Merge branch 'for-2.6.38' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[deliverable/linux.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <asm/uaccess.h>
42
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45
46 #include "ext4.h"
47 #include "ext4_jbd2.h"
48 #include "xattr.h"
49 #include "acl.h"
50 #include "mballoc.h"
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/ext4.h>
54
55 static struct proc_dir_entry *ext4_proc_root;
56 static struct kset *ext4_kset;
57 struct ext4_lazy_init *ext4_li_info;
58 struct mutex ext4_li_mtx;
59 struct ext4_features *ext4_feat;
60
61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
62 unsigned long journal_devnum);
63 static int ext4_commit_super(struct super_block *sb, int sync);
64 static void ext4_mark_recovery_complete(struct super_block *sb,
65 struct ext4_super_block *es);
66 static void ext4_clear_journal_err(struct super_block *sb,
67 struct ext4_super_block *es);
68 static int ext4_sync_fs(struct super_block *sb, int wait);
69 static const char *ext4_decode_error(struct super_block *sb, int errno,
70 char nbuf[16]);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static void ext4_write_super(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static void ext4_destroy_lazyinit_thread(void);
79 static void ext4_unregister_li_request(struct super_block *sb);
80
81 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
82 static struct file_system_type ext3_fs_type = {
83 .owner = THIS_MODULE,
84 .name = "ext3",
85 .mount = ext4_mount,
86 .kill_sb = kill_block_super,
87 .fs_flags = FS_REQUIRES_DEV,
88 };
89 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
90 #else
91 #define IS_EXT3_SB(sb) (0)
92 #endif
93
94 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
95 struct ext4_group_desc *bg)
96 {
97 return le32_to_cpu(bg->bg_block_bitmap_lo) |
98 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
99 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
100 }
101
102 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
103 struct ext4_group_desc *bg)
104 {
105 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
106 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
107 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
108 }
109
110 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
111 struct ext4_group_desc *bg)
112 {
113 return le32_to_cpu(bg->bg_inode_table_lo) |
114 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
115 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
116 }
117
118 __u32 ext4_free_blks_count(struct super_block *sb,
119 struct ext4_group_desc *bg)
120 {
121 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
122 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
123 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
124 }
125
126 __u32 ext4_free_inodes_count(struct super_block *sb,
127 struct ext4_group_desc *bg)
128 {
129 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
130 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
131 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
132 }
133
134 __u32 ext4_used_dirs_count(struct super_block *sb,
135 struct ext4_group_desc *bg)
136 {
137 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
138 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
139 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
140 }
141
142 __u32 ext4_itable_unused_count(struct super_block *sb,
143 struct ext4_group_desc *bg)
144 {
145 return le16_to_cpu(bg->bg_itable_unused_lo) |
146 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
147 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
148 }
149
150 void ext4_block_bitmap_set(struct super_block *sb,
151 struct ext4_group_desc *bg, ext4_fsblk_t blk)
152 {
153 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
154 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
155 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
156 }
157
158 void ext4_inode_bitmap_set(struct super_block *sb,
159 struct ext4_group_desc *bg, ext4_fsblk_t blk)
160 {
161 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
162 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
163 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
164 }
165
166 void ext4_inode_table_set(struct super_block *sb,
167 struct ext4_group_desc *bg, ext4_fsblk_t blk)
168 {
169 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
170 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
171 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
172 }
173
174 void ext4_free_blks_set(struct super_block *sb,
175 struct ext4_group_desc *bg, __u32 count)
176 {
177 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
178 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
179 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
180 }
181
182 void ext4_free_inodes_set(struct super_block *sb,
183 struct ext4_group_desc *bg, __u32 count)
184 {
185 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
186 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
187 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
188 }
189
190 void ext4_used_dirs_set(struct super_block *sb,
191 struct ext4_group_desc *bg, __u32 count)
192 {
193 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
194 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
195 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
196 }
197
198 void ext4_itable_unused_set(struct super_block *sb,
199 struct ext4_group_desc *bg, __u32 count)
200 {
201 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
202 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
203 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
204 }
205
206
207 /* Just increment the non-pointer handle value */
208 static handle_t *ext4_get_nojournal(void)
209 {
210 handle_t *handle = current->journal_info;
211 unsigned long ref_cnt = (unsigned long)handle;
212
213 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
214
215 ref_cnt++;
216 handle = (handle_t *)ref_cnt;
217
218 current->journal_info = handle;
219 return handle;
220 }
221
222
223 /* Decrement the non-pointer handle value */
224 static void ext4_put_nojournal(handle_t *handle)
225 {
226 unsigned long ref_cnt = (unsigned long)handle;
227
228 BUG_ON(ref_cnt == 0);
229
230 ref_cnt--;
231 handle = (handle_t *)ref_cnt;
232
233 current->journal_info = handle;
234 }
235
236 /*
237 * Wrappers for jbd2_journal_start/end.
238 *
239 * The only special thing we need to do here is to make sure that all
240 * journal_end calls result in the superblock being marked dirty, so
241 * that sync() will call the filesystem's write_super callback if
242 * appropriate.
243 */
244 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
245 {
246 journal_t *journal;
247
248 if (sb->s_flags & MS_RDONLY)
249 return ERR_PTR(-EROFS);
250
251 vfs_check_frozen(sb, SB_FREEZE_TRANS);
252 /* Special case here: if the journal has aborted behind our
253 * backs (eg. EIO in the commit thread), then we still need to
254 * take the FS itself readonly cleanly. */
255 journal = EXT4_SB(sb)->s_journal;
256 if (journal) {
257 if (is_journal_aborted(journal)) {
258 ext4_abort(sb, "Detected aborted journal");
259 return ERR_PTR(-EROFS);
260 }
261 return jbd2_journal_start(journal, nblocks);
262 }
263 return ext4_get_nojournal();
264 }
265
266 /*
267 * The only special thing we need to do here is to make sure that all
268 * jbd2_journal_stop calls result in the superblock being marked dirty, so
269 * that sync() will call the filesystem's write_super callback if
270 * appropriate.
271 */
272 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
273 {
274 struct super_block *sb;
275 int err;
276 int rc;
277
278 if (!ext4_handle_valid(handle)) {
279 ext4_put_nojournal(handle);
280 return 0;
281 }
282 sb = handle->h_transaction->t_journal->j_private;
283 err = handle->h_err;
284 rc = jbd2_journal_stop(handle);
285
286 if (!err)
287 err = rc;
288 if (err)
289 __ext4_std_error(sb, where, line, err);
290 return err;
291 }
292
293 void ext4_journal_abort_handle(const char *caller, unsigned int line,
294 const char *err_fn, struct buffer_head *bh,
295 handle_t *handle, int err)
296 {
297 char nbuf[16];
298 const char *errstr = ext4_decode_error(NULL, err, nbuf);
299
300 BUG_ON(!ext4_handle_valid(handle));
301
302 if (bh)
303 BUFFER_TRACE(bh, "abort");
304
305 if (!handle->h_err)
306 handle->h_err = err;
307
308 if (is_handle_aborted(handle))
309 return;
310
311 printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n",
312 caller, line, errstr, err_fn);
313
314 jbd2_journal_abort_handle(handle);
315 }
316
317 static void __save_error_info(struct super_block *sb, const char *func,
318 unsigned int line)
319 {
320 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
321
322 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
323 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
324 es->s_last_error_time = cpu_to_le32(get_seconds());
325 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
326 es->s_last_error_line = cpu_to_le32(line);
327 if (!es->s_first_error_time) {
328 es->s_first_error_time = es->s_last_error_time;
329 strncpy(es->s_first_error_func, func,
330 sizeof(es->s_first_error_func));
331 es->s_first_error_line = cpu_to_le32(line);
332 es->s_first_error_ino = es->s_last_error_ino;
333 es->s_first_error_block = es->s_last_error_block;
334 }
335 /*
336 * Start the daily error reporting function if it hasn't been
337 * started already
338 */
339 if (!es->s_error_count)
340 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
341 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
342 }
343
344 static void save_error_info(struct super_block *sb, const char *func,
345 unsigned int line)
346 {
347 __save_error_info(sb, func, line);
348 ext4_commit_super(sb, 1);
349 }
350
351
352 /* Deal with the reporting of failure conditions on a filesystem such as
353 * inconsistencies detected or read IO failures.
354 *
355 * On ext2, we can store the error state of the filesystem in the
356 * superblock. That is not possible on ext4, because we may have other
357 * write ordering constraints on the superblock which prevent us from
358 * writing it out straight away; and given that the journal is about to
359 * be aborted, we can't rely on the current, or future, transactions to
360 * write out the superblock safely.
361 *
362 * We'll just use the jbd2_journal_abort() error code to record an error in
363 * the journal instead. On recovery, the journal will complain about
364 * that error until we've noted it down and cleared it.
365 */
366
367 static void ext4_handle_error(struct super_block *sb)
368 {
369 if (sb->s_flags & MS_RDONLY)
370 return;
371
372 if (!test_opt(sb, ERRORS_CONT)) {
373 journal_t *journal = EXT4_SB(sb)->s_journal;
374
375 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
376 if (journal)
377 jbd2_journal_abort(journal, -EIO);
378 }
379 if (test_opt(sb, ERRORS_RO)) {
380 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
381 sb->s_flags |= MS_RDONLY;
382 }
383 if (test_opt(sb, ERRORS_PANIC))
384 panic("EXT4-fs (device %s): panic forced after error\n",
385 sb->s_id);
386 }
387
388 void __ext4_error(struct super_block *sb, const char *function,
389 unsigned int line, const char *fmt, ...)
390 {
391 va_list args;
392
393 va_start(args, fmt);
394 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: ",
395 sb->s_id, function, line, current->comm);
396 vprintk(fmt, args);
397 printk("\n");
398 va_end(args);
399
400 ext4_handle_error(sb);
401 }
402
403 void ext4_error_inode(struct inode *inode, const char *function,
404 unsigned int line, ext4_fsblk_t block,
405 const char *fmt, ...)
406 {
407 va_list args;
408 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
409
410 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
411 es->s_last_error_block = cpu_to_le64(block);
412 save_error_info(inode->i_sb, function, line);
413 va_start(args, fmt);
414 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
415 inode->i_sb->s_id, function, line, inode->i_ino);
416 if (block)
417 printk("block %llu: ", block);
418 printk("comm %s: ", current->comm);
419 vprintk(fmt, args);
420 printk("\n");
421 va_end(args);
422
423 ext4_handle_error(inode->i_sb);
424 }
425
426 void ext4_error_file(struct file *file, const char *function,
427 unsigned int line, const char *fmt, ...)
428 {
429 va_list args;
430 struct ext4_super_block *es;
431 struct inode *inode = file->f_dentry->d_inode;
432 char pathname[80], *path;
433
434 es = EXT4_SB(inode->i_sb)->s_es;
435 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
436 save_error_info(inode->i_sb, function, line);
437 va_start(args, fmt);
438 path = d_path(&(file->f_path), pathname, sizeof(pathname));
439 if (!path)
440 path = "(unknown)";
441 printk(KERN_CRIT
442 "EXT4-fs error (device %s): %s:%d: inode #%lu "
443 "(comm %s path %s): ",
444 inode->i_sb->s_id, function, line, inode->i_ino,
445 current->comm, path);
446 vprintk(fmt, args);
447 printk("\n");
448 va_end(args);
449
450 ext4_handle_error(inode->i_sb);
451 }
452
453 static const char *ext4_decode_error(struct super_block *sb, int errno,
454 char nbuf[16])
455 {
456 char *errstr = NULL;
457
458 switch (errno) {
459 case -EIO:
460 errstr = "IO failure";
461 break;
462 case -ENOMEM:
463 errstr = "Out of memory";
464 break;
465 case -EROFS:
466 if (!sb || (EXT4_SB(sb)->s_journal &&
467 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
468 errstr = "Journal has aborted";
469 else
470 errstr = "Readonly filesystem";
471 break;
472 default:
473 /* If the caller passed in an extra buffer for unknown
474 * errors, textualise them now. Else we just return
475 * NULL. */
476 if (nbuf) {
477 /* Check for truncated error codes... */
478 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
479 errstr = nbuf;
480 }
481 break;
482 }
483
484 return errstr;
485 }
486
487 /* __ext4_std_error decodes expected errors from journaling functions
488 * automatically and invokes the appropriate error response. */
489
490 void __ext4_std_error(struct super_block *sb, const char *function,
491 unsigned int line, int errno)
492 {
493 char nbuf[16];
494 const char *errstr;
495
496 /* Special case: if the error is EROFS, and we're not already
497 * inside a transaction, then there's really no point in logging
498 * an error. */
499 if (errno == -EROFS && journal_current_handle() == NULL &&
500 (sb->s_flags & MS_RDONLY))
501 return;
502
503 errstr = ext4_decode_error(sb, errno, nbuf);
504 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
505 sb->s_id, function, line, errstr);
506 save_error_info(sb, function, line);
507
508 ext4_handle_error(sb);
509 }
510
511 /*
512 * ext4_abort is a much stronger failure handler than ext4_error. The
513 * abort function may be used to deal with unrecoverable failures such
514 * as journal IO errors or ENOMEM at a critical moment in log management.
515 *
516 * We unconditionally force the filesystem into an ABORT|READONLY state,
517 * unless the error response on the fs has been set to panic in which
518 * case we take the easy way out and panic immediately.
519 */
520
521 void __ext4_abort(struct super_block *sb, const char *function,
522 unsigned int line, const char *fmt, ...)
523 {
524 va_list args;
525
526 save_error_info(sb, function, line);
527 va_start(args, fmt);
528 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
529 function, line);
530 vprintk(fmt, args);
531 printk("\n");
532 va_end(args);
533
534 if ((sb->s_flags & MS_RDONLY) == 0) {
535 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
536 sb->s_flags |= MS_RDONLY;
537 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
538 if (EXT4_SB(sb)->s_journal)
539 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
540 save_error_info(sb, function, line);
541 }
542 if (test_opt(sb, ERRORS_PANIC))
543 panic("EXT4-fs panic from previous error\n");
544 }
545
546 void ext4_msg (struct super_block * sb, const char *prefix,
547 const char *fmt, ...)
548 {
549 va_list args;
550
551 va_start(args, fmt);
552 printk("%sEXT4-fs (%s): ", prefix, sb->s_id);
553 vprintk(fmt, args);
554 printk("\n");
555 va_end(args);
556 }
557
558 void __ext4_warning(struct super_block *sb, const char *function,
559 unsigned int line, const char *fmt, ...)
560 {
561 va_list args;
562
563 va_start(args, fmt);
564 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: ",
565 sb->s_id, function, line);
566 vprintk(fmt, args);
567 printk("\n");
568 va_end(args);
569 }
570
571 void __ext4_grp_locked_error(const char *function, unsigned int line,
572 struct super_block *sb, ext4_group_t grp,
573 unsigned long ino, ext4_fsblk_t block,
574 const char *fmt, ...)
575 __releases(bitlock)
576 __acquires(bitlock)
577 {
578 va_list args;
579 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
580
581 es->s_last_error_ino = cpu_to_le32(ino);
582 es->s_last_error_block = cpu_to_le64(block);
583 __save_error_info(sb, function, line);
584 va_start(args, fmt);
585 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u",
586 sb->s_id, function, line, grp);
587 if (ino)
588 printk("inode %lu: ", ino);
589 if (block)
590 printk("block %llu:", (unsigned long long) block);
591 vprintk(fmt, args);
592 printk("\n");
593 va_end(args);
594
595 if (test_opt(sb, ERRORS_CONT)) {
596 ext4_commit_super(sb, 0);
597 return;
598 }
599
600 ext4_unlock_group(sb, grp);
601 ext4_handle_error(sb);
602 /*
603 * We only get here in the ERRORS_RO case; relocking the group
604 * may be dangerous, but nothing bad will happen since the
605 * filesystem will have already been marked read/only and the
606 * journal has been aborted. We return 1 as a hint to callers
607 * who might what to use the return value from
608 * ext4_grp_locked_error() to distinguish beween the
609 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
610 * aggressively from the ext4 function in question, with a
611 * more appropriate error code.
612 */
613 ext4_lock_group(sb, grp);
614 return;
615 }
616
617 void ext4_update_dynamic_rev(struct super_block *sb)
618 {
619 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
620
621 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
622 return;
623
624 ext4_warning(sb,
625 "updating to rev %d because of new feature flag, "
626 "running e2fsck is recommended",
627 EXT4_DYNAMIC_REV);
628
629 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
630 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
631 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
632 /* leave es->s_feature_*compat flags alone */
633 /* es->s_uuid will be set by e2fsck if empty */
634
635 /*
636 * The rest of the superblock fields should be zero, and if not it
637 * means they are likely already in use, so leave them alone. We
638 * can leave it up to e2fsck to clean up any inconsistencies there.
639 */
640 }
641
642 /*
643 * Open the external journal device
644 */
645 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
646 {
647 struct block_device *bdev;
648 char b[BDEVNAME_SIZE];
649
650 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
651 if (IS_ERR(bdev))
652 goto fail;
653 return bdev;
654
655 fail:
656 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
657 __bdevname(dev, b), PTR_ERR(bdev));
658 return NULL;
659 }
660
661 /*
662 * Release the journal device
663 */
664 static int ext4_blkdev_put(struct block_device *bdev)
665 {
666 bd_release(bdev);
667 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
668 }
669
670 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
671 {
672 struct block_device *bdev;
673 int ret = -ENODEV;
674
675 bdev = sbi->journal_bdev;
676 if (bdev) {
677 ret = ext4_blkdev_put(bdev);
678 sbi->journal_bdev = NULL;
679 }
680 return ret;
681 }
682
683 static inline struct inode *orphan_list_entry(struct list_head *l)
684 {
685 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
686 }
687
688 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
689 {
690 struct list_head *l;
691
692 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
693 le32_to_cpu(sbi->s_es->s_last_orphan));
694
695 printk(KERN_ERR "sb_info orphan list:\n");
696 list_for_each(l, &sbi->s_orphan) {
697 struct inode *inode = orphan_list_entry(l);
698 printk(KERN_ERR " "
699 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
700 inode->i_sb->s_id, inode->i_ino, inode,
701 inode->i_mode, inode->i_nlink,
702 NEXT_ORPHAN(inode));
703 }
704 }
705
706 static void ext4_put_super(struct super_block *sb)
707 {
708 struct ext4_sb_info *sbi = EXT4_SB(sb);
709 struct ext4_super_block *es = sbi->s_es;
710 int i, err;
711
712 ext4_unregister_li_request(sb);
713 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
714
715 flush_workqueue(sbi->dio_unwritten_wq);
716 destroy_workqueue(sbi->dio_unwritten_wq);
717
718 lock_super(sb);
719 if (sb->s_dirt)
720 ext4_commit_super(sb, 1);
721
722 if (sbi->s_journal) {
723 err = jbd2_journal_destroy(sbi->s_journal);
724 sbi->s_journal = NULL;
725 if (err < 0)
726 ext4_abort(sb, "Couldn't clean up the journal");
727 }
728
729 del_timer(&sbi->s_err_report);
730 ext4_release_system_zone(sb);
731 ext4_mb_release(sb);
732 ext4_ext_release(sb);
733 ext4_xattr_put_super(sb);
734
735 if (!(sb->s_flags & MS_RDONLY)) {
736 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
737 es->s_state = cpu_to_le16(sbi->s_mount_state);
738 ext4_commit_super(sb, 1);
739 }
740 if (sbi->s_proc) {
741 remove_proc_entry(sb->s_id, ext4_proc_root);
742 }
743 kobject_del(&sbi->s_kobj);
744
745 for (i = 0; i < sbi->s_gdb_count; i++)
746 brelse(sbi->s_group_desc[i]);
747 kfree(sbi->s_group_desc);
748 if (is_vmalloc_addr(sbi->s_flex_groups))
749 vfree(sbi->s_flex_groups);
750 else
751 kfree(sbi->s_flex_groups);
752 percpu_counter_destroy(&sbi->s_freeblocks_counter);
753 percpu_counter_destroy(&sbi->s_freeinodes_counter);
754 percpu_counter_destroy(&sbi->s_dirs_counter);
755 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
756 brelse(sbi->s_sbh);
757 #ifdef CONFIG_QUOTA
758 for (i = 0; i < MAXQUOTAS; i++)
759 kfree(sbi->s_qf_names[i]);
760 #endif
761
762 /* Debugging code just in case the in-memory inode orphan list
763 * isn't empty. The on-disk one can be non-empty if we've
764 * detected an error and taken the fs readonly, but the
765 * in-memory list had better be clean by this point. */
766 if (!list_empty(&sbi->s_orphan))
767 dump_orphan_list(sb, sbi);
768 J_ASSERT(list_empty(&sbi->s_orphan));
769
770 invalidate_bdev(sb->s_bdev);
771 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
772 /*
773 * Invalidate the journal device's buffers. We don't want them
774 * floating about in memory - the physical journal device may
775 * hotswapped, and it breaks the `ro-after' testing code.
776 */
777 sync_blockdev(sbi->journal_bdev);
778 invalidate_bdev(sbi->journal_bdev);
779 ext4_blkdev_remove(sbi);
780 }
781 sb->s_fs_info = NULL;
782 /*
783 * Now that we are completely done shutting down the
784 * superblock, we need to actually destroy the kobject.
785 */
786 unlock_super(sb);
787 kobject_put(&sbi->s_kobj);
788 wait_for_completion(&sbi->s_kobj_unregister);
789 kfree(sbi->s_blockgroup_lock);
790 kfree(sbi);
791 }
792
793 static struct kmem_cache *ext4_inode_cachep;
794
795 /*
796 * Called inside transaction, so use GFP_NOFS
797 */
798 static struct inode *ext4_alloc_inode(struct super_block *sb)
799 {
800 struct ext4_inode_info *ei;
801
802 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
803 if (!ei)
804 return NULL;
805
806 ei->vfs_inode.i_version = 1;
807 ei->vfs_inode.i_data.writeback_index = 0;
808 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
809 INIT_LIST_HEAD(&ei->i_prealloc_list);
810 spin_lock_init(&ei->i_prealloc_lock);
811 /*
812 * Note: We can be called before EXT4_SB(sb)->s_journal is set,
813 * therefore it can be null here. Don't check it, just initialize
814 * jinode.
815 */
816 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode);
817 ei->i_reserved_data_blocks = 0;
818 ei->i_reserved_meta_blocks = 0;
819 ei->i_allocated_meta_blocks = 0;
820 ei->i_da_metadata_calc_len = 0;
821 ei->i_delalloc_reserved_flag = 0;
822 spin_lock_init(&(ei->i_block_reservation_lock));
823 #ifdef CONFIG_QUOTA
824 ei->i_reserved_quota = 0;
825 #endif
826 INIT_LIST_HEAD(&ei->i_completed_io_list);
827 spin_lock_init(&ei->i_completed_io_lock);
828 ei->cur_aio_dio = NULL;
829 ei->i_sync_tid = 0;
830 ei->i_datasync_tid = 0;
831 atomic_set(&ei->i_ioend_count, 0);
832
833 return &ei->vfs_inode;
834 }
835
836 static int ext4_drop_inode(struct inode *inode)
837 {
838 int drop = generic_drop_inode(inode);
839
840 trace_ext4_drop_inode(inode, drop);
841 return drop;
842 }
843
844 static void ext4_i_callback(struct rcu_head *head)
845 {
846 struct inode *inode = container_of(head, struct inode, i_rcu);
847 INIT_LIST_HEAD(&inode->i_dentry);
848 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
849 }
850
851 static void ext4_destroy_inode(struct inode *inode)
852 {
853 ext4_ioend_wait(inode);
854 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
855 ext4_msg(inode->i_sb, KERN_ERR,
856 "Inode %lu (%p): orphan list check failed!",
857 inode->i_ino, EXT4_I(inode));
858 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
859 EXT4_I(inode), sizeof(struct ext4_inode_info),
860 true);
861 dump_stack();
862 }
863 call_rcu(&inode->i_rcu, ext4_i_callback);
864 }
865
866 static void init_once(void *foo)
867 {
868 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
869
870 INIT_LIST_HEAD(&ei->i_orphan);
871 #ifdef CONFIG_EXT4_FS_XATTR
872 init_rwsem(&ei->xattr_sem);
873 #endif
874 init_rwsem(&ei->i_data_sem);
875 inode_init_once(&ei->vfs_inode);
876 }
877
878 static int init_inodecache(void)
879 {
880 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
881 sizeof(struct ext4_inode_info),
882 0, (SLAB_RECLAIM_ACCOUNT|
883 SLAB_MEM_SPREAD),
884 init_once);
885 if (ext4_inode_cachep == NULL)
886 return -ENOMEM;
887 return 0;
888 }
889
890 static void destroy_inodecache(void)
891 {
892 kmem_cache_destroy(ext4_inode_cachep);
893 }
894
895 void ext4_clear_inode(struct inode *inode)
896 {
897 invalidate_inode_buffers(inode);
898 end_writeback(inode);
899 dquot_drop(inode);
900 ext4_discard_preallocations(inode);
901 if (EXT4_JOURNAL(inode))
902 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal,
903 &EXT4_I(inode)->jinode);
904 }
905
906 static inline void ext4_show_quota_options(struct seq_file *seq,
907 struct super_block *sb)
908 {
909 #if defined(CONFIG_QUOTA)
910 struct ext4_sb_info *sbi = EXT4_SB(sb);
911
912 if (sbi->s_jquota_fmt) {
913 char *fmtname = "";
914
915 switch (sbi->s_jquota_fmt) {
916 case QFMT_VFS_OLD:
917 fmtname = "vfsold";
918 break;
919 case QFMT_VFS_V0:
920 fmtname = "vfsv0";
921 break;
922 case QFMT_VFS_V1:
923 fmtname = "vfsv1";
924 break;
925 }
926 seq_printf(seq, ",jqfmt=%s", fmtname);
927 }
928
929 if (sbi->s_qf_names[USRQUOTA])
930 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
931
932 if (sbi->s_qf_names[GRPQUOTA])
933 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
934
935 if (test_opt(sb, USRQUOTA))
936 seq_puts(seq, ",usrquota");
937
938 if (test_opt(sb, GRPQUOTA))
939 seq_puts(seq, ",grpquota");
940 #endif
941 }
942
943 /*
944 * Show an option if
945 * - it's set to a non-default value OR
946 * - if the per-sb default is different from the global default
947 */
948 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
949 {
950 int def_errors;
951 unsigned long def_mount_opts;
952 struct super_block *sb = vfs->mnt_sb;
953 struct ext4_sb_info *sbi = EXT4_SB(sb);
954 struct ext4_super_block *es = sbi->s_es;
955
956 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
957 def_errors = le16_to_cpu(es->s_errors);
958
959 if (sbi->s_sb_block != 1)
960 seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
961 if (test_opt(sb, MINIX_DF))
962 seq_puts(seq, ",minixdf");
963 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
964 seq_puts(seq, ",grpid");
965 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
966 seq_puts(seq, ",nogrpid");
967 if (sbi->s_resuid != EXT4_DEF_RESUID ||
968 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
969 seq_printf(seq, ",resuid=%u", sbi->s_resuid);
970 }
971 if (sbi->s_resgid != EXT4_DEF_RESGID ||
972 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
973 seq_printf(seq, ",resgid=%u", sbi->s_resgid);
974 }
975 if (test_opt(sb, ERRORS_RO)) {
976 if (def_errors == EXT4_ERRORS_PANIC ||
977 def_errors == EXT4_ERRORS_CONTINUE) {
978 seq_puts(seq, ",errors=remount-ro");
979 }
980 }
981 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
982 seq_puts(seq, ",errors=continue");
983 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
984 seq_puts(seq, ",errors=panic");
985 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
986 seq_puts(seq, ",nouid32");
987 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
988 seq_puts(seq, ",debug");
989 if (test_opt(sb, OLDALLOC))
990 seq_puts(seq, ",oldalloc");
991 #ifdef CONFIG_EXT4_FS_XATTR
992 if (test_opt(sb, XATTR_USER) &&
993 !(def_mount_opts & EXT4_DEFM_XATTR_USER))
994 seq_puts(seq, ",user_xattr");
995 if (!test_opt(sb, XATTR_USER) &&
996 (def_mount_opts & EXT4_DEFM_XATTR_USER)) {
997 seq_puts(seq, ",nouser_xattr");
998 }
999 #endif
1000 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1001 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
1002 seq_puts(seq, ",acl");
1003 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
1004 seq_puts(seq, ",noacl");
1005 #endif
1006 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
1007 seq_printf(seq, ",commit=%u",
1008 (unsigned) (sbi->s_commit_interval / HZ));
1009 }
1010 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
1011 seq_printf(seq, ",min_batch_time=%u",
1012 (unsigned) sbi->s_min_batch_time);
1013 }
1014 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
1015 seq_printf(seq, ",max_batch_time=%u",
1016 (unsigned) sbi->s_min_batch_time);
1017 }
1018
1019 /*
1020 * We're changing the default of barrier mount option, so
1021 * let's always display its mount state so it's clear what its
1022 * status is.
1023 */
1024 seq_puts(seq, ",barrier=");
1025 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
1026 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
1027 seq_puts(seq, ",journal_async_commit");
1028 else if (test_opt(sb, JOURNAL_CHECKSUM))
1029 seq_puts(seq, ",journal_checksum");
1030 if (test_opt(sb, I_VERSION))
1031 seq_puts(seq, ",i_version");
1032 if (!test_opt(sb, DELALLOC) &&
1033 !(def_mount_opts & EXT4_DEFM_NODELALLOC))
1034 seq_puts(seq, ",nodelalloc");
1035
1036 if (test_opt(sb, MBLK_IO_SUBMIT))
1037 seq_puts(seq, ",mblk_io_submit");
1038 if (sbi->s_stripe)
1039 seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
1040 /*
1041 * journal mode get enabled in different ways
1042 * So just print the value even if we didn't specify it
1043 */
1044 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1045 seq_puts(seq, ",data=journal");
1046 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1047 seq_puts(seq, ",data=ordered");
1048 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1049 seq_puts(seq, ",data=writeback");
1050
1051 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1052 seq_printf(seq, ",inode_readahead_blks=%u",
1053 sbi->s_inode_readahead_blks);
1054
1055 if (test_opt(sb, DATA_ERR_ABORT))
1056 seq_puts(seq, ",data_err=abort");
1057
1058 if (test_opt(sb, NO_AUTO_DA_ALLOC))
1059 seq_puts(seq, ",noauto_da_alloc");
1060
1061 if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD))
1062 seq_puts(seq, ",discard");
1063
1064 if (test_opt(sb, NOLOAD))
1065 seq_puts(seq, ",norecovery");
1066
1067 if (test_opt(sb, DIOREAD_NOLOCK))
1068 seq_puts(seq, ",dioread_nolock");
1069
1070 if (test_opt(sb, BLOCK_VALIDITY) &&
1071 !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY))
1072 seq_puts(seq, ",block_validity");
1073
1074 if (!test_opt(sb, INIT_INODE_TABLE))
1075 seq_puts(seq, ",noinit_inode_table");
1076 else if (sbi->s_li_wait_mult)
1077 seq_printf(seq, ",init_inode_table=%u",
1078 (unsigned) sbi->s_li_wait_mult);
1079
1080 ext4_show_quota_options(seq, sb);
1081
1082 return 0;
1083 }
1084
1085 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1086 u64 ino, u32 generation)
1087 {
1088 struct inode *inode;
1089
1090 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1091 return ERR_PTR(-ESTALE);
1092 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1093 return ERR_PTR(-ESTALE);
1094
1095 /* iget isn't really right if the inode is currently unallocated!!
1096 *
1097 * ext4_read_inode will return a bad_inode if the inode had been
1098 * deleted, so we should be safe.
1099 *
1100 * Currently we don't know the generation for parent directory, so
1101 * a generation of 0 means "accept any"
1102 */
1103 inode = ext4_iget(sb, ino);
1104 if (IS_ERR(inode))
1105 return ERR_CAST(inode);
1106 if (generation && inode->i_generation != generation) {
1107 iput(inode);
1108 return ERR_PTR(-ESTALE);
1109 }
1110
1111 return inode;
1112 }
1113
1114 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1115 int fh_len, int fh_type)
1116 {
1117 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1118 ext4_nfs_get_inode);
1119 }
1120
1121 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1122 int fh_len, int fh_type)
1123 {
1124 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1125 ext4_nfs_get_inode);
1126 }
1127
1128 /*
1129 * Try to release metadata pages (indirect blocks, directories) which are
1130 * mapped via the block device. Since these pages could have journal heads
1131 * which would prevent try_to_free_buffers() from freeing them, we must use
1132 * jbd2 layer's try_to_free_buffers() function to release them.
1133 */
1134 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1135 gfp_t wait)
1136 {
1137 journal_t *journal = EXT4_SB(sb)->s_journal;
1138
1139 WARN_ON(PageChecked(page));
1140 if (!page_has_buffers(page))
1141 return 0;
1142 if (journal)
1143 return jbd2_journal_try_to_free_buffers(journal, page,
1144 wait & ~__GFP_WAIT);
1145 return try_to_free_buffers(page);
1146 }
1147
1148 #ifdef CONFIG_QUOTA
1149 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1150 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1151
1152 static int ext4_write_dquot(struct dquot *dquot);
1153 static int ext4_acquire_dquot(struct dquot *dquot);
1154 static int ext4_release_dquot(struct dquot *dquot);
1155 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1156 static int ext4_write_info(struct super_block *sb, int type);
1157 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1158 char *path);
1159 static int ext4_quota_off(struct super_block *sb, int type);
1160 static int ext4_quota_on_mount(struct super_block *sb, int type);
1161 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1162 size_t len, loff_t off);
1163 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1164 const char *data, size_t len, loff_t off);
1165
1166 static const struct dquot_operations ext4_quota_operations = {
1167 #ifdef CONFIG_QUOTA
1168 .get_reserved_space = ext4_get_reserved_space,
1169 #endif
1170 .write_dquot = ext4_write_dquot,
1171 .acquire_dquot = ext4_acquire_dquot,
1172 .release_dquot = ext4_release_dquot,
1173 .mark_dirty = ext4_mark_dquot_dirty,
1174 .write_info = ext4_write_info,
1175 .alloc_dquot = dquot_alloc,
1176 .destroy_dquot = dquot_destroy,
1177 };
1178
1179 static const struct quotactl_ops ext4_qctl_operations = {
1180 .quota_on = ext4_quota_on,
1181 .quota_off = ext4_quota_off,
1182 .quota_sync = dquot_quota_sync,
1183 .get_info = dquot_get_dqinfo,
1184 .set_info = dquot_set_dqinfo,
1185 .get_dqblk = dquot_get_dqblk,
1186 .set_dqblk = dquot_set_dqblk
1187 };
1188 #endif
1189
1190 static const struct super_operations ext4_sops = {
1191 .alloc_inode = ext4_alloc_inode,
1192 .destroy_inode = ext4_destroy_inode,
1193 .write_inode = ext4_write_inode,
1194 .dirty_inode = ext4_dirty_inode,
1195 .drop_inode = ext4_drop_inode,
1196 .evict_inode = ext4_evict_inode,
1197 .put_super = ext4_put_super,
1198 .sync_fs = ext4_sync_fs,
1199 .freeze_fs = ext4_freeze,
1200 .unfreeze_fs = ext4_unfreeze,
1201 .statfs = ext4_statfs,
1202 .remount_fs = ext4_remount,
1203 .show_options = ext4_show_options,
1204 #ifdef CONFIG_QUOTA
1205 .quota_read = ext4_quota_read,
1206 .quota_write = ext4_quota_write,
1207 #endif
1208 .bdev_try_to_free_page = bdev_try_to_free_page,
1209 };
1210
1211 static const struct super_operations ext4_nojournal_sops = {
1212 .alloc_inode = ext4_alloc_inode,
1213 .destroy_inode = ext4_destroy_inode,
1214 .write_inode = ext4_write_inode,
1215 .dirty_inode = ext4_dirty_inode,
1216 .drop_inode = ext4_drop_inode,
1217 .evict_inode = ext4_evict_inode,
1218 .write_super = ext4_write_super,
1219 .put_super = ext4_put_super,
1220 .statfs = ext4_statfs,
1221 .remount_fs = ext4_remount,
1222 .show_options = ext4_show_options,
1223 #ifdef CONFIG_QUOTA
1224 .quota_read = ext4_quota_read,
1225 .quota_write = ext4_quota_write,
1226 #endif
1227 .bdev_try_to_free_page = bdev_try_to_free_page,
1228 };
1229
1230 static const struct export_operations ext4_export_ops = {
1231 .fh_to_dentry = ext4_fh_to_dentry,
1232 .fh_to_parent = ext4_fh_to_parent,
1233 .get_parent = ext4_get_parent,
1234 };
1235
1236 enum {
1237 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1238 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1239 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1240 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1241 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1242 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1243 Opt_journal_update, Opt_journal_dev,
1244 Opt_journal_checksum, Opt_journal_async_commit,
1245 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1246 Opt_data_err_abort, Opt_data_err_ignore,
1247 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1248 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1249 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1250 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1251 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1252 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1253 Opt_inode_readahead_blks, Opt_journal_ioprio,
1254 Opt_dioread_nolock, Opt_dioread_lock,
1255 Opt_discard, Opt_nodiscard,
1256 Opt_init_inode_table, Opt_noinit_inode_table,
1257 };
1258
1259 static const match_table_t tokens = {
1260 {Opt_bsd_df, "bsddf"},
1261 {Opt_minix_df, "minixdf"},
1262 {Opt_grpid, "grpid"},
1263 {Opt_grpid, "bsdgroups"},
1264 {Opt_nogrpid, "nogrpid"},
1265 {Opt_nogrpid, "sysvgroups"},
1266 {Opt_resgid, "resgid=%u"},
1267 {Opt_resuid, "resuid=%u"},
1268 {Opt_sb, "sb=%u"},
1269 {Opt_err_cont, "errors=continue"},
1270 {Opt_err_panic, "errors=panic"},
1271 {Opt_err_ro, "errors=remount-ro"},
1272 {Opt_nouid32, "nouid32"},
1273 {Opt_debug, "debug"},
1274 {Opt_oldalloc, "oldalloc"},
1275 {Opt_orlov, "orlov"},
1276 {Opt_user_xattr, "user_xattr"},
1277 {Opt_nouser_xattr, "nouser_xattr"},
1278 {Opt_acl, "acl"},
1279 {Opt_noacl, "noacl"},
1280 {Opt_noload, "noload"},
1281 {Opt_noload, "norecovery"},
1282 {Opt_nobh, "nobh"},
1283 {Opt_bh, "bh"},
1284 {Opt_commit, "commit=%u"},
1285 {Opt_min_batch_time, "min_batch_time=%u"},
1286 {Opt_max_batch_time, "max_batch_time=%u"},
1287 {Opt_journal_update, "journal=update"},
1288 {Opt_journal_dev, "journal_dev=%u"},
1289 {Opt_journal_checksum, "journal_checksum"},
1290 {Opt_journal_async_commit, "journal_async_commit"},
1291 {Opt_abort, "abort"},
1292 {Opt_data_journal, "data=journal"},
1293 {Opt_data_ordered, "data=ordered"},
1294 {Opt_data_writeback, "data=writeback"},
1295 {Opt_data_err_abort, "data_err=abort"},
1296 {Opt_data_err_ignore, "data_err=ignore"},
1297 {Opt_offusrjquota, "usrjquota="},
1298 {Opt_usrjquota, "usrjquota=%s"},
1299 {Opt_offgrpjquota, "grpjquota="},
1300 {Opt_grpjquota, "grpjquota=%s"},
1301 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1302 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1303 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1304 {Opt_grpquota, "grpquota"},
1305 {Opt_noquota, "noquota"},
1306 {Opt_quota, "quota"},
1307 {Opt_usrquota, "usrquota"},
1308 {Opt_barrier, "barrier=%u"},
1309 {Opt_barrier, "barrier"},
1310 {Opt_nobarrier, "nobarrier"},
1311 {Opt_i_version, "i_version"},
1312 {Opt_stripe, "stripe=%u"},
1313 {Opt_resize, "resize"},
1314 {Opt_delalloc, "delalloc"},
1315 {Opt_nodelalloc, "nodelalloc"},
1316 {Opt_mblk_io_submit, "mblk_io_submit"},
1317 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1318 {Opt_block_validity, "block_validity"},
1319 {Opt_noblock_validity, "noblock_validity"},
1320 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1321 {Opt_journal_ioprio, "journal_ioprio=%u"},
1322 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1323 {Opt_auto_da_alloc, "auto_da_alloc"},
1324 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1325 {Opt_dioread_nolock, "dioread_nolock"},
1326 {Opt_dioread_lock, "dioread_lock"},
1327 {Opt_discard, "discard"},
1328 {Opt_nodiscard, "nodiscard"},
1329 {Opt_init_inode_table, "init_itable=%u"},
1330 {Opt_init_inode_table, "init_itable"},
1331 {Opt_noinit_inode_table, "noinit_itable"},
1332 {Opt_err, NULL},
1333 };
1334
1335 static ext4_fsblk_t get_sb_block(void **data)
1336 {
1337 ext4_fsblk_t sb_block;
1338 char *options = (char *) *data;
1339
1340 if (!options || strncmp(options, "sb=", 3) != 0)
1341 return 1; /* Default location */
1342
1343 options += 3;
1344 /* TODO: use simple_strtoll with >32bit ext4 */
1345 sb_block = simple_strtoul(options, &options, 0);
1346 if (*options && *options != ',') {
1347 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1348 (char *) *data);
1349 return 1;
1350 }
1351 if (*options == ',')
1352 options++;
1353 *data = (void *) options;
1354
1355 return sb_block;
1356 }
1357
1358 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1359 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1360 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1361
1362 #ifdef CONFIG_QUOTA
1363 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1364 {
1365 struct ext4_sb_info *sbi = EXT4_SB(sb);
1366 char *qname;
1367
1368 if (sb_any_quota_loaded(sb) &&
1369 !sbi->s_qf_names[qtype]) {
1370 ext4_msg(sb, KERN_ERR,
1371 "Cannot change journaled "
1372 "quota options when quota turned on");
1373 return 0;
1374 }
1375 qname = match_strdup(args);
1376 if (!qname) {
1377 ext4_msg(sb, KERN_ERR,
1378 "Not enough memory for storing quotafile name");
1379 return 0;
1380 }
1381 if (sbi->s_qf_names[qtype] &&
1382 strcmp(sbi->s_qf_names[qtype], qname)) {
1383 ext4_msg(sb, KERN_ERR,
1384 "%s quota file already specified", QTYPE2NAME(qtype));
1385 kfree(qname);
1386 return 0;
1387 }
1388 sbi->s_qf_names[qtype] = qname;
1389 if (strchr(sbi->s_qf_names[qtype], '/')) {
1390 ext4_msg(sb, KERN_ERR,
1391 "quotafile must be on filesystem root");
1392 kfree(sbi->s_qf_names[qtype]);
1393 sbi->s_qf_names[qtype] = NULL;
1394 return 0;
1395 }
1396 set_opt(sbi->s_mount_opt, QUOTA);
1397 return 1;
1398 }
1399
1400 static int clear_qf_name(struct super_block *sb, int qtype)
1401 {
1402
1403 struct ext4_sb_info *sbi = EXT4_SB(sb);
1404
1405 if (sb_any_quota_loaded(sb) &&
1406 sbi->s_qf_names[qtype]) {
1407 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1408 " when quota turned on");
1409 return 0;
1410 }
1411 /*
1412 * The space will be released later when all options are confirmed
1413 * to be correct
1414 */
1415 sbi->s_qf_names[qtype] = NULL;
1416 return 1;
1417 }
1418 #endif
1419
1420 static int parse_options(char *options, struct super_block *sb,
1421 unsigned long *journal_devnum,
1422 unsigned int *journal_ioprio,
1423 ext4_fsblk_t *n_blocks_count, int is_remount)
1424 {
1425 struct ext4_sb_info *sbi = EXT4_SB(sb);
1426 char *p;
1427 substring_t args[MAX_OPT_ARGS];
1428 int data_opt = 0;
1429 int option;
1430 #ifdef CONFIG_QUOTA
1431 int qfmt;
1432 #endif
1433
1434 if (!options)
1435 return 1;
1436
1437 while ((p = strsep(&options, ",")) != NULL) {
1438 int token;
1439 if (!*p)
1440 continue;
1441
1442 /*
1443 * Initialize args struct so we know whether arg was
1444 * found; some options take optional arguments.
1445 */
1446 args[0].to = args[0].from = 0;
1447 token = match_token(p, tokens, args);
1448 switch (token) {
1449 case Opt_bsd_df:
1450 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1451 clear_opt(sbi->s_mount_opt, MINIX_DF);
1452 break;
1453 case Opt_minix_df:
1454 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1455 set_opt(sbi->s_mount_opt, MINIX_DF);
1456
1457 break;
1458 case Opt_grpid:
1459 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1460 set_opt(sbi->s_mount_opt, GRPID);
1461
1462 break;
1463 case Opt_nogrpid:
1464 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1465 clear_opt(sbi->s_mount_opt, GRPID);
1466
1467 break;
1468 case Opt_resuid:
1469 if (match_int(&args[0], &option))
1470 return 0;
1471 sbi->s_resuid = option;
1472 break;
1473 case Opt_resgid:
1474 if (match_int(&args[0], &option))
1475 return 0;
1476 sbi->s_resgid = option;
1477 break;
1478 case Opt_sb:
1479 /* handled by get_sb_block() instead of here */
1480 /* *sb_block = match_int(&args[0]); */
1481 break;
1482 case Opt_err_panic:
1483 clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1484 clear_opt(sbi->s_mount_opt, ERRORS_RO);
1485 set_opt(sbi->s_mount_opt, ERRORS_PANIC);
1486 break;
1487 case Opt_err_ro:
1488 clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1489 clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1490 set_opt(sbi->s_mount_opt, ERRORS_RO);
1491 break;
1492 case Opt_err_cont:
1493 clear_opt(sbi->s_mount_opt, ERRORS_RO);
1494 clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1495 set_opt(sbi->s_mount_opt, ERRORS_CONT);
1496 break;
1497 case Opt_nouid32:
1498 set_opt(sbi->s_mount_opt, NO_UID32);
1499 break;
1500 case Opt_debug:
1501 set_opt(sbi->s_mount_opt, DEBUG);
1502 break;
1503 case Opt_oldalloc:
1504 set_opt(sbi->s_mount_opt, OLDALLOC);
1505 break;
1506 case Opt_orlov:
1507 clear_opt(sbi->s_mount_opt, OLDALLOC);
1508 break;
1509 #ifdef CONFIG_EXT4_FS_XATTR
1510 case Opt_user_xattr:
1511 set_opt(sbi->s_mount_opt, XATTR_USER);
1512 break;
1513 case Opt_nouser_xattr:
1514 clear_opt(sbi->s_mount_opt, XATTR_USER);
1515 break;
1516 #else
1517 case Opt_user_xattr:
1518 case Opt_nouser_xattr:
1519 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1520 break;
1521 #endif
1522 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1523 case Opt_acl:
1524 set_opt(sbi->s_mount_opt, POSIX_ACL);
1525 break;
1526 case Opt_noacl:
1527 clear_opt(sbi->s_mount_opt, POSIX_ACL);
1528 break;
1529 #else
1530 case Opt_acl:
1531 case Opt_noacl:
1532 ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1533 break;
1534 #endif
1535 case Opt_journal_update:
1536 /* @@@ FIXME */
1537 /* Eventually we will want to be able to create
1538 a journal file here. For now, only allow the
1539 user to specify an existing inode to be the
1540 journal file. */
1541 if (is_remount) {
1542 ext4_msg(sb, KERN_ERR,
1543 "Cannot specify journal on remount");
1544 return 0;
1545 }
1546 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL);
1547 break;
1548 case Opt_journal_dev:
1549 if (is_remount) {
1550 ext4_msg(sb, KERN_ERR,
1551 "Cannot specify journal on remount");
1552 return 0;
1553 }
1554 if (match_int(&args[0], &option))
1555 return 0;
1556 *journal_devnum = option;
1557 break;
1558 case Opt_journal_checksum:
1559 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1560 break;
1561 case Opt_journal_async_commit:
1562 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT);
1563 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1564 break;
1565 case Opt_noload:
1566 set_opt(sbi->s_mount_opt, NOLOAD);
1567 break;
1568 case Opt_commit:
1569 if (match_int(&args[0], &option))
1570 return 0;
1571 if (option < 0)
1572 return 0;
1573 if (option == 0)
1574 option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1575 sbi->s_commit_interval = HZ * option;
1576 break;
1577 case Opt_max_batch_time:
1578 if (match_int(&args[0], &option))
1579 return 0;
1580 if (option < 0)
1581 return 0;
1582 if (option == 0)
1583 option = EXT4_DEF_MAX_BATCH_TIME;
1584 sbi->s_max_batch_time = option;
1585 break;
1586 case Opt_min_batch_time:
1587 if (match_int(&args[0], &option))
1588 return 0;
1589 if (option < 0)
1590 return 0;
1591 sbi->s_min_batch_time = option;
1592 break;
1593 case Opt_data_journal:
1594 data_opt = EXT4_MOUNT_JOURNAL_DATA;
1595 goto datacheck;
1596 case Opt_data_ordered:
1597 data_opt = EXT4_MOUNT_ORDERED_DATA;
1598 goto datacheck;
1599 case Opt_data_writeback:
1600 data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1601 datacheck:
1602 if (is_remount) {
1603 if (test_opt(sb, DATA_FLAGS) != data_opt) {
1604 ext4_msg(sb, KERN_ERR,
1605 "Cannot change data mode on remount");
1606 return 0;
1607 }
1608 } else {
1609 clear_opt(sbi->s_mount_opt, DATA_FLAGS);
1610 sbi->s_mount_opt |= data_opt;
1611 }
1612 break;
1613 case Opt_data_err_abort:
1614 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1615 break;
1616 case Opt_data_err_ignore:
1617 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1618 break;
1619 #ifdef CONFIG_QUOTA
1620 case Opt_usrjquota:
1621 if (!set_qf_name(sb, USRQUOTA, &args[0]))
1622 return 0;
1623 break;
1624 case Opt_grpjquota:
1625 if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1626 return 0;
1627 break;
1628 case Opt_offusrjquota:
1629 if (!clear_qf_name(sb, USRQUOTA))
1630 return 0;
1631 break;
1632 case Opt_offgrpjquota:
1633 if (!clear_qf_name(sb, GRPQUOTA))
1634 return 0;
1635 break;
1636
1637 case Opt_jqfmt_vfsold:
1638 qfmt = QFMT_VFS_OLD;
1639 goto set_qf_format;
1640 case Opt_jqfmt_vfsv0:
1641 qfmt = QFMT_VFS_V0;
1642 goto set_qf_format;
1643 case Opt_jqfmt_vfsv1:
1644 qfmt = QFMT_VFS_V1;
1645 set_qf_format:
1646 if (sb_any_quota_loaded(sb) &&
1647 sbi->s_jquota_fmt != qfmt) {
1648 ext4_msg(sb, KERN_ERR, "Cannot change "
1649 "journaled quota options when "
1650 "quota turned on");
1651 return 0;
1652 }
1653 sbi->s_jquota_fmt = qfmt;
1654 break;
1655 case Opt_quota:
1656 case Opt_usrquota:
1657 set_opt(sbi->s_mount_opt, QUOTA);
1658 set_opt(sbi->s_mount_opt, USRQUOTA);
1659 break;
1660 case Opt_grpquota:
1661 set_opt(sbi->s_mount_opt, QUOTA);
1662 set_opt(sbi->s_mount_opt, GRPQUOTA);
1663 break;
1664 case Opt_noquota:
1665 if (sb_any_quota_loaded(sb)) {
1666 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1667 "options when quota turned on");
1668 return 0;
1669 }
1670 clear_opt(sbi->s_mount_opt, QUOTA);
1671 clear_opt(sbi->s_mount_opt, USRQUOTA);
1672 clear_opt(sbi->s_mount_opt, GRPQUOTA);
1673 break;
1674 #else
1675 case Opt_quota:
1676 case Opt_usrquota:
1677 case Opt_grpquota:
1678 ext4_msg(sb, KERN_ERR,
1679 "quota options not supported");
1680 break;
1681 case Opt_usrjquota:
1682 case Opt_grpjquota:
1683 case Opt_offusrjquota:
1684 case Opt_offgrpjquota:
1685 case Opt_jqfmt_vfsold:
1686 case Opt_jqfmt_vfsv0:
1687 case Opt_jqfmt_vfsv1:
1688 ext4_msg(sb, KERN_ERR,
1689 "journaled quota options not supported");
1690 break;
1691 case Opt_noquota:
1692 break;
1693 #endif
1694 case Opt_abort:
1695 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1696 break;
1697 case Opt_nobarrier:
1698 clear_opt(sbi->s_mount_opt, BARRIER);
1699 break;
1700 case Opt_barrier:
1701 if (args[0].from) {
1702 if (match_int(&args[0], &option))
1703 return 0;
1704 } else
1705 option = 1; /* No argument, default to 1 */
1706 if (option)
1707 set_opt(sbi->s_mount_opt, BARRIER);
1708 else
1709 clear_opt(sbi->s_mount_opt, BARRIER);
1710 break;
1711 case Opt_ignore:
1712 break;
1713 case Opt_resize:
1714 if (!is_remount) {
1715 ext4_msg(sb, KERN_ERR,
1716 "resize option only available "
1717 "for remount");
1718 return 0;
1719 }
1720 if (match_int(&args[0], &option) != 0)
1721 return 0;
1722 *n_blocks_count = option;
1723 break;
1724 case Opt_nobh:
1725 ext4_msg(sb, KERN_WARNING,
1726 "Ignoring deprecated nobh option");
1727 break;
1728 case Opt_bh:
1729 ext4_msg(sb, KERN_WARNING,
1730 "Ignoring deprecated bh option");
1731 break;
1732 case Opt_i_version:
1733 set_opt(sbi->s_mount_opt, I_VERSION);
1734 sb->s_flags |= MS_I_VERSION;
1735 break;
1736 case Opt_nodelalloc:
1737 clear_opt(sbi->s_mount_opt, DELALLOC);
1738 break;
1739 case Opt_mblk_io_submit:
1740 set_opt(sbi->s_mount_opt, MBLK_IO_SUBMIT);
1741 break;
1742 case Opt_nomblk_io_submit:
1743 clear_opt(sbi->s_mount_opt, MBLK_IO_SUBMIT);
1744 break;
1745 case Opt_stripe:
1746 if (match_int(&args[0], &option))
1747 return 0;
1748 if (option < 0)
1749 return 0;
1750 sbi->s_stripe = option;
1751 break;
1752 case Opt_delalloc:
1753 set_opt(sbi->s_mount_opt, DELALLOC);
1754 break;
1755 case Opt_block_validity:
1756 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1757 break;
1758 case Opt_noblock_validity:
1759 clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1760 break;
1761 case Opt_inode_readahead_blks:
1762 if (match_int(&args[0], &option))
1763 return 0;
1764 if (option < 0 || option > (1 << 30))
1765 return 0;
1766 if (!is_power_of_2(option)) {
1767 ext4_msg(sb, KERN_ERR,
1768 "EXT4-fs: inode_readahead_blks"
1769 " must be a power of 2");
1770 return 0;
1771 }
1772 sbi->s_inode_readahead_blks = option;
1773 break;
1774 case Opt_journal_ioprio:
1775 if (match_int(&args[0], &option))
1776 return 0;
1777 if (option < 0 || option > 7)
1778 break;
1779 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1780 option);
1781 break;
1782 case Opt_noauto_da_alloc:
1783 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1784 break;
1785 case Opt_auto_da_alloc:
1786 if (args[0].from) {
1787 if (match_int(&args[0], &option))
1788 return 0;
1789 } else
1790 option = 1; /* No argument, default to 1 */
1791 if (option)
1792 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC);
1793 else
1794 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1795 break;
1796 case Opt_discard:
1797 set_opt(sbi->s_mount_opt, DISCARD);
1798 break;
1799 case Opt_nodiscard:
1800 clear_opt(sbi->s_mount_opt, DISCARD);
1801 break;
1802 case Opt_dioread_nolock:
1803 set_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
1804 break;
1805 case Opt_dioread_lock:
1806 clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
1807 break;
1808 case Opt_init_inode_table:
1809 set_opt(sbi->s_mount_opt, INIT_INODE_TABLE);
1810 if (args[0].from) {
1811 if (match_int(&args[0], &option))
1812 return 0;
1813 } else
1814 option = EXT4_DEF_LI_WAIT_MULT;
1815 if (option < 0)
1816 return 0;
1817 sbi->s_li_wait_mult = option;
1818 break;
1819 case Opt_noinit_inode_table:
1820 clear_opt(sbi->s_mount_opt, INIT_INODE_TABLE);
1821 break;
1822 default:
1823 ext4_msg(sb, KERN_ERR,
1824 "Unrecognized mount option \"%s\" "
1825 "or missing value", p);
1826 return 0;
1827 }
1828 }
1829 #ifdef CONFIG_QUOTA
1830 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1831 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1832 clear_opt(sbi->s_mount_opt, USRQUOTA);
1833
1834 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1835 clear_opt(sbi->s_mount_opt, GRPQUOTA);
1836
1837 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1838 ext4_msg(sb, KERN_ERR, "old and new quota "
1839 "format mixing");
1840 return 0;
1841 }
1842
1843 if (!sbi->s_jquota_fmt) {
1844 ext4_msg(sb, KERN_ERR, "journaled quota format "
1845 "not specified");
1846 return 0;
1847 }
1848 } else {
1849 if (sbi->s_jquota_fmt) {
1850 ext4_msg(sb, KERN_ERR, "journaled quota format "
1851 "specified with no journaling "
1852 "enabled");
1853 return 0;
1854 }
1855 }
1856 #endif
1857 return 1;
1858 }
1859
1860 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1861 int read_only)
1862 {
1863 struct ext4_sb_info *sbi = EXT4_SB(sb);
1864 int res = 0;
1865
1866 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1867 ext4_msg(sb, KERN_ERR, "revision level too high, "
1868 "forcing read-only mode");
1869 res = MS_RDONLY;
1870 }
1871 if (read_only)
1872 return res;
1873 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1874 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1875 "running e2fsck is recommended");
1876 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1877 ext4_msg(sb, KERN_WARNING,
1878 "warning: mounting fs with errors, "
1879 "running e2fsck is recommended");
1880 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
1881 le16_to_cpu(es->s_mnt_count) >=
1882 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1883 ext4_msg(sb, KERN_WARNING,
1884 "warning: maximal mount count reached, "
1885 "running e2fsck is recommended");
1886 else if (le32_to_cpu(es->s_checkinterval) &&
1887 (le32_to_cpu(es->s_lastcheck) +
1888 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1889 ext4_msg(sb, KERN_WARNING,
1890 "warning: checktime reached, "
1891 "running e2fsck is recommended");
1892 if (!sbi->s_journal)
1893 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1894 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1895 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1896 le16_add_cpu(&es->s_mnt_count, 1);
1897 es->s_mtime = cpu_to_le32(get_seconds());
1898 ext4_update_dynamic_rev(sb);
1899 if (sbi->s_journal)
1900 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1901
1902 ext4_commit_super(sb, 1);
1903 if (test_opt(sb, DEBUG))
1904 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1905 "bpg=%lu, ipg=%lu, mo=%04x]\n",
1906 sb->s_blocksize,
1907 sbi->s_groups_count,
1908 EXT4_BLOCKS_PER_GROUP(sb),
1909 EXT4_INODES_PER_GROUP(sb),
1910 sbi->s_mount_opt);
1911
1912 return res;
1913 }
1914
1915 static int ext4_fill_flex_info(struct super_block *sb)
1916 {
1917 struct ext4_sb_info *sbi = EXT4_SB(sb);
1918 struct ext4_group_desc *gdp = NULL;
1919 ext4_group_t flex_group_count;
1920 ext4_group_t flex_group;
1921 int groups_per_flex = 0;
1922 size_t size;
1923 int i;
1924
1925 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1926 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1927
1928 if (groups_per_flex < 2) {
1929 sbi->s_log_groups_per_flex = 0;
1930 return 1;
1931 }
1932
1933 /* We allocate both existing and potentially added groups */
1934 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1935 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1936 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1937 size = flex_group_count * sizeof(struct flex_groups);
1938 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL);
1939 if (sbi->s_flex_groups == NULL) {
1940 sbi->s_flex_groups = vmalloc(size);
1941 if (sbi->s_flex_groups)
1942 memset(sbi->s_flex_groups, 0, size);
1943 }
1944 if (sbi->s_flex_groups == NULL) {
1945 ext4_msg(sb, KERN_ERR, "not enough memory for "
1946 "%u flex groups", flex_group_count);
1947 goto failed;
1948 }
1949
1950 for (i = 0; i < sbi->s_groups_count; i++) {
1951 gdp = ext4_get_group_desc(sb, i, NULL);
1952
1953 flex_group = ext4_flex_group(sbi, i);
1954 atomic_add(ext4_free_inodes_count(sb, gdp),
1955 &sbi->s_flex_groups[flex_group].free_inodes);
1956 atomic_add(ext4_free_blks_count(sb, gdp),
1957 &sbi->s_flex_groups[flex_group].free_blocks);
1958 atomic_add(ext4_used_dirs_count(sb, gdp),
1959 &sbi->s_flex_groups[flex_group].used_dirs);
1960 }
1961
1962 return 1;
1963 failed:
1964 return 0;
1965 }
1966
1967 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1968 struct ext4_group_desc *gdp)
1969 {
1970 __u16 crc = 0;
1971
1972 if (sbi->s_es->s_feature_ro_compat &
1973 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1974 int offset = offsetof(struct ext4_group_desc, bg_checksum);
1975 __le32 le_group = cpu_to_le32(block_group);
1976
1977 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1978 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1979 crc = crc16(crc, (__u8 *)gdp, offset);
1980 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1981 /* for checksum of struct ext4_group_desc do the rest...*/
1982 if ((sbi->s_es->s_feature_incompat &
1983 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1984 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1985 crc = crc16(crc, (__u8 *)gdp + offset,
1986 le16_to_cpu(sbi->s_es->s_desc_size) -
1987 offset);
1988 }
1989
1990 return cpu_to_le16(crc);
1991 }
1992
1993 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1994 struct ext4_group_desc *gdp)
1995 {
1996 if ((sbi->s_es->s_feature_ro_compat &
1997 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1998 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1999 return 0;
2000
2001 return 1;
2002 }
2003
2004 /* Called at mount-time, super-block is locked */
2005 static int ext4_check_descriptors(struct super_block *sb,
2006 ext4_group_t *first_not_zeroed)
2007 {
2008 struct ext4_sb_info *sbi = EXT4_SB(sb);
2009 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2010 ext4_fsblk_t last_block;
2011 ext4_fsblk_t block_bitmap;
2012 ext4_fsblk_t inode_bitmap;
2013 ext4_fsblk_t inode_table;
2014 int flexbg_flag = 0;
2015 ext4_group_t i, grp = sbi->s_groups_count;
2016
2017 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2018 flexbg_flag = 1;
2019
2020 ext4_debug("Checking group descriptors");
2021
2022 for (i = 0; i < sbi->s_groups_count; i++) {
2023 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2024
2025 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2026 last_block = ext4_blocks_count(sbi->s_es) - 1;
2027 else
2028 last_block = first_block +
2029 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2030
2031 if ((grp == sbi->s_groups_count) &&
2032 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2033 grp = i;
2034
2035 block_bitmap = ext4_block_bitmap(sb, gdp);
2036 if (block_bitmap < first_block || block_bitmap > last_block) {
2037 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2038 "Block bitmap for group %u not in group "
2039 "(block %llu)!", i, block_bitmap);
2040 return 0;
2041 }
2042 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2043 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2044 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2045 "Inode bitmap for group %u not in group "
2046 "(block %llu)!", i, inode_bitmap);
2047 return 0;
2048 }
2049 inode_table = ext4_inode_table(sb, gdp);
2050 if (inode_table < first_block ||
2051 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2052 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2053 "Inode table for group %u not in group "
2054 "(block %llu)!", i, inode_table);
2055 return 0;
2056 }
2057 ext4_lock_group(sb, i);
2058 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2059 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2060 "Checksum for group %u failed (%u!=%u)",
2061 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2062 gdp)), le16_to_cpu(gdp->bg_checksum));
2063 if (!(sb->s_flags & MS_RDONLY)) {
2064 ext4_unlock_group(sb, i);
2065 return 0;
2066 }
2067 }
2068 ext4_unlock_group(sb, i);
2069 if (!flexbg_flag)
2070 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2071 }
2072 if (NULL != first_not_zeroed)
2073 *first_not_zeroed = grp;
2074
2075 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
2076 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2077 return 1;
2078 }
2079
2080 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2081 * the superblock) which were deleted from all directories, but held open by
2082 * a process at the time of a crash. We walk the list and try to delete these
2083 * inodes at recovery time (only with a read-write filesystem).
2084 *
2085 * In order to keep the orphan inode chain consistent during traversal (in
2086 * case of crash during recovery), we link each inode into the superblock
2087 * orphan list_head and handle it the same way as an inode deletion during
2088 * normal operation (which journals the operations for us).
2089 *
2090 * We only do an iget() and an iput() on each inode, which is very safe if we
2091 * accidentally point at an in-use or already deleted inode. The worst that
2092 * can happen in this case is that we get a "bit already cleared" message from
2093 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2094 * e2fsck was run on this filesystem, and it must have already done the orphan
2095 * inode cleanup for us, so we can safely abort without any further action.
2096 */
2097 static void ext4_orphan_cleanup(struct super_block *sb,
2098 struct ext4_super_block *es)
2099 {
2100 unsigned int s_flags = sb->s_flags;
2101 int nr_orphans = 0, nr_truncates = 0;
2102 #ifdef CONFIG_QUOTA
2103 int i;
2104 #endif
2105 if (!es->s_last_orphan) {
2106 jbd_debug(4, "no orphan inodes to clean up\n");
2107 return;
2108 }
2109
2110 if (bdev_read_only(sb->s_bdev)) {
2111 ext4_msg(sb, KERN_ERR, "write access "
2112 "unavailable, skipping orphan cleanup");
2113 return;
2114 }
2115
2116 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2117 if (es->s_last_orphan)
2118 jbd_debug(1, "Errors on filesystem, "
2119 "clearing orphan list.\n");
2120 es->s_last_orphan = 0;
2121 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2122 return;
2123 }
2124
2125 if (s_flags & MS_RDONLY) {
2126 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2127 sb->s_flags &= ~MS_RDONLY;
2128 }
2129 #ifdef CONFIG_QUOTA
2130 /* Needed for iput() to work correctly and not trash data */
2131 sb->s_flags |= MS_ACTIVE;
2132 /* Turn on quotas so that they are updated correctly */
2133 for (i = 0; i < MAXQUOTAS; i++) {
2134 if (EXT4_SB(sb)->s_qf_names[i]) {
2135 int ret = ext4_quota_on_mount(sb, i);
2136 if (ret < 0)
2137 ext4_msg(sb, KERN_ERR,
2138 "Cannot turn on journaled "
2139 "quota: error %d", ret);
2140 }
2141 }
2142 #endif
2143
2144 while (es->s_last_orphan) {
2145 struct inode *inode;
2146
2147 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2148 if (IS_ERR(inode)) {
2149 es->s_last_orphan = 0;
2150 break;
2151 }
2152
2153 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2154 dquot_initialize(inode);
2155 if (inode->i_nlink) {
2156 ext4_msg(sb, KERN_DEBUG,
2157 "%s: truncating inode %lu to %lld bytes",
2158 __func__, inode->i_ino, inode->i_size);
2159 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2160 inode->i_ino, inode->i_size);
2161 ext4_truncate(inode);
2162 nr_truncates++;
2163 } else {
2164 ext4_msg(sb, KERN_DEBUG,
2165 "%s: deleting unreferenced inode %lu",
2166 __func__, inode->i_ino);
2167 jbd_debug(2, "deleting unreferenced inode %lu\n",
2168 inode->i_ino);
2169 nr_orphans++;
2170 }
2171 iput(inode); /* The delete magic happens here! */
2172 }
2173
2174 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2175
2176 if (nr_orphans)
2177 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2178 PLURAL(nr_orphans));
2179 if (nr_truncates)
2180 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2181 PLURAL(nr_truncates));
2182 #ifdef CONFIG_QUOTA
2183 /* Turn quotas off */
2184 for (i = 0; i < MAXQUOTAS; i++) {
2185 if (sb_dqopt(sb)->files[i])
2186 dquot_quota_off(sb, i);
2187 }
2188 #endif
2189 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2190 }
2191
2192 /*
2193 * Maximal extent format file size.
2194 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2195 * extent format containers, within a sector_t, and within i_blocks
2196 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2197 * so that won't be a limiting factor.
2198 *
2199 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2200 */
2201 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2202 {
2203 loff_t res;
2204 loff_t upper_limit = MAX_LFS_FILESIZE;
2205
2206 /* small i_blocks in vfs inode? */
2207 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2208 /*
2209 * CONFIG_LBDAF is not enabled implies the inode
2210 * i_block represent total blocks in 512 bytes
2211 * 32 == size of vfs inode i_blocks * 8
2212 */
2213 upper_limit = (1LL << 32) - 1;
2214
2215 /* total blocks in file system block size */
2216 upper_limit >>= (blkbits - 9);
2217 upper_limit <<= blkbits;
2218 }
2219
2220 /* 32-bit extent-start container, ee_block */
2221 res = 1LL << 32;
2222 res <<= blkbits;
2223 res -= 1;
2224
2225 /* Sanity check against vm- & vfs- imposed limits */
2226 if (res > upper_limit)
2227 res = upper_limit;
2228
2229 return res;
2230 }
2231
2232 /*
2233 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2234 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2235 * We need to be 1 filesystem block less than the 2^48 sector limit.
2236 */
2237 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2238 {
2239 loff_t res = EXT4_NDIR_BLOCKS;
2240 int meta_blocks;
2241 loff_t upper_limit;
2242 /* This is calculated to be the largest file size for a dense, block
2243 * mapped file such that the file's total number of 512-byte sectors,
2244 * including data and all indirect blocks, does not exceed (2^48 - 1).
2245 *
2246 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2247 * number of 512-byte sectors of the file.
2248 */
2249
2250 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2251 /*
2252 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2253 * the inode i_block field represents total file blocks in
2254 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2255 */
2256 upper_limit = (1LL << 32) - 1;
2257
2258 /* total blocks in file system block size */
2259 upper_limit >>= (bits - 9);
2260
2261 } else {
2262 /*
2263 * We use 48 bit ext4_inode i_blocks
2264 * With EXT4_HUGE_FILE_FL set the i_blocks
2265 * represent total number of blocks in
2266 * file system block size
2267 */
2268 upper_limit = (1LL << 48) - 1;
2269
2270 }
2271
2272 /* indirect blocks */
2273 meta_blocks = 1;
2274 /* double indirect blocks */
2275 meta_blocks += 1 + (1LL << (bits-2));
2276 /* tripple indirect blocks */
2277 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2278
2279 upper_limit -= meta_blocks;
2280 upper_limit <<= bits;
2281
2282 res += 1LL << (bits-2);
2283 res += 1LL << (2*(bits-2));
2284 res += 1LL << (3*(bits-2));
2285 res <<= bits;
2286 if (res > upper_limit)
2287 res = upper_limit;
2288
2289 if (res > MAX_LFS_FILESIZE)
2290 res = MAX_LFS_FILESIZE;
2291
2292 return res;
2293 }
2294
2295 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2296 ext4_fsblk_t logical_sb_block, int nr)
2297 {
2298 struct ext4_sb_info *sbi = EXT4_SB(sb);
2299 ext4_group_t bg, first_meta_bg;
2300 int has_super = 0;
2301
2302 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2303
2304 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2305 nr < first_meta_bg)
2306 return logical_sb_block + nr + 1;
2307 bg = sbi->s_desc_per_block * nr;
2308 if (ext4_bg_has_super(sb, bg))
2309 has_super = 1;
2310
2311 return (has_super + ext4_group_first_block_no(sb, bg));
2312 }
2313
2314 /**
2315 * ext4_get_stripe_size: Get the stripe size.
2316 * @sbi: In memory super block info
2317 *
2318 * If we have specified it via mount option, then
2319 * use the mount option value. If the value specified at mount time is
2320 * greater than the blocks per group use the super block value.
2321 * If the super block value is greater than blocks per group return 0.
2322 * Allocator needs it be less than blocks per group.
2323 *
2324 */
2325 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2326 {
2327 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2328 unsigned long stripe_width =
2329 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2330
2331 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2332 return sbi->s_stripe;
2333
2334 if (stripe_width <= sbi->s_blocks_per_group)
2335 return stripe_width;
2336
2337 if (stride <= sbi->s_blocks_per_group)
2338 return stride;
2339
2340 return 0;
2341 }
2342
2343 /* sysfs supprt */
2344
2345 struct ext4_attr {
2346 struct attribute attr;
2347 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2348 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2349 const char *, size_t);
2350 int offset;
2351 };
2352
2353 static int parse_strtoul(const char *buf,
2354 unsigned long max, unsigned long *value)
2355 {
2356 char *endp;
2357
2358 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2359 endp = skip_spaces(endp);
2360 if (*endp || *value > max)
2361 return -EINVAL;
2362
2363 return 0;
2364 }
2365
2366 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2367 struct ext4_sb_info *sbi,
2368 char *buf)
2369 {
2370 return snprintf(buf, PAGE_SIZE, "%llu\n",
2371 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2372 }
2373
2374 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2375 struct ext4_sb_info *sbi, char *buf)
2376 {
2377 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2378
2379 if (!sb->s_bdev->bd_part)
2380 return snprintf(buf, PAGE_SIZE, "0\n");
2381 return snprintf(buf, PAGE_SIZE, "%lu\n",
2382 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2383 sbi->s_sectors_written_start) >> 1);
2384 }
2385
2386 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2387 struct ext4_sb_info *sbi, char *buf)
2388 {
2389 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2390
2391 if (!sb->s_bdev->bd_part)
2392 return snprintf(buf, PAGE_SIZE, "0\n");
2393 return snprintf(buf, PAGE_SIZE, "%llu\n",
2394 (unsigned long long)(sbi->s_kbytes_written +
2395 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2396 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2397 }
2398
2399 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2400 struct ext4_sb_info *sbi,
2401 const char *buf, size_t count)
2402 {
2403 unsigned long t;
2404
2405 if (parse_strtoul(buf, 0x40000000, &t))
2406 return -EINVAL;
2407
2408 if (!is_power_of_2(t))
2409 return -EINVAL;
2410
2411 sbi->s_inode_readahead_blks = t;
2412 return count;
2413 }
2414
2415 static ssize_t sbi_ui_show(struct ext4_attr *a,
2416 struct ext4_sb_info *sbi, char *buf)
2417 {
2418 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2419
2420 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2421 }
2422
2423 static ssize_t sbi_ui_store(struct ext4_attr *a,
2424 struct ext4_sb_info *sbi,
2425 const char *buf, size_t count)
2426 {
2427 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2428 unsigned long t;
2429
2430 if (parse_strtoul(buf, 0xffffffff, &t))
2431 return -EINVAL;
2432 *ui = t;
2433 return count;
2434 }
2435
2436 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2437 static struct ext4_attr ext4_attr_##_name = { \
2438 .attr = {.name = __stringify(_name), .mode = _mode }, \
2439 .show = _show, \
2440 .store = _store, \
2441 .offset = offsetof(struct ext4_sb_info, _elname), \
2442 }
2443 #define EXT4_ATTR(name, mode, show, store) \
2444 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2445
2446 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2447 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2448 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2449 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2450 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2451 #define ATTR_LIST(name) &ext4_attr_##name.attr
2452
2453 EXT4_RO_ATTR(delayed_allocation_blocks);
2454 EXT4_RO_ATTR(session_write_kbytes);
2455 EXT4_RO_ATTR(lifetime_write_kbytes);
2456 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2457 inode_readahead_blks_store, s_inode_readahead_blks);
2458 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2459 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2460 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2461 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2462 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2463 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2464 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2465 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2466
2467 static struct attribute *ext4_attrs[] = {
2468 ATTR_LIST(delayed_allocation_blocks),
2469 ATTR_LIST(session_write_kbytes),
2470 ATTR_LIST(lifetime_write_kbytes),
2471 ATTR_LIST(inode_readahead_blks),
2472 ATTR_LIST(inode_goal),
2473 ATTR_LIST(mb_stats),
2474 ATTR_LIST(mb_max_to_scan),
2475 ATTR_LIST(mb_min_to_scan),
2476 ATTR_LIST(mb_order2_req),
2477 ATTR_LIST(mb_stream_req),
2478 ATTR_LIST(mb_group_prealloc),
2479 ATTR_LIST(max_writeback_mb_bump),
2480 NULL,
2481 };
2482
2483 /* Features this copy of ext4 supports */
2484 EXT4_INFO_ATTR(lazy_itable_init);
2485 EXT4_INFO_ATTR(batched_discard);
2486
2487 static struct attribute *ext4_feat_attrs[] = {
2488 ATTR_LIST(lazy_itable_init),
2489 ATTR_LIST(batched_discard),
2490 NULL,
2491 };
2492
2493 static ssize_t ext4_attr_show(struct kobject *kobj,
2494 struct attribute *attr, char *buf)
2495 {
2496 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2497 s_kobj);
2498 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2499
2500 return a->show ? a->show(a, sbi, buf) : 0;
2501 }
2502
2503 static ssize_t ext4_attr_store(struct kobject *kobj,
2504 struct attribute *attr,
2505 const char *buf, size_t len)
2506 {
2507 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2508 s_kobj);
2509 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2510
2511 return a->store ? a->store(a, sbi, buf, len) : 0;
2512 }
2513
2514 static void ext4_sb_release(struct kobject *kobj)
2515 {
2516 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2517 s_kobj);
2518 complete(&sbi->s_kobj_unregister);
2519 }
2520
2521 static const struct sysfs_ops ext4_attr_ops = {
2522 .show = ext4_attr_show,
2523 .store = ext4_attr_store,
2524 };
2525
2526 static struct kobj_type ext4_ktype = {
2527 .default_attrs = ext4_attrs,
2528 .sysfs_ops = &ext4_attr_ops,
2529 .release = ext4_sb_release,
2530 };
2531
2532 static void ext4_feat_release(struct kobject *kobj)
2533 {
2534 complete(&ext4_feat->f_kobj_unregister);
2535 }
2536
2537 static struct kobj_type ext4_feat_ktype = {
2538 .default_attrs = ext4_feat_attrs,
2539 .sysfs_ops = &ext4_attr_ops,
2540 .release = ext4_feat_release,
2541 };
2542
2543 /*
2544 * Check whether this filesystem can be mounted based on
2545 * the features present and the RDONLY/RDWR mount requested.
2546 * Returns 1 if this filesystem can be mounted as requested,
2547 * 0 if it cannot be.
2548 */
2549 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2550 {
2551 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2552 ext4_msg(sb, KERN_ERR,
2553 "Couldn't mount because of "
2554 "unsupported optional features (%x)",
2555 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2556 ~EXT4_FEATURE_INCOMPAT_SUPP));
2557 return 0;
2558 }
2559
2560 if (readonly)
2561 return 1;
2562
2563 /* Check that feature set is OK for a read-write mount */
2564 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2565 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2566 "unsupported optional features (%x)",
2567 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2568 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2569 return 0;
2570 }
2571 /*
2572 * Large file size enabled file system can only be mounted
2573 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2574 */
2575 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2576 if (sizeof(blkcnt_t) < sizeof(u64)) {
2577 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2578 "cannot be mounted RDWR without "
2579 "CONFIG_LBDAF");
2580 return 0;
2581 }
2582 }
2583 return 1;
2584 }
2585
2586 /*
2587 * This function is called once a day if we have errors logged
2588 * on the file system
2589 */
2590 static void print_daily_error_info(unsigned long arg)
2591 {
2592 struct super_block *sb = (struct super_block *) arg;
2593 struct ext4_sb_info *sbi;
2594 struct ext4_super_block *es;
2595
2596 sbi = EXT4_SB(sb);
2597 es = sbi->s_es;
2598
2599 if (es->s_error_count)
2600 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2601 le32_to_cpu(es->s_error_count));
2602 if (es->s_first_error_time) {
2603 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2604 sb->s_id, le32_to_cpu(es->s_first_error_time),
2605 (int) sizeof(es->s_first_error_func),
2606 es->s_first_error_func,
2607 le32_to_cpu(es->s_first_error_line));
2608 if (es->s_first_error_ino)
2609 printk(": inode %u",
2610 le32_to_cpu(es->s_first_error_ino));
2611 if (es->s_first_error_block)
2612 printk(": block %llu", (unsigned long long)
2613 le64_to_cpu(es->s_first_error_block));
2614 printk("\n");
2615 }
2616 if (es->s_last_error_time) {
2617 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2618 sb->s_id, le32_to_cpu(es->s_last_error_time),
2619 (int) sizeof(es->s_last_error_func),
2620 es->s_last_error_func,
2621 le32_to_cpu(es->s_last_error_line));
2622 if (es->s_last_error_ino)
2623 printk(": inode %u",
2624 le32_to_cpu(es->s_last_error_ino));
2625 if (es->s_last_error_block)
2626 printk(": block %llu", (unsigned long long)
2627 le64_to_cpu(es->s_last_error_block));
2628 printk("\n");
2629 }
2630 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2631 }
2632
2633 static void ext4_lazyinode_timeout(unsigned long data)
2634 {
2635 struct task_struct *p = (struct task_struct *)data;
2636 wake_up_process(p);
2637 }
2638
2639 /* Find next suitable group and run ext4_init_inode_table */
2640 static int ext4_run_li_request(struct ext4_li_request *elr)
2641 {
2642 struct ext4_group_desc *gdp = NULL;
2643 ext4_group_t group, ngroups;
2644 struct super_block *sb;
2645 unsigned long timeout = 0;
2646 int ret = 0;
2647
2648 sb = elr->lr_super;
2649 ngroups = EXT4_SB(sb)->s_groups_count;
2650
2651 for (group = elr->lr_next_group; group < ngroups; group++) {
2652 gdp = ext4_get_group_desc(sb, group, NULL);
2653 if (!gdp) {
2654 ret = 1;
2655 break;
2656 }
2657
2658 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2659 break;
2660 }
2661
2662 if (group == ngroups)
2663 ret = 1;
2664
2665 if (!ret) {
2666 timeout = jiffies;
2667 ret = ext4_init_inode_table(sb, group,
2668 elr->lr_timeout ? 0 : 1);
2669 if (elr->lr_timeout == 0) {
2670 timeout = jiffies - timeout;
2671 if (elr->lr_sbi->s_li_wait_mult)
2672 timeout *= elr->lr_sbi->s_li_wait_mult;
2673 else
2674 timeout *= 20;
2675 elr->lr_timeout = timeout;
2676 }
2677 elr->lr_next_sched = jiffies + elr->lr_timeout;
2678 elr->lr_next_group = group + 1;
2679 }
2680
2681 return ret;
2682 }
2683
2684 /*
2685 * Remove lr_request from the list_request and free the
2686 * request tructure. Should be called with li_list_mtx held
2687 */
2688 static void ext4_remove_li_request(struct ext4_li_request *elr)
2689 {
2690 struct ext4_sb_info *sbi;
2691
2692 if (!elr)
2693 return;
2694
2695 sbi = elr->lr_sbi;
2696
2697 list_del(&elr->lr_request);
2698 sbi->s_li_request = NULL;
2699 kfree(elr);
2700 }
2701
2702 static void ext4_unregister_li_request(struct super_block *sb)
2703 {
2704 struct ext4_li_request *elr = EXT4_SB(sb)->s_li_request;
2705
2706 if (!ext4_li_info)
2707 return;
2708
2709 mutex_lock(&ext4_li_info->li_list_mtx);
2710 ext4_remove_li_request(elr);
2711 mutex_unlock(&ext4_li_info->li_list_mtx);
2712 }
2713
2714 /*
2715 * This is the function where ext4lazyinit thread lives. It walks
2716 * through the request list searching for next scheduled filesystem.
2717 * When such a fs is found, run the lazy initialization request
2718 * (ext4_rn_li_request) and keep track of the time spend in this
2719 * function. Based on that time we compute next schedule time of
2720 * the request. When walking through the list is complete, compute
2721 * next waking time and put itself into sleep.
2722 */
2723 static int ext4_lazyinit_thread(void *arg)
2724 {
2725 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2726 struct list_head *pos, *n;
2727 struct ext4_li_request *elr;
2728 unsigned long next_wakeup;
2729 DEFINE_WAIT(wait);
2730
2731 BUG_ON(NULL == eli);
2732
2733 eli->li_timer.data = (unsigned long)current;
2734 eli->li_timer.function = ext4_lazyinode_timeout;
2735
2736 eli->li_task = current;
2737 wake_up(&eli->li_wait_task);
2738
2739 cont_thread:
2740 while (true) {
2741 next_wakeup = MAX_JIFFY_OFFSET;
2742
2743 mutex_lock(&eli->li_list_mtx);
2744 if (list_empty(&eli->li_request_list)) {
2745 mutex_unlock(&eli->li_list_mtx);
2746 goto exit_thread;
2747 }
2748
2749 list_for_each_safe(pos, n, &eli->li_request_list) {
2750 elr = list_entry(pos, struct ext4_li_request,
2751 lr_request);
2752
2753 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2754 if (ext4_run_li_request(elr) != 0) {
2755 /* error, remove the lazy_init job */
2756 ext4_remove_li_request(elr);
2757 continue;
2758 }
2759 }
2760
2761 if (time_before(elr->lr_next_sched, next_wakeup))
2762 next_wakeup = elr->lr_next_sched;
2763 }
2764 mutex_unlock(&eli->li_list_mtx);
2765
2766 if (freezing(current))
2767 refrigerator();
2768
2769 if ((time_after_eq(jiffies, next_wakeup)) ||
2770 (MAX_JIFFY_OFFSET == next_wakeup)) {
2771 cond_resched();
2772 continue;
2773 }
2774
2775 eli->li_timer.expires = next_wakeup;
2776 add_timer(&eli->li_timer);
2777 prepare_to_wait(&eli->li_wait_daemon, &wait,
2778 TASK_INTERRUPTIBLE);
2779 if (time_before(jiffies, next_wakeup))
2780 schedule();
2781 finish_wait(&eli->li_wait_daemon, &wait);
2782 }
2783
2784 exit_thread:
2785 /*
2786 * It looks like the request list is empty, but we need
2787 * to check it under the li_list_mtx lock, to prevent any
2788 * additions into it, and of course we should lock ext4_li_mtx
2789 * to atomically free the list and ext4_li_info, because at
2790 * this point another ext4 filesystem could be registering
2791 * new one.
2792 */
2793 mutex_lock(&ext4_li_mtx);
2794 mutex_lock(&eli->li_list_mtx);
2795 if (!list_empty(&eli->li_request_list)) {
2796 mutex_unlock(&eli->li_list_mtx);
2797 mutex_unlock(&ext4_li_mtx);
2798 goto cont_thread;
2799 }
2800 mutex_unlock(&eli->li_list_mtx);
2801 del_timer_sync(&ext4_li_info->li_timer);
2802 eli->li_task = NULL;
2803 wake_up(&eli->li_wait_task);
2804
2805 kfree(ext4_li_info);
2806 ext4_li_info = NULL;
2807 mutex_unlock(&ext4_li_mtx);
2808
2809 return 0;
2810 }
2811
2812 static void ext4_clear_request_list(void)
2813 {
2814 struct list_head *pos, *n;
2815 struct ext4_li_request *elr;
2816
2817 mutex_lock(&ext4_li_info->li_list_mtx);
2818 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2819 elr = list_entry(pos, struct ext4_li_request,
2820 lr_request);
2821 ext4_remove_li_request(elr);
2822 }
2823 mutex_unlock(&ext4_li_info->li_list_mtx);
2824 }
2825
2826 static int ext4_run_lazyinit_thread(void)
2827 {
2828 struct task_struct *t;
2829
2830 t = kthread_run(ext4_lazyinit_thread, ext4_li_info, "ext4lazyinit");
2831 if (IS_ERR(t)) {
2832 int err = PTR_ERR(t);
2833 ext4_clear_request_list();
2834 del_timer_sync(&ext4_li_info->li_timer);
2835 kfree(ext4_li_info);
2836 ext4_li_info = NULL;
2837 printk(KERN_CRIT "EXT4: error %d creating inode table "
2838 "initialization thread\n",
2839 err);
2840 return err;
2841 }
2842 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2843
2844 wait_event(ext4_li_info->li_wait_task, ext4_li_info->li_task != NULL);
2845 return 0;
2846 }
2847
2848 /*
2849 * Check whether it make sense to run itable init. thread or not.
2850 * If there is at least one uninitialized inode table, return
2851 * corresponding group number, else the loop goes through all
2852 * groups and return total number of groups.
2853 */
2854 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2855 {
2856 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2857 struct ext4_group_desc *gdp = NULL;
2858
2859 for (group = 0; group < ngroups; group++) {
2860 gdp = ext4_get_group_desc(sb, group, NULL);
2861 if (!gdp)
2862 continue;
2863
2864 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2865 break;
2866 }
2867
2868 return group;
2869 }
2870
2871 static int ext4_li_info_new(void)
2872 {
2873 struct ext4_lazy_init *eli = NULL;
2874
2875 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2876 if (!eli)
2877 return -ENOMEM;
2878
2879 eli->li_task = NULL;
2880 INIT_LIST_HEAD(&eli->li_request_list);
2881 mutex_init(&eli->li_list_mtx);
2882
2883 init_waitqueue_head(&eli->li_wait_daemon);
2884 init_waitqueue_head(&eli->li_wait_task);
2885 init_timer(&eli->li_timer);
2886 eli->li_state |= EXT4_LAZYINIT_QUIT;
2887
2888 ext4_li_info = eli;
2889
2890 return 0;
2891 }
2892
2893 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2894 ext4_group_t start)
2895 {
2896 struct ext4_sb_info *sbi = EXT4_SB(sb);
2897 struct ext4_li_request *elr;
2898 unsigned long rnd;
2899
2900 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2901 if (!elr)
2902 return NULL;
2903
2904 elr->lr_super = sb;
2905 elr->lr_sbi = sbi;
2906 elr->lr_next_group = start;
2907
2908 /*
2909 * Randomize first schedule time of the request to
2910 * spread the inode table initialization requests
2911 * better.
2912 */
2913 get_random_bytes(&rnd, sizeof(rnd));
2914 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2915 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2916
2917 return elr;
2918 }
2919
2920 static int ext4_register_li_request(struct super_block *sb,
2921 ext4_group_t first_not_zeroed)
2922 {
2923 struct ext4_sb_info *sbi = EXT4_SB(sb);
2924 struct ext4_li_request *elr;
2925 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2926 int ret;
2927
2928 if (sbi->s_li_request != NULL)
2929 return 0;
2930
2931 if (first_not_zeroed == ngroups ||
2932 (sb->s_flags & MS_RDONLY) ||
2933 !test_opt(sb, INIT_INODE_TABLE)) {
2934 sbi->s_li_request = NULL;
2935 return 0;
2936 }
2937
2938 if (first_not_zeroed == ngroups) {
2939 sbi->s_li_request = NULL;
2940 return 0;
2941 }
2942
2943 elr = ext4_li_request_new(sb, first_not_zeroed);
2944 if (!elr)
2945 return -ENOMEM;
2946
2947 mutex_lock(&ext4_li_mtx);
2948
2949 if (NULL == ext4_li_info) {
2950 ret = ext4_li_info_new();
2951 if (ret)
2952 goto out;
2953 }
2954
2955 mutex_lock(&ext4_li_info->li_list_mtx);
2956 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2957 mutex_unlock(&ext4_li_info->li_list_mtx);
2958
2959 sbi->s_li_request = elr;
2960
2961 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2962 ret = ext4_run_lazyinit_thread();
2963 if (ret)
2964 goto out;
2965 }
2966 out:
2967 mutex_unlock(&ext4_li_mtx);
2968 if (ret)
2969 kfree(elr);
2970 return ret;
2971 }
2972
2973 /*
2974 * We do not need to lock anything since this is called on
2975 * module unload.
2976 */
2977 static void ext4_destroy_lazyinit_thread(void)
2978 {
2979 /*
2980 * If thread exited earlier
2981 * there's nothing to be done.
2982 */
2983 if (!ext4_li_info)
2984 return;
2985
2986 ext4_clear_request_list();
2987
2988 while (ext4_li_info->li_task) {
2989 wake_up(&ext4_li_info->li_wait_daemon);
2990 wait_event(ext4_li_info->li_wait_task,
2991 ext4_li_info->li_task == NULL);
2992 }
2993 }
2994
2995 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
2996 __releases(kernel_lock)
2997 __acquires(kernel_lock)
2998 {
2999 char *orig_data = kstrdup(data, GFP_KERNEL);
3000 struct buffer_head *bh;
3001 struct ext4_super_block *es = NULL;
3002 struct ext4_sb_info *sbi;
3003 ext4_fsblk_t block;
3004 ext4_fsblk_t sb_block = get_sb_block(&data);
3005 ext4_fsblk_t logical_sb_block;
3006 unsigned long offset = 0;
3007 unsigned long journal_devnum = 0;
3008 unsigned long def_mount_opts;
3009 struct inode *root;
3010 char *cp;
3011 const char *descr;
3012 int ret = -ENOMEM;
3013 int blocksize;
3014 unsigned int db_count;
3015 unsigned int i;
3016 int needs_recovery, has_huge_files;
3017 __u64 blocks_count;
3018 int err;
3019 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3020 ext4_group_t first_not_zeroed;
3021
3022 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3023 if (!sbi)
3024 goto out_free_orig;
3025
3026 sbi->s_blockgroup_lock =
3027 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3028 if (!sbi->s_blockgroup_lock) {
3029 kfree(sbi);
3030 goto out_free_orig;
3031 }
3032 sb->s_fs_info = sbi;
3033 sbi->s_mount_opt = 0;
3034 sbi->s_resuid = EXT4_DEF_RESUID;
3035 sbi->s_resgid = EXT4_DEF_RESGID;
3036 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3037 sbi->s_sb_block = sb_block;
3038 if (sb->s_bdev->bd_part)
3039 sbi->s_sectors_written_start =
3040 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3041
3042 /* Cleanup superblock name */
3043 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3044 *cp = '!';
3045
3046 ret = -EINVAL;
3047 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3048 if (!blocksize) {
3049 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3050 goto out_fail;
3051 }
3052
3053 /*
3054 * The ext4 superblock will not be buffer aligned for other than 1kB
3055 * block sizes. We need to calculate the offset from buffer start.
3056 */
3057 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3058 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3059 offset = do_div(logical_sb_block, blocksize);
3060 } else {
3061 logical_sb_block = sb_block;
3062 }
3063
3064 if (!(bh = sb_bread(sb, logical_sb_block))) {
3065 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3066 goto out_fail;
3067 }
3068 /*
3069 * Note: s_es must be initialized as soon as possible because
3070 * some ext4 macro-instructions depend on its value
3071 */
3072 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3073 sbi->s_es = es;
3074 sb->s_magic = le16_to_cpu(es->s_magic);
3075 if (sb->s_magic != EXT4_SUPER_MAGIC)
3076 goto cantfind_ext4;
3077 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3078
3079 /* Set defaults before we parse the mount options */
3080 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3081 set_opt(sbi->s_mount_opt, INIT_INODE_TABLE);
3082 if (def_mount_opts & EXT4_DEFM_DEBUG)
3083 set_opt(sbi->s_mount_opt, DEBUG);
3084 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) {
3085 ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups",
3086 "2.6.38");
3087 set_opt(sbi->s_mount_opt, GRPID);
3088 }
3089 if (def_mount_opts & EXT4_DEFM_UID16)
3090 set_opt(sbi->s_mount_opt, NO_UID32);
3091 #ifdef CONFIG_EXT4_FS_XATTR
3092 if (def_mount_opts & EXT4_DEFM_XATTR_USER)
3093 set_opt(sbi->s_mount_opt, XATTR_USER);
3094 #endif
3095 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3096 if (def_mount_opts & EXT4_DEFM_ACL)
3097 set_opt(sbi->s_mount_opt, POSIX_ACL);
3098 #endif
3099 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3100 set_opt(sbi->s_mount_opt, JOURNAL_DATA);
3101 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3102 set_opt(sbi->s_mount_opt, ORDERED_DATA);
3103 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3104 set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
3105
3106 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3107 set_opt(sbi->s_mount_opt, ERRORS_PANIC);
3108 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3109 set_opt(sbi->s_mount_opt, ERRORS_CONT);
3110 else
3111 set_opt(sbi->s_mount_opt, ERRORS_RO);
3112 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3113 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
3114 if (def_mount_opts & EXT4_DEFM_DISCARD)
3115 set_opt(sbi->s_mount_opt, DISCARD);
3116
3117 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3118 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3119 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3120 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3121 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3122
3123 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3124 set_opt(sbi->s_mount_opt, BARRIER);
3125
3126 /*
3127 * enable delayed allocation by default
3128 * Use -o nodelalloc to turn it off
3129 */
3130 if (!IS_EXT3_SB(sb) &&
3131 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3132 set_opt(sbi->s_mount_opt, DELALLOC);
3133
3134 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3135 &journal_devnum, &journal_ioprio, NULL, 0)) {
3136 ext4_msg(sb, KERN_WARNING,
3137 "failed to parse options in superblock: %s",
3138 sbi->s_es->s_mount_opts);
3139 }
3140 if (!parse_options((char *) data, sb, &journal_devnum,
3141 &journal_ioprio, NULL, 0))
3142 goto failed_mount;
3143
3144 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3145 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3146
3147 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3148 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3149 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3150 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3151 ext4_msg(sb, KERN_WARNING,
3152 "feature flags set on rev 0 fs, "
3153 "running e2fsck is recommended");
3154
3155 /*
3156 * Check feature flags regardless of the revision level, since we
3157 * previously didn't change the revision level when setting the flags,
3158 * so there is a chance incompat flags are set on a rev 0 filesystem.
3159 */
3160 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3161 goto failed_mount;
3162
3163 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3164
3165 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3166 blocksize > EXT4_MAX_BLOCK_SIZE) {
3167 ext4_msg(sb, KERN_ERR,
3168 "Unsupported filesystem blocksize %d", blocksize);
3169 goto failed_mount;
3170 }
3171
3172 if (sb->s_blocksize != blocksize) {
3173 /* Validate the filesystem blocksize */
3174 if (!sb_set_blocksize(sb, blocksize)) {
3175 ext4_msg(sb, KERN_ERR, "bad block size %d",
3176 blocksize);
3177 goto failed_mount;
3178 }
3179
3180 brelse(bh);
3181 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3182 offset = do_div(logical_sb_block, blocksize);
3183 bh = sb_bread(sb, logical_sb_block);
3184 if (!bh) {
3185 ext4_msg(sb, KERN_ERR,
3186 "Can't read superblock on 2nd try");
3187 goto failed_mount;
3188 }
3189 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3190 sbi->s_es = es;
3191 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3192 ext4_msg(sb, KERN_ERR,
3193 "Magic mismatch, very weird!");
3194 goto failed_mount;
3195 }
3196 }
3197
3198 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3199 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3200 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3201 has_huge_files);
3202 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3203
3204 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3205 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3206 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3207 } else {
3208 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3209 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3210 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3211 (!is_power_of_2(sbi->s_inode_size)) ||
3212 (sbi->s_inode_size > blocksize)) {
3213 ext4_msg(sb, KERN_ERR,
3214 "unsupported inode size: %d",
3215 sbi->s_inode_size);
3216 goto failed_mount;
3217 }
3218 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3219 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3220 }
3221
3222 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3223 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3224 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3225 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3226 !is_power_of_2(sbi->s_desc_size)) {
3227 ext4_msg(sb, KERN_ERR,
3228 "unsupported descriptor size %lu",
3229 sbi->s_desc_size);
3230 goto failed_mount;
3231 }
3232 } else
3233 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3234
3235 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3236 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3237 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3238 goto cantfind_ext4;
3239
3240 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3241 if (sbi->s_inodes_per_block == 0)
3242 goto cantfind_ext4;
3243 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3244 sbi->s_inodes_per_block;
3245 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3246 sbi->s_sbh = bh;
3247 sbi->s_mount_state = le16_to_cpu(es->s_state);
3248 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3249 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3250
3251 for (i = 0; i < 4; i++)
3252 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3253 sbi->s_def_hash_version = es->s_def_hash_version;
3254 i = le32_to_cpu(es->s_flags);
3255 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3256 sbi->s_hash_unsigned = 3;
3257 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3258 #ifdef __CHAR_UNSIGNED__
3259 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3260 sbi->s_hash_unsigned = 3;
3261 #else
3262 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3263 #endif
3264 sb->s_dirt = 1;
3265 }
3266
3267 if (sbi->s_blocks_per_group > blocksize * 8) {
3268 ext4_msg(sb, KERN_ERR,
3269 "#blocks per group too big: %lu",
3270 sbi->s_blocks_per_group);
3271 goto failed_mount;
3272 }
3273 if (sbi->s_inodes_per_group > blocksize * 8) {
3274 ext4_msg(sb, KERN_ERR,
3275 "#inodes per group too big: %lu",
3276 sbi->s_inodes_per_group);
3277 goto failed_mount;
3278 }
3279
3280 /*
3281 * Test whether we have more sectors than will fit in sector_t,
3282 * and whether the max offset is addressable by the page cache.
3283 */
3284 err = generic_check_addressable(sb->s_blocksize_bits,
3285 ext4_blocks_count(es));
3286 if (err) {
3287 ext4_msg(sb, KERN_ERR, "filesystem"
3288 " too large to mount safely on this system");
3289 if (sizeof(sector_t) < 8)
3290 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3291 ret = err;
3292 goto failed_mount;
3293 }
3294
3295 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3296 goto cantfind_ext4;
3297
3298 /* check blocks count against device size */
3299 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3300 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3301 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3302 "exceeds size of device (%llu blocks)",
3303 ext4_blocks_count(es), blocks_count);
3304 goto failed_mount;
3305 }
3306
3307 /*
3308 * It makes no sense for the first data block to be beyond the end
3309 * of the filesystem.
3310 */
3311 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3312 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
3313 "block %u is beyond end of filesystem (%llu)",
3314 le32_to_cpu(es->s_first_data_block),
3315 ext4_blocks_count(es));
3316 goto failed_mount;
3317 }
3318 blocks_count = (ext4_blocks_count(es) -
3319 le32_to_cpu(es->s_first_data_block) +
3320 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3321 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3322 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3323 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3324 "(block count %llu, first data block %u, "
3325 "blocks per group %lu)", sbi->s_groups_count,
3326 ext4_blocks_count(es),
3327 le32_to_cpu(es->s_first_data_block),
3328 EXT4_BLOCKS_PER_GROUP(sb));
3329 goto failed_mount;
3330 }
3331 sbi->s_groups_count = blocks_count;
3332 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3333 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3334 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3335 EXT4_DESC_PER_BLOCK(sb);
3336 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
3337 GFP_KERNEL);
3338 if (sbi->s_group_desc == NULL) {
3339 ext4_msg(sb, KERN_ERR, "not enough memory");
3340 goto failed_mount;
3341 }
3342
3343 #ifdef CONFIG_PROC_FS
3344 if (ext4_proc_root)
3345 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3346 #endif
3347
3348 bgl_lock_init(sbi->s_blockgroup_lock);
3349
3350 for (i = 0; i < db_count; i++) {
3351 block = descriptor_loc(sb, logical_sb_block, i);
3352 sbi->s_group_desc[i] = sb_bread(sb, block);
3353 if (!sbi->s_group_desc[i]) {
3354 ext4_msg(sb, KERN_ERR,
3355 "can't read group descriptor %d", i);
3356 db_count = i;
3357 goto failed_mount2;
3358 }
3359 }
3360 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3361 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3362 goto failed_mount2;
3363 }
3364 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3365 if (!ext4_fill_flex_info(sb)) {
3366 ext4_msg(sb, KERN_ERR,
3367 "unable to initialize "
3368 "flex_bg meta info!");
3369 goto failed_mount2;
3370 }
3371
3372 sbi->s_gdb_count = db_count;
3373 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3374 spin_lock_init(&sbi->s_next_gen_lock);
3375
3376 err = percpu_counter_init(&sbi->s_freeblocks_counter,
3377 ext4_count_free_blocks(sb));
3378 if (!err) {
3379 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3380 ext4_count_free_inodes(sb));
3381 }
3382 if (!err) {
3383 err = percpu_counter_init(&sbi->s_dirs_counter,
3384 ext4_count_dirs(sb));
3385 }
3386 if (!err) {
3387 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
3388 }
3389 if (err) {
3390 ext4_msg(sb, KERN_ERR, "insufficient memory");
3391 goto failed_mount3;
3392 }
3393
3394 sbi->s_stripe = ext4_get_stripe_size(sbi);
3395 sbi->s_max_writeback_mb_bump = 128;
3396
3397 /*
3398 * set up enough so that it can read an inode
3399 */
3400 if (!test_opt(sb, NOLOAD) &&
3401 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3402 sb->s_op = &ext4_sops;
3403 else
3404 sb->s_op = &ext4_nojournal_sops;
3405 sb->s_export_op = &ext4_export_ops;
3406 sb->s_xattr = ext4_xattr_handlers;
3407 #ifdef CONFIG_QUOTA
3408 sb->s_qcop = &ext4_qctl_operations;
3409 sb->dq_op = &ext4_quota_operations;
3410 #endif
3411 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3412 mutex_init(&sbi->s_orphan_lock);
3413 mutex_init(&sbi->s_resize_lock);
3414
3415 sb->s_root = NULL;
3416
3417 needs_recovery = (es->s_last_orphan != 0 ||
3418 EXT4_HAS_INCOMPAT_FEATURE(sb,
3419 EXT4_FEATURE_INCOMPAT_RECOVER));
3420
3421 /*
3422 * The first inode we look at is the journal inode. Don't try
3423 * root first: it may be modified in the journal!
3424 */
3425 if (!test_opt(sb, NOLOAD) &&
3426 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3427 if (ext4_load_journal(sb, es, journal_devnum))
3428 goto failed_mount3;
3429 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3430 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3431 ext4_msg(sb, KERN_ERR, "required journal recovery "
3432 "suppressed and not mounted read-only");
3433 goto failed_mount_wq;
3434 } else {
3435 clear_opt(sbi->s_mount_opt, DATA_FLAGS);
3436 set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
3437 sbi->s_journal = NULL;
3438 needs_recovery = 0;
3439 goto no_journal;
3440 }
3441
3442 if (ext4_blocks_count(es) > 0xffffffffULL &&
3443 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3444 JBD2_FEATURE_INCOMPAT_64BIT)) {
3445 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3446 goto failed_mount_wq;
3447 }
3448
3449 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3450 jbd2_journal_set_features(sbi->s_journal,
3451 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3452 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3453 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3454 jbd2_journal_set_features(sbi->s_journal,
3455 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3456 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3457 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3458 } else {
3459 jbd2_journal_clear_features(sbi->s_journal,
3460 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3461 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3462 }
3463
3464 /* We have now updated the journal if required, so we can
3465 * validate the data journaling mode. */
3466 switch (test_opt(sb, DATA_FLAGS)) {
3467 case 0:
3468 /* No mode set, assume a default based on the journal
3469 * capabilities: ORDERED_DATA if the journal can
3470 * cope, else JOURNAL_DATA
3471 */
3472 if (jbd2_journal_check_available_features
3473 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3474 set_opt(sbi->s_mount_opt, ORDERED_DATA);
3475 else
3476 set_opt(sbi->s_mount_opt, JOURNAL_DATA);
3477 break;
3478
3479 case EXT4_MOUNT_ORDERED_DATA:
3480 case EXT4_MOUNT_WRITEBACK_DATA:
3481 if (!jbd2_journal_check_available_features
3482 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3483 ext4_msg(sb, KERN_ERR, "Journal does not support "
3484 "requested data journaling mode");
3485 goto failed_mount_wq;
3486 }
3487 default:
3488 break;
3489 }
3490 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3491
3492 /*
3493 * The journal may have updated the bg summary counts, so we
3494 * need to update the global counters.
3495 */
3496 percpu_counter_set(&sbi->s_freeblocks_counter,
3497 ext4_count_free_blocks(sb));
3498 percpu_counter_set(&sbi->s_freeinodes_counter,
3499 ext4_count_free_inodes(sb));
3500 percpu_counter_set(&sbi->s_dirs_counter,
3501 ext4_count_dirs(sb));
3502 percpu_counter_set(&sbi->s_dirtyblocks_counter, 0);
3503
3504 no_journal:
3505 EXT4_SB(sb)->dio_unwritten_wq = create_workqueue("ext4-dio-unwritten");
3506 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3507 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3508 goto failed_mount_wq;
3509 }
3510
3511 /*
3512 * The jbd2_journal_load will have done any necessary log recovery,
3513 * so we can safely mount the rest of the filesystem now.
3514 */
3515
3516 root = ext4_iget(sb, EXT4_ROOT_INO);
3517 if (IS_ERR(root)) {
3518 ext4_msg(sb, KERN_ERR, "get root inode failed");
3519 ret = PTR_ERR(root);
3520 goto failed_mount4;
3521 }
3522 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3523 iput(root);
3524 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3525 goto failed_mount4;
3526 }
3527 sb->s_root = d_alloc_root(root);
3528 if (!sb->s_root) {
3529 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3530 iput(root);
3531 ret = -ENOMEM;
3532 goto failed_mount4;
3533 }
3534
3535 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3536
3537 /* determine the minimum size of new large inodes, if present */
3538 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3539 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3540 EXT4_GOOD_OLD_INODE_SIZE;
3541 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3542 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3543 if (sbi->s_want_extra_isize <
3544 le16_to_cpu(es->s_want_extra_isize))
3545 sbi->s_want_extra_isize =
3546 le16_to_cpu(es->s_want_extra_isize);
3547 if (sbi->s_want_extra_isize <
3548 le16_to_cpu(es->s_min_extra_isize))
3549 sbi->s_want_extra_isize =
3550 le16_to_cpu(es->s_min_extra_isize);
3551 }
3552 }
3553 /* Check if enough inode space is available */
3554 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3555 sbi->s_inode_size) {
3556 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3557 EXT4_GOOD_OLD_INODE_SIZE;
3558 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3559 "available");
3560 }
3561
3562 if (test_opt(sb, DELALLOC) &&
3563 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
3564 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
3565 "requested data journaling mode");
3566 clear_opt(sbi->s_mount_opt, DELALLOC);
3567 }
3568 if (test_opt(sb, DIOREAD_NOLOCK)) {
3569 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3570 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3571 "option - requested data journaling mode");
3572 clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
3573 }
3574 if (sb->s_blocksize < PAGE_SIZE) {
3575 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3576 "option - block size is too small");
3577 clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
3578 }
3579 }
3580
3581 err = ext4_setup_system_zone(sb);
3582 if (err) {
3583 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3584 "zone (%d)", err);
3585 goto failed_mount4;
3586 }
3587
3588 ext4_ext_init(sb);
3589 err = ext4_mb_init(sb, needs_recovery);
3590 if (err) {
3591 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3592 err);
3593 goto failed_mount4;
3594 }
3595
3596 err = ext4_register_li_request(sb, first_not_zeroed);
3597 if (err)
3598 goto failed_mount4;
3599
3600 sbi->s_kobj.kset = ext4_kset;
3601 init_completion(&sbi->s_kobj_unregister);
3602 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3603 "%s", sb->s_id);
3604 if (err) {
3605 ext4_mb_release(sb);
3606 ext4_ext_release(sb);
3607 goto failed_mount4;
3608 };
3609
3610 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3611 ext4_orphan_cleanup(sb, es);
3612 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3613 if (needs_recovery) {
3614 ext4_msg(sb, KERN_INFO, "recovery complete");
3615 ext4_mark_recovery_complete(sb, es);
3616 }
3617 if (EXT4_SB(sb)->s_journal) {
3618 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3619 descr = " journalled data mode";
3620 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3621 descr = " ordered data mode";
3622 else
3623 descr = " writeback data mode";
3624 } else
3625 descr = "out journal";
3626
3627 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3628 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3629 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3630
3631 init_timer(&sbi->s_err_report);
3632 sbi->s_err_report.function = print_daily_error_info;
3633 sbi->s_err_report.data = (unsigned long) sb;
3634 if (es->s_error_count)
3635 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3636
3637 kfree(orig_data);
3638 return 0;
3639
3640 cantfind_ext4:
3641 if (!silent)
3642 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3643 goto failed_mount;
3644
3645 failed_mount4:
3646 ext4_msg(sb, KERN_ERR, "mount failed");
3647 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3648 failed_mount_wq:
3649 ext4_release_system_zone(sb);
3650 if (sbi->s_journal) {
3651 jbd2_journal_destroy(sbi->s_journal);
3652 sbi->s_journal = NULL;
3653 }
3654 failed_mount3:
3655 if (sbi->s_flex_groups) {
3656 if (is_vmalloc_addr(sbi->s_flex_groups))
3657 vfree(sbi->s_flex_groups);
3658 else
3659 kfree(sbi->s_flex_groups);
3660 }
3661 percpu_counter_destroy(&sbi->s_freeblocks_counter);
3662 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3663 percpu_counter_destroy(&sbi->s_dirs_counter);
3664 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
3665 failed_mount2:
3666 for (i = 0; i < db_count; i++)
3667 brelse(sbi->s_group_desc[i]);
3668 kfree(sbi->s_group_desc);
3669 failed_mount:
3670 if (sbi->s_proc) {
3671 remove_proc_entry(sb->s_id, ext4_proc_root);
3672 }
3673 #ifdef CONFIG_QUOTA
3674 for (i = 0; i < MAXQUOTAS; i++)
3675 kfree(sbi->s_qf_names[i]);
3676 #endif
3677 ext4_blkdev_remove(sbi);
3678 brelse(bh);
3679 out_fail:
3680 sb->s_fs_info = NULL;
3681 kfree(sbi->s_blockgroup_lock);
3682 kfree(sbi);
3683 out_free_orig:
3684 kfree(orig_data);
3685 return ret;
3686 }
3687
3688 /*
3689 * Setup any per-fs journal parameters now. We'll do this both on
3690 * initial mount, once the journal has been initialised but before we've
3691 * done any recovery; and again on any subsequent remount.
3692 */
3693 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3694 {
3695 struct ext4_sb_info *sbi = EXT4_SB(sb);
3696
3697 journal->j_commit_interval = sbi->s_commit_interval;
3698 journal->j_min_batch_time = sbi->s_min_batch_time;
3699 journal->j_max_batch_time = sbi->s_max_batch_time;
3700
3701 write_lock(&journal->j_state_lock);
3702 if (test_opt(sb, BARRIER))
3703 journal->j_flags |= JBD2_BARRIER;
3704 else
3705 journal->j_flags &= ~JBD2_BARRIER;
3706 if (test_opt(sb, DATA_ERR_ABORT))
3707 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3708 else
3709 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3710 write_unlock(&journal->j_state_lock);
3711 }
3712
3713 static journal_t *ext4_get_journal(struct super_block *sb,
3714 unsigned int journal_inum)
3715 {
3716 struct inode *journal_inode;
3717 journal_t *journal;
3718
3719 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3720
3721 /* First, test for the existence of a valid inode on disk. Bad
3722 * things happen if we iget() an unused inode, as the subsequent
3723 * iput() will try to delete it. */
3724
3725 journal_inode = ext4_iget(sb, journal_inum);
3726 if (IS_ERR(journal_inode)) {
3727 ext4_msg(sb, KERN_ERR, "no journal found");
3728 return NULL;
3729 }
3730 if (!journal_inode->i_nlink) {
3731 make_bad_inode(journal_inode);
3732 iput(journal_inode);
3733 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3734 return NULL;
3735 }
3736
3737 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3738 journal_inode, journal_inode->i_size);
3739 if (!S_ISREG(journal_inode->i_mode)) {
3740 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3741 iput(journal_inode);
3742 return NULL;
3743 }
3744
3745 journal = jbd2_journal_init_inode(journal_inode);
3746 if (!journal) {
3747 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3748 iput(journal_inode);
3749 return NULL;
3750 }
3751 journal->j_private = sb;
3752 ext4_init_journal_params(sb, journal);
3753 return journal;
3754 }
3755
3756 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3757 dev_t j_dev)
3758 {
3759 struct buffer_head *bh;
3760 journal_t *journal;
3761 ext4_fsblk_t start;
3762 ext4_fsblk_t len;
3763 int hblock, blocksize;
3764 ext4_fsblk_t sb_block;
3765 unsigned long offset;
3766 struct ext4_super_block *es;
3767 struct block_device *bdev;
3768
3769 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3770
3771 bdev = ext4_blkdev_get(j_dev, sb);
3772 if (bdev == NULL)
3773 return NULL;
3774
3775 if (bd_claim(bdev, sb)) {
3776 ext4_msg(sb, KERN_ERR,
3777 "failed to claim external journal device");
3778 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
3779 return NULL;
3780 }
3781
3782 blocksize = sb->s_blocksize;
3783 hblock = bdev_logical_block_size(bdev);
3784 if (blocksize < hblock) {
3785 ext4_msg(sb, KERN_ERR,
3786 "blocksize too small for journal device");
3787 goto out_bdev;
3788 }
3789
3790 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3791 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3792 set_blocksize(bdev, blocksize);
3793 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3794 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3795 "external journal");
3796 goto out_bdev;
3797 }
3798
3799 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3800 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3801 !(le32_to_cpu(es->s_feature_incompat) &
3802 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3803 ext4_msg(sb, KERN_ERR, "external journal has "
3804 "bad superblock");
3805 brelse(bh);
3806 goto out_bdev;
3807 }
3808
3809 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3810 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3811 brelse(bh);
3812 goto out_bdev;
3813 }
3814
3815 len = ext4_blocks_count(es);
3816 start = sb_block + 1;
3817 brelse(bh); /* we're done with the superblock */
3818
3819 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3820 start, len, blocksize);
3821 if (!journal) {
3822 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3823 goto out_bdev;
3824 }
3825 journal->j_private = sb;
3826 ll_rw_block(READ, 1, &journal->j_sb_buffer);
3827 wait_on_buffer(journal->j_sb_buffer);
3828 if (!buffer_uptodate(journal->j_sb_buffer)) {
3829 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3830 goto out_journal;
3831 }
3832 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3833 ext4_msg(sb, KERN_ERR, "External journal has more than one "
3834 "user (unsupported) - %d",
3835 be32_to_cpu(journal->j_superblock->s_nr_users));
3836 goto out_journal;
3837 }
3838 EXT4_SB(sb)->journal_bdev = bdev;
3839 ext4_init_journal_params(sb, journal);
3840 return journal;
3841
3842 out_journal:
3843 jbd2_journal_destroy(journal);
3844 out_bdev:
3845 ext4_blkdev_put(bdev);
3846 return NULL;
3847 }
3848
3849 static int ext4_load_journal(struct super_block *sb,
3850 struct ext4_super_block *es,
3851 unsigned long journal_devnum)
3852 {
3853 journal_t *journal;
3854 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3855 dev_t journal_dev;
3856 int err = 0;
3857 int really_read_only;
3858
3859 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3860
3861 if (journal_devnum &&
3862 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3863 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3864 "numbers have changed");
3865 journal_dev = new_decode_dev(journal_devnum);
3866 } else
3867 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3868
3869 really_read_only = bdev_read_only(sb->s_bdev);
3870
3871 /*
3872 * Are we loading a blank journal or performing recovery after a
3873 * crash? For recovery, we need to check in advance whether we
3874 * can get read-write access to the device.
3875 */
3876 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3877 if (sb->s_flags & MS_RDONLY) {
3878 ext4_msg(sb, KERN_INFO, "INFO: recovery "
3879 "required on readonly filesystem");
3880 if (really_read_only) {
3881 ext4_msg(sb, KERN_ERR, "write access "
3882 "unavailable, cannot proceed");
3883 return -EROFS;
3884 }
3885 ext4_msg(sb, KERN_INFO, "write access will "
3886 "be enabled during recovery");
3887 }
3888 }
3889
3890 if (journal_inum && journal_dev) {
3891 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3892 "and inode journals!");
3893 return -EINVAL;
3894 }
3895
3896 if (journal_inum) {
3897 if (!(journal = ext4_get_journal(sb, journal_inum)))
3898 return -EINVAL;
3899 } else {
3900 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3901 return -EINVAL;
3902 }
3903
3904 if (!(journal->j_flags & JBD2_BARRIER))
3905 ext4_msg(sb, KERN_INFO, "barriers disabled");
3906
3907 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
3908 err = jbd2_journal_update_format(journal);
3909 if (err) {
3910 ext4_msg(sb, KERN_ERR, "error updating journal");
3911 jbd2_journal_destroy(journal);
3912 return err;
3913 }
3914 }
3915
3916 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3917 err = jbd2_journal_wipe(journal, !really_read_only);
3918 if (!err) {
3919 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
3920 if (save)
3921 memcpy(save, ((char *) es) +
3922 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
3923 err = jbd2_journal_load(journal);
3924 if (save)
3925 memcpy(((char *) es) + EXT4_S_ERR_START,
3926 save, EXT4_S_ERR_LEN);
3927 kfree(save);
3928 }
3929
3930 if (err) {
3931 ext4_msg(sb, KERN_ERR, "error loading journal");
3932 jbd2_journal_destroy(journal);
3933 return err;
3934 }
3935
3936 EXT4_SB(sb)->s_journal = journal;
3937 ext4_clear_journal_err(sb, es);
3938
3939 if (!really_read_only && journal_devnum &&
3940 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3941 es->s_journal_dev = cpu_to_le32(journal_devnum);
3942
3943 /* Make sure we flush the recovery flag to disk. */
3944 ext4_commit_super(sb, 1);
3945 }
3946
3947 return 0;
3948 }
3949
3950 static int ext4_commit_super(struct super_block *sb, int sync)
3951 {
3952 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
3953 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
3954 int error = 0;
3955
3956 if (!sbh)
3957 return error;
3958 if (buffer_write_io_error(sbh)) {
3959 /*
3960 * Oh, dear. A previous attempt to write the
3961 * superblock failed. This could happen because the
3962 * USB device was yanked out. Or it could happen to
3963 * be a transient write error and maybe the block will
3964 * be remapped. Nothing we can do but to retry the
3965 * write and hope for the best.
3966 */
3967 ext4_msg(sb, KERN_ERR, "previous I/O error to "
3968 "superblock detected");
3969 clear_buffer_write_io_error(sbh);
3970 set_buffer_uptodate(sbh);
3971 }
3972 /*
3973 * If the file system is mounted read-only, don't update the
3974 * superblock write time. This avoids updating the superblock
3975 * write time when we are mounting the root file system
3976 * read/only but we need to replay the journal; at that point,
3977 * for people who are east of GMT and who make their clock
3978 * tick in localtime for Windows bug-for-bug compatibility,
3979 * the clock is set in the future, and this will cause e2fsck
3980 * to complain and force a full file system check.
3981 */
3982 if (!(sb->s_flags & MS_RDONLY))
3983 es->s_wtime = cpu_to_le32(get_seconds());
3984 if (sb->s_bdev->bd_part)
3985 es->s_kbytes_written =
3986 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
3987 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
3988 EXT4_SB(sb)->s_sectors_written_start) >> 1));
3989 else
3990 es->s_kbytes_written =
3991 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
3992 ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
3993 &EXT4_SB(sb)->s_freeblocks_counter));
3994 es->s_free_inodes_count =
3995 cpu_to_le32(percpu_counter_sum_positive(
3996 &EXT4_SB(sb)->s_freeinodes_counter));
3997 sb->s_dirt = 0;
3998 BUFFER_TRACE(sbh, "marking dirty");
3999 mark_buffer_dirty(sbh);
4000 if (sync) {
4001 error = sync_dirty_buffer(sbh);
4002 if (error)
4003 return error;
4004
4005 error = buffer_write_io_error(sbh);
4006 if (error) {
4007 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4008 "superblock");
4009 clear_buffer_write_io_error(sbh);
4010 set_buffer_uptodate(sbh);
4011 }
4012 }
4013 return error;
4014 }
4015
4016 /*
4017 * Have we just finished recovery? If so, and if we are mounting (or
4018 * remounting) the filesystem readonly, then we will end up with a
4019 * consistent fs on disk. Record that fact.
4020 */
4021 static void ext4_mark_recovery_complete(struct super_block *sb,
4022 struct ext4_super_block *es)
4023 {
4024 journal_t *journal = EXT4_SB(sb)->s_journal;
4025
4026 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4027 BUG_ON(journal != NULL);
4028 return;
4029 }
4030 jbd2_journal_lock_updates(journal);
4031 if (jbd2_journal_flush(journal) < 0)
4032 goto out;
4033
4034 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4035 sb->s_flags & MS_RDONLY) {
4036 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4037 ext4_commit_super(sb, 1);
4038 }
4039
4040 out:
4041 jbd2_journal_unlock_updates(journal);
4042 }
4043
4044 /*
4045 * If we are mounting (or read-write remounting) a filesystem whose journal
4046 * has recorded an error from a previous lifetime, move that error to the
4047 * main filesystem now.
4048 */
4049 static void ext4_clear_journal_err(struct super_block *sb,
4050 struct ext4_super_block *es)
4051 {
4052 journal_t *journal;
4053 int j_errno;
4054 const char *errstr;
4055
4056 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4057
4058 journal = EXT4_SB(sb)->s_journal;
4059
4060 /*
4061 * Now check for any error status which may have been recorded in the
4062 * journal by a prior ext4_error() or ext4_abort()
4063 */
4064
4065 j_errno = jbd2_journal_errno(journal);
4066 if (j_errno) {
4067 char nbuf[16];
4068
4069 errstr = ext4_decode_error(sb, j_errno, nbuf);
4070 ext4_warning(sb, "Filesystem error recorded "
4071 "from previous mount: %s", errstr);
4072 ext4_warning(sb, "Marking fs in need of filesystem check.");
4073
4074 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4075 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4076 ext4_commit_super(sb, 1);
4077
4078 jbd2_journal_clear_err(journal);
4079 }
4080 }
4081
4082 /*
4083 * Force the running and committing transactions to commit,
4084 * and wait on the commit.
4085 */
4086 int ext4_force_commit(struct super_block *sb)
4087 {
4088 journal_t *journal;
4089 int ret = 0;
4090
4091 if (sb->s_flags & MS_RDONLY)
4092 return 0;
4093
4094 journal = EXT4_SB(sb)->s_journal;
4095 if (journal) {
4096 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4097 ret = ext4_journal_force_commit(journal);
4098 }
4099
4100 return ret;
4101 }
4102
4103 static void ext4_write_super(struct super_block *sb)
4104 {
4105 lock_super(sb);
4106 ext4_commit_super(sb, 1);
4107 unlock_super(sb);
4108 }
4109
4110 static int ext4_sync_fs(struct super_block *sb, int wait)
4111 {
4112 int ret = 0;
4113 tid_t target;
4114 struct ext4_sb_info *sbi = EXT4_SB(sb);
4115
4116 trace_ext4_sync_fs(sb, wait);
4117 flush_workqueue(sbi->dio_unwritten_wq);
4118 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4119 if (wait)
4120 jbd2_log_wait_commit(sbi->s_journal, target);
4121 }
4122 return ret;
4123 }
4124
4125 /*
4126 * LVM calls this function before a (read-only) snapshot is created. This
4127 * gives us a chance to flush the journal completely and mark the fs clean.
4128 */
4129 static int ext4_freeze(struct super_block *sb)
4130 {
4131 int error = 0;
4132 journal_t *journal;
4133
4134 if (sb->s_flags & MS_RDONLY)
4135 return 0;
4136
4137 journal = EXT4_SB(sb)->s_journal;
4138
4139 /* Now we set up the journal barrier. */
4140 jbd2_journal_lock_updates(journal);
4141
4142 /*
4143 * Don't clear the needs_recovery flag if we failed to flush
4144 * the journal.
4145 */
4146 error = jbd2_journal_flush(journal);
4147 if (error < 0)
4148 goto out;
4149
4150 /* Journal blocked and flushed, clear needs_recovery flag. */
4151 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4152 error = ext4_commit_super(sb, 1);
4153 out:
4154 /* we rely on s_frozen to stop further updates */
4155 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4156 return error;
4157 }
4158
4159 /*
4160 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4161 * flag here, even though the filesystem is not technically dirty yet.
4162 */
4163 static int ext4_unfreeze(struct super_block *sb)
4164 {
4165 if (sb->s_flags & MS_RDONLY)
4166 return 0;
4167
4168 lock_super(sb);
4169 /* Reset the needs_recovery flag before the fs is unlocked. */
4170 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4171 ext4_commit_super(sb, 1);
4172 unlock_super(sb);
4173 return 0;
4174 }
4175
4176 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4177 {
4178 struct ext4_super_block *es;
4179 struct ext4_sb_info *sbi = EXT4_SB(sb);
4180 ext4_fsblk_t n_blocks_count = 0;
4181 unsigned long old_sb_flags;
4182 struct ext4_mount_options old_opts;
4183 int enable_quota = 0;
4184 ext4_group_t g;
4185 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4186 int err;
4187 #ifdef CONFIG_QUOTA
4188 int i;
4189 #endif
4190 char *orig_data = kstrdup(data, GFP_KERNEL);
4191
4192 /* Store the original options */
4193 lock_super(sb);
4194 old_sb_flags = sb->s_flags;
4195 old_opts.s_mount_opt = sbi->s_mount_opt;
4196 old_opts.s_resuid = sbi->s_resuid;
4197 old_opts.s_resgid = sbi->s_resgid;
4198 old_opts.s_commit_interval = sbi->s_commit_interval;
4199 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4200 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4201 #ifdef CONFIG_QUOTA
4202 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4203 for (i = 0; i < MAXQUOTAS; i++)
4204 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4205 #endif
4206 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4207 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4208
4209 /*
4210 * Allow the "check" option to be passed as a remount option.
4211 */
4212 if (!parse_options(data, sb, NULL, &journal_ioprio,
4213 &n_blocks_count, 1)) {
4214 err = -EINVAL;
4215 goto restore_opts;
4216 }
4217
4218 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4219 ext4_abort(sb, "Abort forced by user");
4220
4221 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4222 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4223
4224 es = sbi->s_es;
4225
4226 if (sbi->s_journal) {
4227 ext4_init_journal_params(sb, sbi->s_journal);
4228 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4229 }
4230
4231 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
4232 n_blocks_count > ext4_blocks_count(es)) {
4233 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4234 err = -EROFS;
4235 goto restore_opts;
4236 }
4237
4238 if (*flags & MS_RDONLY) {
4239 err = dquot_suspend(sb, -1);
4240 if (err < 0)
4241 goto restore_opts;
4242
4243 /*
4244 * First of all, the unconditional stuff we have to do
4245 * to disable replay of the journal when we next remount
4246 */
4247 sb->s_flags |= MS_RDONLY;
4248
4249 /*
4250 * OK, test if we are remounting a valid rw partition
4251 * readonly, and if so set the rdonly flag and then
4252 * mark the partition as valid again.
4253 */
4254 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4255 (sbi->s_mount_state & EXT4_VALID_FS))
4256 es->s_state = cpu_to_le16(sbi->s_mount_state);
4257
4258 if (sbi->s_journal)
4259 ext4_mark_recovery_complete(sb, es);
4260 } else {
4261 /* Make sure we can mount this feature set readwrite */
4262 if (!ext4_feature_set_ok(sb, 0)) {
4263 err = -EROFS;
4264 goto restore_opts;
4265 }
4266 /*
4267 * Make sure the group descriptor checksums
4268 * are sane. If they aren't, refuse to remount r/w.
4269 */
4270 for (g = 0; g < sbi->s_groups_count; g++) {
4271 struct ext4_group_desc *gdp =
4272 ext4_get_group_desc(sb, g, NULL);
4273
4274 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4275 ext4_msg(sb, KERN_ERR,
4276 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4277 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4278 le16_to_cpu(gdp->bg_checksum));
4279 err = -EINVAL;
4280 goto restore_opts;
4281 }
4282 }
4283
4284 /*
4285 * If we have an unprocessed orphan list hanging
4286 * around from a previously readonly bdev mount,
4287 * require a full umount/remount for now.
4288 */
4289 if (es->s_last_orphan) {
4290 ext4_msg(sb, KERN_WARNING, "Couldn't "
4291 "remount RDWR because of unprocessed "
4292 "orphan inode list. Please "
4293 "umount/remount instead");
4294 err = -EINVAL;
4295 goto restore_opts;
4296 }
4297
4298 /*
4299 * Mounting a RDONLY partition read-write, so reread
4300 * and store the current valid flag. (It may have
4301 * been changed by e2fsck since we originally mounted
4302 * the partition.)
4303 */
4304 if (sbi->s_journal)
4305 ext4_clear_journal_err(sb, es);
4306 sbi->s_mount_state = le16_to_cpu(es->s_state);
4307 if ((err = ext4_group_extend(sb, es, n_blocks_count)))
4308 goto restore_opts;
4309 if (!ext4_setup_super(sb, es, 0))
4310 sb->s_flags &= ~MS_RDONLY;
4311 enable_quota = 1;
4312 }
4313 }
4314
4315 /*
4316 * Reinitialize lazy itable initialization thread based on
4317 * current settings
4318 */
4319 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4320 ext4_unregister_li_request(sb);
4321 else {
4322 ext4_group_t first_not_zeroed;
4323 first_not_zeroed = ext4_has_uninit_itable(sb);
4324 ext4_register_li_request(sb, first_not_zeroed);
4325 }
4326
4327 ext4_setup_system_zone(sb);
4328 if (sbi->s_journal == NULL)
4329 ext4_commit_super(sb, 1);
4330
4331 #ifdef CONFIG_QUOTA
4332 /* Release old quota file names */
4333 for (i = 0; i < MAXQUOTAS; i++)
4334 if (old_opts.s_qf_names[i] &&
4335 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4336 kfree(old_opts.s_qf_names[i]);
4337 #endif
4338 unlock_super(sb);
4339 if (enable_quota)
4340 dquot_resume(sb, -1);
4341
4342 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4343 kfree(orig_data);
4344 return 0;
4345
4346 restore_opts:
4347 sb->s_flags = old_sb_flags;
4348 sbi->s_mount_opt = old_opts.s_mount_opt;
4349 sbi->s_resuid = old_opts.s_resuid;
4350 sbi->s_resgid = old_opts.s_resgid;
4351 sbi->s_commit_interval = old_opts.s_commit_interval;
4352 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4353 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4354 #ifdef CONFIG_QUOTA
4355 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4356 for (i = 0; i < MAXQUOTAS; i++) {
4357 if (sbi->s_qf_names[i] &&
4358 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4359 kfree(sbi->s_qf_names[i]);
4360 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4361 }
4362 #endif
4363 unlock_super(sb);
4364 kfree(orig_data);
4365 return err;
4366 }
4367
4368 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4369 {
4370 struct super_block *sb = dentry->d_sb;
4371 struct ext4_sb_info *sbi = EXT4_SB(sb);
4372 struct ext4_super_block *es = sbi->s_es;
4373 u64 fsid;
4374
4375 if (test_opt(sb, MINIX_DF)) {
4376 sbi->s_overhead_last = 0;
4377 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4378 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4379 ext4_fsblk_t overhead = 0;
4380
4381 /*
4382 * Compute the overhead (FS structures). This is constant
4383 * for a given filesystem unless the number of block groups
4384 * changes so we cache the previous value until it does.
4385 */
4386
4387 /*
4388 * All of the blocks before first_data_block are
4389 * overhead
4390 */
4391 overhead = le32_to_cpu(es->s_first_data_block);
4392
4393 /*
4394 * Add the overhead attributed to the superblock and
4395 * block group descriptors. If the sparse superblocks
4396 * feature is turned on, then not all groups have this.
4397 */
4398 for (i = 0; i < ngroups; i++) {
4399 overhead += ext4_bg_has_super(sb, i) +
4400 ext4_bg_num_gdb(sb, i);
4401 cond_resched();
4402 }
4403
4404 /*
4405 * Every block group has an inode bitmap, a block
4406 * bitmap, and an inode table.
4407 */
4408 overhead += ngroups * (2 + sbi->s_itb_per_group);
4409 sbi->s_overhead_last = overhead;
4410 smp_wmb();
4411 sbi->s_blocks_last = ext4_blocks_count(es);
4412 }
4413
4414 buf->f_type = EXT4_SUPER_MAGIC;
4415 buf->f_bsize = sb->s_blocksize;
4416 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
4417 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
4418 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
4419 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4420 if (buf->f_bfree < ext4_r_blocks_count(es))
4421 buf->f_bavail = 0;
4422 buf->f_files = le32_to_cpu(es->s_inodes_count);
4423 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4424 buf->f_namelen = EXT4_NAME_LEN;
4425 fsid = le64_to_cpup((void *)es->s_uuid) ^
4426 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4427 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4428 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4429
4430 return 0;
4431 }
4432
4433 /* Helper function for writing quotas on sync - we need to start transaction
4434 * before quota file is locked for write. Otherwise the are possible deadlocks:
4435 * Process 1 Process 2
4436 * ext4_create() quota_sync()
4437 * jbd2_journal_start() write_dquot()
4438 * dquot_initialize() down(dqio_mutex)
4439 * down(dqio_mutex) jbd2_journal_start()
4440 *
4441 */
4442
4443 #ifdef CONFIG_QUOTA
4444
4445 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4446 {
4447 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4448 }
4449
4450 static int ext4_write_dquot(struct dquot *dquot)
4451 {
4452 int ret, err;
4453 handle_t *handle;
4454 struct inode *inode;
4455
4456 inode = dquot_to_inode(dquot);
4457 handle = ext4_journal_start(inode,
4458 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4459 if (IS_ERR(handle))
4460 return PTR_ERR(handle);
4461 ret = dquot_commit(dquot);
4462 err = ext4_journal_stop(handle);
4463 if (!ret)
4464 ret = err;
4465 return ret;
4466 }
4467
4468 static int ext4_acquire_dquot(struct dquot *dquot)
4469 {
4470 int ret, err;
4471 handle_t *handle;
4472
4473 handle = ext4_journal_start(dquot_to_inode(dquot),
4474 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4475 if (IS_ERR(handle))
4476 return PTR_ERR(handle);
4477 ret = dquot_acquire(dquot);
4478 err = ext4_journal_stop(handle);
4479 if (!ret)
4480 ret = err;
4481 return ret;
4482 }
4483
4484 static int ext4_release_dquot(struct dquot *dquot)
4485 {
4486 int ret, err;
4487 handle_t *handle;
4488
4489 handle = ext4_journal_start(dquot_to_inode(dquot),
4490 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4491 if (IS_ERR(handle)) {
4492 /* Release dquot anyway to avoid endless cycle in dqput() */
4493 dquot_release(dquot);
4494 return PTR_ERR(handle);
4495 }
4496 ret = dquot_release(dquot);
4497 err = ext4_journal_stop(handle);
4498 if (!ret)
4499 ret = err;
4500 return ret;
4501 }
4502
4503 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4504 {
4505 /* Are we journaling quotas? */
4506 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4507 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4508 dquot_mark_dquot_dirty(dquot);
4509 return ext4_write_dquot(dquot);
4510 } else {
4511 return dquot_mark_dquot_dirty(dquot);
4512 }
4513 }
4514
4515 static int ext4_write_info(struct super_block *sb, int type)
4516 {
4517 int ret, err;
4518 handle_t *handle;
4519
4520 /* Data block + inode block */
4521 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4522 if (IS_ERR(handle))
4523 return PTR_ERR(handle);
4524 ret = dquot_commit_info(sb, type);
4525 err = ext4_journal_stop(handle);
4526 if (!ret)
4527 ret = err;
4528 return ret;
4529 }
4530
4531 /*
4532 * Turn on quotas during mount time - we need to find
4533 * the quota file and such...
4534 */
4535 static int ext4_quota_on_mount(struct super_block *sb, int type)
4536 {
4537 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4538 EXT4_SB(sb)->s_jquota_fmt, type);
4539 }
4540
4541 /*
4542 * Standard function to be called on quota_on
4543 */
4544 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4545 char *name)
4546 {
4547 int err;
4548 struct path path;
4549
4550 if (!test_opt(sb, QUOTA))
4551 return -EINVAL;
4552
4553 err = kern_path(name, LOOKUP_FOLLOW, &path);
4554 if (err)
4555 return err;
4556
4557 /* Quotafile not on the same filesystem? */
4558 if (path.mnt->mnt_sb != sb) {
4559 path_put(&path);
4560 return -EXDEV;
4561 }
4562 /* Journaling quota? */
4563 if (EXT4_SB(sb)->s_qf_names[type]) {
4564 /* Quotafile not in fs root? */
4565 if (path.dentry->d_parent != sb->s_root)
4566 ext4_msg(sb, KERN_WARNING,
4567 "Quota file not on filesystem root. "
4568 "Journaled quota will not work");
4569 }
4570
4571 /*
4572 * When we journal data on quota file, we have to flush journal to see
4573 * all updates to the file when we bypass pagecache...
4574 */
4575 if (EXT4_SB(sb)->s_journal &&
4576 ext4_should_journal_data(path.dentry->d_inode)) {
4577 /*
4578 * We don't need to lock updates but journal_flush() could
4579 * otherwise be livelocked...
4580 */
4581 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4582 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4583 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4584 if (err) {
4585 path_put(&path);
4586 return err;
4587 }
4588 }
4589
4590 err = dquot_quota_on_path(sb, type, format_id, &path);
4591 path_put(&path);
4592 return err;
4593 }
4594
4595 static int ext4_quota_off(struct super_block *sb, int type)
4596 {
4597 /* Force all delayed allocation blocks to be allocated.
4598 * Caller already holds s_umount sem */
4599 if (test_opt(sb, DELALLOC))
4600 sync_filesystem(sb);
4601
4602 return dquot_quota_off(sb, type);
4603 }
4604
4605 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4606 * acquiring the locks... As quota files are never truncated and quota code
4607 * itself serializes the operations (and noone else should touch the files)
4608 * we don't have to be afraid of races */
4609 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4610 size_t len, loff_t off)
4611 {
4612 struct inode *inode = sb_dqopt(sb)->files[type];
4613 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4614 int err = 0;
4615 int offset = off & (sb->s_blocksize - 1);
4616 int tocopy;
4617 size_t toread;
4618 struct buffer_head *bh;
4619 loff_t i_size = i_size_read(inode);
4620
4621 if (off > i_size)
4622 return 0;
4623 if (off+len > i_size)
4624 len = i_size-off;
4625 toread = len;
4626 while (toread > 0) {
4627 tocopy = sb->s_blocksize - offset < toread ?
4628 sb->s_blocksize - offset : toread;
4629 bh = ext4_bread(NULL, inode, blk, 0, &err);
4630 if (err)
4631 return err;
4632 if (!bh) /* A hole? */
4633 memset(data, 0, tocopy);
4634 else
4635 memcpy(data, bh->b_data+offset, tocopy);
4636 brelse(bh);
4637 offset = 0;
4638 toread -= tocopy;
4639 data += tocopy;
4640 blk++;
4641 }
4642 return len;
4643 }
4644
4645 /* Write to quotafile (we know the transaction is already started and has
4646 * enough credits) */
4647 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4648 const char *data, size_t len, loff_t off)
4649 {
4650 struct inode *inode = sb_dqopt(sb)->files[type];
4651 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4652 int err = 0;
4653 int offset = off & (sb->s_blocksize - 1);
4654 struct buffer_head *bh;
4655 handle_t *handle = journal_current_handle();
4656
4657 if (EXT4_SB(sb)->s_journal && !handle) {
4658 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4659 " cancelled because transaction is not started",
4660 (unsigned long long)off, (unsigned long long)len);
4661 return -EIO;
4662 }
4663 /*
4664 * Since we account only one data block in transaction credits,
4665 * then it is impossible to cross a block boundary.
4666 */
4667 if (sb->s_blocksize - offset < len) {
4668 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4669 " cancelled because not block aligned",
4670 (unsigned long long)off, (unsigned long long)len);
4671 return -EIO;
4672 }
4673
4674 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4675 bh = ext4_bread(handle, inode, blk, 1, &err);
4676 if (!bh)
4677 goto out;
4678 err = ext4_journal_get_write_access(handle, bh);
4679 if (err) {
4680 brelse(bh);
4681 goto out;
4682 }
4683 lock_buffer(bh);
4684 memcpy(bh->b_data+offset, data, len);
4685 flush_dcache_page(bh->b_page);
4686 unlock_buffer(bh);
4687 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4688 brelse(bh);
4689 out:
4690 if (err) {
4691 mutex_unlock(&inode->i_mutex);
4692 return err;
4693 }
4694 if (inode->i_size < off + len) {
4695 i_size_write(inode, off + len);
4696 EXT4_I(inode)->i_disksize = inode->i_size;
4697 }
4698 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4699 ext4_mark_inode_dirty(handle, inode);
4700 mutex_unlock(&inode->i_mutex);
4701 return len;
4702 }
4703
4704 #endif
4705
4706 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4707 const char *dev_name, void *data)
4708 {
4709 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4710 }
4711
4712 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4713 static struct file_system_type ext2_fs_type = {
4714 .owner = THIS_MODULE,
4715 .name = "ext2",
4716 .mount = ext4_mount,
4717 .kill_sb = kill_block_super,
4718 .fs_flags = FS_REQUIRES_DEV,
4719 };
4720
4721 static inline void register_as_ext2(void)
4722 {
4723 int err = register_filesystem(&ext2_fs_type);
4724 if (err)
4725 printk(KERN_WARNING
4726 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4727 }
4728
4729 static inline void unregister_as_ext2(void)
4730 {
4731 unregister_filesystem(&ext2_fs_type);
4732 }
4733 MODULE_ALIAS("ext2");
4734 #else
4735 static inline void register_as_ext2(void) { }
4736 static inline void unregister_as_ext2(void) { }
4737 #endif
4738
4739 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4740 static inline void register_as_ext3(void)
4741 {
4742 int err = register_filesystem(&ext3_fs_type);
4743 if (err)
4744 printk(KERN_WARNING
4745 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4746 }
4747
4748 static inline void unregister_as_ext3(void)
4749 {
4750 unregister_filesystem(&ext3_fs_type);
4751 }
4752 MODULE_ALIAS("ext3");
4753 #else
4754 static inline void register_as_ext3(void) { }
4755 static inline void unregister_as_ext3(void) { }
4756 #endif
4757
4758 static struct file_system_type ext4_fs_type = {
4759 .owner = THIS_MODULE,
4760 .name = "ext4",
4761 .mount = ext4_mount,
4762 .kill_sb = kill_block_super,
4763 .fs_flags = FS_REQUIRES_DEV,
4764 };
4765
4766 int __init ext4_init_feat_adverts(void)
4767 {
4768 struct ext4_features *ef;
4769 int ret = -ENOMEM;
4770
4771 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4772 if (!ef)
4773 goto out;
4774
4775 ef->f_kobj.kset = ext4_kset;
4776 init_completion(&ef->f_kobj_unregister);
4777 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4778 "features");
4779 if (ret) {
4780 kfree(ef);
4781 goto out;
4782 }
4783
4784 ext4_feat = ef;
4785 ret = 0;
4786 out:
4787 return ret;
4788 }
4789
4790 static int __init ext4_init_fs(void)
4791 {
4792 int err;
4793
4794 ext4_check_flag_values();
4795 err = ext4_init_pageio();
4796 if (err)
4797 return err;
4798 err = ext4_init_system_zone();
4799 if (err)
4800 goto out5;
4801 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4802 if (!ext4_kset)
4803 goto out4;
4804 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4805
4806 err = ext4_init_feat_adverts();
4807
4808 err = ext4_init_mballoc();
4809 if (err)
4810 goto out3;
4811
4812 err = ext4_init_xattr();
4813 if (err)
4814 goto out2;
4815 err = init_inodecache();
4816 if (err)
4817 goto out1;
4818 register_as_ext2();
4819 register_as_ext3();
4820 err = register_filesystem(&ext4_fs_type);
4821 if (err)
4822 goto out;
4823
4824 ext4_li_info = NULL;
4825 mutex_init(&ext4_li_mtx);
4826 return 0;
4827 out:
4828 unregister_as_ext2();
4829 unregister_as_ext3();
4830 destroy_inodecache();
4831 out1:
4832 ext4_exit_xattr();
4833 out2:
4834 ext4_exit_mballoc();
4835 out3:
4836 kfree(ext4_feat);
4837 remove_proc_entry("fs/ext4", NULL);
4838 kset_unregister(ext4_kset);
4839 out4:
4840 ext4_exit_system_zone();
4841 out5:
4842 ext4_exit_pageio();
4843 return err;
4844 }
4845
4846 static void __exit ext4_exit_fs(void)
4847 {
4848 ext4_destroy_lazyinit_thread();
4849 unregister_as_ext2();
4850 unregister_as_ext3();
4851 unregister_filesystem(&ext4_fs_type);
4852 destroy_inodecache();
4853 ext4_exit_xattr();
4854 ext4_exit_mballoc();
4855 remove_proc_entry("fs/ext4", NULL);
4856 kset_unregister(ext4_kset);
4857 ext4_exit_system_zone();
4858 ext4_exit_pageio();
4859 }
4860
4861 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4862 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4863 MODULE_LICENSE("GPL");
4864 module_init(ext4_init_fs)
4865 module_exit(ext4_exit_fs)
This page took 0.123995 seconds and 6 git commands to generate.