Merge branch 'for-3.5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[deliverable/linux.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h"
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static const char *ext4_decode_error(struct super_block *sb, int errno,
73 char nbuf[16]);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static void ext4_write_super(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84 static void ext4_destroy_lazyinit_thread(void);
85 static void ext4_unregister_li_request(struct super_block *sb);
86 static void ext4_clear_request_list(void);
87
88 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
89 static struct file_system_type ext2_fs_type = {
90 .owner = THIS_MODULE,
91 .name = "ext2",
92 .mount = ext4_mount,
93 .kill_sb = kill_block_super,
94 .fs_flags = FS_REQUIRES_DEV,
95 };
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100
101
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 .owner = THIS_MODULE,
105 .name = "ext3",
106 .mount = ext4_mount,
107 .kill_sb = kill_block_super,
108 .fs_flags = FS_REQUIRES_DEV,
109 };
110 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
111 #else
112 #define IS_EXT3_SB(sb) (0)
113 #endif
114
115 static int ext4_verify_csum_type(struct super_block *sb,
116 struct ext4_super_block *es)
117 {
118 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
119 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
120 return 1;
121
122 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
123 }
124
125 static __le32 ext4_superblock_csum(struct super_block *sb,
126 struct ext4_super_block *es)
127 {
128 struct ext4_sb_info *sbi = EXT4_SB(sb);
129 int offset = offsetof(struct ext4_super_block, s_checksum);
130 __u32 csum;
131
132 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
133
134 return cpu_to_le32(csum);
135 }
136
137 int ext4_superblock_csum_verify(struct super_block *sb,
138 struct ext4_super_block *es)
139 {
140 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
141 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
142 return 1;
143
144 return es->s_checksum == ext4_superblock_csum(sb, es);
145 }
146
147 void ext4_superblock_csum_set(struct super_block *sb,
148 struct ext4_super_block *es)
149 {
150 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
151 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
152 return;
153
154 es->s_checksum = ext4_superblock_csum(sb, es);
155 }
156
157 void *ext4_kvmalloc(size_t size, gfp_t flags)
158 {
159 void *ret;
160
161 ret = kmalloc(size, flags);
162 if (!ret)
163 ret = __vmalloc(size, flags, PAGE_KERNEL);
164 return ret;
165 }
166
167 void *ext4_kvzalloc(size_t size, gfp_t flags)
168 {
169 void *ret;
170
171 ret = kzalloc(size, flags);
172 if (!ret)
173 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
174 return ret;
175 }
176
177 void ext4_kvfree(void *ptr)
178 {
179 if (is_vmalloc_addr(ptr))
180 vfree(ptr);
181 else
182 kfree(ptr);
183
184 }
185
186 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
187 struct ext4_group_desc *bg)
188 {
189 return le32_to_cpu(bg->bg_block_bitmap_lo) |
190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
191 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
192 }
193
194 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
195 struct ext4_group_desc *bg)
196 {
197 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
199 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
200 }
201
202 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
203 struct ext4_group_desc *bg)
204 {
205 return le32_to_cpu(bg->bg_inode_table_lo) |
206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
207 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
208 }
209
210 __u32 ext4_free_group_clusters(struct super_block *sb,
211 struct ext4_group_desc *bg)
212 {
213 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
215 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
216 }
217
218 __u32 ext4_free_inodes_count(struct super_block *sb,
219 struct ext4_group_desc *bg)
220 {
221 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
223 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
224 }
225
226 __u32 ext4_used_dirs_count(struct super_block *sb,
227 struct ext4_group_desc *bg)
228 {
229 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
231 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
232 }
233
234 __u32 ext4_itable_unused_count(struct super_block *sb,
235 struct ext4_group_desc *bg)
236 {
237 return le16_to_cpu(bg->bg_itable_unused_lo) |
238 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
239 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
240 }
241
242 void ext4_block_bitmap_set(struct super_block *sb,
243 struct ext4_group_desc *bg, ext4_fsblk_t blk)
244 {
245 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
247 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
248 }
249
250 void ext4_inode_bitmap_set(struct super_block *sb,
251 struct ext4_group_desc *bg, ext4_fsblk_t blk)
252 {
253 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
255 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
256 }
257
258 void ext4_inode_table_set(struct super_block *sb,
259 struct ext4_group_desc *bg, ext4_fsblk_t blk)
260 {
261 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
263 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
264 }
265
266 void ext4_free_group_clusters_set(struct super_block *sb,
267 struct ext4_group_desc *bg, __u32 count)
268 {
269 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
271 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
272 }
273
274 void ext4_free_inodes_set(struct super_block *sb,
275 struct ext4_group_desc *bg, __u32 count)
276 {
277 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
279 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
280 }
281
282 void ext4_used_dirs_set(struct super_block *sb,
283 struct ext4_group_desc *bg, __u32 count)
284 {
285 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
287 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
288 }
289
290 void ext4_itable_unused_set(struct super_block *sb,
291 struct ext4_group_desc *bg, __u32 count)
292 {
293 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
294 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
295 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
296 }
297
298
299 /* Just increment the non-pointer handle value */
300 static handle_t *ext4_get_nojournal(void)
301 {
302 handle_t *handle = current->journal_info;
303 unsigned long ref_cnt = (unsigned long)handle;
304
305 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
306
307 ref_cnt++;
308 handle = (handle_t *)ref_cnt;
309
310 current->journal_info = handle;
311 return handle;
312 }
313
314
315 /* Decrement the non-pointer handle value */
316 static void ext4_put_nojournal(handle_t *handle)
317 {
318 unsigned long ref_cnt = (unsigned long)handle;
319
320 BUG_ON(ref_cnt == 0);
321
322 ref_cnt--;
323 handle = (handle_t *)ref_cnt;
324
325 current->journal_info = handle;
326 }
327
328 /*
329 * Wrappers for jbd2_journal_start/end.
330 *
331 * The only special thing we need to do here is to make sure that all
332 * journal_end calls result in the superblock being marked dirty, so
333 * that sync() will call the filesystem's write_super callback if
334 * appropriate.
335 *
336 * To avoid j_barrier hold in userspace when a user calls freeze(),
337 * ext4 prevents a new handle from being started by s_frozen, which
338 * is in an upper layer.
339 */
340 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
341 {
342 journal_t *journal;
343 handle_t *handle;
344
345 trace_ext4_journal_start(sb, nblocks, _RET_IP_);
346 if (sb->s_flags & MS_RDONLY)
347 return ERR_PTR(-EROFS);
348
349 journal = EXT4_SB(sb)->s_journal;
350 handle = ext4_journal_current_handle();
351
352 /*
353 * If a handle has been started, it should be allowed to
354 * finish, otherwise deadlock could happen between freeze
355 * and others(e.g. truncate) due to the restart of the
356 * journal handle if the filesystem is forzen and active
357 * handles are not stopped.
358 */
359 if (!handle)
360 vfs_check_frozen(sb, SB_FREEZE_TRANS);
361
362 if (!journal)
363 return ext4_get_nojournal();
364 /*
365 * Special case here: if the journal has aborted behind our
366 * backs (eg. EIO in the commit thread), then we still need to
367 * take the FS itself readonly cleanly.
368 */
369 if (is_journal_aborted(journal)) {
370 ext4_abort(sb, "Detected aborted journal");
371 return ERR_PTR(-EROFS);
372 }
373 return jbd2_journal_start(journal, nblocks);
374 }
375
376 /*
377 * The only special thing we need to do here is to make sure that all
378 * jbd2_journal_stop calls result in the superblock being marked dirty, so
379 * that sync() will call the filesystem's write_super callback if
380 * appropriate.
381 */
382 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
383 {
384 struct super_block *sb;
385 int err;
386 int rc;
387
388 if (!ext4_handle_valid(handle)) {
389 ext4_put_nojournal(handle);
390 return 0;
391 }
392 sb = handle->h_transaction->t_journal->j_private;
393 err = handle->h_err;
394 rc = jbd2_journal_stop(handle);
395
396 if (!err)
397 err = rc;
398 if (err)
399 __ext4_std_error(sb, where, line, err);
400 return err;
401 }
402
403 void ext4_journal_abort_handle(const char *caller, unsigned int line,
404 const char *err_fn, struct buffer_head *bh,
405 handle_t *handle, int err)
406 {
407 char nbuf[16];
408 const char *errstr = ext4_decode_error(NULL, err, nbuf);
409
410 BUG_ON(!ext4_handle_valid(handle));
411
412 if (bh)
413 BUFFER_TRACE(bh, "abort");
414
415 if (!handle->h_err)
416 handle->h_err = err;
417
418 if (is_handle_aborted(handle))
419 return;
420
421 printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n",
422 caller, line, errstr, err_fn);
423
424 jbd2_journal_abort_handle(handle);
425 }
426
427 static void __save_error_info(struct super_block *sb, const char *func,
428 unsigned int line)
429 {
430 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
431
432 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
433 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
434 es->s_last_error_time = cpu_to_le32(get_seconds());
435 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
436 es->s_last_error_line = cpu_to_le32(line);
437 if (!es->s_first_error_time) {
438 es->s_first_error_time = es->s_last_error_time;
439 strncpy(es->s_first_error_func, func,
440 sizeof(es->s_first_error_func));
441 es->s_first_error_line = cpu_to_le32(line);
442 es->s_first_error_ino = es->s_last_error_ino;
443 es->s_first_error_block = es->s_last_error_block;
444 }
445 /*
446 * Start the daily error reporting function if it hasn't been
447 * started already
448 */
449 if (!es->s_error_count)
450 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
451 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
452 }
453
454 static void save_error_info(struct super_block *sb, const char *func,
455 unsigned int line)
456 {
457 __save_error_info(sb, func, line);
458 ext4_commit_super(sb, 1);
459 }
460
461 /*
462 * The del_gendisk() function uninitializes the disk-specific data
463 * structures, including the bdi structure, without telling anyone
464 * else. Once this happens, any attempt to call mark_buffer_dirty()
465 * (for example, by ext4_commit_super), will cause a kernel OOPS.
466 * This is a kludge to prevent these oops until we can put in a proper
467 * hook in del_gendisk() to inform the VFS and file system layers.
468 */
469 static int block_device_ejected(struct super_block *sb)
470 {
471 struct inode *bd_inode = sb->s_bdev->bd_inode;
472 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
473
474 return bdi->dev == NULL;
475 }
476
477 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
478 {
479 struct super_block *sb = journal->j_private;
480 struct ext4_sb_info *sbi = EXT4_SB(sb);
481 int error = is_journal_aborted(journal);
482 struct ext4_journal_cb_entry *jce, *tmp;
483
484 spin_lock(&sbi->s_md_lock);
485 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) {
486 list_del_init(&jce->jce_list);
487 spin_unlock(&sbi->s_md_lock);
488 jce->jce_func(sb, jce, error);
489 spin_lock(&sbi->s_md_lock);
490 }
491 spin_unlock(&sbi->s_md_lock);
492 }
493
494 /* Deal with the reporting of failure conditions on a filesystem such as
495 * inconsistencies detected or read IO failures.
496 *
497 * On ext2, we can store the error state of the filesystem in the
498 * superblock. That is not possible on ext4, because we may have other
499 * write ordering constraints on the superblock which prevent us from
500 * writing it out straight away; and given that the journal is about to
501 * be aborted, we can't rely on the current, or future, transactions to
502 * write out the superblock safely.
503 *
504 * We'll just use the jbd2_journal_abort() error code to record an error in
505 * the journal instead. On recovery, the journal will complain about
506 * that error until we've noted it down and cleared it.
507 */
508
509 static void ext4_handle_error(struct super_block *sb)
510 {
511 if (sb->s_flags & MS_RDONLY)
512 return;
513
514 if (!test_opt(sb, ERRORS_CONT)) {
515 journal_t *journal = EXT4_SB(sb)->s_journal;
516
517 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
518 if (journal)
519 jbd2_journal_abort(journal, -EIO);
520 }
521 if (test_opt(sb, ERRORS_RO)) {
522 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
523 sb->s_flags |= MS_RDONLY;
524 }
525 if (test_opt(sb, ERRORS_PANIC))
526 panic("EXT4-fs (device %s): panic forced after error\n",
527 sb->s_id);
528 }
529
530 void __ext4_error(struct super_block *sb, const char *function,
531 unsigned int line, const char *fmt, ...)
532 {
533 struct va_format vaf;
534 va_list args;
535
536 va_start(args, fmt);
537 vaf.fmt = fmt;
538 vaf.va = &args;
539 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
540 sb->s_id, function, line, current->comm, &vaf);
541 va_end(args);
542 save_error_info(sb, function, line);
543
544 ext4_handle_error(sb);
545 }
546
547 void ext4_error_inode(struct inode *inode, const char *function,
548 unsigned int line, ext4_fsblk_t block,
549 const char *fmt, ...)
550 {
551 va_list args;
552 struct va_format vaf;
553 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
554
555 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
556 es->s_last_error_block = cpu_to_le64(block);
557 save_error_info(inode->i_sb, function, line);
558 va_start(args, fmt);
559 vaf.fmt = fmt;
560 vaf.va = &args;
561 if (block)
562 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
563 "inode #%lu: block %llu: comm %s: %pV\n",
564 inode->i_sb->s_id, function, line, inode->i_ino,
565 block, current->comm, &vaf);
566 else
567 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
568 "inode #%lu: comm %s: %pV\n",
569 inode->i_sb->s_id, function, line, inode->i_ino,
570 current->comm, &vaf);
571 va_end(args);
572
573 ext4_handle_error(inode->i_sb);
574 }
575
576 void ext4_error_file(struct file *file, const char *function,
577 unsigned int line, ext4_fsblk_t block,
578 const char *fmt, ...)
579 {
580 va_list args;
581 struct va_format vaf;
582 struct ext4_super_block *es;
583 struct inode *inode = file->f_dentry->d_inode;
584 char pathname[80], *path;
585
586 es = EXT4_SB(inode->i_sb)->s_es;
587 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
588 save_error_info(inode->i_sb, function, line);
589 path = d_path(&(file->f_path), pathname, sizeof(pathname));
590 if (IS_ERR(path))
591 path = "(unknown)";
592 va_start(args, fmt);
593 vaf.fmt = fmt;
594 vaf.va = &args;
595 if (block)
596 printk(KERN_CRIT
597 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
598 "block %llu: comm %s: path %s: %pV\n",
599 inode->i_sb->s_id, function, line, inode->i_ino,
600 block, current->comm, path, &vaf);
601 else
602 printk(KERN_CRIT
603 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
604 "comm %s: path %s: %pV\n",
605 inode->i_sb->s_id, function, line, inode->i_ino,
606 current->comm, path, &vaf);
607 va_end(args);
608
609 ext4_handle_error(inode->i_sb);
610 }
611
612 static const char *ext4_decode_error(struct super_block *sb, int errno,
613 char nbuf[16])
614 {
615 char *errstr = NULL;
616
617 switch (errno) {
618 case -EIO:
619 errstr = "IO failure";
620 break;
621 case -ENOMEM:
622 errstr = "Out of memory";
623 break;
624 case -EROFS:
625 if (!sb || (EXT4_SB(sb)->s_journal &&
626 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
627 errstr = "Journal has aborted";
628 else
629 errstr = "Readonly filesystem";
630 break;
631 default:
632 /* If the caller passed in an extra buffer for unknown
633 * errors, textualise them now. Else we just return
634 * NULL. */
635 if (nbuf) {
636 /* Check for truncated error codes... */
637 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
638 errstr = nbuf;
639 }
640 break;
641 }
642
643 return errstr;
644 }
645
646 /* __ext4_std_error decodes expected errors from journaling functions
647 * automatically and invokes the appropriate error response. */
648
649 void __ext4_std_error(struct super_block *sb, const char *function,
650 unsigned int line, int errno)
651 {
652 char nbuf[16];
653 const char *errstr;
654
655 /* Special case: if the error is EROFS, and we're not already
656 * inside a transaction, then there's really no point in logging
657 * an error. */
658 if (errno == -EROFS && journal_current_handle() == NULL &&
659 (sb->s_flags & MS_RDONLY))
660 return;
661
662 errstr = ext4_decode_error(sb, errno, nbuf);
663 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
664 sb->s_id, function, line, errstr);
665 save_error_info(sb, function, line);
666
667 ext4_handle_error(sb);
668 }
669
670 /*
671 * ext4_abort is a much stronger failure handler than ext4_error. The
672 * abort function may be used to deal with unrecoverable failures such
673 * as journal IO errors or ENOMEM at a critical moment in log management.
674 *
675 * We unconditionally force the filesystem into an ABORT|READONLY state,
676 * unless the error response on the fs has been set to panic in which
677 * case we take the easy way out and panic immediately.
678 */
679
680 void __ext4_abort(struct super_block *sb, const char *function,
681 unsigned int line, const char *fmt, ...)
682 {
683 va_list args;
684
685 save_error_info(sb, function, line);
686 va_start(args, fmt);
687 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
688 function, line);
689 vprintk(fmt, args);
690 printk("\n");
691 va_end(args);
692
693 if ((sb->s_flags & MS_RDONLY) == 0) {
694 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
695 sb->s_flags |= MS_RDONLY;
696 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
697 if (EXT4_SB(sb)->s_journal)
698 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
699 save_error_info(sb, function, line);
700 }
701 if (test_opt(sb, ERRORS_PANIC))
702 panic("EXT4-fs panic from previous error\n");
703 }
704
705 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
706 {
707 struct va_format vaf;
708 va_list args;
709
710 va_start(args, fmt);
711 vaf.fmt = fmt;
712 vaf.va = &args;
713 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
714 va_end(args);
715 }
716
717 void __ext4_warning(struct super_block *sb, const char *function,
718 unsigned int line, const char *fmt, ...)
719 {
720 struct va_format vaf;
721 va_list args;
722
723 va_start(args, fmt);
724 vaf.fmt = fmt;
725 vaf.va = &args;
726 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
727 sb->s_id, function, line, &vaf);
728 va_end(args);
729 }
730
731 void __ext4_grp_locked_error(const char *function, unsigned int line,
732 struct super_block *sb, ext4_group_t grp,
733 unsigned long ino, ext4_fsblk_t block,
734 const char *fmt, ...)
735 __releases(bitlock)
736 __acquires(bitlock)
737 {
738 struct va_format vaf;
739 va_list args;
740 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
741
742 es->s_last_error_ino = cpu_to_le32(ino);
743 es->s_last_error_block = cpu_to_le64(block);
744 __save_error_info(sb, function, line);
745
746 va_start(args, fmt);
747
748 vaf.fmt = fmt;
749 vaf.va = &args;
750 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
751 sb->s_id, function, line, grp);
752 if (ino)
753 printk(KERN_CONT "inode %lu: ", ino);
754 if (block)
755 printk(KERN_CONT "block %llu:", (unsigned long long) block);
756 printk(KERN_CONT "%pV\n", &vaf);
757 va_end(args);
758
759 if (test_opt(sb, ERRORS_CONT)) {
760 ext4_commit_super(sb, 0);
761 return;
762 }
763
764 ext4_unlock_group(sb, grp);
765 ext4_handle_error(sb);
766 /*
767 * We only get here in the ERRORS_RO case; relocking the group
768 * may be dangerous, but nothing bad will happen since the
769 * filesystem will have already been marked read/only and the
770 * journal has been aborted. We return 1 as a hint to callers
771 * who might what to use the return value from
772 * ext4_grp_locked_error() to distinguish between the
773 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
774 * aggressively from the ext4 function in question, with a
775 * more appropriate error code.
776 */
777 ext4_lock_group(sb, grp);
778 return;
779 }
780
781 void ext4_update_dynamic_rev(struct super_block *sb)
782 {
783 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
784
785 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
786 return;
787
788 ext4_warning(sb,
789 "updating to rev %d because of new feature flag, "
790 "running e2fsck is recommended",
791 EXT4_DYNAMIC_REV);
792
793 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
794 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
795 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
796 /* leave es->s_feature_*compat flags alone */
797 /* es->s_uuid will be set by e2fsck if empty */
798
799 /*
800 * The rest of the superblock fields should be zero, and if not it
801 * means they are likely already in use, so leave them alone. We
802 * can leave it up to e2fsck to clean up any inconsistencies there.
803 */
804 }
805
806 /*
807 * Open the external journal device
808 */
809 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
810 {
811 struct block_device *bdev;
812 char b[BDEVNAME_SIZE];
813
814 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
815 if (IS_ERR(bdev))
816 goto fail;
817 return bdev;
818
819 fail:
820 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
821 __bdevname(dev, b), PTR_ERR(bdev));
822 return NULL;
823 }
824
825 /*
826 * Release the journal device
827 */
828 static int ext4_blkdev_put(struct block_device *bdev)
829 {
830 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
831 }
832
833 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
834 {
835 struct block_device *bdev;
836 int ret = -ENODEV;
837
838 bdev = sbi->journal_bdev;
839 if (bdev) {
840 ret = ext4_blkdev_put(bdev);
841 sbi->journal_bdev = NULL;
842 }
843 return ret;
844 }
845
846 static inline struct inode *orphan_list_entry(struct list_head *l)
847 {
848 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
849 }
850
851 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
852 {
853 struct list_head *l;
854
855 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
856 le32_to_cpu(sbi->s_es->s_last_orphan));
857
858 printk(KERN_ERR "sb_info orphan list:\n");
859 list_for_each(l, &sbi->s_orphan) {
860 struct inode *inode = orphan_list_entry(l);
861 printk(KERN_ERR " "
862 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
863 inode->i_sb->s_id, inode->i_ino, inode,
864 inode->i_mode, inode->i_nlink,
865 NEXT_ORPHAN(inode));
866 }
867 }
868
869 static void ext4_put_super(struct super_block *sb)
870 {
871 struct ext4_sb_info *sbi = EXT4_SB(sb);
872 struct ext4_super_block *es = sbi->s_es;
873 int i, err;
874
875 ext4_unregister_li_request(sb);
876 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
877
878 flush_workqueue(sbi->dio_unwritten_wq);
879 destroy_workqueue(sbi->dio_unwritten_wq);
880
881 lock_super(sb);
882 if (sbi->s_journal) {
883 err = jbd2_journal_destroy(sbi->s_journal);
884 sbi->s_journal = NULL;
885 if (err < 0)
886 ext4_abort(sb, "Couldn't clean up the journal");
887 }
888
889 del_timer(&sbi->s_err_report);
890 ext4_release_system_zone(sb);
891 ext4_mb_release(sb);
892 ext4_ext_release(sb);
893 ext4_xattr_put_super(sb);
894
895 if (!(sb->s_flags & MS_RDONLY)) {
896 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
897 es->s_state = cpu_to_le16(sbi->s_mount_state);
898 }
899 if (sb->s_dirt || !(sb->s_flags & MS_RDONLY))
900 ext4_commit_super(sb, 1);
901
902 if (sbi->s_proc) {
903 remove_proc_entry("options", sbi->s_proc);
904 remove_proc_entry(sb->s_id, ext4_proc_root);
905 }
906 kobject_del(&sbi->s_kobj);
907
908 for (i = 0; i < sbi->s_gdb_count; i++)
909 brelse(sbi->s_group_desc[i]);
910 ext4_kvfree(sbi->s_group_desc);
911 ext4_kvfree(sbi->s_flex_groups);
912 percpu_counter_destroy(&sbi->s_freeclusters_counter);
913 percpu_counter_destroy(&sbi->s_freeinodes_counter);
914 percpu_counter_destroy(&sbi->s_dirs_counter);
915 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
916 brelse(sbi->s_sbh);
917 #ifdef CONFIG_QUOTA
918 for (i = 0; i < MAXQUOTAS; i++)
919 kfree(sbi->s_qf_names[i]);
920 #endif
921
922 /* Debugging code just in case the in-memory inode orphan list
923 * isn't empty. The on-disk one can be non-empty if we've
924 * detected an error and taken the fs readonly, but the
925 * in-memory list had better be clean by this point. */
926 if (!list_empty(&sbi->s_orphan))
927 dump_orphan_list(sb, sbi);
928 J_ASSERT(list_empty(&sbi->s_orphan));
929
930 invalidate_bdev(sb->s_bdev);
931 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
932 /*
933 * Invalidate the journal device's buffers. We don't want them
934 * floating about in memory - the physical journal device may
935 * hotswapped, and it breaks the `ro-after' testing code.
936 */
937 sync_blockdev(sbi->journal_bdev);
938 invalidate_bdev(sbi->journal_bdev);
939 ext4_blkdev_remove(sbi);
940 }
941 if (sbi->s_mmp_tsk)
942 kthread_stop(sbi->s_mmp_tsk);
943 sb->s_fs_info = NULL;
944 /*
945 * Now that we are completely done shutting down the
946 * superblock, we need to actually destroy the kobject.
947 */
948 unlock_super(sb);
949 kobject_put(&sbi->s_kobj);
950 wait_for_completion(&sbi->s_kobj_unregister);
951 if (sbi->s_chksum_driver)
952 crypto_free_shash(sbi->s_chksum_driver);
953 kfree(sbi->s_blockgroup_lock);
954 kfree(sbi);
955 }
956
957 static struct kmem_cache *ext4_inode_cachep;
958
959 /*
960 * Called inside transaction, so use GFP_NOFS
961 */
962 static struct inode *ext4_alloc_inode(struct super_block *sb)
963 {
964 struct ext4_inode_info *ei;
965
966 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
967 if (!ei)
968 return NULL;
969
970 ei->vfs_inode.i_version = 1;
971 ei->vfs_inode.i_data.writeback_index = 0;
972 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
973 INIT_LIST_HEAD(&ei->i_prealloc_list);
974 spin_lock_init(&ei->i_prealloc_lock);
975 ei->i_reserved_data_blocks = 0;
976 ei->i_reserved_meta_blocks = 0;
977 ei->i_allocated_meta_blocks = 0;
978 ei->i_da_metadata_calc_len = 0;
979 spin_lock_init(&(ei->i_block_reservation_lock));
980 #ifdef CONFIG_QUOTA
981 ei->i_reserved_quota = 0;
982 #endif
983 ei->jinode = NULL;
984 INIT_LIST_HEAD(&ei->i_completed_io_list);
985 spin_lock_init(&ei->i_completed_io_lock);
986 ei->cur_aio_dio = NULL;
987 ei->i_sync_tid = 0;
988 ei->i_datasync_tid = 0;
989 atomic_set(&ei->i_ioend_count, 0);
990 atomic_set(&ei->i_aiodio_unwritten, 0);
991
992 return &ei->vfs_inode;
993 }
994
995 static int ext4_drop_inode(struct inode *inode)
996 {
997 int drop = generic_drop_inode(inode);
998
999 trace_ext4_drop_inode(inode, drop);
1000 return drop;
1001 }
1002
1003 static void ext4_i_callback(struct rcu_head *head)
1004 {
1005 struct inode *inode = container_of(head, struct inode, i_rcu);
1006 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1007 }
1008
1009 static void ext4_destroy_inode(struct inode *inode)
1010 {
1011 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1012 ext4_msg(inode->i_sb, KERN_ERR,
1013 "Inode %lu (%p): orphan list check failed!",
1014 inode->i_ino, EXT4_I(inode));
1015 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1016 EXT4_I(inode), sizeof(struct ext4_inode_info),
1017 true);
1018 dump_stack();
1019 }
1020 call_rcu(&inode->i_rcu, ext4_i_callback);
1021 }
1022
1023 static void init_once(void *foo)
1024 {
1025 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1026
1027 INIT_LIST_HEAD(&ei->i_orphan);
1028 #ifdef CONFIG_EXT4_FS_XATTR
1029 init_rwsem(&ei->xattr_sem);
1030 #endif
1031 init_rwsem(&ei->i_data_sem);
1032 inode_init_once(&ei->vfs_inode);
1033 }
1034
1035 static int init_inodecache(void)
1036 {
1037 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1038 sizeof(struct ext4_inode_info),
1039 0, (SLAB_RECLAIM_ACCOUNT|
1040 SLAB_MEM_SPREAD),
1041 init_once);
1042 if (ext4_inode_cachep == NULL)
1043 return -ENOMEM;
1044 return 0;
1045 }
1046
1047 static void destroy_inodecache(void)
1048 {
1049 kmem_cache_destroy(ext4_inode_cachep);
1050 }
1051
1052 void ext4_clear_inode(struct inode *inode)
1053 {
1054 invalidate_inode_buffers(inode);
1055 clear_inode(inode);
1056 dquot_drop(inode);
1057 ext4_discard_preallocations(inode);
1058 if (EXT4_I(inode)->jinode) {
1059 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1060 EXT4_I(inode)->jinode);
1061 jbd2_free_inode(EXT4_I(inode)->jinode);
1062 EXT4_I(inode)->jinode = NULL;
1063 }
1064 }
1065
1066 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1067 u64 ino, u32 generation)
1068 {
1069 struct inode *inode;
1070
1071 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1072 return ERR_PTR(-ESTALE);
1073 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1074 return ERR_PTR(-ESTALE);
1075
1076 /* iget isn't really right if the inode is currently unallocated!!
1077 *
1078 * ext4_read_inode will return a bad_inode if the inode had been
1079 * deleted, so we should be safe.
1080 *
1081 * Currently we don't know the generation for parent directory, so
1082 * a generation of 0 means "accept any"
1083 */
1084 inode = ext4_iget(sb, ino);
1085 if (IS_ERR(inode))
1086 return ERR_CAST(inode);
1087 if (generation && inode->i_generation != generation) {
1088 iput(inode);
1089 return ERR_PTR(-ESTALE);
1090 }
1091
1092 return inode;
1093 }
1094
1095 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1096 int fh_len, int fh_type)
1097 {
1098 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1099 ext4_nfs_get_inode);
1100 }
1101
1102 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1103 int fh_len, int fh_type)
1104 {
1105 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1106 ext4_nfs_get_inode);
1107 }
1108
1109 /*
1110 * Try to release metadata pages (indirect blocks, directories) which are
1111 * mapped via the block device. Since these pages could have journal heads
1112 * which would prevent try_to_free_buffers() from freeing them, we must use
1113 * jbd2 layer's try_to_free_buffers() function to release them.
1114 */
1115 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1116 gfp_t wait)
1117 {
1118 journal_t *journal = EXT4_SB(sb)->s_journal;
1119
1120 WARN_ON(PageChecked(page));
1121 if (!page_has_buffers(page))
1122 return 0;
1123 if (journal)
1124 return jbd2_journal_try_to_free_buffers(journal, page,
1125 wait & ~__GFP_WAIT);
1126 return try_to_free_buffers(page);
1127 }
1128
1129 #ifdef CONFIG_QUOTA
1130 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1131 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1132
1133 static int ext4_write_dquot(struct dquot *dquot);
1134 static int ext4_acquire_dquot(struct dquot *dquot);
1135 static int ext4_release_dquot(struct dquot *dquot);
1136 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1137 static int ext4_write_info(struct super_block *sb, int type);
1138 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1139 struct path *path);
1140 static int ext4_quota_off(struct super_block *sb, int type);
1141 static int ext4_quota_on_mount(struct super_block *sb, int type);
1142 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1143 size_t len, loff_t off);
1144 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1145 const char *data, size_t len, loff_t off);
1146
1147 static const struct dquot_operations ext4_quota_operations = {
1148 .get_reserved_space = ext4_get_reserved_space,
1149 .write_dquot = ext4_write_dquot,
1150 .acquire_dquot = ext4_acquire_dquot,
1151 .release_dquot = ext4_release_dquot,
1152 .mark_dirty = ext4_mark_dquot_dirty,
1153 .write_info = ext4_write_info,
1154 .alloc_dquot = dquot_alloc,
1155 .destroy_dquot = dquot_destroy,
1156 };
1157
1158 static const struct quotactl_ops ext4_qctl_operations = {
1159 .quota_on = ext4_quota_on,
1160 .quota_off = ext4_quota_off,
1161 .quota_sync = dquot_quota_sync,
1162 .get_info = dquot_get_dqinfo,
1163 .set_info = dquot_set_dqinfo,
1164 .get_dqblk = dquot_get_dqblk,
1165 .set_dqblk = dquot_set_dqblk
1166 };
1167 #endif
1168
1169 static const struct super_operations ext4_sops = {
1170 .alloc_inode = ext4_alloc_inode,
1171 .destroy_inode = ext4_destroy_inode,
1172 .write_inode = ext4_write_inode,
1173 .dirty_inode = ext4_dirty_inode,
1174 .drop_inode = ext4_drop_inode,
1175 .evict_inode = ext4_evict_inode,
1176 .put_super = ext4_put_super,
1177 .sync_fs = ext4_sync_fs,
1178 .freeze_fs = ext4_freeze,
1179 .unfreeze_fs = ext4_unfreeze,
1180 .statfs = ext4_statfs,
1181 .remount_fs = ext4_remount,
1182 .show_options = ext4_show_options,
1183 #ifdef CONFIG_QUOTA
1184 .quota_read = ext4_quota_read,
1185 .quota_write = ext4_quota_write,
1186 #endif
1187 .bdev_try_to_free_page = bdev_try_to_free_page,
1188 };
1189
1190 static const struct super_operations ext4_nojournal_sops = {
1191 .alloc_inode = ext4_alloc_inode,
1192 .destroy_inode = ext4_destroy_inode,
1193 .write_inode = ext4_write_inode,
1194 .dirty_inode = ext4_dirty_inode,
1195 .drop_inode = ext4_drop_inode,
1196 .evict_inode = ext4_evict_inode,
1197 .write_super = ext4_write_super,
1198 .put_super = ext4_put_super,
1199 .statfs = ext4_statfs,
1200 .remount_fs = ext4_remount,
1201 .show_options = ext4_show_options,
1202 #ifdef CONFIG_QUOTA
1203 .quota_read = ext4_quota_read,
1204 .quota_write = ext4_quota_write,
1205 #endif
1206 .bdev_try_to_free_page = bdev_try_to_free_page,
1207 };
1208
1209 static const struct export_operations ext4_export_ops = {
1210 .fh_to_dentry = ext4_fh_to_dentry,
1211 .fh_to_parent = ext4_fh_to_parent,
1212 .get_parent = ext4_get_parent,
1213 };
1214
1215 enum {
1216 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1217 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1218 Opt_nouid32, Opt_debug, Opt_removed,
1219 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1220 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1221 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1222 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1223 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1224 Opt_data_err_abort, Opt_data_err_ignore,
1225 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1226 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1227 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1228 Opt_usrquota, Opt_grpquota, Opt_i_version,
1229 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1230 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1231 Opt_inode_readahead_blks, Opt_journal_ioprio,
1232 Opt_dioread_nolock, Opt_dioread_lock,
1233 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1234 };
1235
1236 static const match_table_t tokens = {
1237 {Opt_bsd_df, "bsddf"},
1238 {Opt_minix_df, "minixdf"},
1239 {Opt_grpid, "grpid"},
1240 {Opt_grpid, "bsdgroups"},
1241 {Opt_nogrpid, "nogrpid"},
1242 {Opt_nogrpid, "sysvgroups"},
1243 {Opt_resgid, "resgid=%u"},
1244 {Opt_resuid, "resuid=%u"},
1245 {Opt_sb, "sb=%u"},
1246 {Opt_err_cont, "errors=continue"},
1247 {Opt_err_panic, "errors=panic"},
1248 {Opt_err_ro, "errors=remount-ro"},
1249 {Opt_nouid32, "nouid32"},
1250 {Opt_debug, "debug"},
1251 {Opt_removed, "oldalloc"},
1252 {Opt_removed, "orlov"},
1253 {Opt_user_xattr, "user_xattr"},
1254 {Opt_nouser_xattr, "nouser_xattr"},
1255 {Opt_acl, "acl"},
1256 {Opt_noacl, "noacl"},
1257 {Opt_noload, "norecovery"},
1258 {Opt_noload, "noload"},
1259 {Opt_removed, "nobh"},
1260 {Opt_removed, "bh"},
1261 {Opt_commit, "commit=%u"},
1262 {Opt_min_batch_time, "min_batch_time=%u"},
1263 {Opt_max_batch_time, "max_batch_time=%u"},
1264 {Opt_journal_dev, "journal_dev=%u"},
1265 {Opt_journal_checksum, "journal_checksum"},
1266 {Opt_journal_async_commit, "journal_async_commit"},
1267 {Opt_abort, "abort"},
1268 {Opt_data_journal, "data=journal"},
1269 {Opt_data_ordered, "data=ordered"},
1270 {Opt_data_writeback, "data=writeback"},
1271 {Opt_data_err_abort, "data_err=abort"},
1272 {Opt_data_err_ignore, "data_err=ignore"},
1273 {Opt_offusrjquota, "usrjquota="},
1274 {Opt_usrjquota, "usrjquota=%s"},
1275 {Opt_offgrpjquota, "grpjquota="},
1276 {Opt_grpjquota, "grpjquota=%s"},
1277 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1278 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1279 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1280 {Opt_grpquota, "grpquota"},
1281 {Opt_noquota, "noquota"},
1282 {Opt_quota, "quota"},
1283 {Opt_usrquota, "usrquota"},
1284 {Opt_barrier, "barrier=%u"},
1285 {Opt_barrier, "barrier"},
1286 {Opt_nobarrier, "nobarrier"},
1287 {Opt_i_version, "i_version"},
1288 {Opt_stripe, "stripe=%u"},
1289 {Opt_delalloc, "delalloc"},
1290 {Opt_nodelalloc, "nodelalloc"},
1291 {Opt_mblk_io_submit, "mblk_io_submit"},
1292 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1293 {Opt_block_validity, "block_validity"},
1294 {Opt_noblock_validity, "noblock_validity"},
1295 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1296 {Opt_journal_ioprio, "journal_ioprio=%u"},
1297 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1298 {Opt_auto_da_alloc, "auto_da_alloc"},
1299 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1300 {Opt_dioread_nolock, "dioread_nolock"},
1301 {Opt_dioread_lock, "dioread_lock"},
1302 {Opt_discard, "discard"},
1303 {Opt_nodiscard, "nodiscard"},
1304 {Opt_init_itable, "init_itable=%u"},
1305 {Opt_init_itable, "init_itable"},
1306 {Opt_noinit_itable, "noinit_itable"},
1307 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1308 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1309 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1310 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1311 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1312 {Opt_err, NULL},
1313 };
1314
1315 static ext4_fsblk_t get_sb_block(void **data)
1316 {
1317 ext4_fsblk_t sb_block;
1318 char *options = (char *) *data;
1319
1320 if (!options || strncmp(options, "sb=", 3) != 0)
1321 return 1; /* Default location */
1322
1323 options += 3;
1324 /* TODO: use simple_strtoll with >32bit ext4 */
1325 sb_block = simple_strtoul(options, &options, 0);
1326 if (*options && *options != ',') {
1327 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1328 (char *) *data);
1329 return 1;
1330 }
1331 if (*options == ',')
1332 options++;
1333 *data = (void *) options;
1334
1335 return sb_block;
1336 }
1337
1338 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1339 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1340 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1341
1342 #ifdef CONFIG_QUOTA
1343 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1344 {
1345 struct ext4_sb_info *sbi = EXT4_SB(sb);
1346 char *qname;
1347
1348 if (sb_any_quota_loaded(sb) &&
1349 !sbi->s_qf_names[qtype]) {
1350 ext4_msg(sb, KERN_ERR,
1351 "Cannot change journaled "
1352 "quota options when quota turned on");
1353 return -1;
1354 }
1355 qname = match_strdup(args);
1356 if (!qname) {
1357 ext4_msg(sb, KERN_ERR,
1358 "Not enough memory for storing quotafile name");
1359 return -1;
1360 }
1361 if (sbi->s_qf_names[qtype] &&
1362 strcmp(sbi->s_qf_names[qtype], qname)) {
1363 ext4_msg(sb, KERN_ERR,
1364 "%s quota file already specified", QTYPE2NAME(qtype));
1365 kfree(qname);
1366 return -1;
1367 }
1368 sbi->s_qf_names[qtype] = qname;
1369 if (strchr(sbi->s_qf_names[qtype], '/')) {
1370 ext4_msg(sb, KERN_ERR,
1371 "quotafile must be on filesystem root");
1372 kfree(sbi->s_qf_names[qtype]);
1373 sbi->s_qf_names[qtype] = NULL;
1374 return -1;
1375 }
1376 set_opt(sb, QUOTA);
1377 return 1;
1378 }
1379
1380 static int clear_qf_name(struct super_block *sb, int qtype)
1381 {
1382
1383 struct ext4_sb_info *sbi = EXT4_SB(sb);
1384
1385 if (sb_any_quota_loaded(sb) &&
1386 sbi->s_qf_names[qtype]) {
1387 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1388 " when quota turned on");
1389 return -1;
1390 }
1391 /*
1392 * The space will be released later when all options are confirmed
1393 * to be correct
1394 */
1395 sbi->s_qf_names[qtype] = NULL;
1396 return 1;
1397 }
1398 #endif
1399
1400 #define MOPT_SET 0x0001
1401 #define MOPT_CLEAR 0x0002
1402 #define MOPT_NOSUPPORT 0x0004
1403 #define MOPT_EXPLICIT 0x0008
1404 #define MOPT_CLEAR_ERR 0x0010
1405 #define MOPT_GTE0 0x0020
1406 #ifdef CONFIG_QUOTA
1407 #define MOPT_Q 0
1408 #define MOPT_QFMT 0x0040
1409 #else
1410 #define MOPT_Q MOPT_NOSUPPORT
1411 #define MOPT_QFMT MOPT_NOSUPPORT
1412 #endif
1413 #define MOPT_DATAJ 0x0080
1414
1415 static const struct mount_opts {
1416 int token;
1417 int mount_opt;
1418 int flags;
1419 } ext4_mount_opts[] = {
1420 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1421 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1422 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1423 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1424 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET},
1425 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR},
1426 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1427 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1428 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET},
1429 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR},
1430 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1431 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1432 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT},
1433 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT},
1434 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET},
1435 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1436 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET},
1437 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET},
1438 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1439 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1440 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1441 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET},
1442 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR},
1443 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1444 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1445 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1446 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1447 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1448 {Opt_commit, 0, MOPT_GTE0},
1449 {Opt_max_batch_time, 0, MOPT_GTE0},
1450 {Opt_min_batch_time, 0, MOPT_GTE0},
1451 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1452 {Opt_init_itable, 0, MOPT_GTE0},
1453 {Opt_stripe, 0, MOPT_GTE0},
1454 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ},
1455 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ},
1456 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ},
1457 #ifdef CONFIG_EXT4_FS_XATTR
1458 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1459 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1460 #else
1461 {Opt_user_xattr, 0, MOPT_NOSUPPORT},
1462 {Opt_nouser_xattr, 0, MOPT_NOSUPPORT},
1463 #endif
1464 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1465 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1466 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1467 #else
1468 {Opt_acl, 0, MOPT_NOSUPPORT},
1469 {Opt_noacl, 0, MOPT_NOSUPPORT},
1470 #endif
1471 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1472 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1473 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1474 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1475 MOPT_SET | MOPT_Q},
1476 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1477 MOPT_SET | MOPT_Q},
1478 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1479 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1480 {Opt_usrjquota, 0, MOPT_Q},
1481 {Opt_grpjquota, 0, MOPT_Q},
1482 {Opt_offusrjquota, 0, MOPT_Q},
1483 {Opt_offgrpjquota, 0, MOPT_Q},
1484 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1485 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1486 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1487 {Opt_err, 0, 0}
1488 };
1489
1490 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1491 substring_t *args, unsigned long *journal_devnum,
1492 unsigned int *journal_ioprio, int is_remount)
1493 {
1494 struct ext4_sb_info *sbi = EXT4_SB(sb);
1495 const struct mount_opts *m;
1496 kuid_t uid;
1497 kgid_t gid;
1498 int arg = 0;
1499
1500 #ifdef CONFIG_QUOTA
1501 if (token == Opt_usrjquota)
1502 return set_qf_name(sb, USRQUOTA, &args[0]);
1503 else if (token == Opt_grpjquota)
1504 return set_qf_name(sb, GRPQUOTA, &args[0]);
1505 else if (token == Opt_offusrjquota)
1506 return clear_qf_name(sb, USRQUOTA);
1507 else if (token == Opt_offgrpjquota)
1508 return clear_qf_name(sb, GRPQUOTA);
1509 #endif
1510 if (args->from && match_int(args, &arg))
1511 return -1;
1512 switch (token) {
1513 case Opt_noacl:
1514 case Opt_nouser_xattr:
1515 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1516 break;
1517 case Opt_sb:
1518 return 1; /* handled by get_sb_block() */
1519 case Opt_removed:
1520 ext4_msg(sb, KERN_WARNING,
1521 "Ignoring removed %s option", opt);
1522 return 1;
1523 case Opt_resuid:
1524 uid = make_kuid(current_user_ns(), arg);
1525 if (!uid_valid(uid)) {
1526 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1527 return -1;
1528 }
1529 sbi->s_resuid = uid;
1530 return 1;
1531 case Opt_resgid:
1532 gid = make_kgid(current_user_ns(), arg);
1533 if (!gid_valid(gid)) {
1534 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1535 return -1;
1536 }
1537 sbi->s_resgid = gid;
1538 return 1;
1539 case Opt_abort:
1540 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1541 return 1;
1542 case Opt_i_version:
1543 sb->s_flags |= MS_I_VERSION;
1544 return 1;
1545 case Opt_journal_dev:
1546 if (is_remount) {
1547 ext4_msg(sb, KERN_ERR,
1548 "Cannot specify journal on remount");
1549 return -1;
1550 }
1551 *journal_devnum = arg;
1552 return 1;
1553 case Opt_journal_ioprio:
1554 if (arg < 0 || arg > 7)
1555 return -1;
1556 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1557 return 1;
1558 }
1559
1560 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1561 if (token != m->token)
1562 continue;
1563 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1564 return -1;
1565 if (m->flags & MOPT_EXPLICIT)
1566 set_opt2(sb, EXPLICIT_DELALLOC);
1567 if (m->flags & MOPT_CLEAR_ERR)
1568 clear_opt(sb, ERRORS_MASK);
1569 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1570 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1571 "options when quota turned on");
1572 return -1;
1573 }
1574
1575 if (m->flags & MOPT_NOSUPPORT) {
1576 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1577 } else if (token == Opt_commit) {
1578 if (arg == 0)
1579 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1580 sbi->s_commit_interval = HZ * arg;
1581 } else if (token == Opt_max_batch_time) {
1582 if (arg == 0)
1583 arg = EXT4_DEF_MAX_BATCH_TIME;
1584 sbi->s_max_batch_time = arg;
1585 } else if (token == Opt_min_batch_time) {
1586 sbi->s_min_batch_time = arg;
1587 } else if (token == Opt_inode_readahead_blks) {
1588 if (arg > (1 << 30))
1589 return -1;
1590 if (arg && !is_power_of_2(arg)) {
1591 ext4_msg(sb, KERN_ERR,
1592 "EXT4-fs: inode_readahead_blks"
1593 " must be a power of 2");
1594 return -1;
1595 }
1596 sbi->s_inode_readahead_blks = arg;
1597 } else if (token == Opt_init_itable) {
1598 set_opt(sb, INIT_INODE_TABLE);
1599 if (!args->from)
1600 arg = EXT4_DEF_LI_WAIT_MULT;
1601 sbi->s_li_wait_mult = arg;
1602 } else if (token == Opt_stripe) {
1603 sbi->s_stripe = arg;
1604 } else if (m->flags & MOPT_DATAJ) {
1605 if (is_remount) {
1606 if (!sbi->s_journal)
1607 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1608 else if (test_opt(sb, DATA_FLAGS) !=
1609 m->mount_opt) {
1610 ext4_msg(sb, KERN_ERR,
1611 "Cannot change data mode on remount");
1612 return -1;
1613 }
1614 } else {
1615 clear_opt(sb, DATA_FLAGS);
1616 sbi->s_mount_opt |= m->mount_opt;
1617 }
1618 #ifdef CONFIG_QUOTA
1619 } else if (m->flags & MOPT_QFMT) {
1620 if (sb_any_quota_loaded(sb) &&
1621 sbi->s_jquota_fmt != m->mount_opt) {
1622 ext4_msg(sb, KERN_ERR, "Cannot "
1623 "change journaled quota options "
1624 "when quota turned on");
1625 return -1;
1626 }
1627 sbi->s_jquota_fmt = m->mount_opt;
1628 #endif
1629 } else {
1630 if (!args->from)
1631 arg = 1;
1632 if (m->flags & MOPT_CLEAR)
1633 arg = !arg;
1634 else if (unlikely(!(m->flags & MOPT_SET))) {
1635 ext4_msg(sb, KERN_WARNING,
1636 "buggy handling of option %s", opt);
1637 WARN_ON(1);
1638 return -1;
1639 }
1640 if (arg != 0)
1641 sbi->s_mount_opt |= m->mount_opt;
1642 else
1643 sbi->s_mount_opt &= ~m->mount_opt;
1644 }
1645 return 1;
1646 }
1647 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1648 "or missing value", opt);
1649 return -1;
1650 }
1651
1652 static int parse_options(char *options, struct super_block *sb,
1653 unsigned long *journal_devnum,
1654 unsigned int *journal_ioprio,
1655 int is_remount)
1656 {
1657 #ifdef CONFIG_QUOTA
1658 struct ext4_sb_info *sbi = EXT4_SB(sb);
1659 #endif
1660 char *p;
1661 substring_t args[MAX_OPT_ARGS];
1662 int token;
1663
1664 if (!options)
1665 return 1;
1666
1667 while ((p = strsep(&options, ",")) != NULL) {
1668 if (!*p)
1669 continue;
1670 /*
1671 * Initialize args struct so we know whether arg was
1672 * found; some options take optional arguments.
1673 */
1674 args[0].to = args[0].from = 0;
1675 token = match_token(p, tokens, args);
1676 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1677 journal_ioprio, is_remount) < 0)
1678 return 0;
1679 }
1680 #ifdef CONFIG_QUOTA
1681 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1682 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1683 clear_opt(sb, USRQUOTA);
1684
1685 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1686 clear_opt(sb, GRPQUOTA);
1687
1688 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1689 ext4_msg(sb, KERN_ERR, "old and new quota "
1690 "format mixing");
1691 return 0;
1692 }
1693
1694 if (!sbi->s_jquota_fmt) {
1695 ext4_msg(sb, KERN_ERR, "journaled quota format "
1696 "not specified");
1697 return 0;
1698 }
1699 } else {
1700 if (sbi->s_jquota_fmt) {
1701 ext4_msg(sb, KERN_ERR, "journaled quota format "
1702 "specified with no journaling "
1703 "enabled");
1704 return 0;
1705 }
1706 }
1707 #endif
1708 return 1;
1709 }
1710
1711 static inline void ext4_show_quota_options(struct seq_file *seq,
1712 struct super_block *sb)
1713 {
1714 #if defined(CONFIG_QUOTA)
1715 struct ext4_sb_info *sbi = EXT4_SB(sb);
1716
1717 if (sbi->s_jquota_fmt) {
1718 char *fmtname = "";
1719
1720 switch (sbi->s_jquota_fmt) {
1721 case QFMT_VFS_OLD:
1722 fmtname = "vfsold";
1723 break;
1724 case QFMT_VFS_V0:
1725 fmtname = "vfsv0";
1726 break;
1727 case QFMT_VFS_V1:
1728 fmtname = "vfsv1";
1729 break;
1730 }
1731 seq_printf(seq, ",jqfmt=%s", fmtname);
1732 }
1733
1734 if (sbi->s_qf_names[USRQUOTA])
1735 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1736
1737 if (sbi->s_qf_names[GRPQUOTA])
1738 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1739
1740 if (test_opt(sb, USRQUOTA))
1741 seq_puts(seq, ",usrquota");
1742
1743 if (test_opt(sb, GRPQUOTA))
1744 seq_puts(seq, ",grpquota");
1745 #endif
1746 }
1747
1748 static const char *token2str(int token)
1749 {
1750 static const struct match_token *t;
1751
1752 for (t = tokens; t->token != Opt_err; t++)
1753 if (t->token == token && !strchr(t->pattern, '='))
1754 break;
1755 return t->pattern;
1756 }
1757
1758 /*
1759 * Show an option if
1760 * - it's set to a non-default value OR
1761 * - if the per-sb default is different from the global default
1762 */
1763 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1764 int nodefs)
1765 {
1766 struct ext4_sb_info *sbi = EXT4_SB(sb);
1767 struct ext4_super_block *es = sbi->s_es;
1768 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1769 const struct mount_opts *m;
1770 char sep = nodefs ? '\n' : ',';
1771
1772 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1773 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1774
1775 if (sbi->s_sb_block != 1)
1776 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1777
1778 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1779 int want_set = m->flags & MOPT_SET;
1780 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1781 (m->flags & MOPT_CLEAR_ERR))
1782 continue;
1783 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1784 continue; /* skip if same as the default */
1785 if ((want_set &&
1786 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1787 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1788 continue; /* select Opt_noFoo vs Opt_Foo */
1789 SEQ_OPTS_PRINT("%s", token2str(m->token));
1790 }
1791
1792 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1793 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1794 SEQ_OPTS_PRINT("resuid=%u",
1795 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1796 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1797 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1798 SEQ_OPTS_PRINT("resgid=%u",
1799 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1800 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1801 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1802 SEQ_OPTS_PUTS("errors=remount-ro");
1803 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1804 SEQ_OPTS_PUTS("errors=continue");
1805 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1806 SEQ_OPTS_PUTS("errors=panic");
1807 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1808 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1809 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1810 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1811 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1812 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1813 if (sb->s_flags & MS_I_VERSION)
1814 SEQ_OPTS_PUTS("i_version");
1815 if (nodefs || sbi->s_stripe)
1816 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1817 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1818 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1819 SEQ_OPTS_PUTS("data=journal");
1820 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1821 SEQ_OPTS_PUTS("data=ordered");
1822 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1823 SEQ_OPTS_PUTS("data=writeback");
1824 }
1825 if (nodefs ||
1826 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1827 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1828 sbi->s_inode_readahead_blks);
1829
1830 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1831 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1832 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1833
1834 ext4_show_quota_options(seq, sb);
1835 return 0;
1836 }
1837
1838 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1839 {
1840 return _ext4_show_options(seq, root->d_sb, 0);
1841 }
1842
1843 static int options_seq_show(struct seq_file *seq, void *offset)
1844 {
1845 struct super_block *sb = seq->private;
1846 int rc;
1847
1848 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1849 rc = _ext4_show_options(seq, sb, 1);
1850 seq_puts(seq, "\n");
1851 return rc;
1852 }
1853
1854 static int options_open_fs(struct inode *inode, struct file *file)
1855 {
1856 return single_open(file, options_seq_show, PDE(inode)->data);
1857 }
1858
1859 static const struct file_operations ext4_seq_options_fops = {
1860 .owner = THIS_MODULE,
1861 .open = options_open_fs,
1862 .read = seq_read,
1863 .llseek = seq_lseek,
1864 .release = single_release,
1865 };
1866
1867 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1868 int read_only)
1869 {
1870 struct ext4_sb_info *sbi = EXT4_SB(sb);
1871 int res = 0;
1872
1873 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1874 ext4_msg(sb, KERN_ERR, "revision level too high, "
1875 "forcing read-only mode");
1876 res = MS_RDONLY;
1877 }
1878 if (read_only)
1879 goto done;
1880 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1881 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1882 "running e2fsck is recommended");
1883 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1884 ext4_msg(sb, KERN_WARNING,
1885 "warning: mounting fs with errors, "
1886 "running e2fsck is recommended");
1887 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1888 le16_to_cpu(es->s_mnt_count) >=
1889 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1890 ext4_msg(sb, KERN_WARNING,
1891 "warning: maximal mount count reached, "
1892 "running e2fsck is recommended");
1893 else if (le32_to_cpu(es->s_checkinterval) &&
1894 (le32_to_cpu(es->s_lastcheck) +
1895 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1896 ext4_msg(sb, KERN_WARNING,
1897 "warning: checktime reached, "
1898 "running e2fsck is recommended");
1899 if (!sbi->s_journal)
1900 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1901 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1902 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1903 le16_add_cpu(&es->s_mnt_count, 1);
1904 es->s_mtime = cpu_to_le32(get_seconds());
1905 ext4_update_dynamic_rev(sb);
1906 if (sbi->s_journal)
1907 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1908
1909 ext4_commit_super(sb, 1);
1910 done:
1911 if (test_opt(sb, DEBUG))
1912 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1913 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1914 sb->s_blocksize,
1915 sbi->s_groups_count,
1916 EXT4_BLOCKS_PER_GROUP(sb),
1917 EXT4_INODES_PER_GROUP(sb),
1918 sbi->s_mount_opt, sbi->s_mount_opt2);
1919
1920 cleancache_init_fs(sb);
1921 return res;
1922 }
1923
1924 static int ext4_fill_flex_info(struct super_block *sb)
1925 {
1926 struct ext4_sb_info *sbi = EXT4_SB(sb);
1927 struct ext4_group_desc *gdp = NULL;
1928 ext4_group_t flex_group_count;
1929 ext4_group_t flex_group;
1930 unsigned int groups_per_flex = 0;
1931 size_t size;
1932 int i;
1933
1934 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1935 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1936 sbi->s_log_groups_per_flex = 0;
1937 return 1;
1938 }
1939 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1940
1941 /* We allocate both existing and potentially added groups */
1942 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1943 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1944 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1945 size = flex_group_count * sizeof(struct flex_groups);
1946 sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL);
1947 if (sbi->s_flex_groups == NULL) {
1948 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups",
1949 flex_group_count);
1950 goto failed;
1951 }
1952
1953 for (i = 0; i < sbi->s_groups_count; i++) {
1954 gdp = ext4_get_group_desc(sb, i, NULL);
1955
1956 flex_group = ext4_flex_group(sbi, i);
1957 atomic_add(ext4_free_inodes_count(sb, gdp),
1958 &sbi->s_flex_groups[flex_group].free_inodes);
1959 atomic_add(ext4_free_group_clusters(sb, gdp),
1960 &sbi->s_flex_groups[flex_group].free_clusters);
1961 atomic_add(ext4_used_dirs_count(sb, gdp),
1962 &sbi->s_flex_groups[flex_group].used_dirs);
1963 }
1964
1965 return 1;
1966 failed:
1967 return 0;
1968 }
1969
1970 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1971 struct ext4_group_desc *gdp)
1972 {
1973 int offset;
1974 __u16 crc = 0;
1975 __le32 le_group = cpu_to_le32(block_group);
1976
1977 if ((sbi->s_es->s_feature_ro_compat &
1978 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1979 /* Use new metadata_csum algorithm */
1980 __u16 old_csum;
1981 __u32 csum32;
1982
1983 old_csum = gdp->bg_checksum;
1984 gdp->bg_checksum = 0;
1985 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1986 sizeof(le_group));
1987 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1988 sbi->s_desc_size);
1989 gdp->bg_checksum = old_csum;
1990
1991 crc = csum32 & 0xFFFF;
1992 goto out;
1993 }
1994
1995 /* old crc16 code */
1996 offset = offsetof(struct ext4_group_desc, bg_checksum);
1997
1998 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1999 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2000 crc = crc16(crc, (__u8 *)gdp, offset);
2001 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2002 /* for checksum of struct ext4_group_desc do the rest...*/
2003 if ((sbi->s_es->s_feature_incompat &
2004 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2005 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2006 crc = crc16(crc, (__u8 *)gdp + offset,
2007 le16_to_cpu(sbi->s_es->s_desc_size) -
2008 offset);
2009
2010 out:
2011 return cpu_to_le16(crc);
2012 }
2013
2014 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2015 struct ext4_group_desc *gdp)
2016 {
2017 if (ext4_has_group_desc_csum(sb) &&
2018 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2019 block_group, gdp)))
2020 return 0;
2021
2022 return 1;
2023 }
2024
2025 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2026 struct ext4_group_desc *gdp)
2027 {
2028 if (!ext4_has_group_desc_csum(sb))
2029 return;
2030 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2031 }
2032
2033 /* Called at mount-time, super-block is locked */
2034 static int ext4_check_descriptors(struct super_block *sb,
2035 ext4_group_t *first_not_zeroed)
2036 {
2037 struct ext4_sb_info *sbi = EXT4_SB(sb);
2038 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2039 ext4_fsblk_t last_block;
2040 ext4_fsblk_t block_bitmap;
2041 ext4_fsblk_t inode_bitmap;
2042 ext4_fsblk_t inode_table;
2043 int flexbg_flag = 0;
2044 ext4_group_t i, grp = sbi->s_groups_count;
2045
2046 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2047 flexbg_flag = 1;
2048
2049 ext4_debug("Checking group descriptors");
2050
2051 for (i = 0; i < sbi->s_groups_count; i++) {
2052 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2053
2054 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2055 last_block = ext4_blocks_count(sbi->s_es) - 1;
2056 else
2057 last_block = first_block +
2058 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2059
2060 if ((grp == sbi->s_groups_count) &&
2061 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2062 grp = i;
2063
2064 block_bitmap = ext4_block_bitmap(sb, gdp);
2065 if (block_bitmap < first_block || block_bitmap > last_block) {
2066 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2067 "Block bitmap for group %u not in group "
2068 "(block %llu)!", i, block_bitmap);
2069 return 0;
2070 }
2071 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2072 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2073 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2074 "Inode bitmap for group %u not in group "
2075 "(block %llu)!", i, inode_bitmap);
2076 return 0;
2077 }
2078 inode_table = ext4_inode_table(sb, gdp);
2079 if (inode_table < first_block ||
2080 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2081 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2082 "Inode table for group %u not in group "
2083 "(block %llu)!", i, inode_table);
2084 return 0;
2085 }
2086 ext4_lock_group(sb, i);
2087 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2088 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2089 "Checksum for group %u failed (%u!=%u)",
2090 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2091 gdp)), le16_to_cpu(gdp->bg_checksum));
2092 if (!(sb->s_flags & MS_RDONLY)) {
2093 ext4_unlock_group(sb, i);
2094 return 0;
2095 }
2096 }
2097 ext4_unlock_group(sb, i);
2098 if (!flexbg_flag)
2099 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2100 }
2101 if (NULL != first_not_zeroed)
2102 *first_not_zeroed = grp;
2103
2104 ext4_free_blocks_count_set(sbi->s_es,
2105 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2106 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2107 return 1;
2108 }
2109
2110 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2111 * the superblock) which were deleted from all directories, but held open by
2112 * a process at the time of a crash. We walk the list and try to delete these
2113 * inodes at recovery time (only with a read-write filesystem).
2114 *
2115 * In order to keep the orphan inode chain consistent during traversal (in
2116 * case of crash during recovery), we link each inode into the superblock
2117 * orphan list_head and handle it the same way as an inode deletion during
2118 * normal operation (which journals the operations for us).
2119 *
2120 * We only do an iget() and an iput() on each inode, which is very safe if we
2121 * accidentally point at an in-use or already deleted inode. The worst that
2122 * can happen in this case is that we get a "bit already cleared" message from
2123 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2124 * e2fsck was run on this filesystem, and it must have already done the orphan
2125 * inode cleanup for us, so we can safely abort without any further action.
2126 */
2127 static void ext4_orphan_cleanup(struct super_block *sb,
2128 struct ext4_super_block *es)
2129 {
2130 unsigned int s_flags = sb->s_flags;
2131 int nr_orphans = 0, nr_truncates = 0;
2132 #ifdef CONFIG_QUOTA
2133 int i;
2134 #endif
2135 if (!es->s_last_orphan) {
2136 jbd_debug(4, "no orphan inodes to clean up\n");
2137 return;
2138 }
2139
2140 if (bdev_read_only(sb->s_bdev)) {
2141 ext4_msg(sb, KERN_ERR, "write access "
2142 "unavailable, skipping orphan cleanup");
2143 return;
2144 }
2145
2146 /* Check if feature set would not allow a r/w mount */
2147 if (!ext4_feature_set_ok(sb, 0)) {
2148 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2149 "unknown ROCOMPAT features");
2150 return;
2151 }
2152
2153 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2154 if (es->s_last_orphan)
2155 jbd_debug(1, "Errors on filesystem, "
2156 "clearing orphan list.\n");
2157 es->s_last_orphan = 0;
2158 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2159 return;
2160 }
2161
2162 if (s_flags & MS_RDONLY) {
2163 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2164 sb->s_flags &= ~MS_RDONLY;
2165 }
2166 #ifdef CONFIG_QUOTA
2167 /* Needed for iput() to work correctly and not trash data */
2168 sb->s_flags |= MS_ACTIVE;
2169 /* Turn on quotas so that they are updated correctly */
2170 for (i = 0; i < MAXQUOTAS; i++) {
2171 if (EXT4_SB(sb)->s_qf_names[i]) {
2172 int ret = ext4_quota_on_mount(sb, i);
2173 if (ret < 0)
2174 ext4_msg(sb, KERN_ERR,
2175 "Cannot turn on journaled "
2176 "quota: error %d", ret);
2177 }
2178 }
2179 #endif
2180
2181 while (es->s_last_orphan) {
2182 struct inode *inode;
2183
2184 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2185 if (IS_ERR(inode)) {
2186 es->s_last_orphan = 0;
2187 break;
2188 }
2189
2190 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2191 dquot_initialize(inode);
2192 if (inode->i_nlink) {
2193 ext4_msg(sb, KERN_DEBUG,
2194 "%s: truncating inode %lu to %lld bytes",
2195 __func__, inode->i_ino, inode->i_size);
2196 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2197 inode->i_ino, inode->i_size);
2198 ext4_truncate(inode);
2199 nr_truncates++;
2200 } else {
2201 ext4_msg(sb, KERN_DEBUG,
2202 "%s: deleting unreferenced inode %lu",
2203 __func__, inode->i_ino);
2204 jbd_debug(2, "deleting unreferenced inode %lu\n",
2205 inode->i_ino);
2206 nr_orphans++;
2207 }
2208 iput(inode); /* The delete magic happens here! */
2209 }
2210
2211 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2212
2213 if (nr_orphans)
2214 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2215 PLURAL(nr_orphans));
2216 if (nr_truncates)
2217 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2218 PLURAL(nr_truncates));
2219 #ifdef CONFIG_QUOTA
2220 /* Turn quotas off */
2221 for (i = 0; i < MAXQUOTAS; i++) {
2222 if (sb_dqopt(sb)->files[i])
2223 dquot_quota_off(sb, i);
2224 }
2225 #endif
2226 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2227 }
2228
2229 /*
2230 * Maximal extent format file size.
2231 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2232 * extent format containers, within a sector_t, and within i_blocks
2233 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2234 * so that won't be a limiting factor.
2235 *
2236 * However there is other limiting factor. We do store extents in the form
2237 * of starting block and length, hence the resulting length of the extent
2238 * covering maximum file size must fit into on-disk format containers as
2239 * well. Given that length is always by 1 unit bigger than max unit (because
2240 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2241 *
2242 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2243 */
2244 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2245 {
2246 loff_t res;
2247 loff_t upper_limit = MAX_LFS_FILESIZE;
2248
2249 /* small i_blocks in vfs inode? */
2250 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2251 /*
2252 * CONFIG_LBDAF is not enabled implies the inode
2253 * i_block represent total blocks in 512 bytes
2254 * 32 == size of vfs inode i_blocks * 8
2255 */
2256 upper_limit = (1LL << 32) - 1;
2257
2258 /* total blocks in file system block size */
2259 upper_limit >>= (blkbits - 9);
2260 upper_limit <<= blkbits;
2261 }
2262
2263 /*
2264 * 32-bit extent-start container, ee_block. We lower the maxbytes
2265 * by one fs block, so ee_len can cover the extent of maximum file
2266 * size
2267 */
2268 res = (1LL << 32) - 1;
2269 res <<= blkbits;
2270
2271 /* Sanity check against vm- & vfs- imposed limits */
2272 if (res > upper_limit)
2273 res = upper_limit;
2274
2275 return res;
2276 }
2277
2278 /*
2279 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2280 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2281 * We need to be 1 filesystem block less than the 2^48 sector limit.
2282 */
2283 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2284 {
2285 loff_t res = EXT4_NDIR_BLOCKS;
2286 int meta_blocks;
2287 loff_t upper_limit;
2288 /* This is calculated to be the largest file size for a dense, block
2289 * mapped file such that the file's total number of 512-byte sectors,
2290 * including data and all indirect blocks, does not exceed (2^48 - 1).
2291 *
2292 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2293 * number of 512-byte sectors of the file.
2294 */
2295
2296 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2297 /*
2298 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2299 * the inode i_block field represents total file blocks in
2300 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2301 */
2302 upper_limit = (1LL << 32) - 1;
2303
2304 /* total blocks in file system block size */
2305 upper_limit >>= (bits - 9);
2306
2307 } else {
2308 /*
2309 * We use 48 bit ext4_inode i_blocks
2310 * With EXT4_HUGE_FILE_FL set the i_blocks
2311 * represent total number of blocks in
2312 * file system block size
2313 */
2314 upper_limit = (1LL << 48) - 1;
2315
2316 }
2317
2318 /* indirect blocks */
2319 meta_blocks = 1;
2320 /* double indirect blocks */
2321 meta_blocks += 1 + (1LL << (bits-2));
2322 /* tripple indirect blocks */
2323 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2324
2325 upper_limit -= meta_blocks;
2326 upper_limit <<= bits;
2327
2328 res += 1LL << (bits-2);
2329 res += 1LL << (2*(bits-2));
2330 res += 1LL << (3*(bits-2));
2331 res <<= bits;
2332 if (res > upper_limit)
2333 res = upper_limit;
2334
2335 if (res > MAX_LFS_FILESIZE)
2336 res = MAX_LFS_FILESIZE;
2337
2338 return res;
2339 }
2340
2341 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2342 ext4_fsblk_t logical_sb_block, int nr)
2343 {
2344 struct ext4_sb_info *sbi = EXT4_SB(sb);
2345 ext4_group_t bg, first_meta_bg;
2346 int has_super = 0;
2347
2348 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2349
2350 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2351 nr < first_meta_bg)
2352 return logical_sb_block + nr + 1;
2353 bg = sbi->s_desc_per_block * nr;
2354 if (ext4_bg_has_super(sb, bg))
2355 has_super = 1;
2356
2357 return (has_super + ext4_group_first_block_no(sb, bg));
2358 }
2359
2360 /**
2361 * ext4_get_stripe_size: Get the stripe size.
2362 * @sbi: In memory super block info
2363 *
2364 * If we have specified it via mount option, then
2365 * use the mount option value. If the value specified at mount time is
2366 * greater than the blocks per group use the super block value.
2367 * If the super block value is greater than blocks per group return 0.
2368 * Allocator needs it be less than blocks per group.
2369 *
2370 */
2371 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2372 {
2373 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2374 unsigned long stripe_width =
2375 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2376 int ret;
2377
2378 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2379 ret = sbi->s_stripe;
2380 else if (stripe_width <= sbi->s_blocks_per_group)
2381 ret = stripe_width;
2382 else if (stride <= sbi->s_blocks_per_group)
2383 ret = stride;
2384 else
2385 ret = 0;
2386
2387 /*
2388 * If the stripe width is 1, this makes no sense and
2389 * we set it to 0 to turn off stripe handling code.
2390 */
2391 if (ret <= 1)
2392 ret = 0;
2393
2394 return ret;
2395 }
2396
2397 /* sysfs supprt */
2398
2399 struct ext4_attr {
2400 struct attribute attr;
2401 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2402 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2403 const char *, size_t);
2404 int offset;
2405 };
2406
2407 static int parse_strtoul(const char *buf,
2408 unsigned long max, unsigned long *value)
2409 {
2410 char *endp;
2411
2412 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2413 endp = skip_spaces(endp);
2414 if (*endp || *value > max)
2415 return -EINVAL;
2416
2417 return 0;
2418 }
2419
2420 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2421 struct ext4_sb_info *sbi,
2422 char *buf)
2423 {
2424 return snprintf(buf, PAGE_SIZE, "%llu\n",
2425 (s64) EXT4_C2B(sbi,
2426 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2427 }
2428
2429 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2430 struct ext4_sb_info *sbi, char *buf)
2431 {
2432 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2433
2434 if (!sb->s_bdev->bd_part)
2435 return snprintf(buf, PAGE_SIZE, "0\n");
2436 return snprintf(buf, PAGE_SIZE, "%lu\n",
2437 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2438 sbi->s_sectors_written_start) >> 1);
2439 }
2440
2441 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2442 struct ext4_sb_info *sbi, char *buf)
2443 {
2444 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2445
2446 if (!sb->s_bdev->bd_part)
2447 return snprintf(buf, PAGE_SIZE, "0\n");
2448 return snprintf(buf, PAGE_SIZE, "%llu\n",
2449 (unsigned long long)(sbi->s_kbytes_written +
2450 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2451 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2452 }
2453
2454 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2455 struct ext4_sb_info *sbi,
2456 const char *buf, size_t count)
2457 {
2458 unsigned long t;
2459
2460 if (parse_strtoul(buf, 0x40000000, &t))
2461 return -EINVAL;
2462
2463 if (t && !is_power_of_2(t))
2464 return -EINVAL;
2465
2466 sbi->s_inode_readahead_blks = t;
2467 return count;
2468 }
2469
2470 static ssize_t sbi_ui_show(struct ext4_attr *a,
2471 struct ext4_sb_info *sbi, char *buf)
2472 {
2473 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2474
2475 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2476 }
2477
2478 static ssize_t sbi_ui_store(struct ext4_attr *a,
2479 struct ext4_sb_info *sbi,
2480 const char *buf, size_t count)
2481 {
2482 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2483 unsigned long t;
2484
2485 if (parse_strtoul(buf, 0xffffffff, &t))
2486 return -EINVAL;
2487 *ui = t;
2488 return count;
2489 }
2490
2491 static ssize_t trigger_test_error(struct ext4_attr *a,
2492 struct ext4_sb_info *sbi,
2493 const char *buf, size_t count)
2494 {
2495 int len = count;
2496
2497 if (!capable(CAP_SYS_ADMIN))
2498 return -EPERM;
2499
2500 if (len && buf[len-1] == '\n')
2501 len--;
2502
2503 if (len)
2504 ext4_error(sbi->s_sb, "%.*s", len, buf);
2505 return count;
2506 }
2507
2508 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2509 static struct ext4_attr ext4_attr_##_name = { \
2510 .attr = {.name = __stringify(_name), .mode = _mode }, \
2511 .show = _show, \
2512 .store = _store, \
2513 .offset = offsetof(struct ext4_sb_info, _elname), \
2514 }
2515 #define EXT4_ATTR(name, mode, show, store) \
2516 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2517
2518 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2519 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2520 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2521 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2522 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2523 #define ATTR_LIST(name) &ext4_attr_##name.attr
2524
2525 EXT4_RO_ATTR(delayed_allocation_blocks);
2526 EXT4_RO_ATTR(session_write_kbytes);
2527 EXT4_RO_ATTR(lifetime_write_kbytes);
2528 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2529 inode_readahead_blks_store, s_inode_readahead_blks);
2530 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2531 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2532 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2533 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2534 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2535 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2536 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2537 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2538 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2539
2540 static struct attribute *ext4_attrs[] = {
2541 ATTR_LIST(delayed_allocation_blocks),
2542 ATTR_LIST(session_write_kbytes),
2543 ATTR_LIST(lifetime_write_kbytes),
2544 ATTR_LIST(inode_readahead_blks),
2545 ATTR_LIST(inode_goal),
2546 ATTR_LIST(mb_stats),
2547 ATTR_LIST(mb_max_to_scan),
2548 ATTR_LIST(mb_min_to_scan),
2549 ATTR_LIST(mb_order2_req),
2550 ATTR_LIST(mb_stream_req),
2551 ATTR_LIST(mb_group_prealloc),
2552 ATTR_LIST(max_writeback_mb_bump),
2553 ATTR_LIST(trigger_fs_error),
2554 NULL,
2555 };
2556
2557 /* Features this copy of ext4 supports */
2558 EXT4_INFO_ATTR(lazy_itable_init);
2559 EXT4_INFO_ATTR(batched_discard);
2560
2561 static struct attribute *ext4_feat_attrs[] = {
2562 ATTR_LIST(lazy_itable_init),
2563 ATTR_LIST(batched_discard),
2564 NULL,
2565 };
2566
2567 static ssize_t ext4_attr_show(struct kobject *kobj,
2568 struct attribute *attr, char *buf)
2569 {
2570 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2571 s_kobj);
2572 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2573
2574 return a->show ? a->show(a, sbi, buf) : 0;
2575 }
2576
2577 static ssize_t ext4_attr_store(struct kobject *kobj,
2578 struct attribute *attr,
2579 const char *buf, size_t len)
2580 {
2581 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2582 s_kobj);
2583 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2584
2585 return a->store ? a->store(a, sbi, buf, len) : 0;
2586 }
2587
2588 static void ext4_sb_release(struct kobject *kobj)
2589 {
2590 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2591 s_kobj);
2592 complete(&sbi->s_kobj_unregister);
2593 }
2594
2595 static const struct sysfs_ops ext4_attr_ops = {
2596 .show = ext4_attr_show,
2597 .store = ext4_attr_store,
2598 };
2599
2600 static struct kobj_type ext4_ktype = {
2601 .default_attrs = ext4_attrs,
2602 .sysfs_ops = &ext4_attr_ops,
2603 .release = ext4_sb_release,
2604 };
2605
2606 static void ext4_feat_release(struct kobject *kobj)
2607 {
2608 complete(&ext4_feat->f_kobj_unregister);
2609 }
2610
2611 static struct kobj_type ext4_feat_ktype = {
2612 .default_attrs = ext4_feat_attrs,
2613 .sysfs_ops = &ext4_attr_ops,
2614 .release = ext4_feat_release,
2615 };
2616
2617 /*
2618 * Check whether this filesystem can be mounted based on
2619 * the features present and the RDONLY/RDWR mount requested.
2620 * Returns 1 if this filesystem can be mounted as requested,
2621 * 0 if it cannot be.
2622 */
2623 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2624 {
2625 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2626 ext4_msg(sb, KERN_ERR,
2627 "Couldn't mount because of "
2628 "unsupported optional features (%x)",
2629 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2630 ~EXT4_FEATURE_INCOMPAT_SUPP));
2631 return 0;
2632 }
2633
2634 if (readonly)
2635 return 1;
2636
2637 /* Check that feature set is OK for a read-write mount */
2638 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2639 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2640 "unsupported optional features (%x)",
2641 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2642 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2643 return 0;
2644 }
2645 /*
2646 * Large file size enabled file system can only be mounted
2647 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2648 */
2649 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2650 if (sizeof(blkcnt_t) < sizeof(u64)) {
2651 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2652 "cannot be mounted RDWR without "
2653 "CONFIG_LBDAF");
2654 return 0;
2655 }
2656 }
2657 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2658 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2659 ext4_msg(sb, KERN_ERR,
2660 "Can't support bigalloc feature without "
2661 "extents feature\n");
2662 return 0;
2663 }
2664 return 1;
2665 }
2666
2667 /*
2668 * This function is called once a day if we have errors logged
2669 * on the file system
2670 */
2671 static void print_daily_error_info(unsigned long arg)
2672 {
2673 struct super_block *sb = (struct super_block *) arg;
2674 struct ext4_sb_info *sbi;
2675 struct ext4_super_block *es;
2676
2677 sbi = EXT4_SB(sb);
2678 es = sbi->s_es;
2679
2680 if (es->s_error_count)
2681 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2682 le32_to_cpu(es->s_error_count));
2683 if (es->s_first_error_time) {
2684 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2685 sb->s_id, le32_to_cpu(es->s_first_error_time),
2686 (int) sizeof(es->s_first_error_func),
2687 es->s_first_error_func,
2688 le32_to_cpu(es->s_first_error_line));
2689 if (es->s_first_error_ino)
2690 printk(": inode %u",
2691 le32_to_cpu(es->s_first_error_ino));
2692 if (es->s_first_error_block)
2693 printk(": block %llu", (unsigned long long)
2694 le64_to_cpu(es->s_first_error_block));
2695 printk("\n");
2696 }
2697 if (es->s_last_error_time) {
2698 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2699 sb->s_id, le32_to_cpu(es->s_last_error_time),
2700 (int) sizeof(es->s_last_error_func),
2701 es->s_last_error_func,
2702 le32_to_cpu(es->s_last_error_line));
2703 if (es->s_last_error_ino)
2704 printk(": inode %u",
2705 le32_to_cpu(es->s_last_error_ino));
2706 if (es->s_last_error_block)
2707 printk(": block %llu", (unsigned long long)
2708 le64_to_cpu(es->s_last_error_block));
2709 printk("\n");
2710 }
2711 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2712 }
2713
2714 /* Find next suitable group and run ext4_init_inode_table */
2715 static int ext4_run_li_request(struct ext4_li_request *elr)
2716 {
2717 struct ext4_group_desc *gdp = NULL;
2718 ext4_group_t group, ngroups;
2719 struct super_block *sb;
2720 unsigned long timeout = 0;
2721 int ret = 0;
2722
2723 sb = elr->lr_super;
2724 ngroups = EXT4_SB(sb)->s_groups_count;
2725
2726 for (group = elr->lr_next_group; group < ngroups; group++) {
2727 gdp = ext4_get_group_desc(sb, group, NULL);
2728 if (!gdp) {
2729 ret = 1;
2730 break;
2731 }
2732
2733 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2734 break;
2735 }
2736
2737 if (group == ngroups)
2738 ret = 1;
2739
2740 if (!ret) {
2741 timeout = jiffies;
2742 ret = ext4_init_inode_table(sb, group,
2743 elr->lr_timeout ? 0 : 1);
2744 if (elr->lr_timeout == 0) {
2745 timeout = (jiffies - timeout) *
2746 elr->lr_sbi->s_li_wait_mult;
2747 elr->lr_timeout = timeout;
2748 }
2749 elr->lr_next_sched = jiffies + elr->lr_timeout;
2750 elr->lr_next_group = group + 1;
2751 }
2752
2753 return ret;
2754 }
2755
2756 /*
2757 * Remove lr_request from the list_request and free the
2758 * request structure. Should be called with li_list_mtx held
2759 */
2760 static void ext4_remove_li_request(struct ext4_li_request *elr)
2761 {
2762 struct ext4_sb_info *sbi;
2763
2764 if (!elr)
2765 return;
2766
2767 sbi = elr->lr_sbi;
2768
2769 list_del(&elr->lr_request);
2770 sbi->s_li_request = NULL;
2771 kfree(elr);
2772 }
2773
2774 static void ext4_unregister_li_request(struct super_block *sb)
2775 {
2776 mutex_lock(&ext4_li_mtx);
2777 if (!ext4_li_info) {
2778 mutex_unlock(&ext4_li_mtx);
2779 return;
2780 }
2781
2782 mutex_lock(&ext4_li_info->li_list_mtx);
2783 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2784 mutex_unlock(&ext4_li_info->li_list_mtx);
2785 mutex_unlock(&ext4_li_mtx);
2786 }
2787
2788 static struct task_struct *ext4_lazyinit_task;
2789
2790 /*
2791 * This is the function where ext4lazyinit thread lives. It walks
2792 * through the request list searching for next scheduled filesystem.
2793 * When such a fs is found, run the lazy initialization request
2794 * (ext4_rn_li_request) and keep track of the time spend in this
2795 * function. Based on that time we compute next schedule time of
2796 * the request. When walking through the list is complete, compute
2797 * next waking time and put itself into sleep.
2798 */
2799 static int ext4_lazyinit_thread(void *arg)
2800 {
2801 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2802 struct list_head *pos, *n;
2803 struct ext4_li_request *elr;
2804 unsigned long next_wakeup, cur;
2805
2806 BUG_ON(NULL == eli);
2807
2808 cont_thread:
2809 while (true) {
2810 next_wakeup = MAX_JIFFY_OFFSET;
2811
2812 mutex_lock(&eli->li_list_mtx);
2813 if (list_empty(&eli->li_request_list)) {
2814 mutex_unlock(&eli->li_list_mtx);
2815 goto exit_thread;
2816 }
2817
2818 list_for_each_safe(pos, n, &eli->li_request_list) {
2819 elr = list_entry(pos, struct ext4_li_request,
2820 lr_request);
2821
2822 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2823 if (ext4_run_li_request(elr) != 0) {
2824 /* error, remove the lazy_init job */
2825 ext4_remove_li_request(elr);
2826 continue;
2827 }
2828 }
2829
2830 if (time_before(elr->lr_next_sched, next_wakeup))
2831 next_wakeup = elr->lr_next_sched;
2832 }
2833 mutex_unlock(&eli->li_list_mtx);
2834
2835 try_to_freeze();
2836
2837 cur = jiffies;
2838 if ((time_after_eq(cur, next_wakeup)) ||
2839 (MAX_JIFFY_OFFSET == next_wakeup)) {
2840 cond_resched();
2841 continue;
2842 }
2843
2844 schedule_timeout_interruptible(next_wakeup - cur);
2845
2846 if (kthread_should_stop()) {
2847 ext4_clear_request_list();
2848 goto exit_thread;
2849 }
2850 }
2851
2852 exit_thread:
2853 /*
2854 * It looks like the request list is empty, but we need
2855 * to check it under the li_list_mtx lock, to prevent any
2856 * additions into it, and of course we should lock ext4_li_mtx
2857 * to atomically free the list and ext4_li_info, because at
2858 * this point another ext4 filesystem could be registering
2859 * new one.
2860 */
2861 mutex_lock(&ext4_li_mtx);
2862 mutex_lock(&eli->li_list_mtx);
2863 if (!list_empty(&eli->li_request_list)) {
2864 mutex_unlock(&eli->li_list_mtx);
2865 mutex_unlock(&ext4_li_mtx);
2866 goto cont_thread;
2867 }
2868 mutex_unlock(&eli->li_list_mtx);
2869 kfree(ext4_li_info);
2870 ext4_li_info = NULL;
2871 mutex_unlock(&ext4_li_mtx);
2872
2873 return 0;
2874 }
2875
2876 static void ext4_clear_request_list(void)
2877 {
2878 struct list_head *pos, *n;
2879 struct ext4_li_request *elr;
2880
2881 mutex_lock(&ext4_li_info->li_list_mtx);
2882 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2883 elr = list_entry(pos, struct ext4_li_request,
2884 lr_request);
2885 ext4_remove_li_request(elr);
2886 }
2887 mutex_unlock(&ext4_li_info->li_list_mtx);
2888 }
2889
2890 static int ext4_run_lazyinit_thread(void)
2891 {
2892 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2893 ext4_li_info, "ext4lazyinit");
2894 if (IS_ERR(ext4_lazyinit_task)) {
2895 int err = PTR_ERR(ext4_lazyinit_task);
2896 ext4_clear_request_list();
2897 kfree(ext4_li_info);
2898 ext4_li_info = NULL;
2899 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2900 "initialization thread\n",
2901 err);
2902 return err;
2903 }
2904 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2905 return 0;
2906 }
2907
2908 /*
2909 * Check whether it make sense to run itable init. thread or not.
2910 * If there is at least one uninitialized inode table, return
2911 * corresponding group number, else the loop goes through all
2912 * groups and return total number of groups.
2913 */
2914 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2915 {
2916 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2917 struct ext4_group_desc *gdp = NULL;
2918
2919 for (group = 0; group < ngroups; group++) {
2920 gdp = ext4_get_group_desc(sb, group, NULL);
2921 if (!gdp)
2922 continue;
2923
2924 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2925 break;
2926 }
2927
2928 return group;
2929 }
2930
2931 static int ext4_li_info_new(void)
2932 {
2933 struct ext4_lazy_init *eli = NULL;
2934
2935 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2936 if (!eli)
2937 return -ENOMEM;
2938
2939 INIT_LIST_HEAD(&eli->li_request_list);
2940 mutex_init(&eli->li_list_mtx);
2941
2942 eli->li_state |= EXT4_LAZYINIT_QUIT;
2943
2944 ext4_li_info = eli;
2945
2946 return 0;
2947 }
2948
2949 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2950 ext4_group_t start)
2951 {
2952 struct ext4_sb_info *sbi = EXT4_SB(sb);
2953 struct ext4_li_request *elr;
2954 unsigned long rnd;
2955
2956 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2957 if (!elr)
2958 return NULL;
2959
2960 elr->lr_super = sb;
2961 elr->lr_sbi = sbi;
2962 elr->lr_next_group = start;
2963
2964 /*
2965 * Randomize first schedule time of the request to
2966 * spread the inode table initialization requests
2967 * better.
2968 */
2969 get_random_bytes(&rnd, sizeof(rnd));
2970 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2971 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2972
2973 return elr;
2974 }
2975
2976 static int ext4_register_li_request(struct super_block *sb,
2977 ext4_group_t first_not_zeroed)
2978 {
2979 struct ext4_sb_info *sbi = EXT4_SB(sb);
2980 struct ext4_li_request *elr;
2981 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2982 int ret = 0;
2983
2984 if (sbi->s_li_request != NULL) {
2985 /*
2986 * Reset timeout so it can be computed again, because
2987 * s_li_wait_mult might have changed.
2988 */
2989 sbi->s_li_request->lr_timeout = 0;
2990 return 0;
2991 }
2992
2993 if (first_not_zeroed == ngroups ||
2994 (sb->s_flags & MS_RDONLY) ||
2995 !test_opt(sb, INIT_INODE_TABLE))
2996 return 0;
2997
2998 elr = ext4_li_request_new(sb, first_not_zeroed);
2999 if (!elr)
3000 return -ENOMEM;
3001
3002 mutex_lock(&ext4_li_mtx);
3003
3004 if (NULL == ext4_li_info) {
3005 ret = ext4_li_info_new();
3006 if (ret)
3007 goto out;
3008 }
3009
3010 mutex_lock(&ext4_li_info->li_list_mtx);
3011 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3012 mutex_unlock(&ext4_li_info->li_list_mtx);
3013
3014 sbi->s_li_request = elr;
3015 /*
3016 * set elr to NULL here since it has been inserted to
3017 * the request_list and the removal and free of it is
3018 * handled by ext4_clear_request_list from now on.
3019 */
3020 elr = NULL;
3021
3022 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3023 ret = ext4_run_lazyinit_thread();
3024 if (ret)
3025 goto out;
3026 }
3027 out:
3028 mutex_unlock(&ext4_li_mtx);
3029 if (ret)
3030 kfree(elr);
3031 return ret;
3032 }
3033
3034 /*
3035 * We do not need to lock anything since this is called on
3036 * module unload.
3037 */
3038 static void ext4_destroy_lazyinit_thread(void)
3039 {
3040 /*
3041 * If thread exited earlier
3042 * there's nothing to be done.
3043 */
3044 if (!ext4_li_info || !ext4_lazyinit_task)
3045 return;
3046
3047 kthread_stop(ext4_lazyinit_task);
3048 }
3049
3050 static int set_journal_csum_feature_set(struct super_block *sb)
3051 {
3052 int ret = 1;
3053 int compat, incompat;
3054 struct ext4_sb_info *sbi = EXT4_SB(sb);
3055
3056 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3057 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3058 /* journal checksum v2 */
3059 compat = 0;
3060 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3061 } else {
3062 /* journal checksum v1 */
3063 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3064 incompat = 0;
3065 }
3066
3067 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3068 ret = jbd2_journal_set_features(sbi->s_journal,
3069 compat, 0,
3070 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3071 incompat);
3072 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3073 ret = jbd2_journal_set_features(sbi->s_journal,
3074 compat, 0,
3075 incompat);
3076 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3077 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3078 } else {
3079 jbd2_journal_clear_features(sbi->s_journal,
3080 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3081 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3082 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3083 }
3084
3085 return ret;
3086 }
3087
3088 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3089 {
3090 char *orig_data = kstrdup(data, GFP_KERNEL);
3091 struct buffer_head *bh;
3092 struct ext4_super_block *es = NULL;
3093 struct ext4_sb_info *sbi;
3094 ext4_fsblk_t block;
3095 ext4_fsblk_t sb_block = get_sb_block(&data);
3096 ext4_fsblk_t logical_sb_block;
3097 unsigned long offset = 0;
3098 unsigned long journal_devnum = 0;
3099 unsigned long def_mount_opts;
3100 struct inode *root;
3101 char *cp;
3102 const char *descr;
3103 int ret = -ENOMEM;
3104 int blocksize, clustersize;
3105 unsigned int db_count;
3106 unsigned int i;
3107 int needs_recovery, has_huge_files, has_bigalloc;
3108 __u64 blocks_count;
3109 int err;
3110 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3111 ext4_group_t first_not_zeroed;
3112
3113 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3114 if (!sbi)
3115 goto out_free_orig;
3116
3117 sbi->s_blockgroup_lock =
3118 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3119 if (!sbi->s_blockgroup_lock) {
3120 kfree(sbi);
3121 goto out_free_orig;
3122 }
3123 sb->s_fs_info = sbi;
3124 sbi->s_sb = sb;
3125 sbi->s_mount_opt = 0;
3126 sbi->s_resuid = make_kuid(&init_user_ns, EXT4_DEF_RESUID);
3127 sbi->s_resgid = make_kgid(&init_user_ns, EXT4_DEF_RESGID);
3128 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3129 sbi->s_sb_block = sb_block;
3130 if (sb->s_bdev->bd_part)
3131 sbi->s_sectors_written_start =
3132 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3133
3134 /* Cleanup superblock name */
3135 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3136 *cp = '!';
3137
3138 ret = -EINVAL;
3139 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3140 if (!blocksize) {
3141 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3142 goto out_fail;
3143 }
3144
3145 /*
3146 * The ext4 superblock will not be buffer aligned for other than 1kB
3147 * block sizes. We need to calculate the offset from buffer start.
3148 */
3149 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3150 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3151 offset = do_div(logical_sb_block, blocksize);
3152 } else {
3153 logical_sb_block = sb_block;
3154 }
3155
3156 if (!(bh = sb_bread(sb, logical_sb_block))) {
3157 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3158 goto out_fail;
3159 }
3160 /*
3161 * Note: s_es must be initialized as soon as possible because
3162 * some ext4 macro-instructions depend on its value
3163 */
3164 es = (struct ext4_super_block *) (bh->b_data + offset);
3165 sbi->s_es = es;
3166 sb->s_magic = le16_to_cpu(es->s_magic);
3167 if (sb->s_magic != EXT4_SUPER_MAGIC)
3168 goto cantfind_ext4;
3169 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3170
3171 /* Warn if metadata_csum and gdt_csum are both set. */
3172 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3173 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3174 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3175 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3176 "redundant flags; please run fsck.");
3177
3178 /* Check for a known checksum algorithm */
3179 if (!ext4_verify_csum_type(sb, es)) {
3180 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3181 "unknown checksum algorithm.");
3182 silent = 1;
3183 goto cantfind_ext4;
3184 }
3185
3186 /* Load the checksum driver */
3187 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3188 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3189 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3190 if (IS_ERR(sbi->s_chksum_driver)) {
3191 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3192 ret = PTR_ERR(sbi->s_chksum_driver);
3193 sbi->s_chksum_driver = NULL;
3194 goto failed_mount;
3195 }
3196 }
3197
3198 /* Check superblock checksum */
3199 if (!ext4_superblock_csum_verify(sb, es)) {
3200 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3201 "invalid superblock checksum. Run e2fsck?");
3202 silent = 1;
3203 goto cantfind_ext4;
3204 }
3205
3206 /* Precompute checksum seed for all metadata */
3207 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3208 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3209 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3210 sizeof(es->s_uuid));
3211
3212 /* Set defaults before we parse the mount options */
3213 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3214 set_opt(sb, INIT_INODE_TABLE);
3215 if (def_mount_opts & EXT4_DEFM_DEBUG)
3216 set_opt(sb, DEBUG);
3217 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3218 set_opt(sb, GRPID);
3219 if (def_mount_opts & EXT4_DEFM_UID16)
3220 set_opt(sb, NO_UID32);
3221 /* xattr user namespace & acls are now defaulted on */
3222 #ifdef CONFIG_EXT4_FS_XATTR
3223 set_opt(sb, XATTR_USER);
3224 #endif
3225 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3226 set_opt(sb, POSIX_ACL);
3227 #endif
3228 set_opt(sb, MBLK_IO_SUBMIT);
3229 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3230 set_opt(sb, JOURNAL_DATA);
3231 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3232 set_opt(sb, ORDERED_DATA);
3233 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3234 set_opt(sb, WRITEBACK_DATA);
3235
3236 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3237 set_opt(sb, ERRORS_PANIC);
3238 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3239 set_opt(sb, ERRORS_CONT);
3240 else
3241 set_opt(sb, ERRORS_RO);
3242 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3243 set_opt(sb, BLOCK_VALIDITY);
3244 if (def_mount_opts & EXT4_DEFM_DISCARD)
3245 set_opt(sb, DISCARD);
3246
3247 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3248 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3249 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3250 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3251 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3252
3253 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3254 set_opt(sb, BARRIER);
3255
3256 /*
3257 * enable delayed allocation by default
3258 * Use -o nodelalloc to turn it off
3259 */
3260 if (!IS_EXT3_SB(sb) &&
3261 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3262 set_opt(sb, DELALLOC);
3263
3264 /*
3265 * set default s_li_wait_mult for lazyinit, for the case there is
3266 * no mount option specified.
3267 */
3268 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3269
3270 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3271 &journal_devnum, &journal_ioprio, 0)) {
3272 ext4_msg(sb, KERN_WARNING,
3273 "failed to parse options in superblock: %s",
3274 sbi->s_es->s_mount_opts);
3275 }
3276 sbi->s_def_mount_opt = sbi->s_mount_opt;
3277 if (!parse_options((char *) data, sb, &journal_devnum,
3278 &journal_ioprio, 0))
3279 goto failed_mount;
3280
3281 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3282 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3283 "with data=journal disables delayed "
3284 "allocation and O_DIRECT support!\n");
3285 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3286 ext4_msg(sb, KERN_ERR, "can't mount with "
3287 "both data=journal and delalloc");
3288 goto failed_mount;
3289 }
3290 if (test_opt(sb, DIOREAD_NOLOCK)) {
3291 ext4_msg(sb, KERN_ERR, "can't mount with "
3292 "both data=journal and delalloc");
3293 goto failed_mount;
3294 }
3295 if (test_opt(sb, DELALLOC))
3296 clear_opt(sb, DELALLOC);
3297 }
3298
3299 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3300 if (test_opt(sb, DIOREAD_NOLOCK)) {
3301 if (blocksize < PAGE_SIZE) {
3302 ext4_msg(sb, KERN_ERR, "can't mount with "
3303 "dioread_nolock if block size != PAGE_SIZE");
3304 goto failed_mount;
3305 }
3306 }
3307
3308 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3309 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3310
3311 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3312 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3313 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3314 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3315 ext4_msg(sb, KERN_WARNING,
3316 "feature flags set on rev 0 fs, "
3317 "running e2fsck is recommended");
3318
3319 if (IS_EXT2_SB(sb)) {
3320 if (ext2_feature_set_ok(sb))
3321 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3322 "using the ext4 subsystem");
3323 else {
3324 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3325 "to feature incompatibilities");
3326 goto failed_mount;
3327 }
3328 }
3329
3330 if (IS_EXT3_SB(sb)) {
3331 if (ext3_feature_set_ok(sb))
3332 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3333 "using the ext4 subsystem");
3334 else {
3335 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3336 "to feature incompatibilities");
3337 goto failed_mount;
3338 }
3339 }
3340
3341 /*
3342 * Check feature flags regardless of the revision level, since we
3343 * previously didn't change the revision level when setting the flags,
3344 * so there is a chance incompat flags are set on a rev 0 filesystem.
3345 */
3346 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3347 goto failed_mount;
3348
3349 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3350 blocksize > EXT4_MAX_BLOCK_SIZE) {
3351 ext4_msg(sb, KERN_ERR,
3352 "Unsupported filesystem blocksize %d", blocksize);
3353 goto failed_mount;
3354 }
3355
3356 if (sb->s_blocksize != blocksize) {
3357 /* Validate the filesystem blocksize */
3358 if (!sb_set_blocksize(sb, blocksize)) {
3359 ext4_msg(sb, KERN_ERR, "bad block size %d",
3360 blocksize);
3361 goto failed_mount;
3362 }
3363
3364 brelse(bh);
3365 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3366 offset = do_div(logical_sb_block, blocksize);
3367 bh = sb_bread(sb, logical_sb_block);
3368 if (!bh) {
3369 ext4_msg(sb, KERN_ERR,
3370 "Can't read superblock on 2nd try");
3371 goto failed_mount;
3372 }
3373 es = (struct ext4_super_block *)(bh->b_data + offset);
3374 sbi->s_es = es;
3375 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3376 ext4_msg(sb, KERN_ERR,
3377 "Magic mismatch, very weird!");
3378 goto failed_mount;
3379 }
3380 }
3381
3382 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3383 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3384 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3385 has_huge_files);
3386 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3387
3388 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3389 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3390 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3391 } else {
3392 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3393 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3394 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3395 (!is_power_of_2(sbi->s_inode_size)) ||
3396 (sbi->s_inode_size > blocksize)) {
3397 ext4_msg(sb, KERN_ERR,
3398 "unsupported inode size: %d",
3399 sbi->s_inode_size);
3400 goto failed_mount;
3401 }
3402 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3403 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3404 }
3405
3406 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3407 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3408 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3409 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3410 !is_power_of_2(sbi->s_desc_size)) {
3411 ext4_msg(sb, KERN_ERR,
3412 "unsupported descriptor size %lu",
3413 sbi->s_desc_size);
3414 goto failed_mount;
3415 }
3416 } else
3417 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3418
3419 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3420 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3421 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3422 goto cantfind_ext4;
3423
3424 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3425 if (sbi->s_inodes_per_block == 0)
3426 goto cantfind_ext4;
3427 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3428 sbi->s_inodes_per_block;
3429 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3430 sbi->s_sbh = bh;
3431 sbi->s_mount_state = le16_to_cpu(es->s_state);
3432 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3433 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3434
3435 for (i = 0; i < 4; i++)
3436 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3437 sbi->s_def_hash_version = es->s_def_hash_version;
3438 i = le32_to_cpu(es->s_flags);
3439 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3440 sbi->s_hash_unsigned = 3;
3441 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3442 #ifdef __CHAR_UNSIGNED__
3443 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3444 sbi->s_hash_unsigned = 3;
3445 #else
3446 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3447 #endif
3448 }
3449
3450 /* Handle clustersize */
3451 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3452 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3453 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3454 if (has_bigalloc) {
3455 if (clustersize < blocksize) {
3456 ext4_msg(sb, KERN_ERR,
3457 "cluster size (%d) smaller than "
3458 "block size (%d)", clustersize, blocksize);
3459 goto failed_mount;
3460 }
3461 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3462 le32_to_cpu(es->s_log_block_size);
3463 sbi->s_clusters_per_group =
3464 le32_to_cpu(es->s_clusters_per_group);
3465 if (sbi->s_clusters_per_group > blocksize * 8) {
3466 ext4_msg(sb, KERN_ERR,
3467 "#clusters per group too big: %lu",
3468 sbi->s_clusters_per_group);
3469 goto failed_mount;
3470 }
3471 if (sbi->s_blocks_per_group !=
3472 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3473 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3474 "clusters per group (%lu) inconsistent",
3475 sbi->s_blocks_per_group,
3476 sbi->s_clusters_per_group);
3477 goto failed_mount;
3478 }
3479 } else {
3480 if (clustersize != blocksize) {
3481 ext4_warning(sb, "fragment/cluster size (%d) != "
3482 "block size (%d)", clustersize,
3483 blocksize);
3484 clustersize = blocksize;
3485 }
3486 if (sbi->s_blocks_per_group > blocksize * 8) {
3487 ext4_msg(sb, KERN_ERR,
3488 "#blocks per group too big: %lu",
3489 sbi->s_blocks_per_group);
3490 goto failed_mount;
3491 }
3492 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3493 sbi->s_cluster_bits = 0;
3494 }
3495 sbi->s_cluster_ratio = clustersize / blocksize;
3496
3497 if (sbi->s_inodes_per_group > blocksize * 8) {
3498 ext4_msg(sb, KERN_ERR,
3499 "#inodes per group too big: %lu",
3500 sbi->s_inodes_per_group);
3501 goto failed_mount;
3502 }
3503
3504 /*
3505 * Test whether we have more sectors than will fit in sector_t,
3506 * and whether the max offset is addressable by the page cache.
3507 */
3508 err = generic_check_addressable(sb->s_blocksize_bits,
3509 ext4_blocks_count(es));
3510 if (err) {
3511 ext4_msg(sb, KERN_ERR, "filesystem"
3512 " too large to mount safely on this system");
3513 if (sizeof(sector_t) < 8)
3514 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3515 ret = err;
3516 goto failed_mount;
3517 }
3518
3519 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3520 goto cantfind_ext4;
3521
3522 /* check blocks count against device size */
3523 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3524 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3525 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3526 "exceeds size of device (%llu blocks)",
3527 ext4_blocks_count(es), blocks_count);
3528 goto failed_mount;
3529 }
3530
3531 /*
3532 * It makes no sense for the first data block to be beyond the end
3533 * of the filesystem.
3534 */
3535 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3536 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3537 "block %u is beyond end of filesystem (%llu)",
3538 le32_to_cpu(es->s_first_data_block),
3539 ext4_blocks_count(es));
3540 goto failed_mount;
3541 }
3542 blocks_count = (ext4_blocks_count(es) -
3543 le32_to_cpu(es->s_first_data_block) +
3544 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3545 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3546 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3547 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3548 "(block count %llu, first data block %u, "
3549 "blocks per group %lu)", sbi->s_groups_count,
3550 ext4_blocks_count(es),
3551 le32_to_cpu(es->s_first_data_block),
3552 EXT4_BLOCKS_PER_GROUP(sb));
3553 goto failed_mount;
3554 }
3555 sbi->s_groups_count = blocks_count;
3556 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3557 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3558 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3559 EXT4_DESC_PER_BLOCK(sb);
3560 sbi->s_group_desc = ext4_kvmalloc(db_count *
3561 sizeof(struct buffer_head *),
3562 GFP_KERNEL);
3563 if (sbi->s_group_desc == NULL) {
3564 ext4_msg(sb, KERN_ERR, "not enough memory");
3565 ret = -ENOMEM;
3566 goto failed_mount;
3567 }
3568
3569 if (ext4_proc_root)
3570 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3571
3572 if (sbi->s_proc)
3573 proc_create_data("options", S_IRUGO, sbi->s_proc,
3574 &ext4_seq_options_fops, sb);
3575
3576 bgl_lock_init(sbi->s_blockgroup_lock);
3577
3578 for (i = 0; i < db_count; i++) {
3579 block = descriptor_loc(sb, logical_sb_block, i);
3580 sbi->s_group_desc[i] = sb_bread(sb, block);
3581 if (!sbi->s_group_desc[i]) {
3582 ext4_msg(sb, KERN_ERR,
3583 "can't read group descriptor %d", i);
3584 db_count = i;
3585 goto failed_mount2;
3586 }
3587 }
3588 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3589 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3590 goto failed_mount2;
3591 }
3592 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3593 if (!ext4_fill_flex_info(sb)) {
3594 ext4_msg(sb, KERN_ERR,
3595 "unable to initialize "
3596 "flex_bg meta info!");
3597 goto failed_mount2;
3598 }
3599
3600 sbi->s_gdb_count = db_count;
3601 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3602 spin_lock_init(&sbi->s_next_gen_lock);
3603
3604 init_timer(&sbi->s_err_report);
3605 sbi->s_err_report.function = print_daily_error_info;
3606 sbi->s_err_report.data = (unsigned long) sb;
3607
3608 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3609 ext4_count_free_clusters(sb));
3610 if (!err) {
3611 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3612 ext4_count_free_inodes(sb));
3613 }
3614 if (!err) {
3615 err = percpu_counter_init(&sbi->s_dirs_counter,
3616 ext4_count_dirs(sb));
3617 }
3618 if (!err) {
3619 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3620 }
3621 if (err) {
3622 ext4_msg(sb, KERN_ERR, "insufficient memory");
3623 ret = err;
3624 goto failed_mount3;
3625 }
3626
3627 sbi->s_stripe = ext4_get_stripe_size(sbi);
3628 sbi->s_max_writeback_mb_bump = 128;
3629
3630 /*
3631 * set up enough so that it can read an inode
3632 */
3633 if (!test_opt(sb, NOLOAD) &&
3634 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3635 sb->s_op = &ext4_sops;
3636 else
3637 sb->s_op = &ext4_nojournal_sops;
3638 sb->s_export_op = &ext4_export_ops;
3639 sb->s_xattr = ext4_xattr_handlers;
3640 #ifdef CONFIG_QUOTA
3641 sb->s_qcop = &ext4_qctl_operations;
3642 sb->dq_op = &ext4_quota_operations;
3643 #endif
3644 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3645
3646 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3647 mutex_init(&sbi->s_orphan_lock);
3648 sbi->s_resize_flags = 0;
3649
3650 sb->s_root = NULL;
3651
3652 needs_recovery = (es->s_last_orphan != 0 ||
3653 EXT4_HAS_INCOMPAT_FEATURE(sb,
3654 EXT4_FEATURE_INCOMPAT_RECOVER));
3655
3656 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3657 !(sb->s_flags & MS_RDONLY))
3658 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3659 goto failed_mount3;
3660
3661 /*
3662 * The first inode we look at is the journal inode. Don't try
3663 * root first: it may be modified in the journal!
3664 */
3665 if (!test_opt(sb, NOLOAD) &&
3666 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3667 if (ext4_load_journal(sb, es, journal_devnum))
3668 goto failed_mount3;
3669 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3670 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3671 ext4_msg(sb, KERN_ERR, "required journal recovery "
3672 "suppressed and not mounted read-only");
3673 goto failed_mount_wq;
3674 } else {
3675 clear_opt(sb, DATA_FLAGS);
3676 sbi->s_journal = NULL;
3677 needs_recovery = 0;
3678 goto no_journal;
3679 }
3680
3681 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3682 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3683 JBD2_FEATURE_INCOMPAT_64BIT)) {
3684 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3685 goto failed_mount_wq;
3686 }
3687
3688 if (!set_journal_csum_feature_set(sb)) {
3689 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3690 "feature set");
3691 goto failed_mount_wq;
3692 }
3693
3694 /* We have now updated the journal if required, so we can
3695 * validate the data journaling mode. */
3696 switch (test_opt(sb, DATA_FLAGS)) {
3697 case 0:
3698 /* No mode set, assume a default based on the journal
3699 * capabilities: ORDERED_DATA if the journal can
3700 * cope, else JOURNAL_DATA
3701 */
3702 if (jbd2_journal_check_available_features
3703 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3704 set_opt(sb, ORDERED_DATA);
3705 else
3706 set_opt(sb, JOURNAL_DATA);
3707 break;
3708
3709 case EXT4_MOUNT_ORDERED_DATA:
3710 case EXT4_MOUNT_WRITEBACK_DATA:
3711 if (!jbd2_journal_check_available_features
3712 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3713 ext4_msg(sb, KERN_ERR, "Journal does not support "
3714 "requested data journaling mode");
3715 goto failed_mount_wq;
3716 }
3717 default:
3718 break;
3719 }
3720 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3721
3722 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3723
3724 /*
3725 * The journal may have updated the bg summary counts, so we
3726 * need to update the global counters.
3727 */
3728 percpu_counter_set(&sbi->s_freeclusters_counter,
3729 ext4_count_free_clusters(sb));
3730 percpu_counter_set(&sbi->s_freeinodes_counter,
3731 ext4_count_free_inodes(sb));
3732 percpu_counter_set(&sbi->s_dirs_counter,
3733 ext4_count_dirs(sb));
3734 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3735
3736 no_journal:
3737 /*
3738 * The maximum number of concurrent works can be high and
3739 * concurrency isn't really necessary. Limit it to 1.
3740 */
3741 EXT4_SB(sb)->dio_unwritten_wq =
3742 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3743 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3744 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3745 goto failed_mount_wq;
3746 }
3747
3748 /*
3749 * The jbd2_journal_load will have done any necessary log recovery,
3750 * so we can safely mount the rest of the filesystem now.
3751 */
3752
3753 root = ext4_iget(sb, EXT4_ROOT_INO);
3754 if (IS_ERR(root)) {
3755 ext4_msg(sb, KERN_ERR, "get root inode failed");
3756 ret = PTR_ERR(root);
3757 root = NULL;
3758 goto failed_mount4;
3759 }
3760 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3761 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3762 iput(root);
3763 goto failed_mount4;
3764 }
3765 sb->s_root = d_make_root(root);
3766 if (!sb->s_root) {
3767 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3768 ret = -ENOMEM;
3769 goto failed_mount4;
3770 }
3771
3772 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3773 sb->s_flags |= MS_RDONLY;
3774
3775 /* determine the minimum size of new large inodes, if present */
3776 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3777 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3778 EXT4_GOOD_OLD_INODE_SIZE;
3779 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3780 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3781 if (sbi->s_want_extra_isize <
3782 le16_to_cpu(es->s_want_extra_isize))
3783 sbi->s_want_extra_isize =
3784 le16_to_cpu(es->s_want_extra_isize);
3785 if (sbi->s_want_extra_isize <
3786 le16_to_cpu(es->s_min_extra_isize))
3787 sbi->s_want_extra_isize =
3788 le16_to_cpu(es->s_min_extra_isize);
3789 }
3790 }
3791 /* Check if enough inode space is available */
3792 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3793 sbi->s_inode_size) {
3794 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3795 EXT4_GOOD_OLD_INODE_SIZE;
3796 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3797 "available");
3798 }
3799
3800 err = ext4_setup_system_zone(sb);
3801 if (err) {
3802 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3803 "zone (%d)", err);
3804 goto failed_mount4a;
3805 }
3806
3807 ext4_ext_init(sb);
3808 err = ext4_mb_init(sb);
3809 if (err) {
3810 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3811 err);
3812 goto failed_mount5;
3813 }
3814
3815 err = ext4_register_li_request(sb, first_not_zeroed);
3816 if (err)
3817 goto failed_mount6;
3818
3819 sbi->s_kobj.kset = ext4_kset;
3820 init_completion(&sbi->s_kobj_unregister);
3821 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3822 "%s", sb->s_id);
3823 if (err)
3824 goto failed_mount7;
3825
3826 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3827 ext4_orphan_cleanup(sb, es);
3828 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3829 if (needs_recovery) {
3830 ext4_msg(sb, KERN_INFO, "recovery complete");
3831 ext4_mark_recovery_complete(sb, es);
3832 }
3833 if (EXT4_SB(sb)->s_journal) {
3834 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3835 descr = " journalled data mode";
3836 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3837 descr = " ordered data mode";
3838 else
3839 descr = " writeback data mode";
3840 } else
3841 descr = "out journal";
3842
3843 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3844 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3845 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3846
3847 if (es->s_error_count)
3848 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3849
3850 kfree(orig_data);
3851 return 0;
3852
3853 cantfind_ext4:
3854 if (!silent)
3855 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3856 goto failed_mount;
3857
3858 failed_mount7:
3859 ext4_unregister_li_request(sb);
3860 failed_mount6:
3861 ext4_mb_release(sb);
3862 failed_mount5:
3863 ext4_ext_release(sb);
3864 ext4_release_system_zone(sb);
3865 failed_mount4a:
3866 dput(sb->s_root);
3867 sb->s_root = NULL;
3868 failed_mount4:
3869 ext4_msg(sb, KERN_ERR, "mount failed");
3870 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3871 failed_mount_wq:
3872 if (sbi->s_journal) {
3873 jbd2_journal_destroy(sbi->s_journal);
3874 sbi->s_journal = NULL;
3875 }
3876 failed_mount3:
3877 del_timer(&sbi->s_err_report);
3878 if (sbi->s_flex_groups)
3879 ext4_kvfree(sbi->s_flex_groups);
3880 percpu_counter_destroy(&sbi->s_freeclusters_counter);
3881 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3882 percpu_counter_destroy(&sbi->s_dirs_counter);
3883 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
3884 if (sbi->s_mmp_tsk)
3885 kthread_stop(sbi->s_mmp_tsk);
3886 failed_mount2:
3887 for (i = 0; i < db_count; i++)
3888 brelse(sbi->s_group_desc[i]);
3889 ext4_kvfree(sbi->s_group_desc);
3890 failed_mount:
3891 if (sbi->s_chksum_driver)
3892 crypto_free_shash(sbi->s_chksum_driver);
3893 if (sbi->s_proc) {
3894 remove_proc_entry("options", sbi->s_proc);
3895 remove_proc_entry(sb->s_id, ext4_proc_root);
3896 }
3897 #ifdef CONFIG_QUOTA
3898 for (i = 0; i < MAXQUOTAS; i++)
3899 kfree(sbi->s_qf_names[i]);
3900 #endif
3901 ext4_blkdev_remove(sbi);
3902 brelse(bh);
3903 out_fail:
3904 sb->s_fs_info = NULL;
3905 kfree(sbi->s_blockgroup_lock);
3906 kfree(sbi);
3907 out_free_orig:
3908 kfree(orig_data);
3909 return ret;
3910 }
3911
3912 /*
3913 * Setup any per-fs journal parameters now. We'll do this both on
3914 * initial mount, once the journal has been initialised but before we've
3915 * done any recovery; and again on any subsequent remount.
3916 */
3917 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3918 {
3919 struct ext4_sb_info *sbi = EXT4_SB(sb);
3920
3921 journal->j_commit_interval = sbi->s_commit_interval;
3922 journal->j_min_batch_time = sbi->s_min_batch_time;
3923 journal->j_max_batch_time = sbi->s_max_batch_time;
3924
3925 write_lock(&journal->j_state_lock);
3926 if (test_opt(sb, BARRIER))
3927 journal->j_flags |= JBD2_BARRIER;
3928 else
3929 journal->j_flags &= ~JBD2_BARRIER;
3930 if (test_opt(sb, DATA_ERR_ABORT))
3931 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3932 else
3933 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3934 write_unlock(&journal->j_state_lock);
3935 }
3936
3937 static journal_t *ext4_get_journal(struct super_block *sb,
3938 unsigned int journal_inum)
3939 {
3940 struct inode *journal_inode;
3941 journal_t *journal;
3942
3943 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3944
3945 /* First, test for the existence of a valid inode on disk. Bad
3946 * things happen if we iget() an unused inode, as the subsequent
3947 * iput() will try to delete it. */
3948
3949 journal_inode = ext4_iget(sb, journal_inum);
3950 if (IS_ERR(journal_inode)) {
3951 ext4_msg(sb, KERN_ERR, "no journal found");
3952 return NULL;
3953 }
3954 if (!journal_inode->i_nlink) {
3955 make_bad_inode(journal_inode);
3956 iput(journal_inode);
3957 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3958 return NULL;
3959 }
3960
3961 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3962 journal_inode, journal_inode->i_size);
3963 if (!S_ISREG(journal_inode->i_mode)) {
3964 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3965 iput(journal_inode);
3966 return NULL;
3967 }
3968
3969 journal = jbd2_journal_init_inode(journal_inode);
3970 if (!journal) {
3971 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3972 iput(journal_inode);
3973 return NULL;
3974 }
3975 journal->j_private = sb;
3976 ext4_init_journal_params(sb, journal);
3977 return journal;
3978 }
3979
3980 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3981 dev_t j_dev)
3982 {
3983 struct buffer_head *bh;
3984 journal_t *journal;
3985 ext4_fsblk_t start;
3986 ext4_fsblk_t len;
3987 int hblock, blocksize;
3988 ext4_fsblk_t sb_block;
3989 unsigned long offset;
3990 struct ext4_super_block *es;
3991 struct block_device *bdev;
3992
3993 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3994
3995 bdev = ext4_blkdev_get(j_dev, sb);
3996 if (bdev == NULL)
3997 return NULL;
3998
3999 blocksize = sb->s_blocksize;
4000 hblock = bdev_logical_block_size(bdev);
4001 if (blocksize < hblock) {
4002 ext4_msg(sb, KERN_ERR,
4003 "blocksize too small for journal device");
4004 goto out_bdev;
4005 }
4006
4007 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4008 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4009 set_blocksize(bdev, blocksize);
4010 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4011 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4012 "external journal");
4013 goto out_bdev;
4014 }
4015
4016 es = (struct ext4_super_block *) (bh->b_data + offset);
4017 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4018 !(le32_to_cpu(es->s_feature_incompat) &
4019 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4020 ext4_msg(sb, KERN_ERR, "external journal has "
4021 "bad superblock");
4022 brelse(bh);
4023 goto out_bdev;
4024 }
4025
4026 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4027 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4028 brelse(bh);
4029 goto out_bdev;
4030 }
4031
4032 len = ext4_blocks_count(es);
4033 start = sb_block + 1;
4034 brelse(bh); /* we're done with the superblock */
4035
4036 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4037 start, len, blocksize);
4038 if (!journal) {
4039 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4040 goto out_bdev;
4041 }
4042 journal->j_private = sb;
4043 ll_rw_block(READ, 1, &journal->j_sb_buffer);
4044 wait_on_buffer(journal->j_sb_buffer);
4045 if (!buffer_uptodate(journal->j_sb_buffer)) {
4046 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4047 goto out_journal;
4048 }
4049 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4050 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4051 "user (unsupported) - %d",
4052 be32_to_cpu(journal->j_superblock->s_nr_users));
4053 goto out_journal;
4054 }
4055 EXT4_SB(sb)->journal_bdev = bdev;
4056 ext4_init_journal_params(sb, journal);
4057 return journal;
4058
4059 out_journal:
4060 jbd2_journal_destroy(journal);
4061 out_bdev:
4062 ext4_blkdev_put(bdev);
4063 return NULL;
4064 }
4065
4066 static int ext4_load_journal(struct super_block *sb,
4067 struct ext4_super_block *es,
4068 unsigned long journal_devnum)
4069 {
4070 journal_t *journal;
4071 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4072 dev_t journal_dev;
4073 int err = 0;
4074 int really_read_only;
4075
4076 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4077
4078 if (journal_devnum &&
4079 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4080 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4081 "numbers have changed");
4082 journal_dev = new_decode_dev(journal_devnum);
4083 } else
4084 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4085
4086 really_read_only = bdev_read_only(sb->s_bdev);
4087
4088 /*
4089 * Are we loading a blank journal or performing recovery after a
4090 * crash? For recovery, we need to check in advance whether we
4091 * can get read-write access to the device.
4092 */
4093 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4094 if (sb->s_flags & MS_RDONLY) {
4095 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4096 "required on readonly filesystem");
4097 if (really_read_only) {
4098 ext4_msg(sb, KERN_ERR, "write access "
4099 "unavailable, cannot proceed");
4100 return -EROFS;
4101 }
4102 ext4_msg(sb, KERN_INFO, "write access will "
4103 "be enabled during recovery");
4104 }
4105 }
4106
4107 if (journal_inum && journal_dev) {
4108 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4109 "and inode journals!");
4110 return -EINVAL;
4111 }
4112
4113 if (journal_inum) {
4114 if (!(journal = ext4_get_journal(sb, journal_inum)))
4115 return -EINVAL;
4116 } else {
4117 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4118 return -EINVAL;
4119 }
4120
4121 if (!(journal->j_flags & JBD2_BARRIER))
4122 ext4_msg(sb, KERN_INFO, "barriers disabled");
4123
4124 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4125 err = jbd2_journal_wipe(journal, !really_read_only);
4126 if (!err) {
4127 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4128 if (save)
4129 memcpy(save, ((char *) es) +
4130 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4131 err = jbd2_journal_load(journal);
4132 if (save)
4133 memcpy(((char *) es) + EXT4_S_ERR_START,
4134 save, EXT4_S_ERR_LEN);
4135 kfree(save);
4136 }
4137
4138 if (err) {
4139 ext4_msg(sb, KERN_ERR, "error loading journal");
4140 jbd2_journal_destroy(journal);
4141 return err;
4142 }
4143
4144 EXT4_SB(sb)->s_journal = journal;
4145 ext4_clear_journal_err(sb, es);
4146
4147 if (!really_read_only && journal_devnum &&
4148 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4149 es->s_journal_dev = cpu_to_le32(journal_devnum);
4150
4151 /* Make sure we flush the recovery flag to disk. */
4152 ext4_commit_super(sb, 1);
4153 }
4154
4155 return 0;
4156 }
4157
4158 static int ext4_commit_super(struct super_block *sb, int sync)
4159 {
4160 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4161 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4162 int error = 0;
4163
4164 if (!sbh || block_device_ejected(sb))
4165 return error;
4166 if (buffer_write_io_error(sbh)) {
4167 /*
4168 * Oh, dear. A previous attempt to write the
4169 * superblock failed. This could happen because the
4170 * USB device was yanked out. Or it could happen to
4171 * be a transient write error and maybe the block will
4172 * be remapped. Nothing we can do but to retry the
4173 * write and hope for the best.
4174 */
4175 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4176 "superblock detected");
4177 clear_buffer_write_io_error(sbh);
4178 set_buffer_uptodate(sbh);
4179 }
4180 /*
4181 * If the file system is mounted read-only, don't update the
4182 * superblock write time. This avoids updating the superblock
4183 * write time when we are mounting the root file system
4184 * read/only but we need to replay the journal; at that point,
4185 * for people who are east of GMT and who make their clock
4186 * tick in localtime for Windows bug-for-bug compatibility,
4187 * the clock is set in the future, and this will cause e2fsck
4188 * to complain and force a full file system check.
4189 */
4190 if (!(sb->s_flags & MS_RDONLY))
4191 es->s_wtime = cpu_to_le32(get_seconds());
4192 if (sb->s_bdev->bd_part)
4193 es->s_kbytes_written =
4194 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4195 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4196 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4197 else
4198 es->s_kbytes_written =
4199 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4200 ext4_free_blocks_count_set(es,
4201 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4202 &EXT4_SB(sb)->s_freeclusters_counter)));
4203 es->s_free_inodes_count =
4204 cpu_to_le32(percpu_counter_sum_positive(
4205 &EXT4_SB(sb)->s_freeinodes_counter));
4206 sb->s_dirt = 0;
4207 BUFFER_TRACE(sbh, "marking dirty");
4208 ext4_superblock_csum_set(sb, es);
4209 mark_buffer_dirty(sbh);
4210 if (sync) {
4211 error = sync_dirty_buffer(sbh);
4212 if (error)
4213 return error;
4214
4215 error = buffer_write_io_error(sbh);
4216 if (error) {
4217 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4218 "superblock");
4219 clear_buffer_write_io_error(sbh);
4220 set_buffer_uptodate(sbh);
4221 }
4222 }
4223 return error;
4224 }
4225
4226 /*
4227 * Have we just finished recovery? If so, and if we are mounting (or
4228 * remounting) the filesystem readonly, then we will end up with a
4229 * consistent fs on disk. Record that fact.
4230 */
4231 static void ext4_mark_recovery_complete(struct super_block *sb,
4232 struct ext4_super_block *es)
4233 {
4234 journal_t *journal = EXT4_SB(sb)->s_journal;
4235
4236 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4237 BUG_ON(journal != NULL);
4238 return;
4239 }
4240 jbd2_journal_lock_updates(journal);
4241 if (jbd2_journal_flush(journal) < 0)
4242 goto out;
4243
4244 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4245 sb->s_flags & MS_RDONLY) {
4246 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4247 ext4_commit_super(sb, 1);
4248 }
4249
4250 out:
4251 jbd2_journal_unlock_updates(journal);
4252 }
4253
4254 /*
4255 * If we are mounting (or read-write remounting) a filesystem whose journal
4256 * has recorded an error from a previous lifetime, move that error to the
4257 * main filesystem now.
4258 */
4259 static void ext4_clear_journal_err(struct super_block *sb,
4260 struct ext4_super_block *es)
4261 {
4262 journal_t *journal;
4263 int j_errno;
4264 const char *errstr;
4265
4266 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4267
4268 journal = EXT4_SB(sb)->s_journal;
4269
4270 /*
4271 * Now check for any error status which may have been recorded in the
4272 * journal by a prior ext4_error() or ext4_abort()
4273 */
4274
4275 j_errno = jbd2_journal_errno(journal);
4276 if (j_errno) {
4277 char nbuf[16];
4278
4279 errstr = ext4_decode_error(sb, j_errno, nbuf);
4280 ext4_warning(sb, "Filesystem error recorded "
4281 "from previous mount: %s", errstr);
4282 ext4_warning(sb, "Marking fs in need of filesystem check.");
4283
4284 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4285 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4286 ext4_commit_super(sb, 1);
4287
4288 jbd2_journal_clear_err(journal);
4289 }
4290 }
4291
4292 /*
4293 * Force the running and committing transactions to commit,
4294 * and wait on the commit.
4295 */
4296 int ext4_force_commit(struct super_block *sb)
4297 {
4298 journal_t *journal;
4299 int ret = 0;
4300
4301 if (sb->s_flags & MS_RDONLY)
4302 return 0;
4303
4304 journal = EXT4_SB(sb)->s_journal;
4305 if (journal) {
4306 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4307 ret = ext4_journal_force_commit(journal);
4308 }
4309
4310 return ret;
4311 }
4312
4313 static void ext4_write_super(struct super_block *sb)
4314 {
4315 lock_super(sb);
4316 ext4_commit_super(sb, 1);
4317 unlock_super(sb);
4318 }
4319
4320 static int ext4_sync_fs(struct super_block *sb, int wait)
4321 {
4322 int ret = 0;
4323 tid_t target;
4324 struct ext4_sb_info *sbi = EXT4_SB(sb);
4325
4326 trace_ext4_sync_fs(sb, wait);
4327 flush_workqueue(sbi->dio_unwritten_wq);
4328 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4329 if (wait)
4330 jbd2_log_wait_commit(sbi->s_journal, target);
4331 }
4332 return ret;
4333 }
4334
4335 /*
4336 * LVM calls this function before a (read-only) snapshot is created. This
4337 * gives us a chance to flush the journal completely and mark the fs clean.
4338 *
4339 * Note that only this function cannot bring a filesystem to be in a clean
4340 * state independently, because ext4 prevents a new handle from being started
4341 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from
4342 * the upper layer.
4343 */
4344 static int ext4_freeze(struct super_block *sb)
4345 {
4346 int error = 0;
4347 journal_t *journal;
4348
4349 if (sb->s_flags & MS_RDONLY)
4350 return 0;
4351
4352 journal = EXT4_SB(sb)->s_journal;
4353
4354 /* Now we set up the journal barrier. */
4355 jbd2_journal_lock_updates(journal);
4356
4357 /*
4358 * Don't clear the needs_recovery flag if we failed to flush
4359 * the journal.
4360 */
4361 error = jbd2_journal_flush(journal);
4362 if (error < 0)
4363 goto out;
4364
4365 /* Journal blocked and flushed, clear needs_recovery flag. */
4366 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4367 error = ext4_commit_super(sb, 1);
4368 out:
4369 /* we rely on s_frozen to stop further updates */
4370 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4371 return error;
4372 }
4373
4374 /*
4375 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4376 * flag here, even though the filesystem is not technically dirty yet.
4377 */
4378 static int ext4_unfreeze(struct super_block *sb)
4379 {
4380 if (sb->s_flags & MS_RDONLY)
4381 return 0;
4382
4383 lock_super(sb);
4384 /* Reset the needs_recovery flag before the fs is unlocked. */
4385 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4386 ext4_commit_super(sb, 1);
4387 unlock_super(sb);
4388 return 0;
4389 }
4390
4391 /*
4392 * Structure to save mount options for ext4_remount's benefit
4393 */
4394 struct ext4_mount_options {
4395 unsigned long s_mount_opt;
4396 unsigned long s_mount_opt2;
4397 kuid_t s_resuid;
4398 kgid_t s_resgid;
4399 unsigned long s_commit_interval;
4400 u32 s_min_batch_time, s_max_batch_time;
4401 #ifdef CONFIG_QUOTA
4402 int s_jquota_fmt;
4403 char *s_qf_names[MAXQUOTAS];
4404 #endif
4405 };
4406
4407 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4408 {
4409 struct ext4_super_block *es;
4410 struct ext4_sb_info *sbi = EXT4_SB(sb);
4411 unsigned long old_sb_flags;
4412 struct ext4_mount_options old_opts;
4413 int enable_quota = 0;
4414 ext4_group_t g;
4415 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4416 int err = 0;
4417 #ifdef CONFIG_QUOTA
4418 int i;
4419 #endif
4420 char *orig_data = kstrdup(data, GFP_KERNEL);
4421
4422 /* Store the original options */
4423 lock_super(sb);
4424 old_sb_flags = sb->s_flags;
4425 old_opts.s_mount_opt = sbi->s_mount_opt;
4426 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4427 old_opts.s_resuid = sbi->s_resuid;
4428 old_opts.s_resgid = sbi->s_resgid;
4429 old_opts.s_commit_interval = sbi->s_commit_interval;
4430 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4431 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4432 #ifdef CONFIG_QUOTA
4433 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4434 for (i = 0; i < MAXQUOTAS; i++)
4435 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4436 #endif
4437 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4438 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4439
4440 /*
4441 * Allow the "check" option to be passed as a remount option.
4442 */
4443 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4444 err = -EINVAL;
4445 goto restore_opts;
4446 }
4447
4448 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4449 ext4_abort(sb, "Abort forced by user");
4450
4451 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4452 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4453
4454 es = sbi->s_es;
4455
4456 if (sbi->s_journal) {
4457 ext4_init_journal_params(sb, sbi->s_journal);
4458 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4459 }
4460
4461 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4462 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4463 err = -EROFS;
4464 goto restore_opts;
4465 }
4466
4467 if (*flags & MS_RDONLY) {
4468 err = dquot_suspend(sb, -1);
4469 if (err < 0)
4470 goto restore_opts;
4471
4472 /*
4473 * First of all, the unconditional stuff we have to do
4474 * to disable replay of the journal when we next remount
4475 */
4476 sb->s_flags |= MS_RDONLY;
4477
4478 /*
4479 * OK, test if we are remounting a valid rw partition
4480 * readonly, and if so set the rdonly flag and then
4481 * mark the partition as valid again.
4482 */
4483 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4484 (sbi->s_mount_state & EXT4_VALID_FS))
4485 es->s_state = cpu_to_le16(sbi->s_mount_state);
4486
4487 if (sbi->s_journal)
4488 ext4_mark_recovery_complete(sb, es);
4489 } else {
4490 /* Make sure we can mount this feature set readwrite */
4491 if (!ext4_feature_set_ok(sb, 0)) {
4492 err = -EROFS;
4493 goto restore_opts;
4494 }
4495 /*
4496 * Make sure the group descriptor checksums
4497 * are sane. If they aren't, refuse to remount r/w.
4498 */
4499 for (g = 0; g < sbi->s_groups_count; g++) {
4500 struct ext4_group_desc *gdp =
4501 ext4_get_group_desc(sb, g, NULL);
4502
4503 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4504 ext4_msg(sb, KERN_ERR,
4505 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4506 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4507 le16_to_cpu(gdp->bg_checksum));
4508 err = -EINVAL;
4509 goto restore_opts;
4510 }
4511 }
4512
4513 /*
4514 * If we have an unprocessed orphan list hanging
4515 * around from a previously readonly bdev mount,
4516 * require a full umount/remount for now.
4517 */
4518 if (es->s_last_orphan) {
4519 ext4_msg(sb, KERN_WARNING, "Couldn't "
4520 "remount RDWR because of unprocessed "
4521 "orphan inode list. Please "
4522 "umount/remount instead");
4523 err = -EINVAL;
4524 goto restore_opts;
4525 }
4526
4527 /*
4528 * Mounting a RDONLY partition read-write, so reread
4529 * and store the current valid flag. (It may have
4530 * been changed by e2fsck since we originally mounted
4531 * the partition.)
4532 */
4533 if (sbi->s_journal)
4534 ext4_clear_journal_err(sb, es);
4535 sbi->s_mount_state = le16_to_cpu(es->s_state);
4536 if (!ext4_setup_super(sb, es, 0))
4537 sb->s_flags &= ~MS_RDONLY;
4538 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4539 EXT4_FEATURE_INCOMPAT_MMP))
4540 if (ext4_multi_mount_protect(sb,
4541 le64_to_cpu(es->s_mmp_block))) {
4542 err = -EROFS;
4543 goto restore_opts;
4544 }
4545 enable_quota = 1;
4546 }
4547 }
4548
4549 /*
4550 * Reinitialize lazy itable initialization thread based on
4551 * current settings
4552 */
4553 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4554 ext4_unregister_li_request(sb);
4555 else {
4556 ext4_group_t first_not_zeroed;
4557 first_not_zeroed = ext4_has_uninit_itable(sb);
4558 ext4_register_li_request(sb, first_not_zeroed);
4559 }
4560
4561 ext4_setup_system_zone(sb);
4562 if (sbi->s_journal == NULL)
4563 ext4_commit_super(sb, 1);
4564
4565 #ifdef CONFIG_QUOTA
4566 /* Release old quota file names */
4567 for (i = 0; i < MAXQUOTAS; i++)
4568 if (old_opts.s_qf_names[i] &&
4569 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4570 kfree(old_opts.s_qf_names[i]);
4571 #endif
4572 unlock_super(sb);
4573 if (enable_quota)
4574 dquot_resume(sb, -1);
4575
4576 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4577 kfree(orig_data);
4578 return 0;
4579
4580 restore_opts:
4581 sb->s_flags = old_sb_flags;
4582 sbi->s_mount_opt = old_opts.s_mount_opt;
4583 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4584 sbi->s_resuid = old_opts.s_resuid;
4585 sbi->s_resgid = old_opts.s_resgid;
4586 sbi->s_commit_interval = old_opts.s_commit_interval;
4587 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4588 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4589 #ifdef CONFIG_QUOTA
4590 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4591 for (i = 0; i < MAXQUOTAS; i++) {
4592 if (sbi->s_qf_names[i] &&
4593 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4594 kfree(sbi->s_qf_names[i]);
4595 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4596 }
4597 #endif
4598 unlock_super(sb);
4599 kfree(orig_data);
4600 return err;
4601 }
4602
4603 /*
4604 * Note: calculating the overhead so we can be compatible with
4605 * historical BSD practice is quite difficult in the face of
4606 * clusters/bigalloc. This is because multiple metadata blocks from
4607 * different block group can end up in the same allocation cluster.
4608 * Calculating the exact overhead in the face of clustered allocation
4609 * requires either O(all block bitmaps) in memory or O(number of block
4610 * groups**2) in time. We will still calculate the superblock for
4611 * older file systems --- and if we come across with a bigalloc file
4612 * system with zero in s_overhead_clusters the estimate will be close to
4613 * correct especially for very large cluster sizes --- but for newer
4614 * file systems, it's better to calculate this figure once at mkfs
4615 * time, and store it in the superblock. If the superblock value is
4616 * present (even for non-bigalloc file systems), we will use it.
4617 */
4618 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4619 {
4620 struct super_block *sb = dentry->d_sb;
4621 struct ext4_sb_info *sbi = EXT4_SB(sb);
4622 struct ext4_super_block *es = sbi->s_es;
4623 struct ext4_group_desc *gdp;
4624 u64 fsid;
4625 s64 bfree;
4626
4627 if (test_opt(sb, MINIX_DF)) {
4628 sbi->s_overhead_last = 0;
4629 } else if (es->s_overhead_clusters) {
4630 sbi->s_overhead_last = le32_to_cpu(es->s_overhead_clusters);
4631 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4632 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4633 ext4_fsblk_t overhead = 0;
4634
4635 /*
4636 * Compute the overhead (FS structures). This is constant
4637 * for a given filesystem unless the number of block groups
4638 * changes so we cache the previous value until it does.
4639 */
4640
4641 /*
4642 * All of the blocks before first_data_block are
4643 * overhead
4644 */
4645 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4646
4647 /*
4648 * Add the overhead found in each block group
4649 */
4650 for (i = 0; i < ngroups; i++) {
4651 gdp = ext4_get_group_desc(sb, i, NULL);
4652 overhead += ext4_num_overhead_clusters(sb, i, gdp);
4653 cond_resched();
4654 }
4655 sbi->s_overhead_last = overhead;
4656 smp_wmb();
4657 sbi->s_blocks_last = ext4_blocks_count(es);
4658 }
4659
4660 buf->f_type = EXT4_SUPER_MAGIC;
4661 buf->f_bsize = sb->s_blocksize;
4662 buf->f_blocks = (ext4_blocks_count(es) -
4663 EXT4_C2B(sbi, sbi->s_overhead_last));
4664 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4665 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4666 /* prevent underflow in case that few free space is available */
4667 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4668 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4669 if (buf->f_bfree < ext4_r_blocks_count(es))
4670 buf->f_bavail = 0;
4671 buf->f_files = le32_to_cpu(es->s_inodes_count);
4672 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4673 buf->f_namelen = EXT4_NAME_LEN;
4674 fsid = le64_to_cpup((void *)es->s_uuid) ^
4675 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4676 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4677 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4678
4679 return 0;
4680 }
4681
4682 /* Helper function for writing quotas on sync - we need to start transaction
4683 * before quota file is locked for write. Otherwise the are possible deadlocks:
4684 * Process 1 Process 2
4685 * ext4_create() quota_sync()
4686 * jbd2_journal_start() write_dquot()
4687 * dquot_initialize() down(dqio_mutex)
4688 * down(dqio_mutex) jbd2_journal_start()
4689 *
4690 */
4691
4692 #ifdef CONFIG_QUOTA
4693
4694 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4695 {
4696 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4697 }
4698
4699 static int ext4_write_dquot(struct dquot *dquot)
4700 {
4701 int ret, err;
4702 handle_t *handle;
4703 struct inode *inode;
4704
4705 inode = dquot_to_inode(dquot);
4706 handle = ext4_journal_start(inode,
4707 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4708 if (IS_ERR(handle))
4709 return PTR_ERR(handle);
4710 ret = dquot_commit(dquot);
4711 err = ext4_journal_stop(handle);
4712 if (!ret)
4713 ret = err;
4714 return ret;
4715 }
4716
4717 static int ext4_acquire_dquot(struct dquot *dquot)
4718 {
4719 int ret, err;
4720 handle_t *handle;
4721
4722 handle = ext4_journal_start(dquot_to_inode(dquot),
4723 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4724 if (IS_ERR(handle))
4725 return PTR_ERR(handle);
4726 ret = dquot_acquire(dquot);
4727 err = ext4_journal_stop(handle);
4728 if (!ret)
4729 ret = err;
4730 return ret;
4731 }
4732
4733 static int ext4_release_dquot(struct dquot *dquot)
4734 {
4735 int ret, err;
4736 handle_t *handle;
4737
4738 handle = ext4_journal_start(dquot_to_inode(dquot),
4739 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4740 if (IS_ERR(handle)) {
4741 /* Release dquot anyway to avoid endless cycle in dqput() */
4742 dquot_release(dquot);
4743 return PTR_ERR(handle);
4744 }
4745 ret = dquot_release(dquot);
4746 err = ext4_journal_stop(handle);
4747 if (!ret)
4748 ret = err;
4749 return ret;
4750 }
4751
4752 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4753 {
4754 /* Are we journaling quotas? */
4755 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4756 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4757 dquot_mark_dquot_dirty(dquot);
4758 return ext4_write_dquot(dquot);
4759 } else {
4760 return dquot_mark_dquot_dirty(dquot);
4761 }
4762 }
4763
4764 static int ext4_write_info(struct super_block *sb, int type)
4765 {
4766 int ret, err;
4767 handle_t *handle;
4768
4769 /* Data block + inode block */
4770 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4771 if (IS_ERR(handle))
4772 return PTR_ERR(handle);
4773 ret = dquot_commit_info(sb, type);
4774 err = ext4_journal_stop(handle);
4775 if (!ret)
4776 ret = err;
4777 return ret;
4778 }
4779
4780 /*
4781 * Turn on quotas during mount time - we need to find
4782 * the quota file and such...
4783 */
4784 static int ext4_quota_on_mount(struct super_block *sb, int type)
4785 {
4786 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4787 EXT4_SB(sb)->s_jquota_fmt, type);
4788 }
4789
4790 /*
4791 * Standard function to be called on quota_on
4792 */
4793 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4794 struct path *path)
4795 {
4796 int err;
4797
4798 if (!test_opt(sb, QUOTA))
4799 return -EINVAL;
4800
4801 /* Quotafile not on the same filesystem? */
4802 if (path->dentry->d_sb != sb)
4803 return -EXDEV;
4804 /* Journaling quota? */
4805 if (EXT4_SB(sb)->s_qf_names[type]) {
4806 /* Quotafile not in fs root? */
4807 if (path->dentry->d_parent != sb->s_root)
4808 ext4_msg(sb, KERN_WARNING,
4809 "Quota file not on filesystem root. "
4810 "Journaled quota will not work");
4811 }
4812
4813 /*
4814 * When we journal data on quota file, we have to flush journal to see
4815 * all updates to the file when we bypass pagecache...
4816 */
4817 if (EXT4_SB(sb)->s_journal &&
4818 ext4_should_journal_data(path->dentry->d_inode)) {
4819 /*
4820 * We don't need to lock updates but journal_flush() could
4821 * otherwise be livelocked...
4822 */
4823 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4824 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4825 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4826 if (err)
4827 return err;
4828 }
4829
4830 return dquot_quota_on(sb, type, format_id, path);
4831 }
4832
4833 static int ext4_quota_off(struct super_block *sb, int type)
4834 {
4835 struct inode *inode = sb_dqopt(sb)->files[type];
4836 handle_t *handle;
4837
4838 /* Force all delayed allocation blocks to be allocated.
4839 * Caller already holds s_umount sem */
4840 if (test_opt(sb, DELALLOC))
4841 sync_filesystem(sb);
4842
4843 if (!inode)
4844 goto out;
4845
4846 /* Update modification times of quota files when userspace can
4847 * start looking at them */
4848 handle = ext4_journal_start(inode, 1);
4849 if (IS_ERR(handle))
4850 goto out;
4851 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4852 ext4_mark_inode_dirty(handle, inode);
4853 ext4_journal_stop(handle);
4854
4855 out:
4856 return dquot_quota_off(sb, type);
4857 }
4858
4859 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4860 * acquiring the locks... As quota files are never truncated and quota code
4861 * itself serializes the operations (and no one else should touch the files)
4862 * we don't have to be afraid of races */
4863 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4864 size_t len, loff_t off)
4865 {
4866 struct inode *inode = sb_dqopt(sb)->files[type];
4867 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4868 int err = 0;
4869 int offset = off & (sb->s_blocksize - 1);
4870 int tocopy;
4871 size_t toread;
4872 struct buffer_head *bh;
4873 loff_t i_size = i_size_read(inode);
4874
4875 if (off > i_size)
4876 return 0;
4877 if (off+len > i_size)
4878 len = i_size-off;
4879 toread = len;
4880 while (toread > 0) {
4881 tocopy = sb->s_blocksize - offset < toread ?
4882 sb->s_blocksize - offset : toread;
4883 bh = ext4_bread(NULL, inode, blk, 0, &err);
4884 if (err)
4885 return err;
4886 if (!bh) /* A hole? */
4887 memset(data, 0, tocopy);
4888 else
4889 memcpy(data, bh->b_data+offset, tocopy);
4890 brelse(bh);
4891 offset = 0;
4892 toread -= tocopy;
4893 data += tocopy;
4894 blk++;
4895 }
4896 return len;
4897 }
4898
4899 /* Write to quotafile (we know the transaction is already started and has
4900 * enough credits) */
4901 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4902 const char *data, size_t len, loff_t off)
4903 {
4904 struct inode *inode = sb_dqopt(sb)->files[type];
4905 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4906 int err = 0;
4907 int offset = off & (sb->s_blocksize - 1);
4908 struct buffer_head *bh;
4909 handle_t *handle = journal_current_handle();
4910
4911 if (EXT4_SB(sb)->s_journal && !handle) {
4912 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4913 " cancelled because transaction is not started",
4914 (unsigned long long)off, (unsigned long long)len);
4915 return -EIO;
4916 }
4917 /*
4918 * Since we account only one data block in transaction credits,
4919 * then it is impossible to cross a block boundary.
4920 */
4921 if (sb->s_blocksize - offset < len) {
4922 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4923 " cancelled because not block aligned",
4924 (unsigned long long)off, (unsigned long long)len);
4925 return -EIO;
4926 }
4927
4928 bh = ext4_bread(handle, inode, blk, 1, &err);
4929 if (!bh)
4930 goto out;
4931 err = ext4_journal_get_write_access(handle, bh);
4932 if (err) {
4933 brelse(bh);
4934 goto out;
4935 }
4936 lock_buffer(bh);
4937 memcpy(bh->b_data+offset, data, len);
4938 flush_dcache_page(bh->b_page);
4939 unlock_buffer(bh);
4940 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4941 brelse(bh);
4942 out:
4943 if (err)
4944 return err;
4945 if (inode->i_size < off + len) {
4946 i_size_write(inode, off + len);
4947 EXT4_I(inode)->i_disksize = inode->i_size;
4948 ext4_mark_inode_dirty(handle, inode);
4949 }
4950 return len;
4951 }
4952
4953 #endif
4954
4955 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4956 const char *dev_name, void *data)
4957 {
4958 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4959 }
4960
4961 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4962 static inline void register_as_ext2(void)
4963 {
4964 int err = register_filesystem(&ext2_fs_type);
4965 if (err)
4966 printk(KERN_WARNING
4967 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4968 }
4969
4970 static inline void unregister_as_ext2(void)
4971 {
4972 unregister_filesystem(&ext2_fs_type);
4973 }
4974
4975 static inline int ext2_feature_set_ok(struct super_block *sb)
4976 {
4977 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
4978 return 0;
4979 if (sb->s_flags & MS_RDONLY)
4980 return 1;
4981 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
4982 return 0;
4983 return 1;
4984 }
4985 MODULE_ALIAS("ext2");
4986 #else
4987 static inline void register_as_ext2(void) { }
4988 static inline void unregister_as_ext2(void) { }
4989 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
4990 #endif
4991
4992 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4993 static inline void register_as_ext3(void)
4994 {
4995 int err = register_filesystem(&ext3_fs_type);
4996 if (err)
4997 printk(KERN_WARNING
4998 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4999 }
5000
5001 static inline void unregister_as_ext3(void)
5002 {
5003 unregister_filesystem(&ext3_fs_type);
5004 }
5005
5006 static inline int ext3_feature_set_ok(struct super_block *sb)
5007 {
5008 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5009 return 0;
5010 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5011 return 0;
5012 if (sb->s_flags & MS_RDONLY)
5013 return 1;
5014 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5015 return 0;
5016 return 1;
5017 }
5018 MODULE_ALIAS("ext3");
5019 #else
5020 static inline void register_as_ext3(void) { }
5021 static inline void unregister_as_ext3(void) { }
5022 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5023 #endif
5024
5025 static struct file_system_type ext4_fs_type = {
5026 .owner = THIS_MODULE,
5027 .name = "ext4",
5028 .mount = ext4_mount,
5029 .kill_sb = kill_block_super,
5030 .fs_flags = FS_REQUIRES_DEV,
5031 };
5032
5033 static int __init ext4_init_feat_adverts(void)
5034 {
5035 struct ext4_features *ef;
5036 int ret = -ENOMEM;
5037
5038 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5039 if (!ef)
5040 goto out;
5041
5042 ef->f_kobj.kset = ext4_kset;
5043 init_completion(&ef->f_kobj_unregister);
5044 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5045 "features");
5046 if (ret) {
5047 kfree(ef);
5048 goto out;
5049 }
5050
5051 ext4_feat = ef;
5052 ret = 0;
5053 out:
5054 return ret;
5055 }
5056
5057 static void ext4_exit_feat_adverts(void)
5058 {
5059 kobject_put(&ext4_feat->f_kobj);
5060 wait_for_completion(&ext4_feat->f_kobj_unregister);
5061 kfree(ext4_feat);
5062 }
5063
5064 /* Shared across all ext4 file systems */
5065 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5066 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5067
5068 static int __init ext4_init_fs(void)
5069 {
5070 int i, err;
5071
5072 ext4_li_info = NULL;
5073 mutex_init(&ext4_li_mtx);
5074
5075 ext4_check_flag_values();
5076
5077 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5078 mutex_init(&ext4__aio_mutex[i]);
5079 init_waitqueue_head(&ext4__ioend_wq[i]);
5080 }
5081
5082 err = ext4_init_pageio();
5083 if (err)
5084 return err;
5085 err = ext4_init_system_zone();
5086 if (err)
5087 goto out6;
5088 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5089 if (!ext4_kset)
5090 goto out5;
5091 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5092
5093 err = ext4_init_feat_adverts();
5094 if (err)
5095 goto out4;
5096
5097 err = ext4_init_mballoc();
5098 if (err)
5099 goto out3;
5100
5101 err = ext4_init_xattr();
5102 if (err)
5103 goto out2;
5104 err = init_inodecache();
5105 if (err)
5106 goto out1;
5107 register_as_ext3();
5108 register_as_ext2();
5109 err = register_filesystem(&ext4_fs_type);
5110 if (err)
5111 goto out;
5112
5113 return 0;
5114 out:
5115 unregister_as_ext2();
5116 unregister_as_ext3();
5117 destroy_inodecache();
5118 out1:
5119 ext4_exit_xattr();
5120 out2:
5121 ext4_exit_mballoc();
5122 out3:
5123 ext4_exit_feat_adverts();
5124 out4:
5125 if (ext4_proc_root)
5126 remove_proc_entry("fs/ext4", NULL);
5127 kset_unregister(ext4_kset);
5128 out5:
5129 ext4_exit_system_zone();
5130 out6:
5131 ext4_exit_pageio();
5132 return err;
5133 }
5134
5135 static void __exit ext4_exit_fs(void)
5136 {
5137 ext4_destroy_lazyinit_thread();
5138 unregister_as_ext2();
5139 unregister_as_ext3();
5140 unregister_filesystem(&ext4_fs_type);
5141 destroy_inodecache();
5142 ext4_exit_xattr();
5143 ext4_exit_mballoc();
5144 ext4_exit_feat_adverts();
5145 remove_proc_entry("fs/ext4", NULL);
5146 kset_unregister(ext4_kset);
5147 ext4_exit_system_zone();
5148 ext4_exit_pageio();
5149 }
5150
5151 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5152 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5153 MODULE_LICENSE("GPL");
5154 module_init(ext4_init_fs)
5155 module_exit(ext4_exit_fs)
This page took 0.136652 seconds and 6 git commands to generate.