594 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2595 sb->s_id, le32_to_cpu(es->s_first_error_time),
2596 (int) sizeof(es->s_first_error_func),
2597 es->s_first_error_func,
2598 le32_to_cpu(es->s_first_error_line));
2599 if (es->s_first_error_ino)
2600 printk(": inode %u",
2601 le32_to_cpu(es->s_first_error_ino));
2602 if (es->s_first_error_block)
2603 printk(": block %llu", (unsigned long long)
2604 le64_to_cpu(es->s_first_error_block));
2605 printk("\n");
2606 }
2607 if (es->s_last_error_time) {
2608 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2609 sb->s_id, le32_to_cpu(es->s_last_error_time),
2610 (int) sizeof(es->s_last_error_func),
2611 es->s_last_error_func,
2612 le32_to_cpu(es->s_last_error_line));
2613 if (es->s_last_error_ino)
2614 printk(": inode %u",
2615 le32_to_cpu(es->s_last_error_ino));
2616 if (es->s_last_error_block)
2617 printk(": block %llu", (unsigned long long)
2618 le64_to_cpu(es->s_last_error_block));
2619 printk("\n");
2620 }
2621 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2622 }
2623
2624 /* Find next suitable group and run ext4_init_inode_table */
2625 static int ext4_run_li_request(struct ext4_li_request *elr)
2626 {
2627 struct ext4_group_desc *gdp = NULL;
2628 ext4_group_t group, ngroups;
2629 struct super_block *sb;
2630 unsigned long timeout = 0;
2631 int ret = 0;
2632
2633 sb = elr->lr_super;
2634 ngroups = EXT4_SB(sb)->s_groups_count;
2635
2636 for (group = elr->lr_next_group; group < ngroups; group++) {
2637 gdp = ext4_get_group_desc(sb, group, NULL);
2638 if (!gdp) {
2639 ret = 1;
2640 break;
2641 }
2642
2643 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2644 break;
2645 }
2646
2647 if (group == ngroups)
2648 ret = 1;
2649
2650 if (!ret) {
2651 timeout = jiffies;
2652 ret = ext4_init_inode_table(sb, group,
2653 elr->lr_timeout ? 0 : 1);
2654 if (elr->lr_timeout == 0) {
2655 timeout = (jiffies - timeout) *
2656 elr->lr_sbi->s_li_wait_mult;
2657 elr->lr_timeout = timeout;
2658 }
2659 elr->lr_next_sched = jiffies + elr->lr_timeout;
2660 elr->lr_next_group = group + 1;
2661 }
2662
2663 return ret;
2664 }
2665
2666 /*
2667 * Remove lr_request from the list_request and free the
2668 * request structure. Should be called with li_list_mtx held
2669 */
2670 static void ext4_remove_li_request(struct ext4_li_request *elr)
2671 {
2672 struct ext4_sb_info *sbi;
2673
2674 if (!elr)
2675 return;
2676
2677 sbi = elr->lr_sbi;
2678
2679 list_del(&elr->lr_request);
2680 sbi->s_li_request = NULL;
2681 kfree(elr);
2682 }
2683
2684 static void ext4_unregister_li_request(struct super_block *sb)
2685 {
2686 mutex_lock(&ext4_li_mtx);
2687 if (!ext4_li_info) {
2688 mutex_unlock(&ext4_li_mtx);
2689 return;
2690 }
2691
2692 mutex_lock(&ext4_li_info->li_list_mtx);
2693 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2694 mutex_unlock(&ext4_li_info->li_list_mtx);
2695 mutex_unlock(&ext4_li_mtx);
2696 }
2697
2698 static struct task_struct *ext4_lazyinit_task;
2699
2700 /*
2701 * This is the function where ext4lazyinit thread lives. It walks
2702 * through the request list searching for next scheduled filesystem.
2703 * When such a fs is found, run the lazy initialization request
2704 * (ext4_rn_li_request) and keep track of the time spend in this
2705 * function. Based on that time we compute next schedule time of
2706 * the request. When walking through the list is complete, compute
2707 * next waking time and put itself into sleep.
2708 */
2709 static int ext4_lazyinit_thread(void *arg)
2710 {
2711 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2712 struct list_head *pos, *n;
2713 struct ext4_li_request *elr;
2714 unsigned long next_wakeup, cur;
2715
2716 BUG_ON(NULL == eli);
2717
2718 cont_thread:
2719 while (true) {
2720 next_wakeup = MAX_JIFFY_OFFSET;
2721
2722 mutex_lock(&eli->li_list_mtx);
2723 if (list_empty(&eli->li_request_list)) {
2724 mutex_unlock(&eli->li_list_mtx);
2725 goto exit_thread;
2726 }
2727
2728 list_for_each_safe(pos, n, &eli->li_request_list) {
2729 elr = list_entry(pos, struct ext4_li_request,
2730 lr_request);
2731
2732 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2733 if (ext4_run_li_request(elr) != 0) {
2734 /* error, remove the lazy_init job */
2735 ext4_remove_li_request(elr);
2736 continue;
2737 }
2738 }
2739
2740 if (time_before(elr->lr_next_sched, next_wakeup))
2741 next_wakeup = elr->lr_next_sched;
2742 }
2743 mutex_unlock(&eli->li_list_mtx);
2744
2745 try_to_freeze();
2746
2747 cur = jiffies;
2748 if ((time_after_eq(cur, next_wakeup)) ||
2749 (MAX_JIFFY_OFFSET == next_wakeup)) {
2750 cond_resched();
2751 continue;
2752 }
2753
2754 schedule_timeout_interruptible(next_wakeup - cur);
2755
2756 if (kthread_should_stop()) {
2757 ext4_clear_request_list();
2758 goto exit_thread;
2759 }
2760 }
2761
2762 exit_thread:
2763 /*
2764 * It looks like the request list is empty, but we need
2765 * to check it under the li_list_mtx lock, to prevent any
2766 * additions into it, and of course we should lock ext4_li_mtx
2767 * to atomically free the list and ext4_li_info, because at
2768 * this point another ext4 filesystem could be registering
2769 * new one.
2770 */
2771 mutex_lock(&ext4_li_mtx);
2772 mutex_lock(&eli->li_list_mtx);
2773 if (!list_empty(&eli->li_request_list)) {
2774 mutex_unlock(&eli->li_list_mtx);
2775 mutex_unlock(&ext4_li_mtx);
2776 goto cont_thread;
2777 }
2778 mutex_unlock(&eli->li_list_mtx);
2779 kfree(ext4_li_info);
2780 ext4_li_info = NULL;
2781 mutex_unlock(&ext4_li_mtx);
2782
2783 return 0;
2784 }
2785
2786 static void ext4_clear_request_list(void)
2787 {
2788 struct list_head *pos, *n;
2789 struct ext4_li_request *elr;
2790
2791 mutex_lock(&ext4_li_info->li_list_mtx);
2792 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2793 elr = list_entry(pos, struct ext4_li_request,
2794 lr_request);
2795 ext4_remove_li_request(elr);
2796 }
2797 mutex_unlock(&ext4_li_info->li_list_mtx);
2798 }
2799
2800 static int ext4_run_lazyinit_thread(void)
2801 {
2802 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2803 ext4_li_info, "ext4lazyinit");
2804 if (IS_ERR(ext4_lazyinit_task)) {
2805 int err = PTR_ERR(ext4_lazyinit_task);
2806 ext4_clear_request_list();
2807 kfree(ext4_li_info);
2808 ext4_li_info = NULL;
2809 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2810 "initialization thread\n",
2811 err);
2812 return err;
2813 }
2814 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2815 return 0;
2816 }
2817
2818 /*
2819 * Check whether it make sense to run itable init. thread or not.
2820 * If there is at least one uninitialized inode table, return
2821 * corresponding group number, else the loop goes through all
2822 * groups and return total number of groups.
2823 */
2824 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2825 {
2826 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2827 struct ext4_group_desc *gdp = NULL;
2828
2829 for (group = 0; group < ngroups; group++) {
2830 gdp = ext4_get_group_desc(sb, group, NULL);
2831 if (!gdp)
2832 continue;
2833
2834 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2835 break;
2836 }
2837
2838 return group;
2839 }
2840
2841 static int ext4_li_info_new(void)
2842 {
2843 struct ext4_lazy_init *eli = NULL;
2844
2845 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2846 if (!eli)
2847 return -ENOMEM;
2848
2849 INIT_LIST_HEAD(&eli->li_request_list);
2850 mutex_init(&eli->li_list_mtx);
2851
2852 eli->li_state |= EXT4_LAZYINIT_QUIT;
2853
2854 ext4_li_info = eli;
2855
2856 return 0;
2857 }
2858
2859 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2860 ext4_group_t start)
2861 {
2862 struct ext4_sb_info *sbi = EXT4_SB(sb);
2863 struct ext4_li_request *elr;
2864 unsigned long rnd;
2865
2866 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2867 if (!elr)
2868 return NULL;
2869
2870 elr->lr_super = sb;
2871 elr->lr_sbi = sbi;
2872 elr->lr_next_group = start;
2873
2874 /*
2875 * Randomize first schedule time of the request to
2876 * spread the inode table initialization requests
2877 * better.
2878 */
2879 get_random_bytes(&rnd, sizeof(rnd));
2880 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2881 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2882
2883 return elr;
2884 }
2885
2886 static int ext4_register_li_request(struct super_block *sb,
2887 ext4_group_t first_not_zeroed)
2888 {
2889 struct ext4_sb_info *sbi = EXT4_SB(sb);
2890 struct ext4_li_request *elr;
2891 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2892 int ret = 0;
2893
2894 if (sbi->s_li_request != NULL) {
2895 /*
2896 * Reset timeout so it can be computed again, because
2897 * s_li_wait_mult might have changed.
2898 */
2899 sbi->s_li_request->lr_timeout = 0;
2900 return 0;
2901 }
2902
2903 if (first_not_zeroed == ngroups ||
2904 (sb->s_flags & MS_RDONLY) ||
2905 !test_opt(sb, INIT_INODE_TABLE))
2906 return 0;
2907
2908 elr = ext4_li_request_new(sb, first_not_zeroed);
2909 if (!elr)
2910 return -ENOMEM;
2911
2912 mutex_lock(&ext4_li_mtx);
2913
2914 if (NULL == ext4_li_info) {
2915 ret = ext4_li_info_new();
2916 if (ret)
2917 goto out;
2918 }
2919
2920 mutex_lock(&ext4_li_info->li_list_mtx);
2921 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2922 mutex_unlock(&ext4_li_info->li_list_mtx);
2923
2924 sbi->s_li_request = elr;
2925 /*
2926 * set elr to NULL here since it has been inserted to
2927 * the request_list and the removal and free of it is
2928 * handled by ext4_clear_request_list from now on.
2929 */
2930 elr = NULL;
2931
2932 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2933 ret = ext4_run_lazyinit_thread();
2934 if (ret)
2935 goto out;
2936 }
2937 out:
2938 mutex_unlock(&ext4_li_mtx);
2939 if (ret)
2940 kfree(elr);
2941 return ret;
2942 }
2943
2944 /*
2945 * We do not need to lock anything since this is called on
2946 * module unload.
2947 */
2948 static void ext4_destroy_lazyinit_thread(void)
2949 {
2950 /*
2951 * If thread exited earlier
2952 * there's nothing to be done.
2953 */
2954 if (!ext4_li_info || !ext4_lazyinit_task)
2955 return;
2956
2957 kthread_stop(ext4_lazyinit_task);
2958 }
2959
2960 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
2961 {
2962 char *orig_data = kstrdup(data, GFP_KERNEL);
2963 struct buffer_head *bh;
2964 struct ext4_super_block *es = NULL;
2965 struct ext4_sb_info *sbi;
2966 ext4_fsblk_t block;
2967 ext4_fsblk_t sb_block = get_sb_block(&data);
2968 ext4_fsblk_t logical_sb_block;
2969 unsigned long offset = 0;
2970 unsigned long journal_devnum = 0;
2971 unsigned long def_mount_opts;
2972 struct inode *root;
2973 char *cp;
2974 const char *descr;
2975 int ret = -ENOMEM;
2976 int blocksize, clustersize;
2977 unsigned int db_count;
2978 unsigned int i;
2979 int needs_recovery, has_huge_files, has_bigalloc;
2980 __u64 blocks_count;
2981 int err;
2982 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
2983 ext4_group_t first_not_zeroed;
2984
2985 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2986 if (!sbi)
2987 goto out_free_orig;
2988
2989 sbi->s_blockgroup_lock =
2990 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
2991 if (!sbi->s_blockgroup_lock) {
2992 kfree(sbi);
2993 goto out_free_orig;
2994 }
2995 sb->s_fs_info = sbi;
2996 sbi->s_mount_opt = 0;
2997 sbi->s_resuid = make_kuid(&init_user_ns, EXT4_DEF_RESUID);
2998 sbi->s_resgid = make_kgid(&init_user_ns, EXT4_DEF_RESGID);
2999 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3000 sbi->s_sb_block = sb_block;
3001 if (sb->s_bdev->bd_part)
3002 sbi->s_sectors_written_start =
3003 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3004
3005 /* Cleanup superblock name */
3006 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3007 *cp = '!';
3008
3009 ret = -EINVAL;
3010 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3011 if (!blocksize) {
3012 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3013 goto out_fail;
3014 }
3015
3016 /*
3017 * The ext4 superblock will not be buffer aligned for other than 1kB
3018 * block sizes. We need to calculate the offset from buffer start.
3019 */
3020 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3021 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3022 offset = do_div(logical_sb_block, blocksize);
3023 } else {
3024 logical_sb_block = sb_block;
3025 }
3026
3027 if (!(bh = sb_bread(sb, logical_sb_block))) {
3028 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3029 goto out_fail;
3030 }
3031 /*
3032 * Note: s_es must be initialized as soon as possible because
3033 * some ext4 macro-instructions depend on its value
3034 */
3035 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3036 sbi->s_es = es;
3037 sb->s_magic = le16_to_cpu(es->s_magic);
3038 if (sb->s_magic != EXT4_SUPER_MAGIC)
3039 goto cantfind_ext4;
3040 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3041
3042 /* Set defaults before we parse the mount options */
3043 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3044 set_opt(sb, INIT_INODE_TABLE);
3045 if (def_mount_opts & EXT4_DEFM_DEBUG)
3046 set_opt(sb, DEBUG);
3047 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3048 set_opt(sb, GRPID);
3049 if (def_mount_opts & EXT4_DEFM_UID16)
3050 set_opt(sb, NO_UID32);
3051 /* xattr user namespace & acls are now defaulted on */
3052 #ifdef CONFIG_EXT4_FS_XATTR
3053 set_opt(sb, XATTR_USER);
3054 #endif
3055 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3056 set_opt(sb, POSIX_ACL);
3057 #endif
3058 set_opt(sb, MBLK_IO_SUBMIT);
3059 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3060 set_opt(sb, JOURNAL_DATA);
3061 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3062 set_opt(sb, ORDERED_DATA);
3063 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3064 set_opt(sb, WRITEBACK_DATA);
3065
3066 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3067 set_opt(sb, ERRORS_PANIC);
3068 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3069 set_opt(sb, ERRORS_CONT);
3070 else
3071 set_opt(sb, ERRORS_RO);
3072 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3073 set_opt(sb, BLOCK_VALIDITY);
3074 if (def_mount_opts & EXT4_DEFM_DISCARD)
3075 set_opt(sb, DISCARD);
3076
3077 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3078 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3079 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3080 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3081 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3082
3083 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3084 set_opt(sb, BARRIER);
3085
3086 /*
3087 * enable delayed allocation by default
3088 * Use -o nodelalloc to turn it off
3089 */
3090 if (!IS_EXT3_SB(sb) &&
3091 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3092 set_opt(sb, DELALLOC);
3093
3094 /*
3095 * set default s_li_wait_mult for lazyinit, for the case there is
3096 * no mount option specified.
3097 */
3098 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3099
3100 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3101 &journal_devnum, &journal_ioprio, 0)) {
3102 ext4_msg(sb, KERN_WARNING,
3103 "failed to parse options in superblock: %s",
3104 sbi->s_es->s_mount_opts);
3105 }
3106 sbi->s_def_mount_opt = sbi->s_mount_opt;
3107 if (!parse_options((char *) data, sb, &journal_devnum,
3108 &journal_ioprio, 0))
3109 goto failed_mount;
3110
3111 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3112 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3113 "with data=journal disables delayed "
3114 "allocation and O_DIRECT support!\n");
3115 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3116 ext4_msg(sb, KERN_ERR, "can't mount with "
3117 "both data=journal and delalloc");
3118 goto failed_mount;
3119 }
3120 if (test_opt(sb, DIOREAD_NOLOCK)) {
3121 ext4_msg(sb, KERN_ERR, "can't mount with "
3122 "both data=journal and delalloc");
3123 goto failed_mount;
3124 }
3125 if (test_opt(sb, DELALLOC))
3126 clear_opt(sb, DELALLOC);
3127 }
3128
3129 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3130 if (test_opt(sb, DIOREAD_NOLOCK)) {
3131 if (blocksize < PAGE_SIZE) {
3132 ext4_msg(sb, KERN_ERR, "can't mount with "
3133 "dioread_nolock if block size != PAGE_SIZE");
3134 goto failed_mount;
3135 }
3136 }
3137
3138 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3139 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3140
3141 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3142 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3143 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3144 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3145 ext4_msg(sb, KERN_WARNING,
3146 "feature flags set on rev 0 fs, "
3147 "running e2fsck is recommended");
3148
3149 if (IS_EXT2_SB(sb)) {
3150 if (ext2_feature_set_ok(sb))
3151 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3152 "using the ext4 subsystem");
3153 else {
3154 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3155 "to feature incompatibilities");
3156 goto failed_mount;
3157 }
3158 }
3159
3160 if (IS_EXT3_SB(sb)) {
3161 if (ext3_feature_set_ok(sb))
3162 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3163 "using the ext4 subsystem");
3164 else {
3165 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3166 "to feature incompatibilities");
3167 goto failed_mount;
3168 }
3169 }
3170
3171 /*
3172 * Check feature flags regardless of the revision level, since we
3173 * previously didn't change the revision level when setting the flags,
3174 * so there is a chance incompat flags are set on a rev 0 filesystem.
3175 */
3176 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3177 goto failed_mount;
3178
3179 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3180 blocksize > EXT4_MAX_BLOCK_SIZE) {
3181 ext4_msg(sb, KERN_ERR,
3182 "Unsupported filesystem blocksize %d", blocksize);
3183 goto failed_mount;
3184 }
3185
3186 if (sb->s_blocksize != blocksize) {
3187 /* Validate the filesystem blocksize */
3188 if (!sb_set_blocksize(sb, blocksize)) {
3189 ext4_msg(sb, KERN_ERR, "bad block size %d",
3190 blocksize);
3191 goto failed_mount;
3192 }
3193
3194 brelse(bh);
3195 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3196 offset = do_div(logical_sb_block, blocksize);
3197 bh = sb_bread(sb, logical_sb_block);
3198 if (!bh) {
3199 ext4_msg(sb, KERN_ERR,
3200 "Can't read superblock on 2nd try");
3201 goto failed_mount;
3202 }
3203 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3204 sbi->s_es = es;
3205 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3206 ext4_msg(sb, KERN_ERR,
3207 "Magic mismatch, very weird!");
3208 goto failed_mount;
3209 }
3210 }
3211
3212 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3213 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3214 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3215 has_huge_files);
3216 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3217
3218 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3219 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3220 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3221 } else {
3222 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3223 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3224 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3225 (!is_power_of_2(sbi->s_inode_size)) ||
3226 (sbi->s_inode_size > blocksize)) {
3227 ext4_msg(sb, KERN_ERR,
3228 "unsupported inode size: %d",
3229 sbi->s_inode_size);
3230 goto failed_mount;
3231 }
3232 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3233 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3234 }
3235
3236 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3237 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3238 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3239 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3240 !is_power_of_2(sbi->s_desc_size)) {
3241 ext4_msg(sb, KERN_ERR,
3242 "unsupported descriptor size %lu",
3243 sbi->s_desc_size);
3244 goto failed_mount;
3245 }
3246 } else
3247 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3248
3249 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3250 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3251 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3252 goto cantfind_ext4;
3253
3254 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3255 if (sbi->s_inodes_per_block == 0)
3256 goto cantfind_ext4;
3257 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3258 sbi->s_inodes_per_block;
3259 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3260 sbi->s_sbh = bh;
3261 sbi->s_mount_state = le16_to_cpu(es->s_state);
3262 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3263 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3264
3265 for (i = 0; i < 4; i++)
3266 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3267 sbi->s_def_hash_version = es->s_def_hash_version;
3268 i = le32_to_cpu(es->s_flags);
3269 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3270 sbi->s_hash_unsigned = 3;
3271 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3272 #ifdef __CHAR_UNSIGNED__
3273 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3274 sbi->s_hash_unsigned = 3;
3275 #else
3276 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3277 #endif
3278 }
3279
3280 /* Handle clustersize */
3281 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3282 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3283 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3284 if (has_bigalloc) {
3285 if (clustersize < blocksize) {
3286 ext4_msg(sb, KERN_ERR,
3287 "cluster size (%d) smaller than "
3288 "block size (%d)", clustersize, blocksize);
3289 goto failed_mount;
3290 }
3291 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3292 le32_to_cpu(es->s_log_block_size);
3293 sbi->s_clusters_per_group =
3294 le32_to_cpu(es->s_clusters_per_group);
3295 if (sbi->s_clusters_per_group > blocksize * 8) {
3296 ext4_msg(sb, KERN_ERR,
3297 "#clusters per group too big: %lu",
3298 sbi->s_clusters_per_group);
3299 goto failed_mount;
3300 }
3301 if (sbi->s_blocks_per_group !=
3302 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3303 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3304 "clusters per group (%lu) inconsistent",
3305 sbi->s_blocks_per_group,
3306 sbi->s_clusters_per_group);
3307 goto failed_mount;
3308 }
3309 } else {
3310 if (clustersize != blocksize) {
3311 ext4_warning(sb, "fragment/cluster size (%d) != "
3312 "block size (%d)", clustersize,
3313 blocksize);
3314 clustersize = blocksize;
3315 }
3316 if (sbi->s_blocks_per_group > blocksize * 8) {
3317 ext4_msg(sb, KERN_ERR,
3318 "#blocks per group too big: %lu",
3319 sbi->s_blocks_per_group);
3320 goto failed_mount;
3321 }
3322 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3323 sbi->s_cluster_bits = 0;
3324 }
3325 sbi->s_cluster_ratio = clustersize / blocksize;
3326
3327 if (sbi->s_inodes_per_group > blocksize * 8) {
3328 ext4_msg(sb, KERN_ERR,
3329 "#inodes per group too big: %lu",
3330 sbi->s_inodes_per_group);
3331 goto failed_mount;
3332 }
3333
3334 /*
3335 * Test whether we have more sectors than will fit in sector_t,
3336 * and whether the max offset is addressable by the page cache.
3337 */
3338 err = generic_check_addressable(sb->s_blocksize_bits,
3339 ext4_blocks_count(es));
3340 if (err) {
3341 ext4_msg(sb, KERN_ERR, "filesystem"
3342 " too large to mount safely on this system");
3343 if (sizeof(sector_t) < 8)
3344 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3345 ret = err;
3346 goto failed_mount;
3347 }
3348
3349 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3350 goto cantfind_ext4;
3351
3352 /* check blocks count against device size */
3353 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3354 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3355 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3356 "exceeds size of device (%llu blocks)",
3357 ext4_blocks_count(es), blocks_count);
3358 goto failed_mount;
3359 }
3360
3361 /*
3362 * It makes no sense for the first data block to be beyond the end
3363 * of the filesystem.
3364 */
3365 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3366 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3367 "block %u is beyond end of filesystem (%llu)",
3368 le32_to_cpu(es->s_first_data_block),
3369 ext4_blocks_count(es));
3370 goto failed_mount;
3371 }
3372 blocks_count = (ext4_blocks_count(es) -
3373 le32_to_cpu(es->s_first_data_block) +
3374 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3375 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3376 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3377 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3378 "(block count %llu, first data block %u, "
3379 "blocks per group %lu)", sbi->s_groups_count,
3380 ext4_blocks_count(es),
3381 le32_to_cpu(es->s_first_data_block),
3382 EXT4_BLOCKS_PER_GROUP(sb));
3383 goto failed_mount;
3384 }
3385 sbi->s_groups_count = blocks_count;
3386 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3387 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3388 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3389 EXT4_DESC_PER_BLOCK(sb);
3390 sbi->s_group_desc = ext4_kvmalloc(db_count *
3391 sizeof(struct buffer_head *),
3392 GFP_KERNEL);
3393 if (sbi->s_group_desc == NULL) {
3394 ext4_msg(sb, KERN_ERR, "not enough memory");
3395 goto failed_mount;
3396 }
3397
3398 if (ext4_proc_root)
3399 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3400
3401 if (sbi->s_proc)
3402 proc_create_data("options", S_IRUGO, sbi->s_proc,
3403 &ext4_seq_options_fops, sb);
3404
3405 bgl_lock_init(sbi->s_blockgroup_lock);
3406
3407 for (i = 0; i < db_count; i++) {
3408 block = descriptor_loc(sb, logical_sb_block, i);
3409 sbi->s_group_desc[i] = sb_bread(sb, block);
3410 if (!sbi->s_group_desc[i]) {
3411 ext4_msg(sb, KERN_ERR,
3412 "can't read group descriptor %d", i);
3413 db_count = i;
3414 goto failed_mount2;
3415 }
3416 }
3417 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3418 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3419 goto failed_mount2;
3420 }
3421 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3422 if (!ext4_fill_flex_info(sb)) {
3423 ext4_msg(sb, KERN_ERR,
3424 "unable to initialize "
3425 "flex_bg meta info!");
3426 goto failed_mount2;
3427 }
3428
3429 sbi->s_gdb_count = db_count;
3430 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3431 spin_lock_init(&sbi->s_next_gen_lock);
3432
3433 init_timer(&sbi->s_err_report);
3434 sbi->s_err_report.function = print_daily_error_info;
3435 sbi->s_err_report.data = (unsigned long) sb;
3436
3437 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3438 ext4_count_free_clusters(sb));
3439 if (!err) {
3440 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3441 ext4_count_free_inodes(sb));
3442 }
3443 if (!err) {
3444 err = percpu_counter_init(&sbi->s_dirs_counter,
3445 ext4_count_dirs(sb));
3446 }
3447 if (!err) {
3448 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3449 }
3450 if (err) {
3451 ext4_msg(sb, KERN_ERR, "insufficient memory");
3452 goto failed_mount3;
3453 }
3454
3455 sbi->s_stripe = ext4_get_stripe_size(sbi);
3456 sbi->s_max_writeback_mb_bump = 128;
3457
3458 /*
3459 * set up enough so that it can read an inode
3460 */
3461 if (!test_opt(sb, NOLOAD) &&
3462 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3463 sb->s_op = &ext4_sops;
3464 else
3465 sb->s_op = &ext4_nojournal_sops;
3466 sb->s_export_op = &ext4_export_ops;
3467 sb->s_xattr = ext4_xattr_handlers;
3468 #ifdef CONFIG_QUOTA
3469 sb->s_qcop = &ext4_qctl_operations;
3470 sb->dq_op = &ext4_quota_operations;
3471 #endif
3472 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3473
3474 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3475 mutex_init(&sbi->s_orphan_lock);
3476 sbi->s_resize_flags = 0;
3477
3478 sb->s_root = NULL;
3479
3480 needs_recovery = (es->s_last_orphan != 0 ||
3481 EXT4_HAS_INCOMPAT_FEATURE(sb,
3482 EXT4_FEATURE_INCOMPAT_RECOVER));
3483
3484 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3485 !(sb->s_flags & MS_RDONLY))
3486 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3487 goto failed_mount3;
3488
3489 /*
3490 * The first inode we look at is the journal inode. Don't try
3491 * root first: it may be modified in the journal!
3492 */
3493 if (!test_opt(sb, NOLOAD) &&
3494 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3495 if (ext4_load_journal(sb, es, journal_devnum))
3496 goto failed_mount3;
3497 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3498 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3499 ext4_msg(sb, KERN_ERR, "required journal recovery "
3500 "suppressed and not mounted read-only");
3501 goto failed_mount_wq;
3502 } else {
3503 clear_opt(sb, DATA_FLAGS);
3504 sbi->s_journal = NULL;
3505 needs_recovery = 0;
3506 goto no_journal;
3507 }
3508
3509 if (ext4_blocks_count(es) > 0xffffffffULL &&
3510 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3511 JBD2_FEATURE_INCOMPAT_64BIT)) {
3512 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3513 goto failed_mount_wq;
3514 }
3515
3516 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3517 jbd2_journal_set_features(sbi->s_journal,
3518 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3519 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3520 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3521 jbd2_journal_set_features(sbi->s_journal,
3522 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3523 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3524 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3525 } else {
3526 jbd2_journal_clear_features(sbi->s_journal,
3527 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3528 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3529 }
3530
3531 /* We have now updated the journal if required, so we can
3532 * validate the data journaling mode. */
3533 switch (test_opt(sb, DATA_FLAGS)) {
3534 case 0:
3535 /* No mode set, assume a default based on the journal
3536 * capabilities: ORDERED_DATA if the journal can
3537 * cope, else JOURNAL_DATA
3538 */
3539 if (jbd2_journal_check_available_features
3540 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3541 set_opt(sb, ORDERED_DATA);
3542 else
3543 set_opt(sb, JOURNAL_DATA);
3544 break;
3545
3546 case EXT4_MOUNT_ORDERED_DATA:
3547 case EXT4_MOUNT_WRITEBACK_DATA:
3548 if (!jbd2_journal_check_available_features
3549 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3550 ext4_msg(sb, KERN_ERR, "Journal does not support "
3551 "requested data journaling mode");
3552 goto failed_mount_wq;
3553 }
3554 default:
3555 break;
3556 }
3557 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3558
3559 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3560
3561 /*
3562 * The journal may have updated the bg summary counts, so we
3563 * need to update the global counters.
3564 */
3565 percpu_counter_set(&sbi->s_freeclusters_counter,
3566 ext4_count_free_clusters(sb));
3567 percpu_counter_set(&sbi->s_freeinodes_counter,
3568 ext4_count_free_inodes(sb));
3569 percpu_counter_set(&sbi->s_dirs_counter,
3570 ext4_count_dirs(sb));
3571 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3572
3573 no_journal:
3574 /*
3575 * The maximum number of concurrent works can be high and
3576 * concurrency isn't really necessary. Limit it to 1.
3577 */
3578 EXT4_SB(sb)->dio_unwritten_wq =
3579 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3580 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3581 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3582 goto failed_mount_wq;
3583 }
3584
3585 /*
3586 * The jbd2_journal_load will have done any necessary log recovery,
3587 * so we can safely mount the rest of the filesystem now.
3588 */
3589
3590 root = ext4_iget(sb, EXT4_ROOT_INO);
3591 if (IS_ERR(root)) {
3592 ext4_msg(sb, KERN_ERR, "get root inode failed");
3593 ret = PTR_ERR(root);
3594 root = NULL;
3595 goto failed_mount4;
3596 }
3597 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3598 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3599 iput(root);
3600 goto failed_mount4;
3601 }
3602 sb->s_root = d_make_root(root);
3603 if (!sb->s_root) {
3604 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3605 ret = -ENOMEM;
3606 goto failed_mount4;
3607 }
3608
3609 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3610
3611 /* determine the minimum size of new large inodes, if present */
3612 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3613 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3614 EXT4_GOOD_OLD_INODE_SIZE;
3615 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3616 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3617 if (sbi->s_want_extra_isize <
3618 le16_to_cpu(es->s_want_extra_isize))
3619 sbi->s_want_extra_isize =
3620 le16_to_cpu(es->s_want_extra_isize);
3621 if (sbi->s_want_extra_isize <
3622 le16_to_cpu(es->s_min_extra_isize))
3623 sbi->s_want_extra_isize =
3624 le16_to_cpu(es->s_min_extra_isize);
3625 }
3626 }
3627 /* Check if enough inode space is available */
3628 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3629 sbi->s_inode_size) {
3630 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3631 EXT4_GOOD_OLD_INODE_SIZE;
3632 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3633 "available");
3634 }
3635
3636 err = ext4_setup_system_zone(sb);
3637 if (err) {
3638 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3639 "zone (%d)", err);
3640 goto failed_mount4a;
3641 }
3642
3643 ext4_ext_init(sb);
3644 err = ext4_mb_init(sb, needs_recovery);
3645 if (err) {
3646 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3647 err);
3648 goto failed_mount5;
3649 }
3650
3651 err = ext4_register_li_request(sb, first_not_zeroed);
3652 if (err)
3653 goto failed_mount6;
3654
3655 sbi->s_kobj.kset = ext4_kset;
3656 init_completion(&sbi->s_kobj_unregister);
3657 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3658 "%s", sb->s_id);
3659 if (err)
3660 goto failed_mount7;
3661
3662 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3663 ext4_orphan_cleanup(sb, es);
3664 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3665 if (needs_recovery) {
3666 ext4_msg(sb, KERN_INFO, "recovery complete");
3667 ext4_mark_recovery_complete(sb, es);
3668 }
3669 if (EXT4_SB(sb)->s_journal) {
3670 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3671 descr = " journalled data mode";
3672 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3673 descr = " ordered data mode";
3674 else
3675 descr = " writeback data mode";
3676 } else
3677 descr = "out journal";
3678
3679 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3680 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3681 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3682
3683 if (es->s_error_count)
3684 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3685
3686 kfree(orig_data);
3687 return 0;
3688
3689 cantfind_ext4:
3690 if (!silent)
3691 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3692 goto failed_mount;
3693
3694 failed_mount7:
3695 ext4_unregister_li_request(sb);
3696 failed_mount6:
3697 ext4_mb_release(sb);
3698 failed_mount5:
3699 ext4_ext_release(sb);
3700 ext4_release_system_zone(sb);
3701 failed_mount4a:
3702 dput(sb->s_root);
3703 sb->s_root = NULL;
3704 failed_mount4:
3705 ext4_msg(sb, KERN_ERR, "mount failed");
3706 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3707 failed_mount_wq:
3708 if (sbi->s_journal) {
3709 jbd2_journal_destroy(sbi->s_journal);
3710 sbi->s_journal = NULL;
3711 }
3712 failed_mount3:
3713 del_timer(&sbi->s_err_report);
3714 if (sbi->s_flex_groups)
3715 ext4_kvfree(sbi->s_flex_groups);
3716 percpu_counter_destroy(&sbi->s_freeclusters_counter);
3717 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3718 percpu_counter_destroy(&sbi->s_dirs_counter);
3719 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
3720 if (sbi->s_mmp_tsk)
3721 kthread_stop(sbi->s_mmp_tsk);
3722 failed_mount2:
3723 for (i = 0; i < db_count; i++)
3724 brelse(sbi->s_group_desc[i]);
3725 ext4_kvfree(sbi->s_group_desc);
3726 failed_mount:
3727 if (sbi->s_proc) {
3728 remove_proc_entry("options", sbi->s_proc);
3729 remove_proc_entry(sb->s_id, ext4_proc_root);
3730 }
3731 #ifdef CONFIG_QUOTA
3732 for (i = 0; i < MAXQUOTAS; i++)
3733 kfree(sbi->s_qf_names[i]);
3734 #endif
3735 ext4_blkdev_remove(sbi);
3736 brelse(bh);
3737 out_fail:
3738 sb->s_fs_info = NULL;
3739 kfree(sbi->s_blockgroup_lock);
3740 kfree(sbi);
3741 out_free_orig:
3742 kfree(orig_data);
3743 return ret;
3744 }
3745
3746 /*
3747 * Setup any per-fs journal parameters now. We'll do this both on
3748 * initial mount, once the journal has been initialised but before we've
3749 * done any recovery; and again on any subsequent remount.
3750 */
3751 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3752 {
3753 struct ext4_sb_info *sbi = EXT4_SB(sb);
3754
3755 journal->j_commit_interval = sbi->s_commit_interval;
3756 journal->j_min_batch_time = sbi->s_min_batch_time;
3757 journal->j_max_batch_time = sbi->s_max_batch_time;
3758
3759 write_lock(&journal->j_state_lock);
3760 if (test_opt(sb, BARRIER))
3761 journal->j_flags |= JBD2_BARRIER;
3762 else
3763 journal->j_flags &= ~JBD2_BARRIER;
3764 if (test_opt(sb, DATA_ERR_ABORT))
3765 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3766 else
3767 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3768 write_unlock(&journal->j_state_lock);
3769 }
3770
3771 static journal_t *ext4_get_journal(struct super_block *sb,
3772 unsigned int journal_inum)
3773 {
3774 struct inode *journal_inode;
3775 journal_t *journal;
3776
3777 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3778
3779 /* First, test for the existence of a valid inode on disk. Bad
3780 * things happen if we iget() an unused inode, as the subsequent
3781 * iput() will try to delete it. */
3782
3783 journal_inode = ext4_iget(sb, journal_inum);
3784 if (IS_ERR(journal_inode)) {
3785 ext4_msg(sb, KERN_ERR, "no journal found");
3786 return NULL;
3787 }
3788 if (!journal_inode->i_nlink) {
3789 make_bad_inode(journal_inode);
3790 iput(journal_inode);
3791 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3792 return NULL;
3793 }
3794
3795 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3796 journal_inode, journal_inode->i_size);
3797 if (!S_ISREG(journal_inode->i_mode)) {
3798 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3799 iput(journal_inode);
3800 return NULL;
3801 }
3802
3803 journal = jbd2_journal_init_inode(journal_inode);
3804 if (!journal) {
3805 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3806 iput(journal_inode);
3807 return NULL;
3808 }
3809 journal->j_private = sb;
3810 ext4_init_journal_params(sb, journal);
3811 return journal;
3812 }
3813
3814 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3815 dev_t j_dev)
3816 {
3817 struct buffer_head *bh;
3818 journal_t *journal;
3819 ext4_fsblk_t start;
3820 ext4_fsblk_t len;
3821 int hblock, blocksize;
3822 ext4_fsblk_t sb_block;
3823 unsigned long offset;
3824 struct ext4_super_block *es;
3825 struct block_device *bdev;
3826
3827 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3828
3829 bdev = ext4_blkdev_get(j_dev, sb);
3830 if (bdev == NULL)
3831 return NULL;
3832
3833 blocksize = sb->s_blocksize;
3834 hblock = bdev_logical_block_size(bdev);
3835 if (blocksize < hblock) {
3836 ext4_msg(sb, KERN_ERR,
3837 "blocksize too small for journal device");
3838 goto out_bdev;
3839 }
3840
3841 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3842 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3843 set_blocksize(bdev, blocksize);
3844 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3845 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3846 "external journal");
3847 goto out_bdev;
3848 }
3849
3850 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3851 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3852 !(le32_to_cpu(es->s_feature_incompat) &
3853 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3854 ext4_msg(sb, KERN_ERR, "external journal has "
3855 "bad superblock");
3856 brelse(bh);
3857 goto out_bdev;
3858 }
3859
3860 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3861 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3862 brelse(bh);
3863 goto out_bdev;
3864 }
3865
3866 len = ext4_blocks_count(es);
3867 start = sb_block + 1;
3868 brelse(bh); /* we're done with the superblock */
3869
3870 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3871 start, len, blocksize);
3872 if (!journal) {
3873 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3874 goto out_bdev;
3875 }
3876 journal->j_private = sb;
3877 ll_rw_block(READ, 1, &journal->j_sb_buffer);
3878 wait_on_buffer(journal->j_sb_buffer);
3879 if (!buffer_uptodate(journal->j_sb_buffer)) {
3880 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3881 goto out_journal;
3882 }
3883 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3884 ext4_msg(sb, KERN_ERR, "External journal has more than one "
3885 "user (unsupported) - %d",
3886 be32_to_cpu(journal->j_superblock->s_nr_users));
3887 goto out_journal;
3888 }
3889 EXT4_SB(sb)->journal_bdev = bdev;
3890 ext4_init_journal_params(sb, journal);
3891 return journal;
3892
3893 out_journal:
3894 jbd2_journal_destroy(journal);
3895 out_bdev:
3896 ext4_blkdev_put(bdev);
3897 return NULL;
3898 }
3899
3900 static int ext4_load_journal(struct super_block *sb,
3901 struct ext4_super_block *es,
3902 unsigned long journal_devnum)
3903 {
3904 journal_t *journal;
3905 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3906 dev_t journal_dev;
3907 int err = 0;
3908 int really_read_only;
3909
3910 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3911
3912 if (journal_devnum &&
3913 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3914 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3915 "numbers have changed");
3916 journal_dev = new_decode_dev(journal_devnum);
3917 } else
3918 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3919
3920 really_read_only = bdev_read_only(sb->s_bdev);
3921
3922 /*
3923 * Are we loading a blank journal or performing recovery after a
3924 * crash? For recovery, we need to check in advance whether we
3925 * can get read-write access to the device.
3926 */
3927 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3928 if (sb->s_flags & MS_RDONLY) {
3929 ext4_msg(sb, KERN_INFO, "INFO: recovery "
3930 "required on readonly filesystem");
3931 if (really_read_only) {
3932 ext4_msg(sb, KERN_ERR, "write access "
3933 "unavailable, cannot proceed");
3934 return -EROFS;
3935 }
3936 ext4_msg(sb, KERN_INFO, "write access will "
3937 "be enabled during recovery");
3938 }
3939 }
3940
3941 if (journal_inum && journal_dev) {
3942 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3943 "and inode journals!");
3944 return -EINVAL;
3945 }
3946
3947 if (journal_inum) {
3948 if (!(journal = ext4_get_journal(sb, journal_inum)))
3949 return -EINVAL;
3950 } else {
3951 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3952 return -EINVAL;
3953 }
3954
3955 if (!(journal->j_flags & JBD2_BARRIER))
3956 ext4_msg(sb, KERN_INFO, "barriers disabled");
3957
3958 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3959 err = jbd2_journal_wipe(journal, !really_read_only);
3960 if (!err) {
3961 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
3962 if (save)
3963 memcpy(save, ((char *) es) +
3964 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
3965 err = jbd2_journal_load(journal);
3966 if (save)
3967 memcpy(((char *) es) + EXT4_S_ERR_START,
3968 save, EXT4_S_ERR_LEN);
3969 kfree(save);
3970 }
3971
3972 if (err) {
3973 ext4_msg(sb, KERN_ERR, "error loading journal");
3974 jbd2_journal_destroy(journal);
3975 return err;
3976 }
3977
3978 EXT4_SB(sb)->s_journal = journal;
3979 ext4_clear_journal_err(sb, es);
3980
3981 if (!really_read_only && journal_devnum &&
3982 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3983 es->s_journal_dev = cpu_to_le32(journal_devnum);
3984
3985 /* Make sure we flush the recovery flag to disk. */
3986 ext4_commit_super(sb, 1);
3987 }
3988
3989 return 0;
3990 }
3991
3992 static int ext4_commit_super(struct super_block *sb, int sync)
3993 {
3994 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
3995 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
3996 int error = 0;
3997
3998 if (!sbh || block_device_ejected(sb))
3999 return error;
4000 if (buffer_write_io_error(sbh)) {
4001 /*
4002 * Oh, dear. A previous attempt to write the
4003 * superblock failed. This could happen because the
4004 * USB device was yanked out. Or it could happen to
4005 * be a transient write error and maybe the block will
4006 * be remapped. Nothing we can do but to retry the
4007 * write and hope for the best.
4008 */
4009 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4010 "superblock detected");
4011 clear_buffer_write_io_error(sbh);
4012 set_buffer_uptodate(sbh);
4013 }
4014 /*
4015 * If the file system is mounted read-only, don't update the
4016 * superblock write time. This avoids updating the superblock
4017 * write time when we are mounting the root file system
4018 * read/only but we need to replay the journal; at that point,
4019 * for people who are east of GMT and who make their clock
4020 * tick in localtime for Windows bug-for-bug compatibility,
4021 * the clock is set in the future, and this will cause e2fsck
4022 * to complain and force a full file system check.
4023 */
4024 if (!(sb->s_flags & MS_RDONLY))
4025 es->s_wtime = cpu_to_le32(get_seconds());
4026 if (sb->s_bdev->bd_part)
4027 es->s_kbytes_written =
4028 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4029 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4030 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4031 else
4032 es->s_kbytes_written =
4033 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4034 ext4_free_blocks_count_set(es,
4035 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4036 &EXT4_SB(sb)->s_freeclusters_counter)));
4037 es->s_free_inodes_count =
4038 cpu_to_le32(percpu_counter_sum_positive(
4039 &EXT4_SB(sb)->s_freeinodes_counter));
4040 sb->s_dirt = 0;
4041 BUFFER_TRACE(sbh, "marking dirty");
4042 mark_buffer_dirty(sbh);
4043 if (sync) {
4044 error = sync_dirty_buffer(sbh);
4045 if (error)
4046 return error;
4047
4048 error = buffer_write_io_error(sbh);
4049 if (error) {
4050 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4051 "superblock");
4052 clear_buffer_write_io_error(sbh);
4053 set_buffer_uptodate(sbh);
4054 }
4055 }
4056 return error;
4057 }
4058
4059 /*
4060 * Have we just finished recovery? If so, and if we are mounting (or
4061 * remounting) the filesystem readonly, then we will end up with a
4062 * consistent fs on disk. Record that fact.
4063 */
4064 static void ext4_mark_recovery_complete(struct super_block *sb,
4065 struct ext4_super_block *es)
4066 {
4067 journal_t *journal = EXT4_SB(sb)->s_journal;
4068
4069 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4070 BUG_ON(journal != NULL);
4071 return;
4072 }
4073 jbd2_journal_lock_updates(journal);
4074 if (jbd2_journal_flush(journal) < 0)
4075 goto out;
4076
4077 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4078 sb->s_flags & MS_RDONLY) {
4079 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4080 ext4_commit_super(sb, 1);
4081 }
4082
4083 out:
4084 jbd2_journal_unlock_updates(journal);
4085 }
4086
4087 /*
4088 * If we are mounting (or read-write remounting) a filesystem whose journal
4089 * has recorded an error from a previous lifetime, move that error to the
4090 * main filesystem now.
4091 */
4092 static void ext4_clear_journal_err(struct super_block *sb,
4093 struct ext4_super_block *es)
4094 {
4095 journal_t *journal;
4096 int j_errno;
4097 const char *errstr;
4098
4099 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4100
4101 journal = EXT4_SB(sb)->s_journal;
4102
4103 /*
4104 * Now check for any error status which may have been recorded in the
4105 * journal by a prior ext4_error() or ext4_abort()
4106 */
4107
4108 j_errno = jbd2_journal_errno(journal);
4109 if (j_errno) {
4110 char nbuf[16];
4111
4112 errstr = ext4_decode_error(sb, j_errno, nbuf);
4113 ext4_warning(sb, "Filesystem error recorded "
4114 "from previous mount: %s", errstr);
4115 ext4_warning(sb, "Marking fs in need of filesystem check.");
4116
4117 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4118 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4119 ext4_commit_super(sb, 1);
4120
4121 jbd2_journal_clear_err(journal);
4122 }
4123 }
4124
4125 /*
4126 * Force the running and committing transactions to commit,
4127 * and wait on the commit.
4128 */
4129 int ext4_force_commit(struct super_block *sb)
4130 {
4131 journal_t *journal;
4132 int ret = 0;
4133
4134 if (sb->s_flags & MS_RDONLY)
4135 return 0;
4136
4137 journal = EXT4_SB(sb)->s_journal;
4138 if (journal) {
4139 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4140 ret = ext4_journal_force_commit(journal);
4141 }
4142
4143 return ret;
4144 }
4145
4146 static void ext4_write_super(struct super_block *sb)
4147 {
4148 lock_super(sb);
4149 ext4_commit_super(sb, 1);
4150 unlock_super(sb);
4151 }
4152
4153 static int ext4_sync_fs(struct super_block *sb, int wait)
4154 {
4155 int ret = 0;
4156 tid_t target;
4157 struct ext4_sb_info *sbi = EXT4_SB(sb);
4158
4159 trace_ext4_sync_fs(sb, wait);
4160 flush_workqueue(sbi->dio_unwritten_wq);
4161 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4162 if (wait)
4163 jbd2_log_wait_commit(sbi->s_journal, target);
4164 }
4165 return ret;
4166 }
4167
4168 /*
4169 * LVM calls this function before a (read-only) snapshot is created. This
4170 * gives us a chance to flush the journal completely and mark the fs clean.
4171 *
4172 * Note that only this function cannot bring a filesystem to be in a clean
4173 * state independently, because ext4 prevents a new handle from being started
4174 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from
4175 * the upper layer.
4176 */
4177 static int ext4_freeze(struct super_block *sb)
4178 {
4179 int error = 0;
4180 journal_t *journal;
4181
4182 if (sb->s_flags & MS_RDONLY)
4183 return 0;
4184
4185 journal = EXT4_SB(sb)->s_journal;
4186
4187 /* Now we set up the journal barrier. */
4188 jbd2_journal_lock_updates(journal);
4189
4190 /*
4191 * Don't clear the needs_recovery flag if we failed to flush
4192 * the journal.
4193 */
4194 error = jbd2_journal_flush(journal);
4195 if (error < 0)
4196 goto out;
4197
4198 /* Journal blocked and flushed, clear needs_recovery flag. */
4199 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4200 error = ext4_commit_super(sb, 1);
4201 out:
4202 /* we rely on s_frozen to stop further updates */
4203 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4204 return error;
4205 }
4206
4207 /*
4208 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4209 * flag here, even though the filesystem is not technically dirty yet.
4210 */
4211 static int ext4_unfreeze(struct super_block *sb)
4212 {
4213 if (sb->s_flags & MS_RDONLY)
4214 return 0;
4215
4216 lock_super(sb);
4217 /* Reset the needs_recovery flag before the fs is unlocked. */
4218 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4219 ext4_commit_super(sb, 1);
4220 unlock_super(sb);
4221 return 0;
4222 }
4223
4224 /*
4225 * Structure to save mount options for ext4_remount's benefit
4226 */
4227 struct ext4_mount_options {
4228 unsigned long s_mount_opt;
4229 unsigned long s_mount_opt2;
4230 kuid_t s_resuid;
4231 kgid_t s_resgid;
4232 unsigned long s_commit_interval;
4233 u32 s_min_batch_time, s_max_batch_time;
4234 #ifdef CONFIG_QUOTA
4235 int s_jquota_fmt;
4236 char *s_qf_names[MAXQUOTAS];
4237 #endif
4238 };
4239
4240 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4241 {
4242 struct ext4_super_block *es;
4243 struct ext4_sb_info *sbi = EXT4_SB(sb);
4244 unsigned long old_sb_flags;
4245 struct ext4_mount_options old_opts;
4246 int enable_quota = 0;
4247 ext4_group_t g;
4248 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4249 int err = 0;
4250 #ifdef CONFIG_QUOTA
4251 int i;
4252 #endif
4253 char *orig_data = kstrdup(data, GFP_KERNEL);
4254
4255 /* Store the original options */
4256 lock_super(sb);
4257 old_sb_flags = sb->s_flags;
4258 old_opts.s_mount_opt = sbi->s_mount_opt;
4259 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4260 old_opts.s_resuid = sbi->s_resuid;
4261 old_opts.s_resgid = sbi->s_resgid;
4262 old_opts.s_commit_interval = sbi->s_commit_interval;
4263 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4264 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4265 #ifdef CONFIG_QUOTA
4266 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4267 for (i = 0; i < MAXQUOTAS; i++)
4268 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4269 #endif
4270 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4271 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4272
4273 /*
4274 * Allow the "check" option to be passed as a remount option.
4275 */
4276 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4277 err = -EINVAL;
4278 goto restore_opts;
4279 }
4280
4281 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4282 ext4_abort(sb, "Abort forced by user");
4283
4284 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4285 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4286
4287 es = sbi->s_es;
4288
4289 if (sbi->s_journal) {
4290 ext4_init_journal_params(sb, sbi->s_journal);
4291 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4292 }
4293
4294 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4295 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4296 err = -EROFS;
4297 goto restore_opts;
4298 }
4299
4300 if (*flags & MS_RDONLY) {
4301 err = dquot_suspend(sb, -1);
4302 if (err < 0)
4303 goto restore_opts;
4304
4305 /*
4306 * First of all, the unconditional stuff we have to do
4307 * to disable replay of the journal when we next remount
4308 */
4309 sb->s_flags |= MS_RDONLY;
4310
4311 /*
4312 * OK, test if we are remounting a valid rw partition
4313 * readonly, and if so set the rdonly flag and then
4314 * mark the partition as valid again.
4315 */
4316 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4317 (sbi->s_mount_state & EXT4_VALID_FS))
4318 es->s_state = cpu_to_le16(sbi->s_mount_state);
4319
4320 if (sbi->s_journal)
4321 ext4_mark_recovery_complete(sb, es);
4322 } else {
4323 /* Make sure we can mount this feature set readwrite */
4324 if (!ext4_feature_set_ok(sb, 0)) {
4325 err = -EROFS;
4326 goto restore_opts;
4327 }
4328 /*
4329 * Make sure the group descriptor checksums
4330 * are sane. If they aren't, refuse to remount r/w.
4331 */
4332 for (g = 0; g < sbi->s_groups_count; g++) {
4333 struct ext4_group_desc *gdp =
4334 ext4_get_group_desc(sb, g, NULL);
4335
4336 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4337 ext4_msg(sb, KERN_ERR,
4338 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4339 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4340 le16_to_cpu(gdp->bg_checksum));
4341 err = -EINVAL;
4342 goto restore_opts;
4343 }
4344 }
4345
4346 /*
4347 * If we have an unprocessed orphan list hanging
4348 * around from a previously readonly bdev mount,
4349 * require a full umount/remount for now.
4350 */
4351 if (es->s_last_orphan) {
4352 ext4_msg(sb, KERN_WARNING, "Couldn't "
4353 "remount RDWR because of unprocessed "
4354 "orphan inode list. Please "
4355 "umount/remount instead");
4356 err = -EINVAL;
4357 goto restore_opts;
4358 }
4359
4360 /*
4361 * Mounting a RDONLY partition read-write, so reread
4362 * and store the current valid flag. (It may have
4363 * been changed by e2fsck since we originally mounted
4364 * the partition.)
4365 */
4366 if (sbi->s_journal)
4367 ext4_clear_journal_err(sb, es);
4368 sbi->s_mount_state = le16_to_cpu(es->s_state);
4369 if (!ext4_setup_super(sb, es, 0))
4370 sb->s_flags &= ~MS_RDONLY;
4371 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4372 EXT4_FEATURE_INCOMPAT_MMP))
4373 if (ext4_multi_mount_protect(sb,
4374 le64_to_cpu(es->s_mmp_block))) {
4375 err = -EROFS;
4376 goto restore_opts;
4377 }
4378 enable_quota = 1;
4379 }
4380 }
4381
4382 /*
4383 * Reinitialize lazy itable initialization thread based on
4384 * current settings
4385 */
4386 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4387 ext4_unregister_li_request(sb);
4388 else {
4389 ext4_group_t first_not_zeroed;
4390 first_not_zeroed = ext4_has_uninit_itable(sb);
4391 ext4_register_li_request(sb, first_not_zeroed);
4392 }
4393
4394 ext4_setup_system_zone(sb);
4395 if (sbi->s_journal == NULL)
4396 ext4_commit_super(sb, 1);
4397
4398 #ifdef CONFIG_QUOTA
4399 /* Release old quota file names */
4400 for (i = 0; i < MAXQUOTAS; i++)
4401 if (old_opts.s_qf_names[i] &&
4402 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4403 kfree(old_opts.s_qf_names[i]);
4404 #endif
4405 unlock_super(sb);
4406 if (enable_quota)
4407 dquot_resume(sb, -1);
4408
4409 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4410 kfree(orig_data);
4411 return 0;
4412
4413 restore_opts:
4414 sb->s_flags = old_sb_flags;
4415 sbi->s_mount_opt = old_opts.s_mount_opt;
4416 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4417 sbi->s_resuid = old_opts.s_resuid;
4418 sbi->s_resgid = old_opts.s_resgid;
4419 sbi->s_commit_interval = old_opts.s_commit_interval;
4420 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4421 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4422 #ifdef CONFIG_QUOTA
4423 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4424 for (i = 0; i < MAXQUOTAS; i++) {
4425 if (sbi->s_qf_names[i] &&
4426 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4427 kfree(sbi->s_qf_names[i]);
4428 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4429 }
4430 #endif
4431 unlock_super(sb);
4432 kfree(orig_data);
4433 return err;
4434 }
4435
4436 /*
4437 * Note: calculating the overhead so we can be compatible with
4438 * historical BSD practice is quite difficult in the face of
4439 * clusters/bigalloc. This is because multiple metadata blocks from
4440 * different block group can end up in the same allocation cluster.
4441 * Calculating the exact overhead in the face of clustered allocation
4442 * requires either O(all block bitmaps) in memory or O(number of block
4443 * groups**2) in time. We will still calculate the superblock for
4444 * older file systems --- and if we come across with a bigalloc file
4445 * system with zero in s_overhead_clusters the estimate will be close to
4446 * correct especially for very large cluster sizes --- but for newer
4447 * file systems, it's better to calculate this figure once at mkfs
4448 * time, and store it in the superblock. If the superblock value is
4449 * present (even for non-bigalloc file systems), we will use it.
4450 */
4451 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4452 {
4453 struct super_block *sb = dentry->d_sb;
4454 struct ext4_sb_info *sbi = EXT4_SB(sb);
4455 struct ext4_super_block *es = sbi->s_es;
4456 struct ext4_group_desc *gdp;
4457 u64 fsid;
4458 s64 bfree;
4459
4460 if (test_opt(sb, MINIX_DF)) {
4461 sbi->s_overhead_last = 0;
4462 } else if (es->s_overhead_clusters) {
4463 sbi->s_overhead_last = le32_to_cpu(es->s_overhead_clusters);
4464 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4465 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4466 ext4_fsblk_t overhead = 0;
4467
4468 /*
4469 * Compute the overhead (FS structures). This is constant
4470 * for a given filesystem unless the number of block groups
4471 * changes so we cache the previous value until it does.
4472 */
4473
4474 /*
4475 * All of the blocks before first_data_block are
4476 * overhead
4477 */
4478 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4479
4480 /*
4481 * Add the overhead found in each block group
4482 */
4483 for (i = 0; i < ngroups; i++) {
4484 gdp = ext4_get_group_desc(sb, i, NULL);
4485 overhead += ext4_num_overhead_clusters(sb, i, gdp);
4486 cond_resched();
4487 }
4488 sbi->s_overhead_last = overhead;
4489 smp_wmb();
4490 sbi->s_blocks_last = ext4_blocks_count(es);
4491 }
4492
4493 buf->f_type = EXT4_SUPER_MAGIC;
4494 buf->f_bsize = sb->s_blocksize;
4495 buf->f_blocks = (ext4_blocks_count(es) -
4496 EXT4_C2B(sbi, sbi->s_overhead_last));
4497 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4498 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4499 /* prevent underflow in case that few free space is available */
4500 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4501 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4502 if (buf->f_bfree < ext4_r_blocks_count(es))
4503 buf->f_bavail = 0;
4504 buf->f_files = le32_to_cpu(es->s_inodes_count);
4505 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4506 buf->f_namelen = EXT4_NAME_LEN;
4507 fsid = le64_to_cpup((void *)es->s_uuid) ^
4508 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4509 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4510 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4511
4512 return 0;
4513 }
4514
4515 /* Helper function for writing quotas on sync - we need to start transaction
4516 * before quota file is locked for write. Otherwise the are possible deadlocks:
4517 * Process 1 Process 2
4518 * ext4_create() quota_sync()
4519 * jbd2_journal_start() write_dquot()
4520 * dquot_initialize() down(dqio_mutex)
4521 * down(dqio_mutex) jbd2_journal_start()
4522 *
4523 */
4524
4525 #ifdef CONFIG_QUOTA
4526
4527 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4528 {
4529 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4530 }
4531
4532 static int ext4_write_dquot(struct dquot *dquot)
4533 {
4534 int ret, err;
4535 handle_t *handle;
4536 struct inode *inode;
4537
4538 inode = dquot_to_inode(dquot);
4539 handle = ext4_journal_start(inode,
4540 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4541 if (IS_ERR(handle))
4542 return PTR_ERR(handle);
4543 ret = dquot_commit(dquot);
4544 err = ext4_journal_stop(handle);
4545 if (!ret)
4546 ret = err;
4547 return ret;
4548 }
4549
4550 static int ext4_acquire_dquot(struct dquot *dquot)
4551 {
4552 int ret, err;
4553 handle_t *handle;
4554
4555 handle = ext4_journal_start(dquot_to_inode(dquot),
4556 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4557 if (IS_ERR(handle))
4558 return PTR_ERR(handle);
4559 ret = dquot_acquire(dquot);
4560 err = ext4_journal_stop(handle);
4561 if (!ret)
4562 ret = err;
4563 return ret;
4564 }
4565
4566 static int ext4_release_dquot(struct dquot *dquot)
4567 {
4568 int ret, err;
4569 handle_t *handle;
4570
4571 handle = ext4_journal_start(dquot_to_inode(dquot),
4572 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4573 if (IS_ERR(handle)) {
4574 /* Release dquot anyway to avoid endless cycle in dqput() */
4575 dquot_release(dquot);
4576 return PTR_ERR(handle);
4577 }
4578 ret = dquot_release(dquot);
4579 err = ext4_journal_stop(handle);
4580 if (!ret)
4581 ret = err;
4582 return ret;
4583 }
4584
4585 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4586 {
4587 /* Are we journaling quotas? */
4588 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4589 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4590 dquot_mark_dquot_dirty(dquot);
4591 return ext4_write_dquot(dquot);
4592 } else {
4593 return dquot_mark_dquot_dirty(dquot);
4594 }
4595 }
4596
4597 static int ext4_write_info(struct super_block *sb, int type)
4598 {
4599 int ret, err;
4600 handle_t *handle;
4601
4602 /* Data block + inode block */
4603 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4604 if (IS_ERR(handle))
4605 return PTR_ERR(handle);
4606 ret = dquot_commit_info(sb, type);
4607 err = ext4_journal_stop(handle);
4608 if (!ret)
4609 ret = err;
4610 return ret;
4611 }
4612
4613 /*
4614 * Turn on quotas during mount time - we need to find
4615 * the quota file and such...
4616 */
4617 static int ext4_quota_on_mount(struct super_block *sb, int type)
4618 {
4619 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4620 EXT4_SB(sb)->s_jquota_fmt, type);
4621 }
4622
4623 /*
4624 * Standard function to be called on quota_on
4625 */
4626 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4627 struct path *path)
4628 {
4629 int err;
4630
4631 if (!test_opt(sb, QUOTA))
4632 return -EINVAL;
4633
4634 /* Quotafile not on the same filesystem? */
4635 if (path->dentry->d_sb != sb)
4636 return -EXDEV;
4637 /* Journaling quota? */
4638 if (EXT4_SB(sb)->s_qf_names[type]) {
4639 /* Quotafile not in fs root? */
4640 if (path->dentry->d_parent != sb->s_root)
4641 ext4_msg(sb, KERN_WARNING,
4642 "Quota file not on filesystem root. "
4643 "Journaled quota will not work");
4644 }
4645
4646 /*
4647 * When we journal data on quota file, we have to flush journal to see
4648 * all updates to the file when we bypass pagecache...
4649 */
4650 if (EXT4_SB(sb)->s_journal &&
4651 ext4_should_journal_data(path->dentry->d_inode)) {
4652 /*
4653 * We don't need to lock updates but journal_flush() could
4654 * otherwise be livelocked...
4655 */
4656 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4657 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4658 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4659 if (err)
4660 return err;
4661 }
4662
4663 return dquot_quota_on(sb, type, format_id, path);
4664 }
4665
4666 static int ext4_quota_off(struct super_block *sb, int type)
4667 {
4668 struct inode *inode = sb_dqopt(sb)->files[type];
4669 handle_t *handle;
4670
4671 /* Force all delayed allocation blocks to be allocated.
4672 * Caller already holds s_umount sem */
4673 if (test_opt(sb, DELALLOC))
4674 sync_filesystem(sb);
4675
4676 if (!inode)
4677 goto out;
4678
4679 /* Update modification times of quota files when userspace can
4680 * start looking at them */
4681 handle = ext4_journal_start(inode, 1);
4682 if (IS_ERR(handle))
4683 goto out;
4684 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4685 ext4_mark_inode_dirty(handle, inode);
4686 ext4_journal_stop(handle);
4687
4688 out:
4689 return dquot_quota_off(sb, type);
4690 }
4691
4692 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4693 * acquiring the locks... As quota files are never truncated and quota code
4694 * itself serializes the operations (and no one else should touch the files)
4695 * we don't have to be afraid of races */
4696 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4697 size_t len, loff_t off)
4698 {
4699 struct inode *inode = sb_dqopt(sb)->files[type];
4700 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4701 int err = 0;
4702 int offset = off & (sb->s_blocksize - 1);
4703 int tocopy;
4704 size_t toread;
4705 struct buffer_head *bh;
4706 loff_t i_size = i_size_read(inode);
4707
4708 if (off > i_size)
4709 return 0;
4710 if (off+len > i_size)
4711 len = i_size-off;
4712 toread = len;
4713 while (toread > 0) {
4714 tocopy = sb->s_blocksize - offset < toread ?
4715 sb->s_blocksize - offset : toread;
4716 bh = ext4_bread(NULL, inode, blk, 0, &err);
4717 if (err)
4718 return err;
4719 if (!bh) /* A hole? */
4720 memset(data, 0, tocopy);
4721 else
4722 memcpy(data, bh->b_data+offset, tocopy);
4723 brelse(bh);
4724 offset = 0;
4725 toread -= tocopy;
4726 data += tocopy;
4727 blk++;
4728 }
4729 return len;
4730 }
4731
4732 /* Write to quotafile (we know the transaction is already started and has
4733 * enough credits) */
4734 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4735 const char *data, size_t len, loff_t off)
4736 {
4737 struct inode *inode = sb_dqopt(sb)->files[type];
4738 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4739 int err = 0;
4740 int offset = off & (sb->s_blocksize - 1);
4741 struct buffer_head *bh;
4742 handle_t *handle = journal_current_handle();
4743
4744 if (EXT4_SB(sb)->s_journal && !handle) {
4745 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4746 " cancelled because transaction is not started",
4747 (unsigned long long)off, (unsigned long long)len);
4748 return -EIO;
4749 }
4750 /*
4751 * Since we account only one data block in transaction credits,
4752 * then it is impossible to cross a block boundary.
4753 */
4754 if (sb->s_blocksize - offset < len) {
4755 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4756 " cancelled because not block aligned",
4757 (unsigned long long)off, (unsigned long long)len);
4758 return -EIO;
4759 }
4760
4761 bh = ext4_bread(handle, inode, blk, 1, &err);
4762 if (!bh)
4763 goto out;
4764 err = ext4_journal_get_write_access(handle, bh);
4765 if (err) {
4766 brelse(bh);
4767 goto out;
4768 }
4769 lock_buffer(bh);
4770 memcpy(bh->b_data+offset, data, len);
4771 flush_dcache_page(bh->b_page);
4772 unlock_buffer(bh);
4773 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4774 brelse(bh);
4775 out:
4776 if (err)
4777 return err;
4778 if (inode->i_size < off + len) {
4779 i_size_write(inode, off + len);
4780 EXT4_I(inode)->i_disksize = inode->i_size;
4781 ext4_mark_inode_dirty(handle, inode);
4782 }
4783 return len;
4784 }
4785
4786 #endif
4787
4788 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4789 const char *dev_name, void *data)
4790 {
4791 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4792 }
4793
4794 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4795 static inline void register_as_ext2(void)
4796 {
4797 int err = register_filesystem(&ext2_fs_type);
4798 if (err)
4799 printk(KERN_WARNING
4800 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4801 }
4802
4803 static inline void unregister_as_ext2(void)
4804 {
4805 unregister_filesystem(&ext2_fs_type);
4806 }
4807
4808 static inline int ext2_feature_set_ok(struct super_block *sb)
4809 {
4810 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
4811 return 0;
4812 if (sb->s_flags & MS_RDONLY)
4813 return 1;
4814 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
4815 return 0;
4816 return 1;
4817 }
4818 MODULE_ALIAS("ext2");
4819 #else
4820 static inline void register_as_ext2(void) { }
4821 static inline void unregister_as_ext2(void) { }
4822 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
4823 #endif
4824
4825 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4826 static inline void register_as_ext3(void)
4827 {
4828 int err = register_filesystem(&ext3_fs_type);
4829 if (err)
4830 printk(KERN_WARNING
4831 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4832 }
4833
4834 static inline void unregister_as_ext3(void)
4835 {
4836 unregister_filesystem(&ext3_fs_type);
4837 }
4838
4839 static inline int ext3_feature_set_ok(struct super_block *sb)
4840 {
4841 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
4842 return 0;
4843 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
4844 return 0;
4845 if (sb->s_flags & MS_RDONLY)
4846 return 1;
4847 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
4848 return 0;
4849 return 1;
4850 }
4851 MODULE_ALIAS("ext3");
4852 #else
4853 static inline void register_as_ext3(void) { }
4854 static inline void unregister_as_ext3(void) { }
4855 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
4856 #endif
4857
4858 static struct file_system_type ext4_fs_type = {
4859 .owner = THIS_MODULE,
4860 .name = "ext4",
4861 .mount = ext4_mount,
4862 .kill_sb = kill_block_super,
4863 .fs_flags = FS_REQUIRES_DEV,
4864 };
4865
4866 static int __init ext4_init_feat_adverts(void)
4867 {
4868 struct ext4_features *ef;
4869 int ret = -ENOMEM;
4870
4871 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4872 if (!ef)
4873 goto out;
4874
4875 ef->f_kobj.kset = ext4_kset;
4876 init_completion(&ef->f_kobj_unregister);
4877 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4878 "features");
4879 if (ret) {
4880 kfree(ef);
4881 goto out;
4882 }
4883
4884 ext4_feat = ef;
4885 ret = 0;
4886 out:
4887 return ret;
4888 }
4889
4890 static void ext4_exit_feat_adverts(void)
4891 {
4892 kobject_put(&ext4_feat->f_kobj);
4893 wait_for_completion(&ext4_feat->f_kobj_unregister);
4894 kfree(ext4_feat);
4895 }
4896
4897 /* Shared across all ext4 file systems */
4898 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
4899 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
4900
4901 static int __init ext4_init_fs(void)
4902 {
4903 int i, err;
4904
4905 ext4_li_info = NULL;
4906 mutex_init(&ext4_li_mtx);
4907
4908 ext4_check_flag_values();
4909
4910 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
4911 mutex_init(&ext4__aio_mutex[i]);
4912 init_waitqueue_head(&ext4__ioend_wq[i]);
4913 }
4914
4915 err = ext4_init_pageio();
4916 if (err)
4917 return err;
4918 err = ext4_init_system_zone();
4919 if (err)
4920 goto out6;
4921 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4922 if (!ext4_kset)
4923 goto out5;
4924 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4925
4926 err = ext4_init_feat_adverts();
4927 if (err)
4928 goto out4;
4929
4930 err = ext4_init_mballoc();
4931 if (err)
4932 goto out3;
4933
4934 err = ext4_init_xattr();
4935 if (err)
4936 goto out2;
4937 err = init_inodecache();
4938 if (err)
4939 goto out1;
4940 register_as_ext3();
4941 register_as_ext2();
4942 err = register_filesystem(&ext4_fs_type);
4943 if (err)
4944 goto out;
4945
4946 return 0;
4947 out:
4948 unregister_as_ext2();
4949 unregister_as_ext3();
4950 destroy_inodecache();
4951 out1:
4952 ext4_exit_xattr();
4953 out2:
4954 ext4_exit_mballoc();
4955 out3:
4956 ext4_exit_feat_adverts();
4957 out4:
4958 if (ext4_proc_root)
4959 remove_proc_entry("fs/ext4", NULL);
4960 kset_unregister(ext4_kset);
4961 out5:
4962 ext4_exit_system_zone();
4963 out6:
4964 ext4_exit_pageio();
4965 return err;
4966 }
4967
4968 static void __exit ext4_exit_fs(void)
4969 {
4970 ext4_destroy_lazyinit_thread();
4971 unregister_as_ext2();
4972 unregister_as_ext3();
4973 unregister_filesystem(&ext4_fs_type);
4974 destroy_inodecache();
4975 ext4_exit_xattr();
4976 ext4_exit_mballoc();
4977 ext4_exit_feat_adverts();
4978 remove_proc_entry("fs/ext4", NULL);
4979 kset_unregister(ext4_kset);
4980 ext4_exit_system_zone();
4981 ext4_exit_pageio();
4982 }
4983
4984 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4985 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4986 MODULE_LICENSE("GPL");
4987 module_init(ext4_init_fs)
4988 module_exit(ext4_exit_fs)
This page took 0.208738 seconds and 6 git commands to generate.