Merge branch 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <asm/uaccess.h>
42
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45
46 #include "ext4.h"
47 #include "ext4_jbd2.h"
48 #include "xattr.h"
49 #include "acl.h"
50 #include "mballoc.h"
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/ext4.h>
54
55 static struct proc_dir_entry *ext4_proc_root;
56 static struct kset *ext4_kset;
57 struct ext4_lazy_init *ext4_li_info;
58 struct mutex ext4_li_mtx;
59 struct ext4_features *ext4_feat;
60
61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
62 unsigned long journal_devnum);
63 static int ext4_commit_super(struct super_block *sb, int sync);
64 static void ext4_mark_recovery_complete(struct super_block *sb,
65 struct ext4_super_block *es);
66 static void ext4_clear_journal_err(struct super_block *sb,
67 struct ext4_super_block *es);
68 static int ext4_sync_fs(struct super_block *sb, int wait);
69 static const char *ext4_decode_error(struct super_block *sb, int errno,
70 char nbuf[16]);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static void ext4_write_super(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static void ext4_destroy_lazyinit_thread(void);
79 static void ext4_unregister_li_request(struct super_block *sb);
80
81 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
82 static struct file_system_type ext3_fs_type = {
83 .owner = THIS_MODULE,
84 .name = "ext3",
85 .mount = ext4_mount,
86 .kill_sb = kill_block_super,
87 .fs_flags = FS_REQUIRES_DEV,
88 };
89 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
90 #else
91 #define IS_EXT3_SB(sb) (0)
92 #endif
93
94 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
95 struct ext4_group_desc *bg)
96 {
97 return le32_to_cpu(bg->bg_block_bitmap_lo) |
98 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
99 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
100 }
101
102 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
103 struct ext4_group_desc *bg)
104 {
105 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
106 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
107 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
108 }
109
110 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
111 struct ext4_group_desc *bg)
112 {
113 return le32_to_cpu(bg->bg_inode_table_lo) |
114 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
115 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
116 }
117
118 __u32 ext4_free_blks_count(struct super_block *sb,
119 struct ext4_group_desc *bg)
120 {
121 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
122 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
123 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
124 }
125
126 __u32 ext4_free_inodes_count(struct super_block *sb,
127 struct ext4_group_desc *bg)
128 {
129 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
130 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
131 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
132 }
133
134 __u32 ext4_used_dirs_count(struct super_block *sb,
135 struct ext4_group_desc *bg)
136 {
137 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
138 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
139 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
140 }
141
142 __u32 ext4_itable_unused_count(struct super_block *sb,
143 struct ext4_group_desc *bg)
144 {
145 return le16_to_cpu(bg->bg_itable_unused_lo) |
146 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
147 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
148 }
149
150 void ext4_block_bitmap_set(struct super_block *sb,
151 struct ext4_group_desc *bg, ext4_fsblk_t blk)
152 {
153 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
154 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
155 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
156 }
157
158 void ext4_inode_bitmap_set(struct super_block *sb,
159 struct ext4_group_desc *bg, ext4_fsblk_t blk)
160 {
161 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
162 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
163 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
164 }
165
166 void ext4_inode_table_set(struct super_block *sb,
167 struct ext4_group_desc *bg, ext4_fsblk_t blk)
168 {
169 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
170 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
171 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
172 }
173
174 void ext4_free_blks_set(struct super_block *sb,
175 struct ext4_group_desc *bg, __u32 count)
176 {
177 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
178 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
179 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
180 }
181
182 void ext4_free_inodes_set(struct super_block *sb,
183 struct ext4_group_desc *bg, __u32 count)
184 {
185 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
186 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
187 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
188 }
189
190 void ext4_used_dirs_set(struct super_block *sb,
191 struct ext4_group_desc *bg, __u32 count)
192 {
193 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
194 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
195 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
196 }
197
198 void ext4_itable_unused_set(struct super_block *sb,
199 struct ext4_group_desc *bg, __u32 count)
200 {
201 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
202 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
203 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
204 }
205
206
207 /* Just increment the non-pointer handle value */
208 static handle_t *ext4_get_nojournal(void)
209 {
210 handle_t *handle = current->journal_info;
211 unsigned long ref_cnt = (unsigned long)handle;
212
213 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
214
215 ref_cnt++;
216 handle = (handle_t *)ref_cnt;
217
218 current->journal_info = handle;
219 return handle;
220 }
221
222
223 /* Decrement the non-pointer handle value */
224 static void ext4_put_nojournal(handle_t *handle)
225 {
226 unsigned long ref_cnt = (unsigned long)handle;
227
228 BUG_ON(ref_cnt == 0);
229
230 ref_cnt--;
231 handle = (handle_t *)ref_cnt;
232
233 current->journal_info = handle;
234 }
235
236 /*
237 * Wrappers for jbd2_journal_start/end.
238 *
239 * The only special thing we need to do here is to make sure that all
240 * journal_end calls result in the superblock being marked dirty, so
241 * that sync() will call the filesystem's write_super callback if
242 * appropriate.
243 */
244 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
245 {
246 journal_t *journal;
247
248 if (sb->s_flags & MS_RDONLY)
249 return ERR_PTR(-EROFS);
250
251 vfs_check_frozen(sb, SB_FREEZE_TRANS);
252 /* Special case here: if the journal has aborted behind our
253 * backs (eg. EIO in the commit thread), then we still need to
254 * take the FS itself readonly cleanly. */
255 journal = EXT4_SB(sb)->s_journal;
256 if (journal) {
257 if (is_journal_aborted(journal)) {
258 ext4_abort(sb, "Detected aborted journal");
259 return ERR_PTR(-EROFS);
260 }
261 return jbd2_journal_start(journal, nblocks);
262 }
263 return ext4_get_nojournal();
264 }
265
266 /*
267 * The only special thing we need to do here is to make sure that all
268 * jbd2_journal_stop calls result in the superblock being marked dirty, so
269 * that sync() will call the filesystem's write_super callback if
270 * appropriate.
271 */
272 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
273 {
274 struct super_block *sb;
275 int err;
276 int rc;
277
278 if (!ext4_handle_valid(handle)) {
279 ext4_put_nojournal(handle);
280 return 0;
281 }
282 sb = handle->h_transaction->t_journal->j_private;
283 err = handle->h_err;
284 rc = jbd2_journal_stop(handle);
285
286 if (!err)
287 err = rc;
288 if (err)
289 __ext4_std_error(sb, where, line, err);
290 return err;
291 }
292
293 void ext4_journal_abort_handle(const char *caller, unsigned int line,
294 const char *err_fn, struct buffer_head *bh,
295 handle_t *handle, int err)
296 {
297 char nbuf[16];
298 const char *errstr = ext4_decode_error(NULL, err, nbuf);
299
300 BUG_ON(!ext4_handle_valid(handle));
301
302 if (bh)
303 BUFFER_TRACE(bh, "abort");
304
305 if (!handle->h_err)
306 handle->h_err = err;
307
308 if (is_handle_aborted(handle))
309 return;
310
311 printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n",
312 caller, line, errstr, err_fn);
313
314 jbd2_journal_abort_handle(handle);
315 }
316
317 static void __save_error_info(struct super_block *sb, const char *func,
318 unsigned int line)
319 {
320 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
321
322 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
323 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
324 es->s_last_error_time = cpu_to_le32(get_seconds());
325 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
326 es->s_last_error_line = cpu_to_le32(line);
327 if (!es->s_first_error_time) {
328 es->s_first_error_time = es->s_last_error_time;
329 strncpy(es->s_first_error_func, func,
330 sizeof(es->s_first_error_func));
331 es->s_first_error_line = cpu_to_le32(line);
332 es->s_first_error_ino = es->s_last_error_ino;
333 es->s_first_error_block = es->s_last_error_block;
334 }
335 /*
336 * Start the daily error reporting function if it hasn't been
337 * started already
338 */
339 if (!es->s_error_count)
340 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
341 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
342 }
343
344 static void save_error_info(struct super_block *sb, const char *func,
345 unsigned int line)
346 {
347 __save_error_info(sb, func, line);
348 ext4_commit_super(sb, 1);
349 }
350
351
352 /* Deal with the reporting of failure conditions on a filesystem such as
353 * inconsistencies detected or read IO failures.
354 *
355 * On ext2, we can store the error state of the filesystem in the
356 * superblock. That is not possible on ext4, because we may have other
357 * write ordering constraints on the superblock which prevent us from
358 * writing it out straight away; and given that the journal is about to
359 * be aborted, we can't rely on the current, or future, transactions to
360 * write out the superblock safely.
361 *
362 * We'll just use the jbd2_journal_abort() error code to record an error in
363 * the journal instead. On recovery, the journal will complain about
364 * that error until we've noted it down and cleared it.
365 */
366
367 static void ext4_handle_error(struct super_block *sb)
368 {
369 if (sb->s_flags & MS_RDONLY)
370 return;
371
372 if (!test_opt(sb, ERRORS_CONT)) {
373 journal_t *journal = EXT4_SB(sb)->s_journal;
374
375 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
376 if (journal)
377 jbd2_journal_abort(journal, -EIO);
378 }
379 if (test_opt(sb, ERRORS_RO)) {
380 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
381 sb->s_flags |= MS_RDONLY;
382 }
383 if (test_opt(sb, ERRORS_PANIC))
384 panic("EXT4-fs (device %s): panic forced after error\n",
385 sb->s_id);
386 }
387
388 void __ext4_error(struct super_block *sb, const char *function,
389 unsigned int line, const char *fmt, ...)
390 {
391 va_list args;
392
393 va_start(args, fmt);
394 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: ",
395 sb->s_id, function, line, current->comm);
396 vprintk(fmt, args);
397 printk("\n");
398 va_end(args);
399
400 ext4_handle_error(sb);
401 }
402
403 void ext4_error_inode(struct inode *inode, const char *function,
404 unsigned int line, ext4_fsblk_t block,
405 const char *fmt, ...)
406 {
407 va_list args;
408 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
409
410 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
411 es->s_last_error_block = cpu_to_le64(block);
412 save_error_info(inode->i_sb, function, line);
413 va_start(args, fmt);
414 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
415 inode->i_sb->s_id, function, line, inode->i_ino);
416 if (block)
417 printk("block %llu: ", block);
418 printk("comm %s: ", current->comm);
419 vprintk(fmt, args);
420 printk("\n");
421 va_end(args);
422
423 ext4_handle_error(inode->i_sb);
424 }
425
426 void ext4_error_file(struct file *file, const char *function,
427 unsigned int line, const char *fmt, ...)
428 {
429 va_list args;
430 struct ext4_super_block *es;
431 struct inode *inode = file->f_dentry->d_inode;
432 char pathname[80], *path;
433
434 es = EXT4_SB(inode->i_sb)->s_es;
435 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
436 save_error_info(inode->i_sb, function, line);
437 va_start(args, fmt);
438 path = d_path(&(file->f_path), pathname, sizeof(pathname));
439 if (!path)
440 path = "(unknown)";
441 printk(KERN_CRIT
442 "EXT4-fs error (device %s): %s:%d: inode #%lu "
443 "(comm %s path %s): ",
444 inode->i_sb->s_id, function, line, inode->i_ino,
445 current->comm, path);
446 vprintk(fmt, args);
447 printk("\n");
448 va_end(args);
449
450 ext4_handle_error(inode->i_sb);
451 }
452
453 static const char *ext4_decode_error(struct super_block *sb, int errno,
454 char nbuf[16])
455 {
456 char *errstr = NULL;
457
458 switch (errno) {
459 case -EIO:
460 errstr = "IO failure";
461 break;
462 case -ENOMEM:
463 errstr = "Out of memory";
464 break;
465 case -EROFS:
466 if (!sb || (EXT4_SB(sb)->s_journal &&
467 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
468 errstr = "Journal has aborted";
469 else
470 errstr = "Readonly filesystem";
471 break;
472 default:
473 /* If the caller passed in an extra buffer for unknown
474 * errors, textualise them now. Else we just return
475 * NULL. */
476 if (nbuf) {
477 /* Check for truncated error codes... */
478 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
479 errstr = nbuf;
480 }
481 break;
482 }
483
484 return errstr;
485 }
486
487 /* __ext4_std_error decodes expected errors from journaling functions
488 * automatically and invokes the appropriate error response. */
489
490 void __ext4_std_error(struct super_block *sb, const char *function,
491 unsigned int line, int errno)
492 {
493 char nbuf[16];
494 const char *errstr;
495
496 /* Special case: if the error is EROFS, and we're not already
497 * inside a transaction, then there's really no point in logging
498 * an error. */
499 if (errno == -EROFS && journal_current_handle() == NULL &&
500 (sb->s_flags & MS_RDONLY))
501 return;
502
503 errstr = ext4_decode_error(sb, errno, nbuf);
504 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
505 sb->s_id, function, line, errstr);
506 save_error_info(sb, function, line);
507
508 ext4_handle_error(sb);
509 }
510
511 /*
512 * ext4_abort is a much stronger failure handler than ext4_error. The
513 * abort function may be used to deal with unrecoverable failures such
514 * as journal IO errors or ENOMEM at a critical moment in log management.
515 *
516 * We unconditionally force the filesystem into an ABORT|READONLY state,
517 * unless the error response on the fs has been set to panic in which
518 * case we take the easy way out and panic immediately.
519 */
520
521 void __ext4_abort(struct super_block *sb, const char *function,
522 unsigned int line, const char *fmt, ...)
523 {
524 va_list args;
525
526 save_error_info(sb, function, line);
527 va_start(args, fmt);
528 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
529 function, line);
530 vprintk(fmt, args);
531 printk("\n");
532 va_end(args);
533
534 if ((sb->s_flags & MS_RDONLY) == 0) {
535 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
536 sb->s_flags |= MS_RDONLY;
537 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
538 if (EXT4_SB(sb)->s_journal)
539 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
540 save_error_info(sb, function, line);
541 }
542 if (test_opt(sb, ERRORS_PANIC))
543 panic("EXT4-fs panic from previous error\n");
544 }
545
546 void ext4_msg (struct super_block * sb, const char *prefix,
547 const char *fmt, ...)
548 {
549 va_list args;
550
551 va_start(args, fmt);
552 printk("%sEXT4-fs (%s): ", prefix, sb->s_id);
553 vprintk(fmt, args);
554 printk("\n");
555 va_end(args);
556 }
557
558 void __ext4_warning(struct super_block *sb, const char *function,
559 unsigned int line, const char *fmt, ...)
560 {
561 va_list args;
562
563 va_start(args, fmt);
564 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: ",
565 sb->s_id, function, line);
566 vprintk(fmt, args);
567 printk("\n");
568 va_end(args);
569 }
570
571 void __ext4_grp_locked_error(const char *function, unsigned int line,
572 struct super_block *sb, ext4_group_t grp,
573 unsigned long ino, ext4_fsblk_t block,
574 const char *fmt, ...)
575 __releases(bitlock)
576 __acquires(bitlock)
577 {
578 va_list args;
579 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
580
581 es->s_last_error_ino = cpu_to_le32(ino);
582 es->s_last_error_block = cpu_to_le64(block);
583 __save_error_info(sb, function, line);
584 va_start(args, fmt);
585 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u",
586 sb->s_id, function, line, grp);
587 if (ino)
588 printk("inode %lu: ", ino);
589 if (block)
590 printk("block %llu:", (unsigned long long) block);
591 vprintk(fmt, args);
592 printk("\n");
593 va_end(args);
594
595 if (test_opt(sb, ERRORS_CONT)) {
596 ext4_commit_super(sb, 0);
597 return;
598 }
599
600 ext4_unlock_group(sb, grp);
601 ext4_handle_error(sb);
602 /*
603 * We only get here in the ERRORS_RO case; relocking the group
604 * may be dangerous, but nothing bad will happen since the
605 * filesystem will have already been marked read/only and the
606 * journal has been aborted. We return 1 as a hint to callers
607 * who might what to use the return value from
608 * ext4_grp_locked_error() to distinguish beween the
609 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
610 * aggressively from the ext4 function in question, with a
611 * more appropriate error code.
612 */
613 ext4_lock_group(sb, grp);
614 return;
615 }
616
617 void ext4_update_dynamic_rev(struct super_block *sb)
618 {
619 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
620
621 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
622 return;
623
624 ext4_warning(sb,
625 "updating to rev %d because of new feature flag, "
626 "running e2fsck is recommended",
627 EXT4_DYNAMIC_REV);
628
629 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
630 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
631 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
632 /* leave es->s_feature_*compat flags alone */
633 /* es->s_uuid will be set by e2fsck if empty */
634
635 /*
636 * The rest of the superblock fields should be zero, and if not it
637 * means they are likely already in use, so leave them alone. We
638 * can leave it up to e2fsck to clean up any inconsistencies there.
639 */
640 }
641
642 /*
643 * Open the external journal device
644 */
645 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
646 {
647 struct block_device *bdev;
648 char b[BDEVNAME_SIZE];
649
650 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
651 if (IS_ERR(bdev))
652 goto fail;
653 return bdev;
654
655 fail:
656 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
657 __bdevname(dev, b), PTR_ERR(bdev));
658 return NULL;
659 }
660
661 /*
662 * Release the journal device
663 */
664 static int ext4_blkdev_put(struct block_device *bdev)
665 {
666 bd_release(bdev);
667 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
668 }
669
670 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
671 {
672 struct block_device *bdev;
673 int ret = -ENODEV;
674
675 bdev = sbi->journal_bdev;
676 if (bdev) {
677 ret = ext4_blkdev_put(bdev);
678 sbi->journal_bdev = NULL;
679 }
680 return ret;
681 }
682
683 static inline struct inode *orphan_list_entry(struct list_head *l)
684 {
685 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
686 }
687
688 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
689 {
690 struct list_head *l;
691
692 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
693 le32_to_cpu(sbi->s_es->s_last_orphan));
694
695 printk(KERN_ERR "sb_info orphan list:\n");
696 list_for_each(l, &sbi->s_orphan) {
697 struct inode *inode = orphan_list_entry(l);
698 printk(KERN_ERR " "
699 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
700 inode->i_sb->s_id, inode->i_ino, inode,
701 inode->i_mode, inode->i_nlink,
702 NEXT_ORPHAN(inode));
703 }
704 }
705
706 static void ext4_put_super(struct super_block *sb)
707 {
708 struct ext4_sb_info *sbi = EXT4_SB(sb);
709 struct ext4_super_block *es = sbi->s_es;
710 int i, err;
711
712 ext4_unregister_li_request(sb);
713 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
714
715 flush_workqueue(sbi->dio_unwritten_wq);
716 destroy_workqueue(sbi->dio_unwritten_wq);
717
718 lock_super(sb);
719 if (sb->s_dirt)
720 ext4_commit_super(sb, 1);
721
722 if (sbi->s_journal) {
723 err = jbd2_journal_destroy(sbi->s_journal);
724 sbi->s_journal = NULL;
725 if (err < 0)
726 ext4_abort(sb, "Couldn't clean up the journal");
727 }
728
729 del_timer(&sbi->s_err_report);
730 ext4_release_system_zone(sb);
731 ext4_mb_release(sb);
732 ext4_ext_release(sb);
733 ext4_xattr_put_super(sb);
734
735 if (!(sb->s_flags & MS_RDONLY)) {
736 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
737 es->s_state = cpu_to_le16(sbi->s_mount_state);
738 ext4_commit_super(sb, 1);
739 }
740 if (sbi->s_proc) {
741 remove_proc_entry(sb->s_id, ext4_proc_root);
742 }
743 kobject_del(&sbi->s_kobj);
744
745 for (i = 0; i < sbi->s_gdb_count; i++)
746 brelse(sbi->s_group_desc[i]);
747 kfree(sbi->s_group_desc);
748 if (is_vmalloc_addr(sbi->s_flex_groups))
749 vfree(sbi->s_flex_groups);
750 else
751 kfree(sbi->s_flex_groups);
752 percpu_counter_destroy(&sbi->s_freeblocks_counter);
753 percpu_counter_destroy(&sbi->s_freeinodes_counter);
754 percpu_counter_destroy(&sbi->s_dirs_counter);
755 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
756 brelse(sbi->s_sbh);
757 #ifdef CONFIG_QUOTA
758 for (i = 0; i < MAXQUOTAS; i++)
759 kfree(sbi->s_qf_names[i]);
760 #endif
761
762 /* Debugging code just in case the in-memory inode orphan list
763 * isn't empty. The on-disk one can be non-empty if we've
764 * detected an error and taken the fs readonly, but the
765 * in-memory list had better be clean by this point. */
766 if (!list_empty(&sbi->s_orphan))
767 dump_orphan_list(sb, sbi);
768 J_ASSERT(list_empty(&sbi->s_orphan));
769
770 invalidate_bdev(sb->s_bdev);
771 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
772 /*
773 * Invalidate the journal device's buffers. We don't want them
774 * floating about in memory - the physical journal device may
775 * hotswapped, and it breaks the `ro-after' testing code.
776 */
777 sync_blockdev(sbi->journal_bdev);
778 invalidate_bdev(sbi->journal_bdev);
779 ext4_blkdev_remove(sbi);
780 }
781 sb->s_fs_info = NULL;
782 /*
783 * Now that we are completely done shutting down the
784 * superblock, we need to actually destroy the kobject.
785 */
786 unlock_super(sb);
787 kobject_put(&sbi->s_kobj);
788 wait_for_completion(&sbi->s_kobj_unregister);
789 kfree(sbi->s_blockgroup_lock);
790 kfree(sbi);
791 }
792
793 static struct kmem_cache *ext4_inode_cachep;
794
795 /*
796 * Called inside transaction, so use GFP_NOFS
797 */
798 static struct inode *ext4_alloc_inode(struct super_block *sb)
799 {
800 struct ext4_inode_info *ei;
801
802 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
803 if (!ei)
804 return NULL;
805
806 ei->vfs_inode.i_version = 1;
807 ei->vfs_inode.i_data.writeback_index = 0;
808 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
809 INIT_LIST_HEAD(&ei->i_prealloc_list);
810 spin_lock_init(&ei->i_prealloc_lock);
811 /*
812 * Note: We can be called before EXT4_SB(sb)->s_journal is set,
813 * therefore it can be null here. Don't check it, just initialize
814 * jinode.
815 */
816 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode);
817 ei->i_reserved_data_blocks = 0;
818 ei->i_reserved_meta_blocks = 0;
819 ei->i_allocated_meta_blocks = 0;
820 ei->i_da_metadata_calc_len = 0;
821 ei->i_delalloc_reserved_flag = 0;
822 spin_lock_init(&(ei->i_block_reservation_lock));
823 #ifdef CONFIG_QUOTA
824 ei->i_reserved_quota = 0;
825 #endif
826 INIT_LIST_HEAD(&ei->i_completed_io_list);
827 spin_lock_init(&ei->i_completed_io_lock);
828 ei->cur_aio_dio = NULL;
829 ei->i_sync_tid = 0;
830 ei->i_datasync_tid = 0;
831 atomic_set(&ei->i_ioend_count, 0);
832
833 return &ei->vfs_inode;
834 }
835
836 static int ext4_drop_inode(struct inode *inode)
837 {
838 int drop = generic_drop_inode(inode);
839
840 trace_ext4_drop_inode(inode, drop);
841 return drop;
842 }
843
844 static void ext4_destroy_inode(struct inode *inode)
845 {
846 ext4_ioend_wait(inode);
847 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
848 ext4_msg(inode->i_sb, KERN_ERR,
849 "Inode %lu (%p): orphan list check failed!",
850 inode->i_ino, EXT4_I(inode));
851 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
852 EXT4_I(inode), sizeof(struct ext4_inode_info),
853 true);
854 dump_stack();
855 }
856 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
857 }
858
859 static void init_once(void *foo)
860 {
861 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
862
863 INIT_LIST_HEAD(&ei->i_orphan);
864 #ifdef CONFIG_EXT4_FS_XATTR
865 init_rwsem(&ei->xattr_sem);
866 #endif
867 init_rwsem(&ei->i_data_sem);
868 inode_init_once(&ei->vfs_inode);
869 }
870
871 static int init_inodecache(void)
872 {
873 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
874 sizeof(struct ext4_inode_info),
875 0, (SLAB_RECLAIM_ACCOUNT|
876 SLAB_MEM_SPREAD),
877 init_once);
878 if (ext4_inode_cachep == NULL)
879 return -ENOMEM;
880 return 0;
881 }
882
883 static void destroy_inodecache(void)
884 {
885 kmem_cache_destroy(ext4_inode_cachep);
886 }
887
888 void ext4_clear_inode(struct inode *inode)
889 {
890 invalidate_inode_buffers(inode);
891 end_writeback(inode);
892 dquot_drop(inode);
893 ext4_discard_preallocations(inode);
894 if (EXT4_JOURNAL(inode))
895 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal,
896 &EXT4_I(inode)->jinode);
897 }
898
899 static inline void ext4_show_quota_options(struct seq_file *seq,
900 struct super_block *sb)
901 {
902 #if defined(CONFIG_QUOTA)
903 struct ext4_sb_info *sbi = EXT4_SB(sb);
904
905 if (sbi->s_jquota_fmt) {
906 char *fmtname = "";
907
908 switch (sbi->s_jquota_fmt) {
909 case QFMT_VFS_OLD:
910 fmtname = "vfsold";
911 break;
912 case QFMT_VFS_V0:
913 fmtname = "vfsv0";
914 break;
915 case QFMT_VFS_V1:
916 fmtname = "vfsv1";
917 break;
918 }
919 seq_printf(seq, ",jqfmt=%s", fmtname);
920 }
921
922 if (sbi->s_qf_names[USRQUOTA])
923 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
924
925 if (sbi->s_qf_names[GRPQUOTA])
926 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
927
928 if (test_opt(sb, USRQUOTA))
929 seq_puts(seq, ",usrquota");
930
931 if (test_opt(sb, GRPQUOTA))
932 seq_puts(seq, ",grpquota");
933 #endif
934 }
935
936 /*
937 * Show an option if
938 * - it's set to a non-default value OR
939 * - if the per-sb default is different from the global default
940 */
941 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
942 {
943 int def_errors;
944 unsigned long def_mount_opts;
945 struct super_block *sb = vfs->mnt_sb;
946 struct ext4_sb_info *sbi = EXT4_SB(sb);
947 struct ext4_super_block *es = sbi->s_es;
948
949 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
950 def_errors = le16_to_cpu(es->s_errors);
951
952 if (sbi->s_sb_block != 1)
953 seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
954 if (test_opt(sb, MINIX_DF))
955 seq_puts(seq, ",minixdf");
956 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
957 seq_puts(seq, ",grpid");
958 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
959 seq_puts(seq, ",nogrpid");
960 if (sbi->s_resuid != EXT4_DEF_RESUID ||
961 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
962 seq_printf(seq, ",resuid=%u", sbi->s_resuid);
963 }
964 if (sbi->s_resgid != EXT4_DEF_RESGID ||
965 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
966 seq_printf(seq, ",resgid=%u", sbi->s_resgid);
967 }
968 if (test_opt(sb, ERRORS_RO)) {
969 if (def_errors == EXT4_ERRORS_PANIC ||
970 def_errors == EXT4_ERRORS_CONTINUE) {
971 seq_puts(seq, ",errors=remount-ro");
972 }
973 }
974 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
975 seq_puts(seq, ",errors=continue");
976 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
977 seq_puts(seq, ",errors=panic");
978 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
979 seq_puts(seq, ",nouid32");
980 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
981 seq_puts(seq, ",debug");
982 if (test_opt(sb, OLDALLOC))
983 seq_puts(seq, ",oldalloc");
984 #ifdef CONFIG_EXT4_FS_XATTR
985 if (test_opt(sb, XATTR_USER) &&
986 !(def_mount_opts & EXT4_DEFM_XATTR_USER))
987 seq_puts(seq, ",user_xattr");
988 if (!test_opt(sb, XATTR_USER) &&
989 (def_mount_opts & EXT4_DEFM_XATTR_USER)) {
990 seq_puts(seq, ",nouser_xattr");
991 }
992 #endif
993 #ifdef CONFIG_EXT4_FS_POSIX_ACL
994 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
995 seq_puts(seq, ",acl");
996 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
997 seq_puts(seq, ",noacl");
998 #endif
999 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
1000 seq_printf(seq, ",commit=%u",
1001 (unsigned) (sbi->s_commit_interval / HZ));
1002 }
1003 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
1004 seq_printf(seq, ",min_batch_time=%u",
1005 (unsigned) sbi->s_min_batch_time);
1006 }
1007 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
1008 seq_printf(seq, ",max_batch_time=%u",
1009 (unsigned) sbi->s_min_batch_time);
1010 }
1011
1012 /*
1013 * We're changing the default of barrier mount option, so
1014 * let's always display its mount state so it's clear what its
1015 * status is.
1016 */
1017 seq_puts(seq, ",barrier=");
1018 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
1019 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
1020 seq_puts(seq, ",journal_async_commit");
1021 else if (test_opt(sb, JOURNAL_CHECKSUM))
1022 seq_puts(seq, ",journal_checksum");
1023 if (test_opt(sb, I_VERSION))
1024 seq_puts(seq, ",i_version");
1025 if (!test_opt(sb, DELALLOC) &&
1026 !(def_mount_opts & EXT4_DEFM_NODELALLOC))
1027 seq_puts(seq, ",nodelalloc");
1028
1029 if (test_opt(sb, MBLK_IO_SUBMIT))
1030 seq_puts(seq, ",mblk_io_submit");
1031 if (sbi->s_stripe)
1032 seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
1033 /*
1034 * journal mode get enabled in different ways
1035 * So just print the value even if we didn't specify it
1036 */
1037 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1038 seq_puts(seq, ",data=journal");
1039 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1040 seq_puts(seq, ",data=ordered");
1041 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1042 seq_puts(seq, ",data=writeback");
1043
1044 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1045 seq_printf(seq, ",inode_readahead_blks=%u",
1046 sbi->s_inode_readahead_blks);
1047
1048 if (test_opt(sb, DATA_ERR_ABORT))
1049 seq_puts(seq, ",data_err=abort");
1050
1051 if (test_opt(sb, NO_AUTO_DA_ALLOC))
1052 seq_puts(seq, ",noauto_da_alloc");
1053
1054 if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD))
1055 seq_puts(seq, ",discard");
1056
1057 if (test_opt(sb, NOLOAD))
1058 seq_puts(seq, ",norecovery");
1059
1060 if (test_opt(sb, DIOREAD_NOLOCK))
1061 seq_puts(seq, ",dioread_nolock");
1062
1063 if (test_opt(sb, BLOCK_VALIDITY) &&
1064 !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY))
1065 seq_puts(seq, ",block_validity");
1066
1067 if (!test_opt(sb, INIT_INODE_TABLE))
1068 seq_puts(seq, ",noinit_inode_table");
1069 else if (sbi->s_li_wait_mult)
1070 seq_printf(seq, ",init_inode_table=%u",
1071 (unsigned) sbi->s_li_wait_mult);
1072
1073 ext4_show_quota_options(seq, sb);
1074
1075 return 0;
1076 }
1077
1078 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1079 u64 ino, u32 generation)
1080 {
1081 struct inode *inode;
1082
1083 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1084 return ERR_PTR(-ESTALE);
1085 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1086 return ERR_PTR(-ESTALE);
1087
1088 /* iget isn't really right if the inode is currently unallocated!!
1089 *
1090 * ext4_read_inode will return a bad_inode if the inode had been
1091 * deleted, so we should be safe.
1092 *
1093 * Currently we don't know the generation for parent directory, so
1094 * a generation of 0 means "accept any"
1095 */
1096 inode = ext4_iget(sb, ino);
1097 if (IS_ERR(inode))
1098 return ERR_CAST(inode);
1099 if (generation && inode->i_generation != generation) {
1100 iput(inode);
1101 return ERR_PTR(-ESTALE);
1102 }
1103
1104 return inode;
1105 }
1106
1107 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1108 int fh_len, int fh_type)
1109 {
1110 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1111 ext4_nfs_get_inode);
1112 }
1113
1114 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1115 int fh_len, int fh_type)
1116 {
1117 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1118 ext4_nfs_get_inode);
1119 }
1120
1121 /*
1122 * Try to release metadata pages (indirect blocks, directories) which are
1123 * mapped via the block device. Since these pages could have journal heads
1124 * which would prevent try_to_free_buffers() from freeing them, we must use
1125 * jbd2 layer's try_to_free_buffers() function to release them.
1126 */
1127 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1128 gfp_t wait)
1129 {
1130 journal_t *journal = EXT4_SB(sb)->s_journal;
1131
1132 WARN_ON(PageChecked(page));
1133 if (!page_has_buffers(page))
1134 return 0;
1135 if (journal)
1136 return jbd2_journal_try_to_free_buffers(journal, page,
1137 wait & ~__GFP_WAIT);
1138 return try_to_free_buffers(page);
1139 }
1140
1141 #ifdef CONFIG_QUOTA
1142 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1143 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1144
1145 static int ext4_write_dquot(struct dquot *dquot);
1146 static int ext4_acquire_dquot(struct dquot *dquot);
1147 static int ext4_release_dquot(struct dquot *dquot);
1148 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1149 static int ext4_write_info(struct super_block *sb, int type);
1150 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1151 char *path);
1152 static int ext4_quota_off(struct super_block *sb, int type);
1153 static int ext4_quota_on_mount(struct super_block *sb, int type);
1154 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1155 size_t len, loff_t off);
1156 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1157 const char *data, size_t len, loff_t off);
1158
1159 static const struct dquot_operations ext4_quota_operations = {
1160 #ifdef CONFIG_QUOTA
1161 .get_reserved_space = ext4_get_reserved_space,
1162 #endif
1163 .write_dquot = ext4_write_dquot,
1164 .acquire_dquot = ext4_acquire_dquot,
1165 .release_dquot = ext4_release_dquot,
1166 .mark_dirty = ext4_mark_dquot_dirty,
1167 .write_info = ext4_write_info,
1168 .alloc_dquot = dquot_alloc,
1169 .destroy_dquot = dquot_destroy,
1170 };
1171
1172 static const struct quotactl_ops ext4_qctl_operations = {
1173 .quota_on = ext4_quota_on,
1174 .quota_off = ext4_quota_off,
1175 .quota_sync = dquot_quota_sync,
1176 .get_info = dquot_get_dqinfo,
1177 .set_info = dquot_set_dqinfo,
1178 .get_dqblk = dquot_get_dqblk,
1179 .set_dqblk = dquot_set_dqblk
1180 };
1181 #endif
1182
1183 static const struct super_operations ext4_sops = {
1184 .alloc_inode = ext4_alloc_inode,
1185 .destroy_inode = ext4_destroy_inode,
1186 .write_inode = ext4_write_inode,
1187 .dirty_inode = ext4_dirty_inode,
1188 .drop_inode = ext4_drop_inode,
1189 .evict_inode = ext4_evict_inode,
1190 .put_super = ext4_put_super,
1191 .sync_fs = ext4_sync_fs,
1192 .freeze_fs = ext4_freeze,
1193 .unfreeze_fs = ext4_unfreeze,
1194 .statfs = ext4_statfs,
1195 .remount_fs = ext4_remount,
1196 .show_options = ext4_show_options,
1197 #ifdef CONFIG_QUOTA
1198 .quota_read = ext4_quota_read,
1199 .quota_write = ext4_quota_write,
1200 #endif
1201 .bdev_try_to_free_page = bdev_try_to_free_page,
1202 };
1203
1204 static const struct super_operations ext4_nojournal_sops = {
1205 .alloc_inode = ext4_alloc_inode,
1206 .destroy_inode = ext4_destroy_inode,
1207 .write_inode = ext4_write_inode,
1208 .dirty_inode = ext4_dirty_inode,
1209 .drop_inode = ext4_drop_inode,
1210 .evict_inode = ext4_evict_inode,
1211 .write_super = ext4_write_super,
1212 .put_super = ext4_put_super,
1213 .statfs = ext4_statfs,
1214 .remount_fs = ext4_remount,
1215 .show_options = ext4_show_options,
1216 #ifdef CONFIG_QUOTA
1217 .quota_read = ext4_quota_read,
1218 .quota_write = ext4_quota_write,
1219 #endif
1220 .bdev_try_to_free_page = bdev_try_to_free_page,
1221 };
1222
1223 static const struct export_operations ext4_export_ops = {
1224 .fh_to_dentry = ext4_fh_to_dentry,
1225 .fh_to_parent = ext4_fh_to_parent,
1226 .get_parent = ext4_get_parent,
1227 };
1228
1229 enum {
1230 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1231 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1232 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1233 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1234 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1235 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1236 Opt_journal_update, Opt_journal_dev,
1237 Opt_journal_checksum, Opt_journal_async_commit,
1238 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1239 Opt_data_err_abort, Opt_data_err_ignore,
1240 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1241 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1242 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1243 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1244 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1245 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1246 Opt_inode_readahead_blks, Opt_journal_ioprio,
1247 Opt_dioread_nolock, Opt_dioread_lock,
1248 Opt_discard, Opt_nodiscard,
1249 Opt_init_inode_table, Opt_noinit_inode_table,
1250 };
1251
1252 static const match_table_t tokens = {
1253 {Opt_bsd_df, "bsddf"},
1254 {Opt_minix_df, "minixdf"},
1255 {Opt_grpid, "grpid"},
1256 {Opt_grpid, "bsdgroups"},
1257 {Opt_nogrpid, "nogrpid"},
1258 {Opt_nogrpid, "sysvgroups"},
1259 {Opt_resgid, "resgid=%u"},
1260 {Opt_resuid, "resuid=%u"},
1261 {Opt_sb, "sb=%u"},
1262 {Opt_err_cont, "errors=continue"},
1263 {Opt_err_panic, "errors=panic"},
1264 {Opt_err_ro, "errors=remount-ro"},
1265 {Opt_nouid32, "nouid32"},
1266 {Opt_debug, "debug"},
1267 {Opt_oldalloc, "oldalloc"},
1268 {Opt_orlov, "orlov"},
1269 {Opt_user_xattr, "user_xattr"},
1270 {Opt_nouser_xattr, "nouser_xattr"},
1271 {Opt_acl, "acl"},
1272 {Opt_noacl, "noacl"},
1273 {Opt_noload, "noload"},
1274 {Opt_noload, "norecovery"},
1275 {Opt_nobh, "nobh"},
1276 {Opt_bh, "bh"},
1277 {Opt_commit, "commit=%u"},
1278 {Opt_min_batch_time, "min_batch_time=%u"},
1279 {Opt_max_batch_time, "max_batch_time=%u"},
1280 {Opt_journal_update, "journal=update"},
1281 {Opt_journal_dev, "journal_dev=%u"},
1282 {Opt_journal_checksum, "journal_checksum"},
1283 {Opt_journal_async_commit, "journal_async_commit"},
1284 {Opt_abort, "abort"},
1285 {Opt_data_journal, "data=journal"},
1286 {Opt_data_ordered, "data=ordered"},
1287 {Opt_data_writeback, "data=writeback"},
1288 {Opt_data_err_abort, "data_err=abort"},
1289 {Opt_data_err_ignore, "data_err=ignore"},
1290 {Opt_offusrjquota, "usrjquota="},
1291 {Opt_usrjquota, "usrjquota=%s"},
1292 {Opt_offgrpjquota, "grpjquota="},
1293 {Opt_grpjquota, "grpjquota=%s"},
1294 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1295 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1296 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1297 {Opt_grpquota, "grpquota"},
1298 {Opt_noquota, "noquota"},
1299 {Opt_quota, "quota"},
1300 {Opt_usrquota, "usrquota"},
1301 {Opt_barrier, "barrier=%u"},
1302 {Opt_barrier, "barrier"},
1303 {Opt_nobarrier, "nobarrier"},
1304 {Opt_i_version, "i_version"},
1305 {Opt_stripe, "stripe=%u"},
1306 {Opt_resize, "resize"},
1307 {Opt_delalloc, "delalloc"},
1308 {Opt_nodelalloc, "nodelalloc"},
1309 {Opt_mblk_io_submit, "mblk_io_submit"},
1310 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1311 {Opt_block_validity, "block_validity"},
1312 {Opt_noblock_validity, "noblock_validity"},
1313 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1314 {Opt_journal_ioprio, "journal_ioprio=%u"},
1315 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1316 {Opt_auto_da_alloc, "auto_da_alloc"},
1317 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1318 {Opt_dioread_nolock, "dioread_nolock"},
1319 {Opt_dioread_lock, "dioread_lock"},
1320 {Opt_discard, "discard"},
1321 {Opt_nodiscard, "nodiscard"},
1322 {Opt_init_inode_table, "init_itable=%u"},
1323 {Opt_init_inode_table, "init_itable"},
1324 {Opt_noinit_inode_table, "noinit_itable"},
1325 {Opt_err, NULL},
1326 };
1327
1328 static ext4_fsblk_t get_sb_block(void **data)
1329 {
1330 ext4_fsblk_t sb_block;
1331 char *options = (char *) *data;
1332
1333 if (!options || strncmp(options, "sb=", 3) != 0)
1334 return 1; /* Default location */
1335
1336 options += 3;
1337 /* TODO: use simple_strtoll with >32bit ext4 */
1338 sb_block = simple_strtoul(options, &options, 0);
1339 if (*options && *options != ',') {
1340 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1341 (char *) *data);
1342 return 1;
1343 }
1344 if (*options == ',')
1345 options++;
1346 *data = (void *) options;
1347
1348 return sb_block;
1349 }
1350
1351 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1352 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1353 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1354
1355 #ifdef CONFIG_QUOTA
1356 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1357 {
1358 struct ext4_sb_info *sbi = EXT4_SB(sb);
1359 char *qname;
1360
1361 if (sb_any_quota_loaded(sb) &&
1362 !sbi->s_qf_names[qtype]) {
1363 ext4_msg(sb, KERN_ERR,
1364 "Cannot change journaled "
1365 "quota options when quota turned on");
1366 return 0;
1367 }
1368 qname = match_strdup(args);
1369 if (!qname) {
1370 ext4_msg(sb, KERN_ERR,
1371 "Not enough memory for storing quotafile name");
1372 return 0;
1373 }
1374 if (sbi->s_qf_names[qtype] &&
1375 strcmp(sbi->s_qf_names[qtype], qname)) {
1376 ext4_msg(sb, KERN_ERR,
1377 "%s quota file already specified", QTYPE2NAME(qtype));
1378 kfree(qname);
1379 return 0;
1380 }
1381 sbi->s_qf_names[qtype] = qname;
1382 if (strchr(sbi->s_qf_names[qtype], '/')) {
1383 ext4_msg(sb, KERN_ERR,
1384 "quotafile must be on filesystem root");
1385 kfree(sbi->s_qf_names[qtype]);
1386 sbi->s_qf_names[qtype] = NULL;
1387 return 0;
1388 }
1389 set_opt(sbi->s_mount_opt, QUOTA);
1390 return 1;
1391 }
1392
1393 static int clear_qf_name(struct super_block *sb, int qtype)
1394 {
1395
1396 struct ext4_sb_info *sbi = EXT4_SB(sb);
1397
1398 if (sb_any_quota_loaded(sb) &&
1399 sbi->s_qf_names[qtype]) {
1400 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1401 " when quota turned on");
1402 return 0;
1403 }
1404 /*
1405 * The space will be released later when all options are confirmed
1406 * to be correct
1407 */
1408 sbi->s_qf_names[qtype] = NULL;
1409 return 1;
1410 }
1411 #endif
1412
1413 static int parse_options(char *options, struct super_block *sb,
1414 unsigned long *journal_devnum,
1415 unsigned int *journal_ioprio,
1416 ext4_fsblk_t *n_blocks_count, int is_remount)
1417 {
1418 struct ext4_sb_info *sbi = EXT4_SB(sb);
1419 char *p;
1420 substring_t args[MAX_OPT_ARGS];
1421 int data_opt = 0;
1422 int option;
1423 #ifdef CONFIG_QUOTA
1424 int qfmt;
1425 #endif
1426
1427 if (!options)
1428 return 1;
1429
1430 while ((p = strsep(&options, ",")) != NULL) {
1431 int token;
1432 if (!*p)
1433 continue;
1434
1435 /*
1436 * Initialize args struct so we know whether arg was
1437 * found; some options take optional arguments.
1438 */
1439 args[0].to = args[0].from = 0;
1440 token = match_token(p, tokens, args);
1441 switch (token) {
1442 case Opt_bsd_df:
1443 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1444 clear_opt(sbi->s_mount_opt, MINIX_DF);
1445 break;
1446 case Opt_minix_df:
1447 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1448 set_opt(sbi->s_mount_opt, MINIX_DF);
1449
1450 break;
1451 case Opt_grpid:
1452 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1453 set_opt(sbi->s_mount_opt, GRPID);
1454
1455 break;
1456 case Opt_nogrpid:
1457 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1458 clear_opt(sbi->s_mount_opt, GRPID);
1459
1460 break;
1461 case Opt_resuid:
1462 if (match_int(&args[0], &option))
1463 return 0;
1464 sbi->s_resuid = option;
1465 break;
1466 case Opt_resgid:
1467 if (match_int(&args[0], &option))
1468 return 0;
1469 sbi->s_resgid = option;
1470 break;
1471 case Opt_sb:
1472 /* handled by get_sb_block() instead of here */
1473 /* *sb_block = match_int(&args[0]); */
1474 break;
1475 case Opt_err_panic:
1476 clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1477 clear_opt(sbi->s_mount_opt, ERRORS_RO);
1478 set_opt(sbi->s_mount_opt, ERRORS_PANIC);
1479 break;
1480 case Opt_err_ro:
1481 clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1482 clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1483 set_opt(sbi->s_mount_opt, ERRORS_RO);
1484 break;
1485 case Opt_err_cont:
1486 clear_opt(sbi->s_mount_opt, ERRORS_RO);
1487 clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1488 set_opt(sbi->s_mount_opt, ERRORS_CONT);
1489 break;
1490 case Opt_nouid32:
1491 set_opt(sbi->s_mount_opt, NO_UID32);
1492 break;
1493 case Opt_debug:
1494 set_opt(sbi->s_mount_opt, DEBUG);
1495 break;
1496 case Opt_oldalloc:
1497 set_opt(sbi->s_mount_opt, OLDALLOC);
1498 break;
1499 case Opt_orlov:
1500 clear_opt(sbi->s_mount_opt, OLDALLOC);
1501 break;
1502 #ifdef CONFIG_EXT4_FS_XATTR
1503 case Opt_user_xattr:
1504 set_opt(sbi->s_mount_opt, XATTR_USER);
1505 break;
1506 case Opt_nouser_xattr:
1507 clear_opt(sbi->s_mount_opt, XATTR_USER);
1508 break;
1509 #else
1510 case Opt_user_xattr:
1511 case Opt_nouser_xattr:
1512 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1513 break;
1514 #endif
1515 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1516 case Opt_acl:
1517 set_opt(sbi->s_mount_opt, POSIX_ACL);
1518 break;
1519 case Opt_noacl:
1520 clear_opt(sbi->s_mount_opt, POSIX_ACL);
1521 break;
1522 #else
1523 case Opt_acl:
1524 case Opt_noacl:
1525 ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1526 break;
1527 #endif
1528 case Opt_journal_update:
1529 /* @@@ FIXME */
1530 /* Eventually we will want to be able to create
1531 a journal file here. For now, only allow the
1532 user to specify an existing inode to be the
1533 journal file. */
1534 if (is_remount) {
1535 ext4_msg(sb, KERN_ERR,
1536 "Cannot specify journal on remount");
1537 return 0;
1538 }
1539 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL);
1540 break;
1541 case Opt_journal_dev:
1542 if (is_remount) {
1543 ext4_msg(sb, KERN_ERR,
1544 "Cannot specify journal on remount");
1545 return 0;
1546 }
1547 if (match_int(&args[0], &option))
1548 return 0;
1549 *journal_devnum = option;
1550 break;
1551 case Opt_journal_checksum:
1552 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1553 break;
1554 case Opt_journal_async_commit:
1555 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT);
1556 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1557 break;
1558 case Opt_noload:
1559 set_opt(sbi->s_mount_opt, NOLOAD);
1560 break;
1561 case Opt_commit:
1562 if (match_int(&args[0], &option))
1563 return 0;
1564 if (option < 0)
1565 return 0;
1566 if (option == 0)
1567 option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1568 sbi->s_commit_interval = HZ * option;
1569 break;
1570 case Opt_max_batch_time:
1571 if (match_int(&args[0], &option))
1572 return 0;
1573 if (option < 0)
1574 return 0;
1575 if (option == 0)
1576 option = EXT4_DEF_MAX_BATCH_TIME;
1577 sbi->s_max_batch_time = option;
1578 break;
1579 case Opt_min_batch_time:
1580 if (match_int(&args[0], &option))
1581 return 0;
1582 if (option < 0)
1583 return 0;
1584 sbi->s_min_batch_time = option;
1585 break;
1586 case Opt_data_journal:
1587 data_opt = EXT4_MOUNT_JOURNAL_DATA;
1588 goto datacheck;
1589 case Opt_data_ordered:
1590 data_opt = EXT4_MOUNT_ORDERED_DATA;
1591 goto datacheck;
1592 case Opt_data_writeback:
1593 data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1594 datacheck:
1595 if (is_remount) {
1596 if (test_opt(sb, DATA_FLAGS) != data_opt) {
1597 ext4_msg(sb, KERN_ERR,
1598 "Cannot change data mode on remount");
1599 return 0;
1600 }
1601 } else {
1602 clear_opt(sbi->s_mount_opt, DATA_FLAGS);
1603 sbi->s_mount_opt |= data_opt;
1604 }
1605 break;
1606 case Opt_data_err_abort:
1607 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1608 break;
1609 case Opt_data_err_ignore:
1610 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1611 break;
1612 #ifdef CONFIG_QUOTA
1613 case Opt_usrjquota:
1614 if (!set_qf_name(sb, USRQUOTA, &args[0]))
1615 return 0;
1616 break;
1617 case Opt_grpjquota:
1618 if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1619 return 0;
1620 break;
1621 case Opt_offusrjquota:
1622 if (!clear_qf_name(sb, USRQUOTA))
1623 return 0;
1624 break;
1625 case Opt_offgrpjquota:
1626 if (!clear_qf_name(sb, GRPQUOTA))
1627 return 0;
1628 break;
1629
1630 case Opt_jqfmt_vfsold:
1631 qfmt = QFMT_VFS_OLD;
1632 goto set_qf_format;
1633 case Opt_jqfmt_vfsv0:
1634 qfmt = QFMT_VFS_V0;
1635 goto set_qf_format;
1636 case Opt_jqfmt_vfsv1:
1637 qfmt = QFMT_VFS_V1;
1638 set_qf_format:
1639 if (sb_any_quota_loaded(sb) &&
1640 sbi->s_jquota_fmt != qfmt) {
1641 ext4_msg(sb, KERN_ERR, "Cannot change "
1642 "journaled quota options when "
1643 "quota turned on");
1644 return 0;
1645 }
1646 sbi->s_jquota_fmt = qfmt;
1647 break;
1648 case Opt_quota:
1649 case Opt_usrquota:
1650 set_opt(sbi->s_mount_opt, QUOTA);
1651 set_opt(sbi->s_mount_opt, USRQUOTA);
1652 break;
1653 case Opt_grpquota:
1654 set_opt(sbi->s_mount_opt, QUOTA);
1655 set_opt(sbi->s_mount_opt, GRPQUOTA);
1656 break;
1657 case Opt_noquota:
1658 if (sb_any_quota_loaded(sb)) {
1659 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1660 "options when quota turned on");
1661 return 0;
1662 }
1663 clear_opt(sbi->s_mount_opt, QUOTA);
1664 clear_opt(sbi->s_mount_opt, USRQUOTA);
1665 clear_opt(sbi->s_mount_opt, GRPQUOTA);
1666 break;
1667 #else
1668 case Opt_quota:
1669 case Opt_usrquota:
1670 case Opt_grpquota:
1671 ext4_msg(sb, KERN_ERR,
1672 "quota options not supported");
1673 break;
1674 case Opt_usrjquota:
1675 case Opt_grpjquota:
1676 case Opt_offusrjquota:
1677 case Opt_offgrpjquota:
1678 case Opt_jqfmt_vfsold:
1679 case Opt_jqfmt_vfsv0:
1680 case Opt_jqfmt_vfsv1:
1681 ext4_msg(sb, KERN_ERR,
1682 "journaled quota options not supported");
1683 break;
1684 case Opt_noquota:
1685 break;
1686 #endif
1687 case Opt_abort:
1688 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1689 break;
1690 case Opt_nobarrier:
1691 clear_opt(sbi->s_mount_opt, BARRIER);
1692 break;
1693 case Opt_barrier:
1694 if (args[0].from) {
1695 if (match_int(&args[0], &option))
1696 return 0;
1697 } else
1698 option = 1; /* No argument, default to 1 */
1699 if (option)
1700 set_opt(sbi->s_mount_opt, BARRIER);
1701 else
1702 clear_opt(sbi->s_mount_opt, BARRIER);
1703 break;
1704 case Opt_ignore:
1705 break;
1706 case Opt_resize:
1707 if (!is_remount) {
1708 ext4_msg(sb, KERN_ERR,
1709 "resize option only available "
1710 "for remount");
1711 return 0;
1712 }
1713 if (match_int(&args[0], &option) != 0)
1714 return 0;
1715 *n_blocks_count = option;
1716 break;
1717 case Opt_nobh:
1718 ext4_msg(sb, KERN_WARNING,
1719 "Ignoring deprecated nobh option");
1720 break;
1721 case Opt_bh:
1722 ext4_msg(sb, KERN_WARNING,
1723 "Ignoring deprecated bh option");
1724 break;
1725 case Opt_i_version:
1726 set_opt(sbi->s_mount_opt, I_VERSION);
1727 sb->s_flags |= MS_I_VERSION;
1728 break;
1729 case Opt_nodelalloc:
1730 clear_opt(sbi->s_mount_opt, DELALLOC);
1731 break;
1732 case Opt_mblk_io_submit:
1733 set_opt(sbi->s_mount_opt, MBLK_IO_SUBMIT);
1734 break;
1735 case Opt_nomblk_io_submit:
1736 clear_opt(sbi->s_mount_opt, MBLK_IO_SUBMIT);
1737 break;
1738 case Opt_stripe:
1739 if (match_int(&args[0], &option))
1740 return 0;
1741 if (option < 0)
1742 return 0;
1743 sbi->s_stripe = option;
1744 break;
1745 case Opt_delalloc:
1746 set_opt(sbi->s_mount_opt, DELALLOC);
1747 break;
1748 case Opt_block_validity:
1749 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1750 break;
1751 case Opt_noblock_validity:
1752 clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1753 break;
1754 case Opt_inode_readahead_blks:
1755 if (match_int(&args[0], &option))
1756 return 0;
1757 if (option < 0 || option > (1 << 30))
1758 return 0;
1759 if (!is_power_of_2(option)) {
1760 ext4_msg(sb, KERN_ERR,
1761 "EXT4-fs: inode_readahead_blks"
1762 " must be a power of 2");
1763 return 0;
1764 }
1765 sbi->s_inode_readahead_blks = option;
1766 break;
1767 case Opt_journal_ioprio:
1768 if (match_int(&args[0], &option))
1769 return 0;
1770 if (option < 0 || option > 7)
1771 break;
1772 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1773 option);
1774 break;
1775 case Opt_noauto_da_alloc:
1776 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1777 break;
1778 case Opt_auto_da_alloc:
1779 if (args[0].from) {
1780 if (match_int(&args[0], &option))
1781 return 0;
1782 } else
1783 option = 1; /* No argument, default to 1 */
1784 if (option)
1785 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC);
1786 else
1787 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1788 break;
1789 case Opt_discard:
1790 set_opt(sbi->s_mount_opt, DISCARD);
1791 break;
1792 case Opt_nodiscard:
1793 clear_opt(sbi->s_mount_opt, DISCARD);
1794 break;
1795 case Opt_dioread_nolock:
1796 set_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
1797 break;
1798 case Opt_dioread_lock:
1799 clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
1800 break;
1801 case Opt_init_inode_table:
1802 set_opt(sbi->s_mount_opt, INIT_INODE_TABLE);
1803 if (args[0].from) {
1804 if (match_int(&args[0], &option))
1805 return 0;
1806 } else
1807 option = EXT4_DEF_LI_WAIT_MULT;
1808 if (option < 0)
1809 return 0;
1810 sbi->s_li_wait_mult = option;
1811 break;
1812 case Opt_noinit_inode_table:
1813 clear_opt(sbi->s_mount_opt, INIT_INODE_TABLE);
1814 break;
1815 default:
1816 ext4_msg(sb, KERN_ERR,
1817 "Unrecognized mount option \"%s\" "
1818 "or missing value", p);
1819 return 0;
1820 }
1821 }
1822 #ifdef CONFIG_QUOTA
1823 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1824 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1825 clear_opt(sbi->s_mount_opt, USRQUOTA);
1826
1827 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1828 clear_opt(sbi->s_mount_opt, GRPQUOTA);
1829
1830 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1831 ext4_msg(sb, KERN_ERR, "old and new quota "
1832 "format mixing");
1833 return 0;
1834 }
1835
1836 if (!sbi->s_jquota_fmt) {
1837 ext4_msg(sb, KERN_ERR, "journaled quota format "
1838 "not specified");
1839 return 0;
1840 }
1841 } else {
1842 if (sbi->s_jquota_fmt) {
1843 ext4_msg(sb, KERN_ERR, "journaled quota format "
1844 "specified with no journaling "
1845 "enabled");
1846 return 0;
1847 }
1848 }
1849 #endif
1850 return 1;
1851 }
1852
1853 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1854 int read_only)
1855 {
1856 struct ext4_sb_info *sbi = EXT4_SB(sb);
1857 int res = 0;
1858
1859 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1860 ext4_msg(sb, KERN_ERR, "revision level too high, "
1861 "forcing read-only mode");
1862 res = MS_RDONLY;
1863 }
1864 if (read_only)
1865 return res;
1866 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1867 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1868 "running e2fsck is recommended");
1869 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1870 ext4_msg(sb, KERN_WARNING,
1871 "warning: mounting fs with errors, "
1872 "running e2fsck is recommended");
1873 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
1874 le16_to_cpu(es->s_mnt_count) >=
1875 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1876 ext4_msg(sb, KERN_WARNING,
1877 "warning: maximal mount count reached, "
1878 "running e2fsck is recommended");
1879 else if (le32_to_cpu(es->s_checkinterval) &&
1880 (le32_to_cpu(es->s_lastcheck) +
1881 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1882 ext4_msg(sb, KERN_WARNING,
1883 "warning: checktime reached, "
1884 "running e2fsck is recommended");
1885 if (!sbi->s_journal)
1886 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1887 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1888 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1889 le16_add_cpu(&es->s_mnt_count, 1);
1890 es->s_mtime = cpu_to_le32(get_seconds());
1891 ext4_update_dynamic_rev(sb);
1892 if (sbi->s_journal)
1893 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1894
1895 ext4_commit_super(sb, 1);
1896 if (test_opt(sb, DEBUG))
1897 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1898 "bpg=%lu, ipg=%lu, mo=%04x]\n",
1899 sb->s_blocksize,
1900 sbi->s_groups_count,
1901 EXT4_BLOCKS_PER_GROUP(sb),
1902 EXT4_INODES_PER_GROUP(sb),
1903 sbi->s_mount_opt);
1904
1905 return res;
1906 }
1907
1908 static int ext4_fill_flex_info(struct super_block *sb)
1909 {
1910 struct ext4_sb_info *sbi = EXT4_SB(sb);
1911 struct ext4_group_desc *gdp = NULL;
1912 ext4_group_t flex_group_count;
1913 ext4_group_t flex_group;
1914 int groups_per_flex = 0;
1915 size_t size;
1916 int i;
1917
1918 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1919 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1920
1921 if (groups_per_flex < 2) {
1922 sbi->s_log_groups_per_flex = 0;
1923 return 1;
1924 }
1925
1926 /* We allocate both existing and potentially added groups */
1927 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1928 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1929 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1930 size = flex_group_count * sizeof(struct flex_groups);
1931 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL);
1932 if (sbi->s_flex_groups == NULL) {
1933 sbi->s_flex_groups = vmalloc(size);
1934 if (sbi->s_flex_groups)
1935 memset(sbi->s_flex_groups, 0, size);
1936 }
1937 if (sbi->s_flex_groups == NULL) {
1938 ext4_msg(sb, KERN_ERR, "not enough memory for "
1939 "%u flex groups", flex_group_count);
1940 goto failed;
1941 }
1942
1943 for (i = 0; i < sbi->s_groups_count; i++) {
1944 gdp = ext4_get_group_desc(sb, i, NULL);
1945
1946 flex_group = ext4_flex_group(sbi, i);
1947 atomic_add(ext4_free_inodes_count(sb, gdp),
1948 &sbi->s_flex_groups[flex_group].free_inodes);
1949 atomic_add(ext4_free_blks_count(sb, gdp),
1950 &sbi->s_flex_groups[flex_group].free_blocks);
1951 atomic_add(ext4_used_dirs_count(sb, gdp),
1952 &sbi->s_flex_groups[flex_group].used_dirs);
1953 }
1954
1955 return 1;
1956 failed:
1957 return 0;
1958 }
1959
1960 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1961 struct ext4_group_desc *gdp)
1962 {
1963 __u16 crc = 0;
1964
1965 if (sbi->s_es->s_feature_ro_compat &
1966 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1967 int offset = offsetof(struct ext4_group_desc, bg_checksum);
1968 __le32 le_group = cpu_to_le32(block_group);
1969
1970 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1971 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1972 crc = crc16(crc, (__u8 *)gdp, offset);
1973 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1974 /* for checksum of struct ext4_group_desc do the rest...*/
1975 if ((sbi->s_es->s_feature_incompat &
1976 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1977 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1978 crc = crc16(crc, (__u8 *)gdp + offset,
1979 le16_to_cpu(sbi->s_es->s_desc_size) -
1980 offset);
1981 }
1982
1983 return cpu_to_le16(crc);
1984 }
1985
1986 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1987 struct ext4_group_desc *gdp)
1988 {
1989 if ((sbi->s_es->s_feature_ro_compat &
1990 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1991 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1992 return 0;
1993
1994 return 1;
1995 }
1996
1997 /* Called at mount-time, super-block is locked */
1998 static int ext4_check_descriptors(struct super_block *sb,
1999 ext4_group_t *first_not_zeroed)
2000 {
2001 struct ext4_sb_info *sbi = EXT4_SB(sb);
2002 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2003 ext4_fsblk_t last_block;
2004 ext4_fsblk_t block_bitmap;
2005 ext4_fsblk_t inode_bitmap;
2006 ext4_fsblk_t inode_table;
2007 int flexbg_flag = 0;
2008 ext4_group_t i, grp = sbi->s_groups_count;
2009
2010 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2011 flexbg_flag = 1;
2012
2013 ext4_debug("Checking group descriptors");
2014
2015 for (i = 0; i < sbi->s_groups_count; i++) {
2016 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2017
2018 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2019 last_block = ext4_blocks_count(sbi->s_es) - 1;
2020 else
2021 last_block = first_block +
2022 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2023
2024 if ((grp == sbi->s_groups_count) &&
2025 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2026 grp = i;
2027
2028 block_bitmap = ext4_block_bitmap(sb, gdp);
2029 if (block_bitmap < first_block || block_bitmap > last_block) {
2030 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2031 "Block bitmap for group %u not in group "
2032 "(block %llu)!", i, block_bitmap);
2033 return 0;
2034 }
2035 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2036 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2037 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2038 "Inode bitmap for group %u not in group "
2039 "(block %llu)!", i, inode_bitmap);
2040 return 0;
2041 }
2042 inode_table = ext4_inode_table(sb, gdp);
2043 if (inode_table < first_block ||
2044 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2045 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2046 "Inode table for group %u not in group "
2047 "(block %llu)!", i, inode_table);
2048 return 0;
2049 }
2050 ext4_lock_group(sb, i);
2051 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2052 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2053 "Checksum for group %u failed (%u!=%u)",
2054 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2055 gdp)), le16_to_cpu(gdp->bg_checksum));
2056 if (!(sb->s_flags & MS_RDONLY)) {
2057 ext4_unlock_group(sb, i);
2058 return 0;
2059 }
2060 }
2061 ext4_unlock_group(sb, i);
2062 if (!flexbg_flag)
2063 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2064 }
2065 if (NULL != first_not_zeroed)
2066 *first_not_zeroed = grp;
2067
2068 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
2069 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2070 return 1;
2071 }
2072
2073 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2074 * the superblock) which were deleted from all directories, but held open by
2075 * a process at the time of a crash. We walk the list and try to delete these
2076 * inodes at recovery time (only with a read-write filesystem).
2077 *
2078 * In order to keep the orphan inode chain consistent during traversal (in
2079 * case of crash during recovery), we link each inode into the superblock
2080 * orphan list_head and handle it the same way as an inode deletion during
2081 * normal operation (which journals the operations for us).
2082 *
2083 * We only do an iget() and an iput() on each inode, which is very safe if we
2084 * accidentally point at an in-use or already deleted inode. The worst that
2085 * can happen in this case is that we get a "bit already cleared" message from
2086 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2087 * e2fsck was run on this filesystem, and it must have already done the orphan
2088 * inode cleanup for us, so we can safely abort without any further action.
2089 */
2090 static void ext4_orphan_cleanup(struct super_block *sb,
2091 struct ext4_super_block *es)
2092 {
2093 unsigned int s_flags = sb->s_flags;
2094 int nr_orphans = 0, nr_truncates = 0;
2095 #ifdef CONFIG_QUOTA
2096 int i;
2097 #endif
2098 if (!es->s_last_orphan) {
2099 jbd_debug(4, "no orphan inodes to clean up\n");
2100 return;
2101 }
2102
2103 if (bdev_read_only(sb->s_bdev)) {
2104 ext4_msg(sb, KERN_ERR, "write access "
2105 "unavailable, skipping orphan cleanup");
2106 return;
2107 }
2108
2109 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2110 if (es->s_last_orphan)
2111 jbd_debug(1, "Errors on filesystem, "
2112 "clearing orphan list.\n");
2113 es->s_last_orphan = 0;
2114 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2115 return;
2116 }
2117
2118 if (s_flags & MS_RDONLY) {
2119 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2120 sb->s_flags &= ~MS_RDONLY;
2121 }
2122 #ifdef CONFIG_QUOTA
2123 /* Needed for iput() to work correctly and not trash data */
2124 sb->s_flags |= MS_ACTIVE;
2125 /* Turn on quotas so that they are updated correctly */
2126 for (i = 0; i < MAXQUOTAS; i++) {
2127 if (EXT4_SB(sb)->s_qf_names[i]) {
2128 int ret = ext4_quota_on_mount(sb, i);
2129 if (ret < 0)
2130 ext4_msg(sb, KERN_ERR,
2131 "Cannot turn on journaled "
2132 "quota: error %d", ret);
2133 }
2134 }
2135 #endif
2136
2137 while (es->s_last_orphan) {
2138 struct inode *inode;
2139
2140 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2141 if (IS_ERR(inode)) {
2142 es->s_last_orphan = 0;
2143 break;
2144 }
2145
2146 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2147 dquot_initialize(inode);
2148 if (inode->i_nlink) {
2149 ext4_msg(sb, KERN_DEBUG,
2150 "%s: truncating inode %lu to %lld bytes",
2151 __func__, inode->i_ino, inode->i_size);
2152 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2153 inode->i_ino, inode->i_size);
2154 ext4_truncate(inode);
2155 nr_truncates++;
2156 } else {
2157 ext4_msg(sb, KERN_DEBUG,
2158 "%s: deleting unreferenced inode %lu",
2159 __func__, inode->i_ino);
2160 jbd_debug(2, "deleting unreferenced inode %lu\n",
2161 inode->i_ino);
2162 nr_orphans++;
2163 }
2164 iput(inode); /* The delete magic happens here! */
2165 }
2166
2167 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2168
2169 if (nr_orphans)
2170 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2171 PLURAL(nr_orphans));
2172 if (nr_truncates)
2173 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2174 PLURAL(nr_truncates));
2175 #ifdef CONFIG_QUOTA
2176 /* Turn quotas off */
2177 for (i = 0; i < MAXQUOTAS; i++) {
2178 if (sb_dqopt(sb)->files[i])
2179 dquot_quota_off(sb, i);
2180 }
2181 #endif
2182 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2183 }
2184
2185 /*
2186 * Maximal extent format file size.
2187 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2188 * extent format containers, within a sector_t, and within i_blocks
2189 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2190 * so that won't be a limiting factor.
2191 *
2192 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2193 */
2194 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2195 {
2196 loff_t res;
2197 loff_t upper_limit = MAX_LFS_FILESIZE;
2198
2199 /* small i_blocks in vfs inode? */
2200 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2201 /*
2202 * CONFIG_LBDAF is not enabled implies the inode
2203 * i_block represent total blocks in 512 bytes
2204 * 32 == size of vfs inode i_blocks * 8
2205 */
2206 upper_limit = (1LL << 32) - 1;
2207
2208 /* total blocks in file system block size */
2209 upper_limit >>= (blkbits - 9);
2210 upper_limit <<= blkbits;
2211 }
2212
2213 /* 32-bit extent-start container, ee_block */
2214 res = 1LL << 32;
2215 res <<= blkbits;
2216 res -= 1;
2217
2218 /* Sanity check against vm- & vfs- imposed limits */
2219 if (res > upper_limit)
2220 res = upper_limit;
2221
2222 return res;
2223 }
2224
2225 /*
2226 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2227 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2228 * We need to be 1 filesystem block less than the 2^48 sector limit.
2229 */
2230 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2231 {
2232 loff_t res = EXT4_NDIR_BLOCKS;
2233 int meta_blocks;
2234 loff_t upper_limit;
2235 /* This is calculated to be the largest file size for a dense, block
2236 * mapped file such that the file's total number of 512-byte sectors,
2237 * including data and all indirect blocks, does not exceed (2^48 - 1).
2238 *
2239 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2240 * number of 512-byte sectors of the file.
2241 */
2242
2243 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2244 /*
2245 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2246 * the inode i_block field represents total file blocks in
2247 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2248 */
2249 upper_limit = (1LL << 32) - 1;
2250
2251 /* total blocks in file system block size */
2252 upper_limit >>= (bits - 9);
2253
2254 } else {
2255 /*
2256 * We use 48 bit ext4_inode i_blocks
2257 * With EXT4_HUGE_FILE_FL set the i_blocks
2258 * represent total number of blocks in
2259 * file system block size
2260 */
2261 upper_limit = (1LL << 48) - 1;
2262
2263 }
2264
2265 /* indirect blocks */
2266 meta_blocks = 1;
2267 /* double indirect blocks */
2268 meta_blocks += 1 + (1LL << (bits-2));
2269 /* tripple indirect blocks */
2270 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2271
2272 upper_limit -= meta_blocks;
2273 upper_limit <<= bits;
2274
2275 res += 1LL << (bits-2);
2276 res += 1LL << (2*(bits-2));
2277 res += 1LL << (3*(bits-2));
2278 res <<= bits;
2279 if (res > upper_limit)
2280 res = upper_limit;
2281
2282 if (res > MAX_LFS_FILESIZE)
2283 res = MAX_LFS_FILESIZE;
2284
2285 return res;
2286 }
2287
2288 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2289 ext4_fsblk_t logical_sb_block, int nr)
2290 {
2291 struct ext4_sb_info *sbi = EXT4_SB(sb);
2292 ext4_group_t bg, first_meta_bg;
2293 int has_super = 0;
2294
2295 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2296
2297 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2298 nr < first_meta_bg)
2299 return logical_sb_block + nr + 1;
2300 bg = sbi->s_desc_per_block * nr;
2301 if (ext4_bg_has_super(sb, bg))
2302 has_super = 1;
2303
2304 return (has_super + ext4_group_first_block_no(sb, bg));
2305 }
2306
2307 /**
2308 * ext4_get_stripe_size: Get the stripe size.
2309 * @sbi: In memory super block info
2310 *
2311 * If we have specified it via mount option, then
2312 * use the mount option value. If the value specified at mount time is
2313 * greater than the blocks per group use the super block value.
2314 * If the super block value is greater than blocks per group return 0.
2315 * Allocator needs it be less than blocks per group.
2316 *
2317 */
2318 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2319 {
2320 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2321 unsigned long stripe_width =
2322 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2323
2324 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2325 return sbi->s_stripe;
2326
2327 if (stripe_width <= sbi->s_blocks_per_group)
2328 return stripe_width;
2329
2330 if (stride <= sbi->s_blocks_per_group)
2331 return stride;
2332
2333 return 0;
2334 }
2335
2336 /* sysfs supprt */
2337
2338 struct ext4_attr {
2339 struct attribute attr;
2340 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2341 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2342 const char *, size_t);
2343 int offset;
2344 };
2345
2346 static int parse_strtoul(const char *buf,
2347 unsigned long max, unsigned long *value)
2348 {
2349 char *endp;
2350
2351 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2352 endp = skip_spaces(endp);
2353 if (*endp || *value > max)
2354 return -EINVAL;
2355
2356 return 0;
2357 }
2358
2359 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2360 struct ext4_sb_info *sbi,
2361 char *buf)
2362 {
2363 return snprintf(buf, PAGE_SIZE, "%llu\n",
2364 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2365 }
2366
2367 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2368 struct ext4_sb_info *sbi, char *buf)
2369 {
2370 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2371
2372 if (!sb->s_bdev->bd_part)
2373 return snprintf(buf, PAGE_SIZE, "0\n");
2374 return snprintf(buf, PAGE_SIZE, "%lu\n",
2375 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2376 sbi->s_sectors_written_start) >> 1);
2377 }
2378
2379 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2380 struct ext4_sb_info *sbi, char *buf)
2381 {
2382 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2383
2384 if (!sb->s_bdev->bd_part)
2385 return snprintf(buf, PAGE_SIZE, "0\n");
2386 return snprintf(buf, PAGE_SIZE, "%llu\n",
2387 (unsigned long long)(sbi->s_kbytes_written +
2388 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2389 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2390 }
2391
2392 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2393 struct ext4_sb_info *sbi,
2394 const char *buf, size_t count)
2395 {
2396 unsigned long t;
2397
2398 if (parse_strtoul(buf, 0x40000000, &t))
2399 return -EINVAL;
2400
2401 if (!is_power_of_2(t))
2402 return -EINVAL;
2403
2404 sbi->s_inode_readahead_blks = t;
2405 return count;
2406 }
2407
2408 static ssize_t sbi_ui_show(struct ext4_attr *a,
2409 struct ext4_sb_info *sbi, char *buf)
2410 {
2411 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2412
2413 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2414 }
2415
2416 static ssize_t sbi_ui_store(struct ext4_attr *a,
2417 struct ext4_sb_info *sbi,
2418 const char *buf, size_t count)
2419 {
2420 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2421 unsigned long t;
2422
2423 if (parse_strtoul(buf, 0xffffffff, &t))
2424 return -EINVAL;
2425 *ui = t;
2426 return count;
2427 }
2428
2429 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2430 static struct ext4_attr ext4_attr_##_name = { \
2431 .attr = {.name = __stringify(_name), .mode = _mode }, \
2432 .show = _show, \
2433 .store = _store, \
2434 .offset = offsetof(struct ext4_sb_info, _elname), \
2435 }
2436 #define EXT4_ATTR(name, mode, show, store) \
2437 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2438
2439 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2440 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2441 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2442 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2443 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2444 #define ATTR_LIST(name) &ext4_attr_##name.attr
2445
2446 EXT4_RO_ATTR(delayed_allocation_blocks);
2447 EXT4_RO_ATTR(session_write_kbytes);
2448 EXT4_RO_ATTR(lifetime_write_kbytes);
2449 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2450 inode_readahead_blks_store, s_inode_readahead_blks);
2451 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2452 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2453 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2454 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2455 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2456 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2457 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2458 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2459
2460 static struct attribute *ext4_attrs[] = {
2461 ATTR_LIST(delayed_allocation_blocks),
2462 ATTR_LIST(session_write_kbytes),
2463 ATTR_LIST(lifetime_write_kbytes),
2464 ATTR_LIST(inode_readahead_blks),
2465 ATTR_LIST(inode_goal),
2466 ATTR_LIST(mb_stats),
2467 ATTR_LIST(mb_max_to_scan),
2468 ATTR_LIST(mb_min_to_scan),
2469 ATTR_LIST(mb_order2_req),
2470 ATTR_LIST(mb_stream_req),
2471 ATTR_LIST(mb_group_prealloc),
2472 ATTR_LIST(max_writeback_mb_bump),
2473 NULL,
2474 };
2475
2476 /* Features this copy of ext4 supports */
2477 EXT4_INFO_ATTR(lazy_itable_init);
2478 EXT4_INFO_ATTR(batched_discard);
2479
2480 static struct attribute *ext4_feat_attrs[] = {
2481 ATTR_LIST(lazy_itable_init),
2482 ATTR_LIST(batched_discard),
2483 NULL,
2484 };
2485
2486 static ssize_t ext4_attr_show(struct kobject *kobj,
2487 struct attribute *attr, char *buf)
2488 {
2489 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2490 s_kobj);
2491 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2492
2493 return a->show ? a->show(a, sbi, buf) : 0;
2494 }
2495
2496 static ssize_t ext4_attr_store(struct kobject *kobj,
2497 struct attribute *attr,
2498 const char *buf, size_t len)
2499 {
2500 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2501 s_kobj);
2502 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2503
2504 return a->store ? a->store(a, sbi, buf, len) : 0;
2505 }
2506
2507 static void ext4_sb_release(struct kobject *kobj)
2508 {
2509 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2510 s_kobj);
2511 complete(&sbi->s_kobj_unregister);
2512 }
2513
2514 static const struct sysfs_ops ext4_attr_ops = {
2515 .show = ext4_attr_show,
2516 .store = ext4_attr_store,
2517 };
2518
2519 static struct kobj_type ext4_ktype = {
2520 .default_attrs = ext4_attrs,
2521 .sysfs_ops = &ext4_attr_ops,
2522 .release = ext4_sb_release,
2523 };
2524
2525 static void ext4_feat_release(struct kobject *kobj)
2526 {
2527 complete(&ext4_feat->f_kobj_unregister);
2528 }
2529
2530 static struct kobj_type ext4_feat_ktype = {
2531 .default_attrs = ext4_feat_attrs,
2532 .sysfs_ops = &ext4_attr_ops,
2533 .release = ext4_feat_release,
2534 };
2535
2536 /*
2537 * Check whether this filesystem can be mounted based on
2538 * the features present and the RDONLY/RDWR mount requested.
2539 * Returns 1 if this filesystem can be mounted as requested,
2540 * 0 if it cannot be.
2541 */
2542 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2543 {
2544 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2545 ext4_msg(sb, KERN_ERR,
2546 "Couldn't mount because of "
2547 "unsupported optional features (%x)",
2548 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2549 ~EXT4_FEATURE_INCOMPAT_SUPP));
2550 return 0;
2551 }
2552
2553 if (readonly)
2554 return 1;
2555
2556 /* Check that feature set is OK for a read-write mount */
2557 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2558 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2559 "unsupported optional features (%x)",
2560 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2561 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2562 return 0;
2563 }
2564 /*
2565 * Large file size enabled file system can only be mounted
2566 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2567 */
2568 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2569 if (sizeof(blkcnt_t) < sizeof(u64)) {
2570 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2571 "cannot be mounted RDWR without "
2572 "CONFIG_LBDAF");
2573 return 0;
2574 }
2575 }
2576 return 1;
2577 }
2578
2579 /*
2580 * This function is called once a day if we have errors logged
2581 * on the file system
2582 */
2583 static void print_daily_error_info(unsigned long arg)
2584 {
2585 struct super_block *sb = (struct super_block *) arg;
2586 struct ext4_sb_info *sbi;
2587 struct ext4_super_block *es;
2588
2589 sbi = EXT4_SB(sb);
2590 es = sbi->s_es;
2591
2592 if (es->s_error_count)
2593 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2594 le32_to_cpu(es->s_error_count));
2595 if (es->s_first_error_time) {
2596 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2597 sb->s_id, le32_to_cpu(es->s_first_error_time),
2598 (int) sizeof(es->s_first_error_func),
2599 es->s_first_error_func,
2600 le32_to_cpu(es->s_first_error_line));
2601 if (es->s_first_error_ino)
2602 printk(": inode %u",
2603 le32_to_cpu(es->s_first_error_ino));
2604 if (es->s_first_error_block)
2605 printk(": block %llu", (unsigned long long)
2606 le64_to_cpu(es->s_first_error_block));
2607 printk("\n");
2608 }
2609 if (es->s_last_error_time) {
2610 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2611 sb->s_id, le32_to_cpu(es->s_last_error_time),
2612 (int) sizeof(es->s_last_error_func),
2613 es->s_last_error_func,
2614 le32_to_cpu(es->s_last_error_line));
2615 if (es->s_last_error_ino)
2616 printk(": inode %u",
2617 le32_to_cpu(es->s_last_error_ino));
2618 if (es->s_last_error_block)
2619 printk(": block %llu", (unsigned long long)
2620 le64_to_cpu(es->s_last_error_block));
2621 printk("\n");
2622 }
2623 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2624 }
2625
2626 static void ext4_lazyinode_timeout(unsigned long data)
2627 {
2628 struct task_struct *p = (struct task_struct *)data;
2629 wake_up_process(p);
2630 }
2631
2632 /* Find next suitable group and run ext4_init_inode_table */
2633 static int ext4_run_li_request(struct ext4_li_request *elr)
2634 {
2635 struct ext4_group_desc *gdp = NULL;
2636 ext4_group_t group, ngroups;
2637 struct super_block *sb;
2638 unsigned long timeout = 0;
2639 int ret = 0;
2640
2641 sb = elr->lr_super;
2642 ngroups = EXT4_SB(sb)->s_groups_count;
2643
2644 for (group = elr->lr_next_group; group < ngroups; group++) {
2645 gdp = ext4_get_group_desc(sb, group, NULL);
2646 if (!gdp) {
2647 ret = 1;
2648 break;
2649 }
2650
2651 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2652 break;
2653 }
2654
2655 if (group == ngroups)
2656 ret = 1;
2657
2658 if (!ret) {
2659 timeout = jiffies;
2660 ret = ext4_init_inode_table(sb, group,
2661 elr->lr_timeout ? 0 : 1);
2662 if (elr->lr_timeout == 0) {
2663 timeout = jiffies - timeout;
2664 if (elr->lr_sbi->s_li_wait_mult)
2665 timeout *= elr->lr_sbi->s_li_wait_mult;
2666 else
2667 timeout *= 20;
2668 elr->lr_timeout = timeout;
2669 }
2670 elr->lr_next_sched = jiffies + elr->lr_timeout;
2671 elr->lr_next_group = group + 1;
2672 }
2673
2674 return ret;
2675 }
2676
2677 /*
2678 * Remove lr_request from the list_request and free the
2679 * request tructure. Should be called with li_list_mtx held
2680 */
2681 static void ext4_remove_li_request(struct ext4_li_request *elr)
2682 {
2683 struct ext4_sb_info *sbi;
2684
2685 if (!elr)
2686 return;
2687
2688 sbi = elr->lr_sbi;
2689
2690 list_del(&elr->lr_request);
2691 sbi->s_li_request = NULL;
2692 kfree(elr);
2693 }
2694
2695 static void ext4_unregister_li_request(struct super_block *sb)
2696 {
2697 struct ext4_li_request *elr = EXT4_SB(sb)->s_li_request;
2698
2699 if (!ext4_li_info)
2700 return;
2701
2702 mutex_lock(&ext4_li_info->li_list_mtx);
2703 ext4_remove_li_request(elr);
2704 mutex_unlock(&ext4_li_info->li_list_mtx);
2705 }
2706
2707 /*
2708 * This is the function where ext4lazyinit thread lives. It walks
2709 * through the request list searching for next scheduled filesystem.
2710 * When such a fs is found, run the lazy initialization request
2711 * (ext4_rn_li_request) and keep track of the time spend in this
2712 * function. Based on that time we compute next schedule time of
2713 * the request. When walking through the list is complete, compute
2714 * next waking time and put itself into sleep.
2715 */
2716 static int ext4_lazyinit_thread(void *arg)
2717 {
2718 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2719 struct list_head *pos, *n;
2720 struct ext4_li_request *elr;
2721 unsigned long next_wakeup;
2722 DEFINE_WAIT(wait);
2723
2724 BUG_ON(NULL == eli);
2725
2726 eli->li_timer.data = (unsigned long)current;
2727 eli->li_timer.function = ext4_lazyinode_timeout;
2728
2729 eli->li_task = current;
2730 wake_up(&eli->li_wait_task);
2731
2732 cont_thread:
2733 while (true) {
2734 next_wakeup = MAX_JIFFY_OFFSET;
2735
2736 mutex_lock(&eli->li_list_mtx);
2737 if (list_empty(&eli->li_request_list)) {
2738 mutex_unlock(&eli->li_list_mtx);
2739 goto exit_thread;
2740 }
2741
2742 list_for_each_safe(pos, n, &eli->li_request_list) {
2743 elr = list_entry(pos, struct ext4_li_request,
2744 lr_request);
2745
2746 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2747 if (ext4_run_li_request(elr) != 0) {
2748 /* error, remove the lazy_init job */
2749 ext4_remove_li_request(elr);
2750 continue;
2751 }
2752 }
2753
2754 if (time_before(elr->lr_next_sched, next_wakeup))
2755 next_wakeup = elr->lr_next_sched;
2756 }
2757 mutex_unlock(&eli->li_list_mtx);
2758
2759 if (freezing(current))
2760 refrigerator();
2761
2762 if ((time_after_eq(jiffies, next_wakeup)) ||
2763 (MAX_JIFFY_OFFSET == next_wakeup)) {
2764 cond_resched();
2765 continue;
2766 }
2767
2768 eli->li_timer.expires = next_wakeup;
2769 add_timer(&eli->li_timer);
2770 prepare_to_wait(&eli->li_wait_daemon, &wait,
2771 TASK_INTERRUPTIBLE);
2772 if (time_before(jiffies, next_wakeup))
2773 schedule();
2774 finish_wait(&eli->li_wait_daemon, &wait);
2775 }
2776
2777 exit_thread:
2778 /*
2779 * It looks like the request list is empty, but we need
2780 * to check it under the li_list_mtx lock, to prevent any
2781 * additions into it, and of course we should lock ext4_li_mtx
2782 * to atomically free the list and ext4_li_info, because at
2783 * this point another ext4 filesystem could be registering
2784 * new one.
2785 */
2786 mutex_lock(&ext4_li_mtx);
2787 mutex_lock(&eli->li_list_mtx);
2788 if (!list_empty(&eli->li_request_list)) {
2789 mutex_unlock(&eli->li_list_mtx);
2790 mutex_unlock(&ext4_li_mtx);
2791 goto cont_thread;
2792 }
2793 mutex_unlock(&eli->li_list_mtx);
2794 del_timer_sync(&ext4_li_info->li_timer);
2795 eli->li_task = NULL;
2796 wake_up(&eli->li_wait_task);
2797
2798 kfree(ext4_li_info);
2799 ext4_li_info = NULL;
2800 mutex_unlock(&ext4_li_mtx);
2801
2802 return 0;
2803 }
2804
2805 static void ext4_clear_request_list(void)
2806 {
2807 struct list_head *pos, *n;
2808 struct ext4_li_request *elr;
2809
2810 mutex_lock(&ext4_li_info->li_list_mtx);
2811 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2812 elr = list_entry(pos, struct ext4_li_request,
2813 lr_request);
2814 ext4_remove_li_request(elr);
2815 }
2816 mutex_unlock(&ext4_li_info->li_list_mtx);
2817 }
2818
2819 static int ext4_run_lazyinit_thread(void)
2820 {
2821 struct task_struct *t;
2822
2823 t = kthread_run(ext4_lazyinit_thread, ext4_li_info, "ext4lazyinit");
2824 if (IS_ERR(t)) {
2825 int err = PTR_ERR(t);
2826 ext4_clear_request_list();
2827 del_timer_sync(&ext4_li_info->li_timer);
2828 kfree(ext4_li_info);
2829 ext4_li_info = NULL;
2830 printk(KERN_CRIT "EXT4: error %d creating inode table "
2831 "initialization thread\n",
2832 err);
2833 return err;
2834 }
2835 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2836
2837 wait_event(ext4_li_info->li_wait_task, ext4_li_info->li_task != NULL);
2838 return 0;
2839 }
2840
2841 /*
2842 * Check whether it make sense to run itable init. thread or not.
2843 * If there is at least one uninitialized inode table, return
2844 * corresponding group number, else the loop goes through all
2845 * groups and return total number of groups.
2846 */
2847 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2848 {
2849 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2850 struct ext4_group_desc *gdp = NULL;
2851
2852 for (group = 0; group < ngroups; group++) {
2853 gdp = ext4_get_group_desc(sb, group, NULL);
2854 if (!gdp)
2855 continue;
2856
2857 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2858 break;
2859 }
2860
2861 return group;
2862 }
2863
2864 static int ext4_li_info_new(void)
2865 {
2866 struct ext4_lazy_init *eli = NULL;
2867
2868 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2869 if (!eli)
2870 return -ENOMEM;
2871
2872 eli->li_task = NULL;
2873 INIT_LIST_HEAD(&eli->li_request_list);
2874 mutex_init(&eli->li_list_mtx);
2875
2876 init_waitqueue_head(&eli->li_wait_daemon);
2877 init_waitqueue_head(&eli->li_wait_task);
2878 init_timer(&eli->li_timer);
2879 eli->li_state |= EXT4_LAZYINIT_QUIT;
2880
2881 ext4_li_info = eli;
2882
2883 return 0;
2884 }
2885
2886 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2887 ext4_group_t start)
2888 {
2889 struct ext4_sb_info *sbi = EXT4_SB(sb);
2890 struct ext4_li_request *elr;
2891 unsigned long rnd;
2892
2893 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2894 if (!elr)
2895 return NULL;
2896
2897 elr->lr_super = sb;
2898 elr->lr_sbi = sbi;
2899 elr->lr_next_group = start;
2900
2901 /*
2902 * Randomize first schedule time of the request to
2903 * spread the inode table initialization requests
2904 * better.
2905 */
2906 get_random_bytes(&rnd, sizeof(rnd));
2907 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2908 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2909
2910 return elr;
2911 }
2912
2913 static int ext4_register_li_request(struct super_block *sb,
2914 ext4_group_t first_not_zeroed)
2915 {
2916 struct ext4_sb_info *sbi = EXT4_SB(sb);
2917 struct ext4_li_request *elr;
2918 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2919 int ret;
2920
2921 if (sbi->s_li_request != NULL)
2922 return 0;
2923
2924 if (first_not_zeroed == ngroups ||
2925 (sb->s_flags & MS_RDONLY) ||
2926 !test_opt(sb, INIT_INODE_TABLE)) {
2927 sbi->s_li_request = NULL;
2928 return 0;
2929 }
2930
2931 if (first_not_zeroed == ngroups) {
2932 sbi->s_li_request = NULL;
2933 return 0;
2934 }
2935
2936 elr = ext4_li_request_new(sb, first_not_zeroed);
2937 if (!elr)
2938 return -ENOMEM;
2939
2940 mutex_lock(&ext4_li_mtx);
2941
2942 if (NULL == ext4_li_info) {
2943 ret = ext4_li_info_new();
2944 if (ret)
2945 goto out;
2946 }
2947
2948 mutex_lock(&ext4_li_info->li_list_mtx);
2949 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2950 mutex_unlock(&ext4_li_info->li_list_mtx);
2951
2952 sbi->s_li_request = elr;
2953
2954 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2955 ret = ext4_run_lazyinit_thread();
2956 if (ret)
2957 goto out;
2958 }
2959 out:
2960 mutex_unlock(&ext4_li_mtx);
2961 if (ret)
2962 kfree(elr);
2963 return ret;
2964 }
2965
2966 /*
2967 * We do not need to lock anything since this is called on
2968 * module unload.
2969 */
2970 static void ext4_destroy_lazyinit_thread(void)
2971 {
2972 /*
2973 * If thread exited earlier
2974 * there's nothing to be done.
2975 */
2976 if (!ext4_li_info)
2977 return;
2978
2979 ext4_clear_request_list();
2980
2981 while (ext4_li_info->li_task) {
2982 wake_up(&ext4_li_info->li_wait_daemon);
2983 wait_event(ext4_li_info->li_wait_task,
2984 ext4_li_info->li_task == NULL);
2985 }
2986 }
2987
2988 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
2989 __releases(kernel_lock)
2990 __acquires(kernel_lock)
2991 {
2992 char *orig_data = kstrdup(data, GFP_KERNEL);
2993 struct buffer_head *bh;
2994 struct ext4_super_block *es = NULL;
2995 struct ext4_sb_info *sbi;
2996 ext4_fsblk_t block;
2997 ext4_fsblk_t sb_block = get_sb_block(&data);
2998 ext4_fsblk_t logical_sb_block;
2999 unsigned long offset = 0;
3000 unsigned long journal_devnum = 0;
3001 unsigned long def_mount_opts;
3002 struct inode *root;
3003 char *cp;
3004 const char *descr;
3005 int ret = -ENOMEM;
3006 int blocksize;
3007 unsigned int db_count;
3008 unsigned int i;
3009 int needs_recovery, has_huge_files;
3010 __u64 blocks_count;
3011 int err;
3012 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3013 ext4_group_t first_not_zeroed;
3014
3015 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3016 if (!sbi)
3017 goto out_free_orig;
3018
3019 sbi->s_blockgroup_lock =
3020 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3021 if (!sbi->s_blockgroup_lock) {
3022 kfree(sbi);
3023 goto out_free_orig;
3024 }
3025 sb->s_fs_info = sbi;
3026 sbi->s_mount_opt = 0;
3027 sbi->s_resuid = EXT4_DEF_RESUID;
3028 sbi->s_resgid = EXT4_DEF_RESGID;
3029 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3030 sbi->s_sb_block = sb_block;
3031 if (sb->s_bdev->bd_part)
3032 sbi->s_sectors_written_start =
3033 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3034
3035 /* Cleanup superblock name */
3036 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3037 *cp = '!';
3038
3039 ret = -EINVAL;
3040 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3041 if (!blocksize) {
3042 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3043 goto out_fail;
3044 }
3045
3046 /*
3047 * The ext4 superblock will not be buffer aligned for other than 1kB
3048 * block sizes. We need to calculate the offset from buffer start.
3049 */
3050 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3051 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3052 offset = do_div(logical_sb_block, blocksize);
3053 } else {
3054 logical_sb_block = sb_block;
3055 }
3056
3057 if (!(bh = sb_bread(sb, logical_sb_block))) {
3058 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3059 goto out_fail;
3060 }
3061 /*
3062 * Note: s_es must be initialized as soon as possible because
3063 * some ext4 macro-instructions depend on its value
3064 */
3065 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3066 sbi->s_es = es;
3067 sb->s_magic = le16_to_cpu(es->s_magic);
3068 if (sb->s_magic != EXT4_SUPER_MAGIC)
3069 goto cantfind_ext4;
3070 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3071
3072 /* Set defaults before we parse the mount options */
3073 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3074 set_opt(sbi->s_mount_opt, INIT_INODE_TABLE);
3075 if (def_mount_opts & EXT4_DEFM_DEBUG)
3076 set_opt(sbi->s_mount_opt, DEBUG);
3077 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) {
3078 ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups",
3079 "2.6.38");
3080 set_opt(sbi->s_mount_opt, GRPID);
3081 }
3082 if (def_mount_opts & EXT4_DEFM_UID16)
3083 set_opt(sbi->s_mount_opt, NO_UID32);
3084 #ifdef CONFIG_EXT4_FS_XATTR
3085 if (def_mount_opts & EXT4_DEFM_XATTR_USER)
3086 set_opt(sbi->s_mount_opt, XATTR_USER);
3087 #endif
3088 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3089 if (def_mount_opts & EXT4_DEFM_ACL)
3090 set_opt(sbi->s_mount_opt, POSIX_ACL);
3091 #endif
3092 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3093 set_opt(sbi->s_mount_opt, JOURNAL_DATA);
3094 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3095 set_opt(sbi->s_mount_opt, ORDERED_DATA);
3096 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3097 set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
3098
3099 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3100 set_opt(sbi->s_mount_opt, ERRORS_PANIC);
3101 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3102 set_opt(sbi->s_mount_opt, ERRORS_CONT);
3103 else
3104 set_opt(sbi->s_mount_opt, ERRORS_RO);
3105 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3106 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
3107 if (def_mount_opts & EXT4_DEFM_DISCARD)
3108 set_opt(sbi->s_mount_opt, DISCARD);
3109
3110 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3111 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3112 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3113 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3114 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3115
3116 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3117 set_opt(sbi->s_mount_opt, BARRIER);
3118
3119 /*
3120 * enable delayed allocation by default
3121 * Use -o nodelalloc to turn it off
3122 */
3123 if (!IS_EXT3_SB(sb) &&
3124 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3125 set_opt(sbi->s_mount_opt, DELALLOC);
3126
3127 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3128 &journal_devnum, &journal_ioprio, NULL, 0)) {
3129 ext4_msg(sb, KERN_WARNING,
3130 "failed to parse options in superblock: %s",
3131 sbi->s_es->s_mount_opts);
3132 }
3133 if (!parse_options((char *) data, sb, &journal_devnum,
3134 &journal_ioprio, NULL, 0))
3135 goto failed_mount;
3136
3137 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3138 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3139
3140 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3141 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3142 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3143 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3144 ext4_msg(sb, KERN_WARNING,
3145 "feature flags set on rev 0 fs, "
3146 "running e2fsck is recommended");
3147
3148 /*
3149 * Check feature flags regardless of the revision level, since we
3150 * previously didn't change the revision level when setting the flags,
3151 * so there is a chance incompat flags are set on a rev 0 filesystem.
3152 */
3153 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3154 goto failed_mount;
3155
3156 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3157
3158 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3159 blocksize > EXT4_MAX_BLOCK_SIZE) {
3160 ext4_msg(sb, KERN_ERR,
3161 "Unsupported filesystem blocksize %d", blocksize);
3162 goto failed_mount;
3163 }
3164
3165 if (sb->s_blocksize != blocksize) {
3166 /* Validate the filesystem blocksize */
3167 if (!sb_set_blocksize(sb, blocksize)) {
3168 ext4_msg(sb, KERN_ERR, "bad block size %d",
3169 blocksize);
3170 goto failed_mount;
3171 }
3172
3173 brelse(bh);
3174 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3175 offset = do_div(logical_sb_block, blocksize);
3176 bh = sb_bread(sb, logical_sb_block);
3177 if (!bh) {
3178 ext4_msg(sb, KERN_ERR,
3179 "Can't read superblock on 2nd try");
3180 goto failed_mount;
3181 }
3182 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3183 sbi->s_es = es;
3184 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3185 ext4_msg(sb, KERN_ERR,
3186 "Magic mismatch, very weird!");
3187 goto failed_mount;
3188 }
3189 }
3190
3191 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3192 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3193 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3194 has_huge_files);
3195 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3196
3197 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3198 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3199 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3200 } else {
3201 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3202 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3203 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3204 (!is_power_of_2(sbi->s_inode_size)) ||
3205 (sbi->s_inode_size > blocksize)) {
3206 ext4_msg(sb, KERN_ERR,
3207 "unsupported inode size: %d",
3208 sbi->s_inode_size);
3209 goto failed_mount;
3210 }
3211 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3212 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3213 }
3214
3215 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3216 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3217 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3218 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3219 !is_power_of_2(sbi->s_desc_size)) {
3220 ext4_msg(sb, KERN_ERR,
3221 "unsupported descriptor size %lu",
3222 sbi->s_desc_size);
3223 goto failed_mount;
3224 }
3225 } else
3226 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3227
3228 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3229 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3230 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3231 goto cantfind_ext4;
3232
3233 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3234 if (sbi->s_inodes_per_block == 0)
3235 goto cantfind_ext4;
3236 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3237 sbi->s_inodes_per_block;
3238 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3239 sbi->s_sbh = bh;
3240 sbi->s_mount_state = le16_to_cpu(es->s_state);
3241 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3242 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3243
3244 for (i = 0; i < 4; i++)
3245 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3246 sbi->s_def_hash_version = es->s_def_hash_version;
3247 i = le32_to_cpu(es->s_flags);
3248 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3249 sbi->s_hash_unsigned = 3;
3250 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3251 #ifdef __CHAR_UNSIGNED__
3252 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3253 sbi->s_hash_unsigned = 3;
3254 #else
3255 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3256 #endif
3257 sb->s_dirt = 1;
3258 }
3259
3260 if (sbi->s_blocks_per_group > blocksize * 8) {
3261 ext4_msg(sb, KERN_ERR,
3262 "#blocks per group too big: %lu",
3263 sbi->s_blocks_per_group);
3264 goto failed_mount;
3265 }
3266 if (sbi->s_inodes_per_group > blocksize * 8) {
3267 ext4_msg(sb, KERN_ERR,
3268 "#inodes per group too big: %lu",
3269 sbi->s_inodes_per_group);
3270 goto failed_mount;
3271 }
3272
3273 /*
3274 * Test whether we have more sectors than will fit in sector_t,
3275 * and whether the max offset is addressable by the page cache.
3276 */
3277 err = generic_check_addressable(sb->s_blocksize_bits,
3278 ext4_blocks_count(es));
3279 if (err) {
3280 ext4_msg(sb, KERN_ERR, "filesystem"
3281 " too large to mount safely on this system");
3282 if (sizeof(sector_t) < 8)
3283 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3284 ret = err;
3285 goto failed_mount;
3286 }
3287
3288 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3289 goto cantfind_ext4;
3290
3291 /* check blocks count against device size */
3292 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3293 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3294 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3295 "exceeds size of device (%llu blocks)",
3296 ext4_blocks_count(es), blocks_count);
3297 goto failed_mount;
3298 }
3299
3300 /*
3301 * It makes no sense for the first data block to be beyond the end
3302 * of the filesystem.
3303 */
3304 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3305 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
3306 "block %u is beyond end of filesystem (%llu)",
3307 le32_to_cpu(es->s_first_data_block),
3308 ext4_blocks_count(es));
3309 goto failed_mount;
3310 }
3311 blocks_count = (ext4_blocks_count(es) -
3312 le32_to_cpu(es->s_first_data_block) +
3313 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3314 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3315 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3316 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3317 "(block count %llu, first data block %u, "
3318 "blocks per group %lu)", sbi->s_groups_count,
3319 ext4_blocks_count(es),
3320 le32_to_cpu(es->s_first_data_block),
3321 EXT4_BLOCKS_PER_GROUP(sb));
3322 goto failed_mount;
3323 }
3324 sbi->s_groups_count = blocks_count;
3325 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3326 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3327 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3328 EXT4_DESC_PER_BLOCK(sb);
3329 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
3330 GFP_KERNEL);
3331 if (sbi->s_group_desc == NULL) {
3332 ext4_msg(sb, KERN_ERR, "not enough memory");
3333 goto failed_mount;
3334 }
3335
3336 #ifdef CONFIG_PROC_FS
3337 if (ext4_proc_root)
3338 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3339 #endif
3340
3341 bgl_lock_init(sbi->s_blockgroup_lock);
3342
3343 for (i = 0; i < db_count; i++) {
3344 block = descriptor_loc(sb, logical_sb_block, i);
3345 sbi->s_group_desc[i] = sb_bread(sb, block);
3346 if (!sbi->s_group_desc[i]) {
3347 ext4_msg(sb, KERN_ERR,
3348 "can't read group descriptor %d", i);
3349 db_count = i;
3350 goto failed_mount2;
3351 }
3352 }
3353 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3354 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3355 goto failed_mount2;
3356 }
3357 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3358 if (!ext4_fill_flex_info(sb)) {
3359 ext4_msg(sb, KERN_ERR,
3360 "unable to initialize "
3361 "flex_bg meta info!");
3362 goto failed_mount2;
3363 }
3364
3365 sbi->s_gdb_count = db_count;
3366 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3367 spin_lock_init(&sbi->s_next_gen_lock);
3368
3369 err = percpu_counter_init(&sbi->s_freeblocks_counter,
3370 ext4_count_free_blocks(sb));
3371 if (!err) {
3372 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3373 ext4_count_free_inodes(sb));
3374 }
3375 if (!err) {
3376 err = percpu_counter_init(&sbi->s_dirs_counter,
3377 ext4_count_dirs(sb));
3378 }
3379 if (!err) {
3380 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
3381 }
3382 if (err) {
3383 ext4_msg(sb, KERN_ERR, "insufficient memory");
3384 goto failed_mount3;
3385 }
3386
3387 sbi->s_stripe = ext4_get_stripe_size(sbi);
3388 sbi->s_max_writeback_mb_bump = 128;
3389
3390 /*
3391 * set up enough so that it can read an inode
3392 */
3393 if (!test_opt(sb, NOLOAD) &&
3394 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3395 sb->s_op = &ext4_sops;
3396 else
3397 sb->s_op = &ext4_nojournal_sops;
3398 sb->s_export_op = &ext4_export_ops;
3399 sb->s_xattr = ext4_xattr_handlers;
3400 #ifdef CONFIG_QUOTA
3401 sb->s_qcop = &ext4_qctl_operations;
3402 sb->dq_op = &ext4_quota_operations;
3403 #endif
3404 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3405 mutex_init(&sbi->s_orphan_lock);
3406 mutex_init(&sbi->s_resize_lock);
3407
3408 sb->s_root = NULL;
3409
3410 needs_recovery = (es->s_last_orphan != 0 ||
3411 EXT4_HAS_INCOMPAT_FEATURE(sb,
3412 EXT4_FEATURE_INCOMPAT_RECOVER));
3413
3414 /*
3415 * The first inode we look at is the journal inode. Don't try
3416 * root first: it may be modified in the journal!
3417 */
3418 if (!test_opt(sb, NOLOAD) &&
3419 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3420 if (ext4_load_journal(sb, es, journal_devnum))
3421 goto failed_mount3;
3422 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3423 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3424 ext4_msg(sb, KERN_ERR, "required journal recovery "
3425 "suppressed and not mounted read-only");
3426 goto failed_mount_wq;
3427 } else {
3428 clear_opt(sbi->s_mount_opt, DATA_FLAGS);
3429 set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
3430 sbi->s_journal = NULL;
3431 needs_recovery = 0;
3432 goto no_journal;
3433 }
3434
3435 if (ext4_blocks_count(es) > 0xffffffffULL &&
3436 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3437 JBD2_FEATURE_INCOMPAT_64BIT)) {
3438 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3439 goto failed_mount_wq;
3440 }
3441
3442 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3443 jbd2_journal_set_features(sbi->s_journal,
3444 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3445 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3446 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3447 jbd2_journal_set_features(sbi->s_journal,
3448 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3449 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3450 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3451 } else {
3452 jbd2_journal_clear_features(sbi->s_journal,
3453 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3454 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3455 }
3456
3457 /* We have now updated the journal if required, so we can
3458 * validate the data journaling mode. */
3459 switch (test_opt(sb, DATA_FLAGS)) {
3460 case 0:
3461 /* No mode set, assume a default based on the journal
3462 * capabilities: ORDERED_DATA if the journal can
3463 * cope, else JOURNAL_DATA
3464 */
3465 if (jbd2_journal_check_available_features
3466 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3467 set_opt(sbi->s_mount_opt, ORDERED_DATA);
3468 else
3469 set_opt(sbi->s_mount_opt, JOURNAL_DATA);
3470 break;
3471
3472 case EXT4_MOUNT_ORDERED_DATA:
3473 case EXT4_MOUNT_WRITEBACK_DATA:
3474 if (!jbd2_journal_check_available_features
3475 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3476 ext4_msg(sb, KERN_ERR, "Journal does not support "
3477 "requested data journaling mode");
3478 goto failed_mount_wq;
3479 }
3480 default:
3481 break;
3482 }
3483 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3484
3485 /*
3486 * The journal may have updated the bg summary counts, so we
3487 * need to update the global counters.
3488 */
3489 percpu_counter_set(&sbi->s_freeblocks_counter,
3490 ext4_count_free_blocks(sb));
3491 percpu_counter_set(&sbi->s_freeinodes_counter,
3492 ext4_count_free_inodes(sb));
3493 percpu_counter_set(&sbi->s_dirs_counter,
3494 ext4_count_dirs(sb));
3495 percpu_counter_set(&sbi->s_dirtyblocks_counter, 0);
3496
3497 no_journal:
3498 EXT4_SB(sb)->dio_unwritten_wq = create_workqueue("ext4-dio-unwritten");
3499 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3500 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3501 goto failed_mount_wq;
3502 }
3503
3504 /*
3505 * The jbd2_journal_load will have done any necessary log recovery,
3506 * so we can safely mount the rest of the filesystem now.
3507 */
3508
3509 root = ext4_iget(sb, EXT4_ROOT_INO);
3510 if (IS_ERR(root)) {
3511 ext4_msg(sb, KERN_ERR, "get root inode failed");
3512 ret = PTR_ERR(root);
3513 goto failed_mount4;
3514 }
3515 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3516 iput(root);
3517 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3518 goto failed_mount4;
3519 }
3520 sb->s_root = d_alloc_root(root);
3521 if (!sb->s_root) {
3522 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3523 iput(root);
3524 ret = -ENOMEM;
3525 goto failed_mount4;
3526 }
3527
3528 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3529
3530 /* determine the minimum size of new large inodes, if present */
3531 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3532 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3533 EXT4_GOOD_OLD_INODE_SIZE;
3534 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3535 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3536 if (sbi->s_want_extra_isize <
3537 le16_to_cpu(es->s_want_extra_isize))
3538 sbi->s_want_extra_isize =
3539 le16_to_cpu(es->s_want_extra_isize);
3540 if (sbi->s_want_extra_isize <
3541 le16_to_cpu(es->s_min_extra_isize))
3542 sbi->s_want_extra_isize =
3543 le16_to_cpu(es->s_min_extra_isize);
3544 }
3545 }
3546 /* Check if enough inode space is available */
3547 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3548 sbi->s_inode_size) {
3549 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3550 EXT4_GOOD_OLD_INODE_SIZE;
3551 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3552 "available");
3553 }
3554
3555 if (test_opt(sb, DELALLOC) &&
3556 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
3557 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
3558 "requested data journaling mode");
3559 clear_opt(sbi->s_mount_opt, DELALLOC);
3560 }
3561 if (test_opt(sb, DIOREAD_NOLOCK)) {
3562 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3563 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3564 "option - requested data journaling mode");
3565 clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
3566 }
3567 if (sb->s_blocksize < PAGE_SIZE) {
3568 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3569 "option - block size is too small");
3570 clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
3571 }
3572 }
3573
3574 err = ext4_setup_system_zone(sb);
3575 if (err) {
3576 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3577 "zone (%d)", err);
3578 goto failed_mount4;
3579 }
3580
3581 ext4_ext_init(sb);
3582 err = ext4_mb_init(sb, needs_recovery);
3583 if (err) {
3584 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3585 err);
3586 goto failed_mount4;
3587 }
3588
3589 err = ext4_register_li_request(sb, first_not_zeroed);
3590 if (err)
3591 goto failed_mount4;
3592
3593 sbi->s_kobj.kset = ext4_kset;
3594 init_completion(&sbi->s_kobj_unregister);
3595 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3596 "%s", sb->s_id);
3597 if (err) {
3598 ext4_mb_release(sb);
3599 ext4_ext_release(sb);
3600 goto failed_mount4;
3601 };
3602
3603 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3604 ext4_orphan_cleanup(sb, es);
3605 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3606 if (needs_recovery) {
3607 ext4_msg(sb, KERN_INFO, "recovery complete");
3608 ext4_mark_recovery_complete(sb, es);
3609 }
3610 if (EXT4_SB(sb)->s_journal) {
3611 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3612 descr = " journalled data mode";
3613 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3614 descr = " ordered data mode";
3615 else
3616 descr = " writeback data mode";
3617 } else
3618 descr = "out journal";
3619
3620 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3621 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3622 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3623
3624 init_timer(&sbi->s_err_report);
3625 sbi->s_err_report.function = print_daily_error_info;
3626 sbi->s_err_report.data = (unsigned long) sb;
3627 if (es->s_error_count)
3628 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3629
3630 kfree(orig_data);
3631 return 0;
3632
3633 cantfind_ext4:
3634 if (!silent)
3635 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3636 goto failed_mount;
3637
3638 failed_mount4:
3639 ext4_msg(sb, KERN_ERR, "mount failed");
3640 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3641 failed_mount_wq:
3642 ext4_release_system_zone(sb);
3643 if (sbi->s_journal) {
3644 jbd2_journal_destroy(sbi->s_journal);
3645 sbi->s_journal = NULL;
3646 }
3647 failed_mount3:
3648 if (sbi->s_flex_groups) {
3649 if (is_vmalloc_addr(sbi->s_flex_groups))
3650 vfree(sbi->s_flex_groups);
3651 else
3652 kfree(sbi->s_flex_groups);
3653 }
3654 percpu_counter_destroy(&sbi->s_freeblocks_counter);
3655 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3656 percpu_counter_destroy(&sbi->s_dirs_counter);
3657 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
3658 failed_mount2:
3659 for (i = 0; i < db_count; i++)
3660 brelse(sbi->s_group_desc[i]);
3661 kfree(sbi->s_group_desc);
3662 failed_mount:
3663 if (sbi->s_proc) {
3664 remove_proc_entry(sb->s_id, ext4_proc_root);
3665 }
3666 #ifdef CONFIG_QUOTA
3667 for (i = 0; i < MAXQUOTAS; i++)
3668 kfree(sbi->s_qf_names[i]);
3669 #endif
3670 ext4_blkdev_remove(sbi);
3671 brelse(bh);
3672 out_fail:
3673 sb->s_fs_info = NULL;
3674 kfree(sbi->s_blockgroup_lock);
3675 kfree(sbi);
3676 out_free_orig:
3677 kfree(orig_data);
3678 return ret;
3679 }
3680
3681 /*
3682 * Setup any per-fs journal parameters now. We'll do this both on
3683 * initial mount, once the journal has been initialised but before we've
3684 * done any recovery; and again on any subsequent remount.
3685 */
3686 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3687 {
3688 struct ext4_sb_info *sbi = EXT4_SB(sb);
3689
3690 journal->j_commit_interval = sbi->s_commit_interval;
3691 journal->j_min_batch_time = sbi->s_min_batch_time;
3692 journal->j_max_batch_time = sbi->s_max_batch_time;
3693
3694 write_lock(&journal->j_state_lock);
3695 if (test_opt(sb, BARRIER))
3696 journal->j_flags |= JBD2_BARRIER;
3697 else
3698 journal->j_flags &= ~JBD2_BARRIER;
3699 if (test_opt(sb, DATA_ERR_ABORT))
3700 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3701 else
3702 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3703 write_unlock(&journal->j_state_lock);
3704 }
3705
3706 static journal_t *ext4_get_journal(struct super_block *sb,
3707 unsigned int journal_inum)
3708 {
3709 struct inode *journal_inode;
3710 journal_t *journal;
3711
3712 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3713
3714 /* First, test for the existence of a valid inode on disk. Bad
3715 * things happen if we iget() an unused inode, as the subsequent
3716 * iput() will try to delete it. */
3717
3718 journal_inode = ext4_iget(sb, journal_inum);
3719 if (IS_ERR(journal_inode)) {
3720 ext4_msg(sb, KERN_ERR, "no journal found");
3721 return NULL;
3722 }
3723 if (!journal_inode->i_nlink) {
3724 make_bad_inode(journal_inode);
3725 iput(journal_inode);
3726 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3727 return NULL;
3728 }
3729
3730 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3731 journal_inode, journal_inode->i_size);
3732 if (!S_ISREG(journal_inode->i_mode)) {
3733 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3734 iput(journal_inode);
3735 return NULL;
3736 }
3737
3738 journal = jbd2_journal_init_inode(journal_inode);
3739 if (!journal) {
3740 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3741 iput(journal_inode);
3742 return NULL;
3743 }
3744 journal->j_private = sb;
3745 ext4_init_journal_params(sb, journal);
3746 return journal;
3747 }
3748
3749 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3750 dev_t j_dev)
3751 {
3752 struct buffer_head *bh;
3753 journal_t *journal;
3754 ext4_fsblk_t start;
3755 ext4_fsblk_t len;
3756 int hblock, blocksize;
3757 ext4_fsblk_t sb_block;
3758 unsigned long offset;
3759 struct ext4_super_block *es;
3760 struct block_device *bdev;
3761
3762 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3763
3764 bdev = ext4_blkdev_get(j_dev, sb);
3765 if (bdev == NULL)
3766 return NULL;
3767
3768 if (bd_claim(bdev, sb)) {
3769 ext4_msg(sb, KERN_ERR,
3770 "failed to claim external journal device");
3771 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
3772 return NULL;
3773 }
3774
3775 blocksize = sb->s_blocksize;
3776 hblock = bdev_logical_block_size(bdev);
3777 if (blocksize < hblock) {
3778 ext4_msg(sb, KERN_ERR,
3779 "blocksize too small for journal device");
3780 goto out_bdev;
3781 }
3782
3783 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3784 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3785 set_blocksize(bdev, blocksize);
3786 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3787 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3788 "external journal");
3789 goto out_bdev;
3790 }
3791
3792 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3793 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3794 !(le32_to_cpu(es->s_feature_incompat) &
3795 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3796 ext4_msg(sb, KERN_ERR, "external journal has "
3797 "bad superblock");
3798 brelse(bh);
3799 goto out_bdev;
3800 }
3801
3802 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3803 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3804 brelse(bh);
3805 goto out_bdev;
3806 }
3807
3808 len = ext4_blocks_count(es);
3809 start = sb_block + 1;
3810 brelse(bh); /* we're done with the superblock */
3811
3812 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3813 start, len, blocksize);
3814 if (!journal) {
3815 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3816 goto out_bdev;
3817 }
3818 journal->j_private = sb;
3819 ll_rw_block(READ, 1, &journal->j_sb_buffer);
3820 wait_on_buffer(journal->j_sb_buffer);
3821 if (!buffer_uptodate(journal->j_sb_buffer)) {
3822 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3823 goto out_journal;
3824 }
3825 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3826 ext4_msg(sb, KERN_ERR, "External journal has more than one "
3827 "user (unsupported) - %d",
3828 be32_to_cpu(journal->j_superblock->s_nr_users));
3829 goto out_journal;
3830 }
3831 EXT4_SB(sb)->journal_bdev = bdev;
3832 ext4_init_journal_params(sb, journal);
3833 return journal;
3834
3835 out_journal:
3836 jbd2_journal_destroy(journal);
3837 out_bdev:
3838 ext4_blkdev_put(bdev);
3839 return NULL;
3840 }
3841
3842 static int ext4_load_journal(struct super_block *sb,
3843 struct ext4_super_block *es,
3844 unsigned long journal_devnum)
3845 {
3846 journal_t *journal;
3847 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3848 dev_t journal_dev;
3849 int err = 0;
3850 int really_read_only;
3851
3852 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3853
3854 if (journal_devnum &&
3855 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3856 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3857 "numbers have changed");
3858 journal_dev = new_decode_dev(journal_devnum);
3859 } else
3860 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3861
3862 really_read_only = bdev_read_only(sb->s_bdev);
3863
3864 /*
3865 * Are we loading a blank journal or performing recovery after a
3866 * crash? For recovery, we need to check in advance whether we
3867 * can get read-write access to the device.
3868 */
3869 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3870 if (sb->s_flags & MS_RDONLY) {
3871 ext4_msg(sb, KERN_INFO, "INFO: recovery "
3872 "required on readonly filesystem");
3873 if (really_read_only) {
3874 ext4_msg(sb, KERN_ERR, "write access "
3875 "unavailable, cannot proceed");
3876 return -EROFS;
3877 }
3878 ext4_msg(sb, KERN_INFO, "write access will "
3879 "be enabled during recovery");
3880 }
3881 }
3882
3883 if (journal_inum && journal_dev) {
3884 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3885 "and inode journals!");
3886 return -EINVAL;
3887 }
3888
3889 if (journal_inum) {
3890 if (!(journal = ext4_get_journal(sb, journal_inum)))
3891 return -EINVAL;
3892 } else {
3893 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3894 return -EINVAL;
3895 }
3896
3897 if (!(journal->j_flags & JBD2_BARRIER))
3898 ext4_msg(sb, KERN_INFO, "barriers disabled");
3899
3900 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
3901 err = jbd2_journal_update_format(journal);
3902 if (err) {
3903 ext4_msg(sb, KERN_ERR, "error updating journal");
3904 jbd2_journal_destroy(journal);
3905 return err;
3906 }
3907 }
3908
3909 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3910 err = jbd2_journal_wipe(journal, !really_read_only);
3911 if (!err) {
3912 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
3913 if (save)
3914 memcpy(save, ((char *) es) +
3915 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
3916 err = jbd2_journal_load(journal);
3917 if (save)
3918 memcpy(((char *) es) + EXT4_S_ERR_START,
3919 save, EXT4_S_ERR_LEN);
3920 kfree(save);
3921 }
3922
3923 if (err) {
3924 ext4_msg(sb, KERN_ERR, "error loading journal");
3925 jbd2_journal_destroy(journal);
3926 return err;
3927 }
3928
3929 EXT4_SB(sb)->s_journal = journal;
3930 ext4_clear_journal_err(sb, es);
3931
3932 if (!really_read_only && journal_devnum &&
3933 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3934 es->s_journal_dev = cpu_to_le32(journal_devnum);
3935
3936 /* Make sure we flush the recovery flag to disk. */
3937 ext4_commit_super(sb, 1);
3938 }
3939
3940 return 0;
3941 }
3942
3943 static int ext4_commit_super(struct super_block *sb, int sync)
3944 {
3945 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
3946 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
3947 int error = 0;
3948
3949 if (!sbh)
3950 return error;
3951 if (buffer_write_io_error(sbh)) {
3952 /*
3953 * Oh, dear. A previous attempt to write the
3954 * superblock failed. This could happen because the
3955 * USB device was yanked out. Or it could happen to
3956 * be a transient write error and maybe the block will
3957 * be remapped. Nothing we can do but to retry the
3958 * write and hope for the best.
3959 */
3960 ext4_msg(sb, KERN_ERR, "previous I/O error to "
3961 "superblock detected");
3962 clear_buffer_write_io_error(sbh);
3963 set_buffer_uptodate(sbh);
3964 }
3965 /*
3966 * If the file system is mounted read-only, don't update the
3967 * superblock write time. This avoids updating the superblock
3968 * write time when we are mounting the root file system
3969 * read/only but we need to replay the journal; at that point,
3970 * for people who are east of GMT and who make their clock
3971 * tick in localtime for Windows bug-for-bug compatibility,
3972 * the clock is set in the future, and this will cause e2fsck
3973 * to complain and force a full file system check.
3974 */
3975 if (!(sb->s_flags & MS_RDONLY))
3976 es->s_wtime = cpu_to_le32(get_seconds());
3977 if (sb->s_bdev->bd_part)
3978 es->s_kbytes_written =
3979 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
3980 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
3981 EXT4_SB(sb)->s_sectors_written_start) >> 1));
3982 else
3983 es->s_kbytes_written =
3984 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
3985 ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
3986 &EXT4_SB(sb)->s_freeblocks_counter));
3987 es->s_free_inodes_count =
3988 cpu_to_le32(percpu_counter_sum_positive(
3989 &EXT4_SB(sb)->s_freeinodes_counter));
3990 sb->s_dirt = 0;
3991 BUFFER_TRACE(sbh, "marking dirty");
3992 mark_buffer_dirty(sbh);
3993 if (sync) {
3994 error = sync_dirty_buffer(sbh);
3995 if (error)
3996 return error;
3997
3998 error = buffer_write_io_error(sbh);
3999 if (error) {
4000 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4001 "superblock");
4002 clear_buffer_write_io_error(sbh);
4003 set_buffer_uptodate(sbh);
4004 }
4005 }
4006 return error;
4007 }
4008
4009 /*
4010 * Have we just finished recovery? If so, and if we are mounting (or
4011 * remounting) the filesystem readonly, then we will end up with a
4012 * consistent fs on disk. Record that fact.
4013 */
4014 static void ext4_mark_recovery_complete(struct super_block *sb,
4015 struct ext4_super_block *es)
4016 {
4017 journal_t *journal = EXT4_SB(sb)->s_journal;
4018
4019 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4020 BUG_ON(journal != NULL);
4021 return;
4022 }
4023 jbd2_journal_lock_updates(journal);
4024 if (jbd2_journal_flush(journal) < 0)
4025 goto out;
4026
4027 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4028 sb->s_flags & MS_RDONLY) {
4029 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4030 ext4_commit_super(sb, 1);
4031 }
4032
4033 out:
4034 jbd2_journal_unlock_updates(journal);
4035 }
4036
4037 /*
4038 * If we are mounting (or read-write remounting) a filesystem whose journal
4039 * has recorded an error from a previous lifetime, move that error to the
4040 * main filesystem now.
4041 */
4042 static void ext4_clear_journal_err(struct super_block *sb,
4043 struct ext4_super_block *es)
4044 {
4045 journal_t *journal;
4046 int j_errno;
4047 const char *errstr;
4048
4049 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4050
4051 journal = EXT4_SB(sb)->s_journal;
4052
4053 /*
4054 * Now check for any error status which may have been recorded in the
4055 * journal by a prior ext4_error() or ext4_abort()
4056 */
4057
4058 j_errno = jbd2_journal_errno(journal);
4059 if (j_errno) {
4060 char nbuf[16];
4061
4062 errstr = ext4_decode_error(sb, j_errno, nbuf);
4063 ext4_warning(sb, "Filesystem error recorded "
4064 "from previous mount: %s", errstr);
4065 ext4_warning(sb, "Marking fs in need of filesystem check.");
4066
4067 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4068 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4069 ext4_commit_super(sb, 1);
4070
4071 jbd2_journal_clear_err(journal);
4072 }
4073 }
4074
4075 /*
4076 * Force the running and committing transactions to commit,
4077 * and wait on the commit.
4078 */
4079 int ext4_force_commit(struct super_block *sb)
4080 {
4081 journal_t *journal;
4082 int ret = 0;
4083
4084 if (sb->s_flags & MS_RDONLY)
4085 return 0;
4086
4087 journal = EXT4_SB(sb)->s_journal;
4088 if (journal) {
4089 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4090 ret = ext4_journal_force_commit(journal);
4091 }
4092
4093 return ret;
4094 }
4095
4096 static void ext4_write_super(struct super_block *sb)
4097 {
4098 lock_super(sb);
4099 ext4_commit_super(sb, 1);
4100 unlock_super(sb);
4101 }
4102
4103 static int ext4_sync_fs(struct super_block *sb, int wait)
4104 {
4105 int ret = 0;
4106 tid_t target;
4107 struct ext4_sb_info *sbi = EXT4_SB(sb);
4108
4109 trace_ext4_sync_fs(sb, wait);
4110 flush_workqueue(sbi->dio_unwritten_wq);
4111 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4112 if (wait)
4113 jbd2_log_wait_commit(sbi->s_journal, target);
4114 }
4115 return ret;
4116 }
4117
4118 /*
4119 * LVM calls this function before a (read-only) snapshot is created. This
4120 * gives us a chance to flush the journal completely and mark the fs clean.
4121 */
4122 static int ext4_freeze(struct super_block *sb)
4123 {
4124 int error = 0;
4125 journal_t *journal;
4126
4127 if (sb->s_flags & MS_RDONLY)
4128 return 0;
4129
4130 journal = EXT4_SB(sb)->s_journal;
4131
4132 /* Now we set up the journal barrier. */
4133 jbd2_journal_lock_updates(journal);
4134
4135 /*
4136 * Don't clear the needs_recovery flag if we failed to flush
4137 * the journal.
4138 */
4139 error = jbd2_journal_flush(journal);
4140 if (error < 0)
4141 goto out;
4142
4143 /* Journal blocked and flushed, clear needs_recovery flag. */
4144 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4145 error = ext4_commit_super(sb, 1);
4146 out:
4147 /* we rely on s_frozen to stop further updates */
4148 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4149 return error;
4150 }
4151
4152 /*
4153 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4154 * flag here, even though the filesystem is not technically dirty yet.
4155 */
4156 static int ext4_unfreeze(struct super_block *sb)
4157 {
4158 if (sb->s_flags & MS_RDONLY)
4159 return 0;
4160
4161 lock_super(sb);
4162 /* Reset the needs_recovery flag before the fs is unlocked. */
4163 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4164 ext4_commit_super(sb, 1);
4165 unlock_super(sb);
4166 return 0;
4167 }
4168
4169 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4170 {
4171 struct ext4_super_block *es;
4172 struct ext4_sb_info *sbi = EXT4_SB(sb);
4173 ext4_fsblk_t n_blocks_count = 0;
4174 unsigned long old_sb_flags;
4175 struct ext4_mount_options old_opts;
4176 int enable_quota = 0;
4177 ext4_group_t g;
4178 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4179 int err;
4180 #ifdef CONFIG_QUOTA
4181 int i;
4182 #endif
4183 char *orig_data = kstrdup(data, GFP_KERNEL);
4184
4185 /* Store the original options */
4186 lock_super(sb);
4187 old_sb_flags = sb->s_flags;
4188 old_opts.s_mount_opt = sbi->s_mount_opt;
4189 old_opts.s_resuid = sbi->s_resuid;
4190 old_opts.s_resgid = sbi->s_resgid;
4191 old_opts.s_commit_interval = sbi->s_commit_interval;
4192 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4193 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4194 #ifdef CONFIG_QUOTA
4195 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4196 for (i = 0; i < MAXQUOTAS; i++)
4197 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4198 #endif
4199 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4200 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4201
4202 /*
4203 * Allow the "check" option to be passed as a remount option.
4204 */
4205 if (!parse_options(data, sb, NULL, &journal_ioprio,
4206 &n_blocks_count, 1)) {
4207 err = -EINVAL;
4208 goto restore_opts;
4209 }
4210
4211 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4212 ext4_abort(sb, "Abort forced by user");
4213
4214 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4215 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4216
4217 es = sbi->s_es;
4218
4219 if (sbi->s_journal) {
4220 ext4_init_journal_params(sb, sbi->s_journal);
4221 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4222 }
4223
4224 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
4225 n_blocks_count > ext4_blocks_count(es)) {
4226 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4227 err = -EROFS;
4228 goto restore_opts;
4229 }
4230
4231 if (*flags & MS_RDONLY) {
4232 err = dquot_suspend(sb, -1);
4233 if (err < 0)
4234 goto restore_opts;
4235
4236 /*
4237 * First of all, the unconditional stuff we have to do
4238 * to disable replay of the journal when we next remount
4239 */
4240 sb->s_flags |= MS_RDONLY;
4241
4242 /*
4243 * OK, test if we are remounting a valid rw partition
4244 * readonly, and if so set the rdonly flag and then
4245 * mark the partition as valid again.
4246 */
4247 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4248 (sbi->s_mount_state & EXT4_VALID_FS))
4249 es->s_state = cpu_to_le16(sbi->s_mount_state);
4250
4251 if (sbi->s_journal)
4252 ext4_mark_recovery_complete(sb, es);
4253 } else {
4254 /* Make sure we can mount this feature set readwrite */
4255 if (!ext4_feature_set_ok(sb, 0)) {
4256 err = -EROFS;
4257 goto restore_opts;
4258 }
4259 /*
4260 * Make sure the group descriptor checksums
4261 * are sane. If they aren't, refuse to remount r/w.
4262 */
4263 for (g = 0; g < sbi->s_groups_count; g++) {
4264 struct ext4_group_desc *gdp =
4265 ext4_get_group_desc(sb, g, NULL);
4266
4267 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4268 ext4_msg(sb, KERN_ERR,
4269 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4270 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4271 le16_to_cpu(gdp->bg_checksum));
4272 err = -EINVAL;
4273 goto restore_opts;
4274 }
4275 }
4276
4277 /*
4278 * If we have an unprocessed orphan list hanging
4279 * around from a previously readonly bdev mount,
4280 * require a full umount/remount for now.
4281 */
4282 if (es->s_last_orphan) {
4283 ext4_msg(sb, KERN_WARNING, "Couldn't "
4284 "remount RDWR because of unprocessed "
4285 "orphan inode list. Please "
4286 "umount/remount instead");
4287 err = -EINVAL;
4288 goto restore_opts;
4289 }
4290
4291 /*
4292 * Mounting a RDONLY partition read-write, so reread
4293 * and store the current valid flag. (It may have
4294 * been changed by e2fsck since we originally mounted
4295 * the partition.)
4296 */
4297 if (sbi->s_journal)
4298 ext4_clear_journal_err(sb, es);
4299 sbi->s_mount_state = le16_to_cpu(es->s_state);
4300 if ((err = ext4_group_extend(sb, es, n_blocks_count)))
4301 goto restore_opts;
4302 if (!ext4_setup_super(sb, es, 0))
4303 sb->s_flags &= ~MS_RDONLY;
4304 enable_quota = 1;
4305 }
4306 }
4307
4308 /*
4309 * Reinitialize lazy itable initialization thread based on
4310 * current settings
4311 */
4312 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4313 ext4_unregister_li_request(sb);
4314 else {
4315 ext4_group_t first_not_zeroed;
4316 first_not_zeroed = ext4_has_uninit_itable(sb);
4317 ext4_register_li_request(sb, first_not_zeroed);
4318 }
4319
4320 ext4_setup_system_zone(sb);
4321 if (sbi->s_journal == NULL)
4322 ext4_commit_super(sb, 1);
4323
4324 #ifdef CONFIG_QUOTA
4325 /* Release old quota file names */
4326 for (i = 0; i < MAXQUOTAS; i++)
4327 if (old_opts.s_qf_names[i] &&
4328 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4329 kfree(old_opts.s_qf_names[i]);
4330 #endif
4331 unlock_super(sb);
4332 if (enable_quota)
4333 dquot_resume(sb, -1);
4334
4335 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4336 kfree(orig_data);
4337 return 0;
4338
4339 restore_opts:
4340 sb->s_flags = old_sb_flags;
4341 sbi->s_mount_opt = old_opts.s_mount_opt;
4342 sbi->s_resuid = old_opts.s_resuid;
4343 sbi->s_resgid = old_opts.s_resgid;
4344 sbi->s_commit_interval = old_opts.s_commit_interval;
4345 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4346 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4347 #ifdef CONFIG_QUOTA
4348 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4349 for (i = 0; i < MAXQUOTAS; i++) {
4350 if (sbi->s_qf_names[i] &&
4351 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4352 kfree(sbi->s_qf_names[i]);
4353 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4354 }
4355 #endif
4356 unlock_super(sb);
4357 kfree(orig_data);
4358 return err;
4359 }
4360
4361 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4362 {
4363 struct super_block *sb = dentry->d_sb;
4364 struct ext4_sb_info *sbi = EXT4_SB(sb);
4365 struct ext4_super_block *es = sbi->s_es;
4366 u64 fsid;
4367
4368 if (test_opt(sb, MINIX_DF)) {
4369 sbi->s_overhead_last = 0;
4370 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4371 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4372 ext4_fsblk_t overhead = 0;
4373
4374 /*
4375 * Compute the overhead (FS structures). This is constant
4376 * for a given filesystem unless the number of block groups
4377 * changes so we cache the previous value until it does.
4378 */
4379
4380 /*
4381 * All of the blocks before first_data_block are
4382 * overhead
4383 */
4384 overhead = le32_to_cpu(es->s_first_data_block);
4385
4386 /*
4387 * Add the overhead attributed to the superblock and
4388 * block group descriptors. If the sparse superblocks
4389 * feature is turned on, then not all groups have this.
4390 */
4391 for (i = 0; i < ngroups; i++) {
4392 overhead += ext4_bg_has_super(sb, i) +
4393 ext4_bg_num_gdb(sb, i);
4394 cond_resched();
4395 }
4396
4397 /*
4398 * Every block group has an inode bitmap, a block
4399 * bitmap, and an inode table.
4400 */
4401 overhead += ngroups * (2 + sbi->s_itb_per_group);
4402 sbi->s_overhead_last = overhead;
4403 smp_wmb();
4404 sbi->s_blocks_last = ext4_blocks_count(es);
4405 }
4406
4407 buf->f_type = EXT4_SUPER_MAGIC;
4408 buf->f_bsize = sb->s_blocksize;
4409 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
4410 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
4411 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
4412 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4413 if (buf->f_bfree < ext4_r_blocks_count(es))
4414 buf->f_bavail = 0;
4415 buf->f_files = le32_to_cpu(es->s_inodes_count);
4416 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4417 buf->f_namelen = EXT4_NAME_LEN;
4418 fsid = le64_to_cpup((void *)es->s_uuid) ^
4419 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4420 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4421 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4422
4423 return 0;
4424 }
4425
4426 /* Helper function for writing quotas on sync - we need to start transaction
4427 * before quota file is locked for write. Otherwise the are possible deadlocks:
4428 * Process 1 Process 2
4429 * ext4_create() quota_sync()
4430 * jbd2_journal_start() write_dquot()
4431 * dquot_initialize() down(dqio_mutex)
4432 * down(dqio_mutex) jbd2_journal_start()
4433 *
4434 */
4435
4436 #ifdef CONFIG_QUOTA
4437
4438 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4439 {
4440 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4441 }
4442
4443 static int ext4_write_dquot(struct dquot *dquot)
4444 {
4445 int ret, err;
4446 handle_t *handle;
4447 struct inode *inode;
4448
4449 inode = dquot_to_inode(dquot);
4450 handle = ext4_journal_start(inode,
4451 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4452 if (IS_ERR(handle))
4453 return PTR_ERR(handle);
4454 ret = dquot_commit(dquot);
4455 err = ext4_journal_stop(handle);
4456 if (!ret)
4457 ret = err;
4458 return ret;
4459 }
4460
4461 static int ext4_acquire_dquot(struct dquot *dquot)
4462 {
4463 int ret, err;
4464 handle_t *handle;
4465
4466 handle = ext4_journal_start(dquot_to_inode(dquot),
4467 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4468 if (IS_ERR(handle))
4469 return PTR_ERR(handle);
4470 ret = dquot_acquire(dquot);
4471 err = ext4_journal_stop(handle);
4472 if (!ret)
4473 ret = err;
4474 return ret;
4475 }
4476
4477 static int ext4_release_dquot(struct dquot *dquot)
4478 {
4479 int ret, err;
4480 handle_t *handle;
4481
4482 handle = ext4_journal_start(dquot_to_inode(dquot),
4483 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4484 if (IS_ERR(handle)) {
4485 /* Release dquot anyway to avoid endless cycle in dqput() */
4486 dquot_release(dquot);
4487 return PTR_ERR(handle);
4488 }
4489 ret = dquot_release(dquot);
4490 err = ext4_journal_stop(handle);
4491 if (!ret)
4492 ret = err;
4493 return ret;
4494 }
4495
4496 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4497 {
4498 /* Are we journaling quotas? */
4499 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4500 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4501 dquot_mark_dquot_dirty(dquot);
4502 return ext4_write_dquot(dquot);
4503 } else {
4504 return dquot_mark_dquot_dirty(dquot);
4505 }
4506 }
4507
4508 static int ext4_write_info(struct super_block *sb, int type)
4509 {
4510 int ret, err;
4511 handle_t *handle;
4512
4513 /* Data block + inode block */
4514 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4515 if (IS_ERR(handle))
4516 return PTR_ERR(handle);
4517 ret = dquot_commit_info(sb, type);
4518 err = ext4_journal_stop(handle);
4519 if (!ret)
4520 ret = err;
4521 return ret;
4522 }
4523
4524 /*
4525 * Turn on quotas during mount time - we need to find
4526 * the quota file and such...
4527 */
4528 static int ext4_quota_on_mount(struct super_block *sb, int type)
4529 {
4530 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4531 EXT4_SB(sb)->s_jquota_fmt, type);
4532 }
4533
4534 /*
4535 * Standard function to be called on quota_on
4536 */
4537 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4538 char *name)
4539 {
4540 int err;
4541 struct path path;
4542
4543 if (!test_opt(sb, QUOTA))
4544 return -EINVAL;
4545
4546 err = kern_path(name, LOOKUP_FOLLOW, &path);
4547 if (err)
4548 return err;
4549
4550 /* Quotafile not on the same filesystem? */
4551 if (path.mnt->mnt_sb != sb) {
4552 path_put(&path);
4553 return -EXDEV;
4554 }
4555 /* Journaling quota? */
4556 if (EXT4_SB(sb)->s_qf_names[type]) {
4557 /* Quotafile not in fs root? */
4558 if (path.dentry->d_parent != sb->s_root)
4559 ext4_msg(sb, KERN_WARNING,
4560 "Quota file not on filesystem root. "
4561 "Journaled quota will not work");
4562 }
4563
4564 /*
4565 * When we journal data on quota file, we have to flush journal to see
4566 * all updates to the file when we bypass pagecache...
4567 */
4568 if (EXT4_SB(sb)->s_journal &&
4569 ext4_should_journal_data(path.dentry->d_inode)) {
4570 /*
4571 * We don't need to lock updates but journal_flush() could
4572 * otherwise be livelocked...
4573 */
4574 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4575 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4576 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4577 if (err) {
4578 path_put(&path);
4579 return err;
4580 }
4581 }
4582
4583 err = dquot_quota_on_path(sb, type, format_id, &path);
4584 path_put(&path);
4585 return err;
4586 }
4587
4588 static int ext4_quota_off(struct super_block *sb, int type)
4589 {
4590 /* Force all delayed allocation blocks to be allocated.
4591 * Caller already holds s_umount sem */
4592 if (test_opt(sb, DELALLOC))
4593 sync_filesystem(sb);
4594
4595 return dquot_quota_off(sb, type);
4596 }
4597
4598 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4599 * acquiring the locks... As quota files are never truncated and quota code
4600 * itself serializes the operations (and noone else should touch the files)
4601 * we don't have to be afraid of races */
4602 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4603 size_t len, loff_t off)
4604 {
4605 struct inode *inode = sb_dqopt(sb)->files[type];
4606 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4607 int err = 0;
4608 int offset = off & (sb->s_blocksize - 1);
4609 int tocopy;
4610 size_t toread;
4611 struct buffer_head *bh;
4612 loff_t i_size = i_size_read(inode);
4613
4614 if (off > i_size)
4615 return 0;
4616 if (off+len > i_size)
4617 len = i_size-off;
4618 toread = len;
4619 while (toread > 0) {
4620 tocopy = sb->s_blocksize - offset < toread ?
4621 sb->s_blocksize - offset : toread;
4622 bh = ext4_bread(NULL, inode, blk, 0, &err);
4623 if (err)
4624 return err;
4625 if (!bh) /* A hole? */
4626 memset(data, 0, tocopy);
4627 else
4628 memcpy(data, bh->b_data+offset, tocopy);
4629 brelse(bh);
4630 offset = 0;
4631 toread -= tocopy;
4632 data += tocopy;
4633 blk++;
4634 }
4635 return len;
4636 }
4637
4638 /* Write to quotafile (we know the transaction is already started and has
4639 * enough credits) */
4640 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4641 const char *data, size_t len, loff_t off)
4642 {
4643 struct inode *inode = sb_dqopt(sb)->files[type];
4644 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4645 int err = 0;
4646 int offset = off & (sb->s_blocksize - 1);
4647 struct buffer_head *bh;
4648 handle_t *handle = journal_current_handle();
4649
4650 if (EXT4_SB(sb)->s_journal && !handle) {
4651 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4652 " cancelled because transaction is not started",
4653 (unsigned long long)off, (unsigned long long)len);
4654 return -EIO;
4655 }
4656 /*
4657 * Since we account only one data block in transaction credits,
4658 * then it is impossible to cross a block boundary.
4659 */
4660 if (sb->s_blocksize - offset < len) {
4661 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4662 " cancelled because not block aligned",
4663 (unsigned long long)off, (unsigned long long)len);
4664 return -EIO;
4665 }
4666
4667 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4668 bh = ext4_bread(handle, inode, blk, 1, &err);
4669 if (!bh)
4670 goto out;
4671 err = ext4_journal_get_write_access(handle, bh);
4672 if (err) {
4673 brelse(bh);
4674 goto out;
4675 }
4676 lock_buffer(bh);
4677 memcpy(bh->b_data+offset, data, len);
4678 flush_dcache_page(bh->b_page);
4679 unlock_buffer(bh);
4680 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4681 brelse(bh);
4682 out:
4683 if (err) {
4684 mutex_unlock(&inode->i_mutex);
4685 return err;
4686 }
4687 if (inode->i_size < off + len) {
4688 i_size_write(inode, off + len);
4689 EXT4_I(inode)->i_disksize = inode->i_size;
4690 }
4691 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4692 ext4_mark_inode_dirty(handle, inode);
4693 mutex_unlock(&inode->i_mutex);
4694 return len;
4695 }
4696
4697 #endif
4698
4699 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4700 const char *dev_name, void *data)
4701 {
4702 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4703 }
4704
4705 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4706 static struct file_system_type ext2_fs_type = {
4707 .owner = THIS_MODULE,
4708 .name = "ext2",
4709 .mount = ext4_mount,
4710 .kill_sb = kill_block_super,
4711 .fs_flags = FS_REQUIRES_DEV,
4712 };
4713
4714 static inline void register_as_ext2(void)
4715 {
4716 int err = register_filesystem(&ext2_fs_type);
4717 if (err)
4718 printk(KERN_WARNING
4719 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4720 }
4721
4722 static inline void unregister_as_ext2(void)
4723 {
4724 unregister_filesystem(&ext2_fs_type);
4725 }
4726 MODULE_ALIAS("ext2");
4727 #else
4728 static inline void register_as_ext2(void) { }
4729 static inline void unregister_as_ext2(void) { }
4730 #endif
4731
4732 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4733 static inline void register_as_ext3(void)
4734 {
4735 int err = register_filesystem(&ext3_fs_type);
4736 if (err)
4737 printk(KERN_WARNING
4738 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4739 }
4740
4741 static inline void unregister_as_ext3(void)
4742 {
4743 unregister_filesystem(&ext3_fs_type);
4744 }
4745 MODULE_ALIAS("ext3");
4746 #else
4747 static inline void register_as_ext3(void) { }
4748 static inline void unregister_as_ext3(void) { }
4749 #endif
4750
4751 static struct file_system_type ext4_fs_type = {
4752 .owner = THIS_MODULE,
4753 .name = "ext4",
4754 .mount = ext4_mount,
4755 .kill_sb = kill_block_super,
4756 .fs_flags = FS_REQUIRES_DEV,
4757 };
4758
4759 int __init ext4_init_feat_adverts(void)
4760 {
4761 struct ext4_features *ef;
4762 int ret = -ENOMEM;
4763
4764 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4765 if (!ef)
4766 goto out;
4767
4768 ef->f_kobj.kset = ext4_kset;
4769 init_completion(&ef->f_kobj_unregister);
4770 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4771 "features");
4772 if (ret) {
4773 kfree(ef);
4774 goto out;
4775 }
4776
4777 ext4_feat = ef;
4778 ret = 0;
4779 out:
4780 return ret;
4781 }
4782
4783 static int __init ext4_init_fs(void)
4784 {
4785 int err;
4786
4787 ext4_check_flag_values();
4788 err = ext4_init_pageio();
4789 if (err)
4790 return err;
4791 err = ext4_init_system_zone();
4792 if (err)
4793 goto out5;
4794 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4795 if (!ext4_kset)
4796 goto out4;
4797 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4798
4799 err = ext4_init_feat_adverts();
4800
4801 err = ext4_init_mballoc();
4802 if (err)
4803 goto out3;
4804
4805 err = ext4_init_xattr();
4806 if (err)
4807 goto out2;
4808 err = init_inodecache();
4809 if (err)
4810 goto out1;
4811 register_as_ext2();
4812 register_as_ext3();
4813 err = register_filesystem(&ext4_fs_type);
4814 if (err)
4815 goto out;
4816
4817 ext4_li_info = NULL;
4818 mutex_init(&ext4_li_mtx);
4819 return 0;
4820 out:
4821 unregister_as_ext2();
4822 unregister_as_ext3();
4823 destroy_inodecache();
4824 out1:
4825 ext4_exit_xattr();
4826 out2:
4827 ext4_exit_mballoc();
4828 out3:
4829 kfree(ext4_feat);
4830 remove_proc_entry("fs/ext4", NULL);
4831 kset_unregister(ext4_kset);
4832 out4:
4833 ext4_exit_system_zone();
4834 out5:
4835 ext4_exit_pageio();
4836 return err;
4837 }
4838
4839 static void __exit ext4_exit_fs(void)
4840 {
4841 ext4_destroy_lazyinit_thread();
4842 unregister_as_ext2();
4843 unregister_as_ext3();
4844 unregister_filesystem(&ext4_fs_type);
4845 destroy_inodecache();
4846 ext4_exit_xattr();
4847 ext4_exit_mballoc();
4848 remove_proc_entry("fs/ext4", NULL);
4849 kset_unregister(ext4_kset);
4850 ext4_exit_system_zone();
4851 ext4_exit_pageio();
4852 }
4853
4854 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4855 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4856 MODULE_LICENSE("GPL");
4857 module_init(ext4_init_fs)
4858 module_exit(ext4_exit_fs)
This page took 0.123031 seconds and 6 git commands to generate.