Merge tag 'powerpc-4.5-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[deliverable/linux.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <asm/uaccess.h>
42
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45
46 #include "ext4.h"
47 #include "ext4_extents.h" /* Needed for trace points definition */
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55
56 static struct ext4_lazy_init *ext4_li_info;
57 static struct mutex ext4_li_mtx;
58 static int ext4_mballoc_ready;
59 static struct ratelimit_state ext4_mount_msg_ratelimit;
60
61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
62 unsigned long journal_devnum);
63 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
64 static int ext4_commit_super(struct super_block *sb, int sync);
65 static void ext4_mark_recovery_complete(struct super_block *sb,
66 struct ext4_super_block *es);
67 static void ext4_clear_journal_err(struct super_block *sb,
68 struct ext4_super_block *es);
69 static int ext4_sync_fs(struct super_block *sb, int wait);
70 static int ext4_remount(struct super_block *sb, int *flags, char *data);
71 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
72 static int ext4_unfreeze(struct super_block *sb);
73 static int ext4_freeze(struct super_block *sb);
74 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
75 const char *dev_name, void *data);
76 static inline int ext2_feature_set_ok(struct super_block *sb);
77 static inline int ext3_feature_set_ok(struct super_block *sb);
78 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
79 static void ext4_destroy_lazyinit_thread(void);
80 static void ext4_unregister_li_request(struct super_block *sb);
81 static void ext4_clear_request_list(void);
82
83 /*
84 * Lock ordering
85 *
86 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
87 * i_mmap_rwsem (inode->i_mmap_rwsem)!
88 *
89 * page fault path:
90 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
91 * page lock -> i_data_sem (rw)
92 *
93 * buffered write path:
94 * sb_start_write -> i_mutex -> mmap_sem
95 * sb_start_write -> i_mutex -> transaction start -> page lock ->
96 * i_data_sem (rw)
97 *
98 * truncate:
99 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
100 * i_mmap_rwsem (w) -> page lock
101 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
102 * transaction start -> i_data_sem (rw)
103 *
104 * direct IO:
105 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
106 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
107 * transaction start -> i_data_sem (rw)
108 *
109 * writepages:
110 * transaction start -> page lock(s) -> i_data_sem (rw)
111 */
112
113 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
114 static struct file_system_type ext2_fs_type = {
115 .owner = THIS_MODULE,
116 .name = "ext2",
117 .mount = ext4_mount,
118 .kill_sb = kill_block_super,
119 .fs_flags = FS_REQUIRES_DEV,
120 };
121 MODULE_ALIAS_FS("ext2");
122 MODULE_ALIAS("ext2");
123 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
124 #else
125 #define IS_EXT2_SB(sb) (0)
126 #endif
127
128
129 static struct file_system_type ext3_fs_type = {
130 .owner = THIS_MODULE,
131 .name = "ext3",
132 .mount = ext4_mount,
133 .kill_sb = kill_block_super,
134 .fs_flags = FS_REQUIRES_DEV,
135 };
136 MODULE_ALIAS_FS("ext3");
137 MODULE_ALIAS("ext3");
138 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
139
140 static int ext4_verify_csum_type(struct super_block *sb,
141 struct ext4_super_block *es)
142 {
143 if (!ext4_has_feature_metadata_csum(sb))
144 return 1;
145
146 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
147 }
148
149 static __le32 ext4_superblock_csum(struct super_block *sb,
150 struct ext4_super_block *es)
151 {
152 struct ext4_sb_info *sbi = EXT4_SB(sb);
153 int offset = offsetof(struct ext4_super_block, s_checksum);
154 __u32 csum;
155
156 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
157
158 return cpu_to_le32(csum);
159 }
160
161 static int ext4_superblock_csum_verify(struct super_block *sb,
162 struct ext4_super_block *es)
163 {
164 if (!ext4_has_metadata_csum(sb))
165 return 1;
166
167 return es->s_checksum == ext4_superblock_csum(sb, es);
168 }
169
170 void ext4_superblock_csum_set(struct super_block *sb)
171 {
172 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
173
174 if (!ext4_has_metadata_csum(sb))
175 return;
176
177 es->s_checksum = ext4_superblock_csum(sb, es);
178 }
179
180 void *ext4_kvmalloc(size_t size, gfp_t flags)
181 {
182 void *ret;
183
184 ret = kmalloc(size, flags | __GFP_NOWARN);
185 if (!ret)
186 ret = __vmalloc(size, flags, PAGE_KERNEL);
187 return ret;
188 }
189
190 void *ext4_kvzalloc(size_t size, gfp_t flags)
191 {
192 void *ret;
193
194 ret = kzalloc(size, flags | __GFP_NOWARN);
195 if (!ret)
196 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
197 return ret;
198 }
199
200 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
201 struct ext4_group_desc *bg)
202 {
203 return le32_to_cpu(bg->bg_block_bitmap_lo) |
204 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
205 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
206 }
207
208 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
209 struct ext4_group_desc *bg)
210 {
211 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
212 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
213 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
214 }
215
216 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
217 struct ext4_group_desc *bg)
218 {
219 return le32_to_cpu(bg->bg_inode_table_lo) |
220 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
221 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
222 }
223
224 __u32 ext4_free_group_clusters(struct super_block *sb,
225 struct ext4_group_desc *bg)
226 {
227 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
228 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
229 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
230 }
231
232 __u32 ext4_free_inodes_count(struct super_block *sb,
233 struct ext4_group_desc *bg)
234 {
235 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
236 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
237 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
238 }
239
240 __u32 ext4_used_dirs_count(struct super_block *sb,
241 struct ext4_group_desc *bg)
242 {
243 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
244 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
245 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
246 }
247
248 __u32 ext4_itable_unused_count(struct super_block *sb,
249 struct ext4_group_desc *bg)
250 {
251 return le16_to_cpu(bg->bg_itable_unused_lo) |
252 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
253 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
254 }
255
256 void ext4_block_bitmap_set(struct super_block *sb,
257 struct ext4_group_desc *bg, ext4_fsblk_t blk)
258 {
259 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
260 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
261 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
262 }
263
264 void ext4_inode_bitmap_set(struct super_block *sb,
265 struct ext4_group_desc *bg, ext4_fsblk_t blk)
266 {
267 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
268 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
269 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
270 }
271
272 void ext4_inode_table_set(struct super_block *sb,
273 struct ext4_group_desc *bg, ext4_fsblk_t blk)
274 {
275 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
276 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
277 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
278 }
279
280 void ext4_free_group_clusters_set(struct super_block *sb,
281 struct ext4_group_desc *bg, __u32 count)
282 {
283 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
284 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
285 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
286 }
287
288 void ext4_free_inodes_set(struct super_block *sb,
289 struct ext4_group_desc *bg, __u32 count)
290 {
291 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
292 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
293 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
294 }
295
296 void ext4_used_dirs_set(struct super_block *sb,
297 struct ext4_group_desc *bg, __u32 count)
298 {
299 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
300 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
301 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
302 }
303
304 void ext4_itable_unused_set(struct super_block *sb,
305 struct ext4_group_desc *bg, __u32 count)
306 {
307 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
308 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
309 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
310 }
311
312
313 static void __save_error_info(struct super_block *sb, const char *func,
314 unsigned int line)
315 {
316 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
317
318 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
319 if (bdev_read_only(sb->s_bdev))
320 return;
321 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
322 es->s_last_error_time = cpu_to_le32(get_seconds());
323 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
324 es->s_last_error_line = cpu_to_le32(line);
325 if (!es->s_first_error_time) {
326 es->s_first_error_time = es->s_last_error_time;
327 strncpy(es->s_first_error_func, func,
328 sizeof(es->s_first_error_func));
329 es->s_first_error_line = cpu_to_le32(line);
330 es->s_first_error_ino = es->s_last_error_ino;
331 es->s_first_error_block = es->s_last_error_block;
332 }
333 /*
334 * Start the daily error reporting function if it hasn't been
335 * started already
336 */
337 if (!es->s_error_count)
338 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
339 le32_add_cpu(&es->s_error_count, 1);
340 }
341
342 static void save_error_info(struct super_block *sb, const char *func,
343 unsigned int line)
344 {
345 __save_error_info(sb, func, line);
346 ext4_commit_super(sb, 1);
347 }
348
349 /*
350 * The del_gendisk() function uninitializes the disk-specific data
351 * structures, including the bdi structure, without telling anyone
352 * else. Once this happens, any attempt to call mark_buffer_dirty()
353 * (for example, by ext4_commit_super), will cause a kernel OOPS.
354 * This is a kludge to prevent these oops until we can put in a proper
355 * hook in del_gendisk() to inform the VFS and file system layers.
356 */
357 static int block_device_ejected(struct super_block *sb)
358 {
359 struct inode *bd_inode = sb->s_bdev->bd_inode;
360 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
361
362 return bdi->dev == NULL;
363 }
364
365 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
366 {
367 struct super_block *sb = journal->j_private;
368 struct ext4_sb_info *sbi = EXT4_SB(sb);
369 int error = is_journal_aborted(journal);
370 struct ext4_journal_cb_entry *jce;
371
372 BUG_ON(txn->t_state == T_FINISHED);
373 spin_lock(&sbi->s_md_lock);
374 while (!list_empty(&txn->t_private_list)) {
375 jce = list_entry(txn->t_private_list.next,
376 struct ext4_journal_cb_entry, jce_list);
377 list_del_init(&jce->jce_list);
378 spin_unlock(&sbi->s_md_lock);
379 jce->jce_func(sb, jce, error);
380 spin_lock(&sbi->s_md_lock);
381 }
382 spin_unlock(&sbi->s_md_lock);
383 }
384
385 /* Deal with the reporting of failure conditions on a filesystem such as
386 * inconsistencies detected or read IO failures.
387 *
388 * On ext2, we can store the error state of the filesystem in the
389 * superblock. That is not possible on ext4, because we may have other
390 * write ordering constraints on the superblock which prevent us from
391 * writing it out straight away; and given that the journal is about to
392 * be aborted, we can't rely on the current, or future, transactions to
393 * write out the superblock safely.
394 *
395 * We'll just use the jbd2_journal_abort() error code to record an error in
396 * the journal instead. On recovery, the journal will complain about
397 * that error until we've noted it down and cleared it.
398 */
399
400 static void ext4_handle_error(struct super_block *sb)
401 {
402 if (sb->s_flags & MS_RDONLY)
403 return;
404
405 if (!test_opt(sb, ERRORS_CONT)) {
406 journal_t *journal = EXT4_SB(sb)->s_journal;
407
408 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
409 if (journal)
410 jbd2_journal_abort(journal, -EIO);
411 }
412 if (test_opt(sb, ERRORS_RO)) {
413 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
414 /*
415 * Make sure updated value of ->s_mount_flags will be visible
416 * before ->s_flags update
417 */
418 smp_wmb();
419 sb->s_flags |= MS_RDONLY;
420 }
421 if (test_opt(sb, ERRORS_PANIC)) {
422 if (EXT4_SB(sb)->s_journal &&
423 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
424 return;
425 panic("EXT4-fs (device %s): panic forced after error\n",
426 sb->s_id);
427 }
428 }
429
430 #define ext4_error_ratelimit(sb) \
431 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
432 "EXT4-fs error")
433
434 void __ext4_error(struct super_block *sb, const char *function,
435 unsigned int line, const char *fmt, ...)
436 {
437 struct va_format vaf;
438 va_list args;
439
440 if (ext4_error_ratelimit(sb)) {
441 va_start(args, fmt);
442 vaf.fmt = fmt;
443 vaf.va = &args;
444 printk(KERN_CRIT
445 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
446 sb->s_id, function, line, current->comm, &vaf);
447 va_end(args);
448 }
449 save_error_info(sb, function, line);
450 ext4_handle_error(sb);
451 }
452
453 void __ext4_error_inode(struct inode *inode, const char *function,
454 unsigned int line, ext4_fsblk_t block,
455 const char *fmt, ...)
456 {
457 va_list args;
458 struct va_format vaf;
459 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
460
461 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
462 es->s_last_error_block = cpu_to_le64(block);
463 if (ext4_error_ratelimit(inode->i_sb)) {
464 va_start(args, fmt);
465 vaf.fmt = fmt;
466 vaf.va = &args;
467 if (block)
468 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
469 "inode #%lu: block %llu: comm %s: %pV\n",
470 inode->i_sb->s_id, function, line, inode->i_ino,
471 block, current->comm, &vaf);
472 else
473 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
474 "inode #%lu: comm %s: %pV\n",
475 inode->i_sb->s_id, function, line, inode->i_ino,
476 current->comm, &vaf);
477 va_end(args);
478 }
479 save_error_info(inode->i_sb, function, line);
480 ext4_handle_error(inode->i_sb);
481 }
482
483 void __ext4_error_file(struct file *file, const char *function,
484 unsigned int line, ext4_fsblk_t block,
485 const char *fmt, ...)
486 {
487 va_list args;
488 struct va_format vaf;
489 struct ext4_super_block *es;
490 struct inode *inode = file_inode(file);
491 char pathname[80], *path;
492
493 es = EXT4_SB(inode->i_sb)->s_es;
494 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
495 if (ext4_error_ratelimit(inode->i_sb)) {
496 path = file_path(file, pathname, sizeof(pathname));
497 if (IS_ERR(path))
498 path = "(unknown)";
499 va_start(args, fmt);
500 vaf.fmt = fmt;
501 vaf.va = &args;
502 if (block)
503 printk(KERN_CRIT
504 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
505 "block %llu: comm %s: path %s: %pV\n",
506 inode->i_sb->s_id, function, line, inode->i_ino,
507 block, current->comm, path, &vaf);
508 else
509 printk(KERN_CRIT
510 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
511 "comm %s: path %s: %pV\n",
512 inode->i_sb->s_id, function, line, inode->i_ino,
513 current->comm, path, &vaf);
514 va_end(args);
515 }
516 save_error_info(inode->i_sb, function, line);
517 ext4_handle_error(inode->i_sb);
518 }
519
520 const char *ext4_decode_error(struct super_block *sb, int errno,
521 char nbuf[16])
522 {
523 char *errstr = NULL;
524
525 switch (errno) {
526 case -EFSCORRUPTED:
527 errstr = "Corrupt filesystem";
528 break;
529 case -EFSBADCRC:
530 errstr = "Filesystem failed CRC";
531 break;
532 case -EIO:
533 errstr = "IO failure";
534 break;
535 case -ENOMEM:
536 errstr = "Out of memory";
537 break;
538 case -EROFS:
539 if (!sb || (EXT4_SB(sb)->s_journal &&
540 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
541 errstr = "Journal has aborted";
542 else
543 errstr = "Readonly filesystem";
544 break;
545 default:
546 /* If the caller passed in an extra buffer for unknown
547 * errors, textualise them now. Else we just return
548 * NULL. */
549 if (nbuf) {
550 /* Check for truncated error codes... */
551 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
552 errstr = nbuf;
553 }
554 break;
555 }
556
557 return errstr;
558 }
559
560 /* __ext4_std_error decodes expected errors from journaling functions
561 * automatically and invokes the appropriate error response. */
562
563 void __ext4_std_error(struct super_block *sb, const char *function,
564 unsigned int line, int errno)
565 {
566 char nbuf[16];
567 const char *errstr;
568
569 /* Special case: if the error is EROFS, and we're not already
570 * inside a transaction, then there's really no point in logging
571 * an error. */
572 if (errno == -EROFS && journal_current_handle() == NULL &&
573 (sb->s_flags & MS_RDONLY))
574 return;
575
576 if (ext4_error_ratelimit(sb)) {
577 errstr = ext4_decode_error(sb, errno, nbuf);
578 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
579 sb->s_id, function, line, errstr);
580 }
581
582 save_error_info(sb, function, line);
583 ext4_handle_error(sb);
584 }
585
586 /*
587 * ext4_abort is a much stronger failure handler than ext4_error. The
588 * abort function may be used to deal with unrecoverable failures such
589 * as journal IO errors or ENOMEM at a critical moment in log management.
590 *
591 * We unconditionally force the filesystem into an ABORT|READONLY state,
592 * unless the error response on the fs has been set to panic in which
593 * case we take the easy way out and panic immediately.
594 */
595
596 void __ext4_abort(struct super_block *sb, const char *function,
597 unsigned int line, const char *fmt, ...)
598 {
599 va_list args;
600
601 save_error_info(sb, function, line);
602 va_start(args, fmt);
603 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
604 function, line);
605 vprintk(fmt, args);
606 printk("\n");
607 va_end(args);
608
609 if ((sb->s_flags & MS_RDONLY) == 0) {
610 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
611 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
612 /*
613 * Make sure updated value of ->s_mount_flags will be visible
614 * before ->s_flags update
615 */
616 smp_wmb();
617 sb->s_flags |= MS_RDONLY;
618 if (EXT4_SB(sb)->s_journal)
619 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
620 save_error_info(sb, function, line);
621 }
622 if (test_opt(sb, ERRORS_PANIC)) {
623 if (EXT4_SB(sb)->s_journal &&
624 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
625 return;
626 panic("EXT4-fs panic from previous error\n");
627 }
628 }
629
630 void __ext4_msg(struct super_block *sb,
631 const char *prefix, const char *fmt, ...)
632 {
633 struct va_format vaf;
634 va_list args;
635
636 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
637 return;
638
639 va_start(args, fmt);
640 vaf.fmt = fmt;
641 vaf.va = &args;
642 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
643 va_end(args);
644 }
645
646 #define ext4_warning_ratelimit(sb) \
647 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
648 "EXT4-fs warning")
649
650 void __ext4_warning(struct super_block *sb, const char *function,
651 unsigned int line, const char *fmt, ...)
652 {
653 struct va_format vaf;
654 va_list args;
655
656 if (!ext4_warning_ratelimit(sb))
657 return;
658
659 va_start(args, fmt);
660 vaf.fmt = fmt;
661 vaf.va = &args;
662 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
663 sb->s_id, function, line, &vaf);
664 va_end(args);
665 }
666
667 void __ext4_warning_inode(const struct inode *inode, const char *function,
668 unsigned int line, const char *fmt, ...)
669 {
670 struct va_format vaf;
671 va_list args;
672
673 if (!ext4_warning_ratelimit(inode->i_sb))
674 return;
675
676 va_start(args, fmt);
677 vaf.fmt = fmt;
678 vaf.va = &args;
679 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
680 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
681 function, line, inode->i_ino, current->comm, &vaf);
682 va_end(args);
683 }
684
685 void __ext4_grp_locked_error(const char *function, unsigned int line,
686 struct super_block *sb, ext4_group_t grp,
687 unsigned long ino, ext4_fsblk_t block,
688 const char *fmt, ...)
689 __releases(bitlock)
690 __acquires(bitlock)
691 {
692 struct va_format vaf;
693 va_list args;
694 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
695
696 es->s_last_error_ino = cpu_to_le32(ino);
697 es->s_last_error_block = cpu_to_le64(block);
698 __save_error_info(sb, function, line);
699
700 if (ext4_error_ratelimit(sb)) {
701 va_start(args, fmt);
702 vaf.fmt = fmt;
703 vaf.va = &args;
704 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
705 sb->s_id, function, line, grp);
706 if (ino)
707 printk(KERN_CONT "inode %lu: ", ino);
708 if (block)
709 printk(KERN_CONT "block %llu:",
710 (unsigned long long) block);
711 printk(KERN_CONT "%pV\n", &vaf);
712 va_end(args);
713 }
714
715 if (test_opt(sb, ERRORS_CONT)) {
716 ext4_commit_super(sb, 0);
717 return;
718 }
719
720 ext4_unlock_group(sb, grp);
721 ext4_handle_error(sb);
722 /*
723 * We only get here in the ERRORS_RO case; relocking the group
724 * may be dangerous, but nothing bad will happen since the
725 * filesystem will have already been marked read/only and the
726 * journal has been aborted. We return 1 as a hint to callers
727 * who might what to use the return value from
728 * ext4_grp_locked_error() to distinguish between the
729 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
730 * aggressively from the ext4 function in question, with a
731 * more appropriate error code.
732 */
733 ext4_lock_group(sb, grp);
734 return;
735 }
736
737 void ext4_update_dynamic_rev(struct super_block *sb)
738 {
739 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
740
741 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
742 return;
743
744 ext4_warning(sb,
745 "updating to rev %d because of new feature flag, "
746 "running e2fsck is recommended",
747 EXT4_DYNAMIC_REV);
748
749 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
750 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
751 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
752 /* leave es->s_feature_*compat flags alone */
753 /* es->s_uuid will be set by e2fsck if empty */
754
755 /*
756 * The rest of the superblock fields should be zero, and if not it
757 * means they are likely already in use, so leave them alone. We
758 * can leave it up to e2fsck to clean up any inconsistencies there.
759 */
760 }
761
762 /*
763 * Open the external journal device
764 */
765 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
766 {
767 struct block_device *bdev;
768 char b[BDEVNAME_SIZE];
769
770 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
771 if (IS_ERR(bdev))
772 goto fail;
773 return bdev;
774
775 fail:
776 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
777 __bdevname(dev, b), PTR_ERR(bdev));
778 return NULL;
779 }
780
781 /*
782 * Release the journal device
783 */
784 static void ext4_blkdev_put(struct block_device *bdev)
785 {
786 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
787 }
788
789 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
790 {
791 struct block_device *bdev;
792 bdev = sbi->journal_bdev;
793 if (bdev) {
794 ext4_blkdev_put(bdev);
795 sbi->journal_bdev = NULL;
796 }
797 }
798
799 static inline struct inode *orphan_list_entry(struct list_head *l)
800 {
801 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
802 }
803
804 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
805 {
806 struct list_head *l;
807
808 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
809 le32_to_cpu(sbi->s_es->s_last_orphan));
810
811 printk(KERN_ERR "sb_info orphan list:\n");
812 list_for_each(l, &sbi->s_orphan) {
813 struct inode *inode = orphan_list_entry(l);
814 printk(KERN_ERR " "
815 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
816 inode->i_sb->s_id, inode->i_ino, inode,
817 inode->i_mode, inode->i_nlink,
818 NEXT_ORPHAN(inode));
819 }
820 }
821
822 static void ext4_put_super(struct super_block *sb)
823 {
824 struct ext4_sb_info *sbi = EXT4_SB(sb);
825 struct ext4_super_block *es = sbi->s_es;
826 int i, err;
827
828 ext4_unregister_li_request(sb);
829 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
830
831 flush_workqueue(sbi->rsv_conversion_wq);
832 destroy_workqueue(sbi->rsv_conversion_wq);
833
834 if (sbi->s_journal) {
835 err = jbd2_journal_destroy(sbi->s_journal);
836 sbi->s_journal = NULL;
837 if (err < 0)
838 ext4_abort(sb, "Couldn't clean up the journal");
839 }
840
841 ext4_unregister_sysfs(sb);
842 ext4_es_unregister_shrinker(sbi);
843 del_timer_sync(&sbi->s_err_report);
844 ext4_release_system_zone(sb);
845 ext4_mb_release(sb);
846 ext4_ext_release(sb);
847 ext4_xattr_put_super(sb);
848
849 if (!(sb->s_flags & MS_RDONLY)) {
850 ext4_clear_feature_journal_needs_recovery(sb);
851 es->s_state = cpu_to_le16(sbi->s_mount_state);
852 }
853 if (!(sb->s_flags & MS_RDONLY))
854 ext4_commit_super(sb, 1);
855
856 for (i = 0; i < sbi->s_gdb_count; i++)
857 brelse(sbi->s_group_desc[i]);
858 kvfree(sbi->s_group_desc);
859 kvfree(sbi->s_flex_groups);
860 percpu_counter_destroy(&sbi->s_freeclusters_counter);
861 percpu_counter_destroy(&sbi->s_freeinodes_counter);
862 percpu_counter_destroy(&sbi->s_dirs_counter);
863 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
864 brelse(sbi->s_sbh);
865 #ifdef CONFIG_QUOTA
866 for (i = 0; i < EXT4_MAXQUOTAS; i++)
867 kfree(sbi->s_qf_names[i]);
868 #endif
869
870 /* Debugging code just in case the in-memory inode orphan list
871 * isn't empty. The on-disk one can be non-empty if we've
872 * detected an error and taken the fs readonly, but the
873 * in-memory list had better be clean by this point. */
874 if (!list_empty(&sbi->s_orphan))
875 dump_orphan_list(sb, sbi);
876 J_ASSERT(list_empty(&sbi->s_orphan));
877
878 sync_blockdev(sb->s_bdev);
879 invalidate_bdev(sb->s_bdev);
880 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
881 /*
882 * Invalidate the journal device's buffers. We don't want them
883 * floating about in memory - the physical journal device may
884 * hotswapped, and it breaks the `ro-after' testing code.
885 */
886 sync_blockdev(sbi->journal_bdev);
887 invalidate_bdev(sbi->journal_bdev);
888 ext4_blkdev_remove(sbi);
889 }
890 if (sbi->s_mb_cache) {
891 ext4_xattr_destroy_cache(sbi->s_mb_cache);
892 sbi->s_mb_cache = NULL;
893 }
894 if (sbi->s_mmp_tsk)
895 kthread_stop(sbi->s_mmp_tsk);
896 sb->s_fs_info = NULL;
897 /*
898 * Now that we are completely done shutting down the
899 * superblock, we need to actually destroy the kobject.
900 */
901 kobject_put(&sbi->s_kobj);
902 wait_for_completion(&sbi->s_kobj_unregister);
903 if (sbi->s_chksum_driver)
904 crypto_free_shash(sbi->s_chksum_driver);
905 kfree(sbi->s_blockgroup_lock);
906 kfree(sbi);
907 }
908
909 static struct kmem_cache *ext4_inode_cachep;
910
911 /*
912 * Called inside transaction, so use GFP_NOFS
913 */
914 static struct inode *ext4_alloc_inode(struct super_block *sb)
915 {
916 struct ext4_inode_info *ei;
917
918 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
919 if (!ei)
920 return NULL;
921
922 ei->vfs_inode.i_version = 1;
923 spin_lock_init(&ei->i_raw_lock);
924 INIT_LIST_HEAD(&ei->i_prealloc_list);
925 spin_lock_init(&ei->i_prealloc_lock);
926 ext4_es_init_tree(&ei->i_es_tree);
927 rwlock_init(&ei->i_es_lock);
928 INIT_LIST_HEAD(&ei->i_es_list);
929 ei->i_es_all_nr = 0;
930 ei->i_es_shk_nr = 0;
931 ei->i_es_shrink_lblk = 0;
932 ei->i_reserved_data_blocks = 0;
933 ei->i_reserved_meta_blocks = 0;
934 ei->i_allocated_meta_blocks = 0;
935 ei->i_da_metadata_calc_len = 0;
936 ei->i_da_metadata_calc_last_lblock = 0;
937 spin_lock_init(&(ei->i_block_reservation_lock));
938 #ifdef CONFIG_QUOTA
939 ei->i_reserved_quota = 0;
940 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
941 #endif
942 ei->jinode = NULL;
943 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
944 spin_lock_init(&ei->i_completed_io_lock);
945 ei->i_sync_tid = 0;
946 ei->i_datasync_tid = 0;
947 atomic_set(&ei->i_ioend_count, 0);
948 atomic_set(&ei->i_unwritten, 0);
949 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
950 #ifdef CONFIG_EXT4_FS_ENCRYPTION
951 ei->i_crypt_info = NULL;
952 #endif
953 return &ei->vfs_inode;
954 }
955
956 static int ext4_drop_inode(struct inode *inode)
957 {
958 int drop = generic_drop_inode(inode);
959
960 trace_ext4_drop_inode(inode, drop);
961 return drop;
962 }
963
964 static void ext4_i_callback(struct rcu_head *head)
965 {
966 struct inode *inode = container_of(head, struct inode, i_rcu);
967 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
968 }
969
970 static void ext4_destroy_inode(struct inode *inode)
971 {
972 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
973 ext4_msg(inode->i_sb, KERN_ERR,
974 "Inode %lu (%p): orphan list check failed!",
975 inode->i_ino, EXT4_I(inode));
976 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
977 EXT4_I(inode), sizeof(struct ext4_inode_info),
978 true);
979 dump_stack();
980 }
981 call_rcu(&inode->i_rcu, ext4_i_callback);
982 }
983
984 static void init_once(void *foo)
985 {
986 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
987
988 INIT_LIST_HEAD(&ei->i_orphan);
989 init_rwsem(&ei->xattr_sem);
990 init_rwsem(&ei->i_data_sem);
991 init_rwsem(&ei->i_mmap_sem);
992 inode_init_once(&ei->vfs_inode);
993 }
994
995 static int __init init_inodecache(void)
996 {
997 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
998 sizeof(struct ext4_inode_info),
999 0, (SLAB_RECLAIM_ACCOUNT|
1000 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1001 init_once);
1002 if (ext4_inode_cachep == NULL)
1003 return -ENOMEM;
1004 return 0;
1005 }
1006
1007 static void destroy_inodecache(void)
1008 {
1009 /*
1010 * Make sure all delayed rcu free inodes are flushed before we
1011 * destroy cache.
1012 */
1013 rcu_barrier();
1014 kmem_cache_destroy(ext4_inode_cachep);
1015 }
1016
1017 void ext4_clear_inode(struct inode *inode)
1018 {
1019 invalidate_inode_buffers(inode);
1020 clear_inode(inode);
1021 dquot_drop(inode);
1022 ext4_discard_preallocations(inode);
1023 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1024 if (EXT4_I(inode)->jinode) {
1025 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1026 EXT4_I(inode)->jinode);
1027 jbd2_free_inode(EXT4_I(inode)->jinode);
1028 EXT4_I(inode)->jinode = NULL;
1029 }
1030 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1031 if (EXT4_I(inode)->i_crypt_info)
1032 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info);
1033 #endif
1034 }
1035
1036 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1037 u64 ino, u32 generation)
1038 {
1039 struct inode *inode;
1040
1041 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1042 return ERR_PTR(-ESTALE);
1043 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1044 return ERR_PTR(-ESTALE);
1045
1046 /* iget isn't really right if the inode is currently unallocated!!
1047 *
1048 * ext4_read_inode will return a bad_inode if the inode had been
1049 * deleted, so we should be safe.
1050 *
1051 * Currently we don't know the generation for parent directory, so
1052 * a generation of 0 means "accept any"
1053 */
1054 inode = ext4_iget_normal(sb, ino);
1055 if (IS_ERR(inode))
1056 return ERR_CAST(inode);
1057 if (generation && inode->i_generation != generation) {
1058 iput(inode);
1059 return ERR_PTR(-ESTALE);
1060 }
1061
1062 return inode;
1063 }
1064
1065 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1066 int fh_len, int fh_type)
1067 {
1068 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1069 ext4_nfs_get_inode);
1070 }
1071
1072 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1073 int fh_len, int fh_type)
1074 {
1075 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1076 ext4_nfs_get_inode);
1077 }
1078
1079 /*
1080 * Try to release metadata pages (indirect blocks, directories) which are
1081 * mapped via the block device. Since these pages could have journal heads
1082 * which would prevent try_to_free_buffers() from freeing them, we must use
1083 * jbd2 layer's try_to_free_buffers() function to release them.
1084 */
1085 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1086 gfp_t wait)
1087 {
1088 journal_t *journal = EXT4_SB(sb)->s_journal;
1089
1090 WARN_ON(PageChecked(page));
1091 if (!page_has_buffers(page))
1092 return 0;
1093 if (journal)
1094 return jbd2_journal_try_to_free_buffers(journal, page,
1095 wait & ~__GFP_DIRECT_RECLAIM);
1096 return try_to_free_buffers(page);
1097 }
1098
1099 #ifdef CONFIG_QUOTA
1100 static char *quotatypes[] = INITQFNAMES;
1101 #define QTYPE2NAME(t) (quotatypes[t])
1102
1103 static int ext4_write_dquot(struct dquot *dquot);
1104 static int ext4_acquire_dquot(struct dquot *dquot);
1105 static int ext4_release_dquot(struct dquot *dquot);
1106 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1107 static int ext4_write_info(struct super_block *sb, int type);
1108 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1109 struct path *path);
1110 static int ext4_quota_off(struct super_block *sb, int type);
1111 static int ext4_quota_on_mount(struct super_block *sb, int type);
1112 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1113 size_t len, loff_t off);
1114 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1115 const char *data, size_t len, loff_t off);
1116 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1117 unsigned int flags);
1118 static int ext4_enable_quotas(struct super_block *sb);
1119
1120 static struct dquot **ext4_get_dquots(struct inode *inode)
1121 {
1122 return EXT4_I(inode)->i_dquot;
1123 }
1124
1125 static const struct dquot_operations ext4_quota_operations = {
1126 .get_reserved_space = ext4_get_reserved_space,
1127 .write_dquot = ext4_write_dquot,
1128 .acquire_dquot = ext4_acquire_dquot,
1129 .release_dquot = ext4_release_dquot,
1130 .mark_dirty = ext4_mark_dquot_dirty,
1131 .write_info = ext4_write_info,
1132 .alloc_dquot = dquot_alloc,
1133 .destroy_dquot = dquot_destroy,
1134 .get_projid = ext4_get_projid,
1135 };
1136
1137 static const struct quotactl_ops ext4_qctl_operations = {
1138 .quota_on = ext4_quota_on,
1139 .quota_off = ext4_quota_off,
1140 .quota_sync = dquot_quota_sync,
1141 .get_state = dquot_get_state,
1142 .set_info = dquot_set_dqinfo,
1143 .get_dqblk = dquot_get_dqblk,
1144 .set_dqblk = dquot_set_dqblk
1145 };
1146 #endif
1147
1148 static const struct super_operations ext4_sops = {
1149 .alloc_inode = ext4_alloc_inode,
1150 .destroy_inode = ext4_destroy_inode,
1151 .write_inode = ext4_write_inode,
1152 .dirty_inode = ext4_dirty_inode,
1153 .drop_inode = ext4_drop_inode,
1154 .evict_inode = ext4_evict_inode,
1155 .put_super = ext4_put_super,
1156 .sync_fs = ext4_sync_fs,
1157 .freeze_fs = ext4_freeze,
1158 .unfreeze_fs = ext4_unfreeze,
1159 .statfs = ext4_statfs,
1160 .remount_fs = ext4_remount,
1161 .show_options = ext4_show_options,
1162 #ifdef CONFIG_QUOTA
1163 .quota_read = ext4_quota_read,
1164 .quota_write = ext4_quota_write,
1165 .get_dquots = ext4_get_dquots,
1166 #endif
1167 .bdev_try_to_free_page = bdev_try_to_free_page,
1168 };
1169
1170 static const struct export_operations ext4_export_ops = {
1171 .fh_to_dentry = ext4_fh_to_dentry,
1172 .fh_to_parent = ext4_fh_to_parent,
1173 .get_parent = ext4_get_parent,
1174 };
1175
1176 enum {
1177 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1178 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1179 Opt_nouid32, Opt_debug, Opt_removed,
1180 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1181 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1182 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1183 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1184 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1185 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1186 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1187 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1188 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1189 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1190 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1191 Opt_lazytime, Opt_nolazytime,
1192 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1193 Opt_inode_readahead_blks, Opt_journal_ioprio,
1194 Opt_dioread_nolock, Opt_dioread_lock,
1195 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1196 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1197 };
1198
1199 static const match_table_t tokens = {
1200 {Opt_bsd_df, "bsddf"},
1201 {Opt_minix_df, "minixdf"},
1202 {Opt_grpid, "grpid"},
1203 {Opt_grpid, "bsdgroups"},
1204 {Opt_nogrpid, "nogrpid"},
1205 {Opt_nogrpid, "sysvgroups"},
1206 {Opt_resgid, "resgid=%u"},
1207 {Opt_resuid, "resuid=%u"},
1208 {Opt_sb, "sb=%u"},
1209 {Opt_err_cont, "errors=continue"},
1210 {Opt_err_panic, "errors=panic"},
1211 {Opt_err_ro, "errors=remount-ro"},
1212 {Opt_nouid32, "nouid32"},
1213 {Opt_debug, "debug"},
1214 {Opt_removed, "oldalloc"},
1215 {Opt_removed, "orlov"},
1216 {Opt_user_xattr, "user_xattr"},
1217 {Opt_nouser_xattr, "nouser_xattr"},
1218 {Opt_acl, "acl"},
1219 {Opt_noacl, "noacl"},
1220 {Opt_noload, "norecovery"},
1221 {Opt_noload, "noload"},
1222 {Opt_removed, "nobh"},
1223 {Opt_removed, "bh"},
1224 {Opt_commit, "commit=%u"},
1225 {Opt_min_batch_time, "min_batch_time=%u"},
1226 {Opt_max_batch_time, "max_batch_time=%u"},
1227 {Opt_journal_dev, "journal_dev=%u"},
1228 {Opt_journal_path, "journal_path=%s"},
1229 {Opt_journal_checksum, "journal_checksum"},
1230 {Opt_nojournal_checksum, "nojournal_checksum"},
1231 {Opt_journal_async_commit, "journal_async_commit"},
1232 {Opt_abort, "abort"},
1233 {Opt_data_journal, "data=journal"},
1234 {Opt_data_ordered, "data=ordered"},
1235 {Opt_data_writeback, "data=writeback"},
1236 {Opt_data_err_abort, "data_err=abort"},
1237 {Opt_data_err_ignore, "data_err=ignore"},
1238 {Opt_offusrjquota, "usrjquota="},
1239 {Opt_usrjquota, "usrjquota=%s"},
1240 {Opt_offgrpjquota, "grpjquota="},
1241 {Opt_grpjquota, "grpjquota=%s"},
1242 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1243 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1244 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1245 {Opt_grpquota, "grpquota"},
1246 {Opt_noquota, "noquota"},
1247 {Opt_quota, "quota"},
1248 {Opt_usrquota, "usrquota"},
1249 {Opt_barrier, "barrier=%u"},
1250 {Opt_barrier, "barrier"},
1251 {Opt_nobarrier, "nobarrier"},
1252 {Opt_i_version, "i_version"},
1253 {Opt_dax, "dax"},
1254 {Opt_stripe, "stripe=%u"},
1255 {Opt_delalloc, "delalloc"},
1256 {Opt_lazytime, "lazytime"},
1257 {Opt_nolazytime, "nolazytime"},
1258 {Opt_nodelalloc, "nodelalloc"},
1259 {Opt_removed, "mblk_io_submit"},
1260 {Opt_removed, "nomblk_io_submit"},
1261 {Opt_block_validity, "block_validity"},
1262 {Opt_noblock_validity, "noblock_validity"},
1263 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1264 {Opt_journal_ioprio, "journal_ioprio=%u"},
1265 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1266 {Opt_auto_da_alloc, "auto_da_alloc"},
1267 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1268 {Opt_dioread_nolock, "dioread_nolock"},
1269 {Opt_dioread_lock, "dioread_lock"},
1270 {Opt_discard, "discard"},
1271 {Opt_nodiscard, "nodiscard"},
1272 {Opt_init_itable, "init_itable=%u"},
1273 {Opt_init_itable, "init_itable"},
1274 {Opt_noinit_itable, "noinit_itable"},
1275 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1276 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1277 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1278 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1279 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1280 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1281 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1282 {Opt_err, NULL},
1283 };
1284
1285 static ext4_fsblk_t get_sb_block(void **data)
1286 {
1287 ext4_fsblk_t sb_block;
1288 char *options = (char *) *data;
1289
1290 if (!options || strncmp(options, "sb=", 3) != 0)
1291 return 1; /* Default location */
1292
1293 options += 3;
1294 /* TODO: use simple_strtoll with >32bit ext4 */
1295 sb_block = simple_strtoul(options, &options, 0);
1296 if (*options && *options != ',') {
1297 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1298 (char *) *data);
1299 return 1;
1300 }
1301 if (*options == ',')
1302 options++;
1303 *data = (void *) options;
1304
1305 return sb_block;
1306 }
1307
1308 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1309 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1310 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1311
1312 #ifdef CONFIG_QUOTA
1313 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1314 {
1315 struct ext4_sb_info *sbi = EXT4_SB(sb);
1316 char *qname;
1317 int ret = -1;
1318
1319 if (sb_any_quota_loaded(sb) &&
1320 !sbi->s_qf_names[qtype]) {
1321 ext4_msg(sb, KERN_ERR,
1322 "Cannot change journaled "
1323 "quota options when quota turned on");
1324 return -1;
1325 }
1326 if (ext4_has_feature_quota(sb)) {
1327 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1328 "when QUOTA feature is enabled");
1329 return -1;
1330 }
1331 qname = match_strdup(args);
1332 if (!qname) {
1333 ext4_msg(sb, KERN_ERR,
1334 "Not enough memory for storing quotafile name");
1335 return -1;
1336 }
1337 if (sbi->s_qf_names[qtype]) {
1338 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1339 ret = 1;
1340 else
1341 ext4_msg(sb, KERN_ERR,
1342 "%s quota file already specified",
1343 QTYPE2NAME(qtype));
1344 goto errout;
1345 }
1346 if (strchr(qname, '/')) {
1347 ext4_msg(sb, KERN_ERR,
1348 "quotafile must be on filesystem root");
1349 goto errout;
1350 }
1351 sbi->s_qf_names[qtype] = qname;
1352 set_opt(sb, QUOTA);
1353 return 1;
1354 errout:
1355 kfree(qname);
1356 return ret;
1357 }
1358
1359 static int clear_qf_name(struct super_block *sb, int qtype)
1360 {
1361
1362 struct ext4_sb_info *sbi = EXT4_SB(sb);
1363
1364 if (sb_any_quota_loaded(sb) &&
1365 sbi->s_qf_names[qtype]) {
1366 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1367 " when quota turned on");
1368 return -1;
1369 }
1370 kfree(sbi->s_qf_names[qtype]);
1371 sbi->s_qf_names[qtype] = NULL;
1372 return 1;
1373 }
1374 #endif
1375
1376 #define MOPT_SET 0x0001
1377 #define MOPT_CLEAR 0x0002
1378 #define MOPT_NOSUPPORT 0x0004
1379 #define MOPT_EXPLICIT 0x0008
1380 #define MOPT_CLEAR_ERR 0x0010
1381 #define MOPT_GTE0 0x0020
1382 #ifdef CONFIG_QUOTA
1383 #define MOPT_Q 0
1384 #define MOPT_QFMT 0x0040
1385 #else
1386 #define MOPT_Q MOPT_NOSUPPORT
1387 #define MOPT_QFMT MOPT_NOSUPPORT
1388 #endif
1389 #define MOPT_DATAJ 0x0080
1390 #define MOPT_NO_EXT2 0x0100
1391 #define MOPT_NO_EXT3 0x0200
1392 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1393 #define MOPT_STRING 0x0400
1394
1395 static const struct mount_opts {
1396 int token;
1397 int mount_opt;
1398 int flags;
1399 } ext4_mount_opts[] = {
1400 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1401 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1402 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1403 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1404 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1405 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1406 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1407 MOPT_EXT4_ONLY | MOPT_SET},
1408 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1409 MOPT_EXT4_ONLY | MOPT_CLEAR},
1410 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1411 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1412 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1413 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1414 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1415 MOPT_EXT4_ONLY | MOPT_CLEAR},
1416 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1417 MOPT_EXT4_ONLY | MOPT_CLEAR},
1418 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1419 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1420 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1421 EXT4_MOUNT_JOURNAL_CHECKSUM),
1422 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1423 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1424 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1425 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1426 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1427 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1428 MOPT_NO_EXT2 | MOPT_SET},
1429 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1430 MOPT_NO_EXT2 | MOPT_CLEAR},
1431 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1432 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1433 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1434 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1435 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1436 {Opt_commit, 0, MOPT_GTE0},
1437 {Opt_max_batch_time, 0, MOPT_GTE0},
1438 {Opt_min_batch_time, 0, MOPT_GTE0},
1439 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1440 {Opt_init_itable, 0, MOPT_GTE0},
1441 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1442 {Opt_stripe, 0, MOPT_GTE0},
1443 {Opt_resuid, 0, MOPT_GTE0},
1444 {Opt_resgid, 0, MOPT_GTE0},
1445 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1446 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1447 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1448 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1449 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1450 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1451 MOPT_NO_EXT2 | MOPT_DATAJ},
1452 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1453 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1454 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1455 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1456 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1457 #else
1458 {Opt_acl, 0, MOPT_NOSUPPORT},
1459 {Opt_noacl, 0, MOPT_NOSUPPORT},
1460 #endif
1461 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1462 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1463 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1464 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1465 MOPT_SET | MOPT_Q},
1466 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1467 MOPT_SET | MOPT_Q},
1468 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1469 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1470 {Opt_usrjquota, 0, MOPT_Q},
1471 {Opt_grpjquota, 0, MOPT_Q},
1472 {Opt_offusrjquota, 0, MOPT_Q},
1473 {Opt_offgrpjquota, 0, MOPT_Q},
1474 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1475 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1476 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1477 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1478 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1479 {Opt_err, 0, 0}
1480 };
1481
1482 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1483 substring_t *args, unsigned long *journal_devnum,
1484 unsigned int *journal_ioprio, int is_remount)
1485 {
1486 struct ext4_sb_info *sbi = EXT4_SB(sb);
1487 const struct mount_opts *m;
1488 kuid_t uid;
1489 kgid_t gid;
1490 int arg = 0;
1491
1492 #ifdef CONFIG_QUOTA
1493 if (token == Opt_usrjquota)
1494 return set_qf_name(sb, USRQUOTA, &args[0]);
1495 else if (token == Opt_grpjquota)
1496 return set_qf_name(sb, GRPQUOTA, &args[0]);
1497 else if (token == Opt_offusrjquota)
1498 return clear_qf_name(sb, USRQUOTA);
1499 else if (token == Opt_offgrpjquota)
1500 return clear_qf_name(sb, GRPQUOTA);
1501 #endif
1502 switch (token) {
1503 case Opt_noacl:
1504 case Opt_nouser_xattr:
1505 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1506 break;
1507 case Opt_sb:
1508 return 1; /* handled by get_sb_block() */
1509 case Opt_removed:
1510 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1511 return 1;
1512 case Opt_abort:
1513 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1514 return 1;
1515 case Opt_i_version:
1516 sb->s_flags |= MS_I_VERSION;
1517 return 1;
1518 case Opt_lazytime:
1519 sb->s_flags |= MS_LAZYTIME;
1520 return 1;
1521 case Opt_nolazytime:
1522 sb->s_flags &= ~MS_LAZYTIME;
1523 return 1;
1524 }
1525
1526 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1527 if (token == m->token)
1528 break;
1529
1530 if (m->token == Opt_err) {
1531 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1532 "or missing value", opt);
1533 return -1;
1534 }
1535
1536 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1537 ext4_msg(sb, KERN_ERR,
1538 "Mount option \"%s\" incompatible with ext2", opt);
1539 return -1;
1540 }
1541 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1542 ext4_msg(sb, KERN_ERR,
1543 "Mount option \"%s\" incompatible with ext3", opt);
1544 return -1;
1545 }
1546
1547 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1548 return -1;
1549 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1550 return -1;
1551 if (m->flags & MOPT_EXPLICIT) {
1552 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1553 set_opt2(sb, EXPLICIT_DELALLOC);
1554 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1555 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1556 } else
1557 return -1;
1558 }
1559 if (m->flags & MOPT_CLEAR_ERR)
1560 clear_opt(sb, ERRORS_MASK);
1561 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1562 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1563 "options when quota turned on");
1564 return -1;
1565 }
1566
1567 if (m->flags & MOPT_NOSUPPORT) {
1568 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1569 } else if (token == Opt_commit) {
1570 if (arg == 0)
1571 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1572 sbi->s_commit_interval = HZ * arg;
1573 } else if (token == Opt_max_batch_time) {
1574 sbi->s_max_batch_time = arg;
1575 } else if (token == Opt_min_batch_time) {
1576 sbi->s_min_batch_time = arg;
1577 } else if (token == Opt_inode_readahead_blks) {
1578 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1579 ext4_msg(sb, KERN_ERR,
1580 "EXT4-fs: inode_readahead_blks must be "
1581 "0 or a power of 2 smaller than 2^31");
1582 return -1;
1583 }
1584 sbi->s_inode_readahead_blks = arg;
1585 } else if (token == Opt_init_itable) {
1586 set_opt(sb, INIT_INODE_TABLE);
1587 if (!args->from)
1588 arg = EXT4_DEF_LI_WAIT_MULT;
1589 sbi->s_li_wait_mult = arg;
1590 } else if (token == Opt_max_dir_size_kb) {
1591 sbi->s_max_dir_size_kb = arg;
1592 } else if (token == Opt_stripe) {
1593 sbi->s_stripe = arg;
1594 } else if (token == Opt_resuid) {
1595 uid = make_kuid(current_user_ns(), arg);
1596 if (!uid_valid(uid)) {
1597 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1598 return -1;
1599 }
1600 sbi->s_resuid = uid;
1601 } else if (token == Opt_resgid) {
1602 gid = make_kgid(current_user_ns(), arg);
1603 if (!gid_valid(gid)) {
1604 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1605 return -1;
1606 }
1607 sbi->s_resgid = gid;
1608 } else if (token == Opt_journal_dev) {
1609 if (is_remount) {
1610 ext4_msg(sb, KERN_ERR,
1611 "Cannot specify journal on remount");
1612 return -1;
1613 }
1614 *journal_devnum = arg;
1615 } else if (token == Opt_journal_path) {
1616 char *journal_path;
1617 struct inode *journal_inode;
1618 struct path path;
1619 int error;
1620
1621 if (is_remount) {
1622 ext4_msg(sb, KERN_ERR,
1623 "Cannot specify journal on remount");
1624 return -1;
1625 }
1626 journal_path = match_strdup(&args[0]);
1627 if (!journal_path) {
1628 ext4_msg(sb, KERN_ERR, "error: could not dup "
1629 "journal device string");
1630 return -1;
1631 }
1632
1633 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1634 if (error) {
1635 ext4_msg(sb, KERN_ERR, "error: could not find "
1636 "journal device path: error %d", error);
1637 kfree(journal_path);
1638 return -1;
1639 }
1640
1641 journal_inode = d_inode(path.dentry);
1642 if (!S_ISBLK(journal_inode->i_mode)) {
1643 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1644 "is not a block device", journal_path);
1645 path_put(&path);
1646 kfree(journal_path);
1647 return -1;
1648 }
1649
1650 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1651 path_put(&path);
1652 kfree(journal_path);
1653 } else if (token == Opt_journal_ioprio) {
1654 if (arg > 7) {
1655 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1656 " (must be 0-7)");
1657 return -1;
1658 }
1659 *journal_ioprio =
1660 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1661 } else if (token == Opt_test_dummy_encryption) {
1662 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1663 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1664 ext4_msg(sb, KERN_WARNING,
1665 "Test dummy encryption mode enabled");
1666 #else
1667 ext4_msg(sb, KERN_WARNING,
1668 "Test dummy encryption mount option ignored");
1669 #endif
1670 } else if (m->flags & MOPT_DATAJ) {
1671 if (is_remount) {
1672 if (!sbi->s_journal)
1673 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1674 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1675 ext4_msg(sb, KERN_ERR,
1676 "Cannot change data mode on remount");
1677 return -1;
1678 }
1679 } else {
1680 clear_opt(sb, DATA_FLAGS);
1681 sbi->s_mount_opt |= m->mount_opt;
1682 }
1683 #ifdef CONFIG_QUOTA
1684 } else if (m->flags & MOPT_QFMT) {
1685 if (sb_any_quota_loaded(sb) &&
1686 sbi->s_jquota_fmt != m->mount_opt) {
1687 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1688 "quota options when quota turned on");
1689 return -1;
1690 }
1691 if (ext4_has_feature_quota(sb)) {
1692 ext4_msg(sb, KERN_ERR,
1693 "Cannot set journaled quota options "
1694 "when QUOTA feature is enabled");
1695 return -1;
1696 }
1697 sbi->s_jquota_fmt = m->mount_opt;
1698 #endif
1699 } else if (token == Opt_dax) {
1700 #ifdef CONFIG_FS_DAX
1701 ext4_msg(sb, KERN_WARNING,
1702 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1703 sbi->s_mount_opt |= m->mount_opt;
1704 #else
1705 ext4_msg(sb, KERN_INFO, "dax option not supported");
1706 return -1;
1707 #endif
1708 } else {
1709 if (!args->from)
1710 arg = 1;
1711 if (m->flags & MOPT_CLEAR)
1712 arg = !arg;
1713 else if (unlikely(!(m->flags & MOPT_SET))) {
1714 ext4_msg(sb, KERN_WARNING,
1715 "buggy handling of option %s", opt);
1716 WARN_ON(1);
1717 return -1;
1718 }
1719 if (arg != 0)
1720 sbi->s_mount_opt |= m->mount_opt;
1721 else
1722 sbi->s_mount_opt &= ~m->mount_opt;
1723 }
1724 return 1;
1725 }
1726
1727 static int parse_options(char *options, struct super_block *sb,
1728 unsigned long *journal_devnum,
1729 unsigned int *journal_ioprio,
1730 int is_remount)
1731 {
1732 struct ext4_sb_info *sbi = EXT4_SB(sb);
1733 char *p;
1734 substring_t args[MAX_OPT_ARGS];
1735 int token;
1736
1737 if (!options)
1738 return 1;
1739
1740 while ((p = strsep(&options, ",")) != NULL) {
1741 if (!*p)
1742 continue;
1743 /*
1744 * Initialize args struct so we know whether arg was
1745 * found; some options take optional arguments.
1746 */
1747 args[0].to = args[0].from = NULL;
1748 token = match_token(p, tokens, args);
1749 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1750 journal_ioprio, is_remount) < 0)
1751 return 0;
1752 }
1753 #ifdef CONFIG_QUOTA
1754 if (ext4_has_feature_quota(sb) &&
1755 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1756 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1757 "feature is enabled");
1758 return 0;
1759 }
1760 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1761 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1762 clear_opt(sb, USRQUOTA);
1763
1764 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1765 clear_opt(sb, GRPQUOTA);
1766
1767 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1768 ext4_msg(sb, KERN_ERR, "old and new quota "
1769 "format mixing");
1770 return 0;
1771 }
1772
1773 if (!sbi->s_jquota_fmt) {
1774 ext4_msg(sb, KERN_ERR, "journaled quota format "
1775 "not specified");
1776 return 0;
1777 }
1778 }
1779 #endif
1780 if (test_opt(sb, DIOREAD_NOLOCK)) {
1781 int blocksize =
1782 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1783
1784 if (blocksize < PAGE_CACHE_SIZE) {
1785 ext4_msg(sb, KERN_ERR, "can't mount with "
1786 "dioread_nolock if block size != PAGE_SIZE");
1787 return 0;
1788 }
1789 }
1790 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1791 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1792 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1793 "in data=ordered mode");
1794 return 0;
1795 }
1796 return 1;
1797 }
1798
1799 static inline void ext4_show_quota_options(struct seq_file *seq,
1800 struct super_block *sb)
1801 {
1802 #if defined(CONFIG_QUOTA)
1803 struct ext4_sb_info *sbi = EXT4_SB(sb);
1804
1805 if (sbi->s_jquota_fmt) {
1806 char *fmtname = "";
1807
1808 switch (sbi->s_jquota_fmt) {
1809 case QFMT_VFS_OLD:
1810 fmtname = "vfsold";
1811 break;
1812 case QFMT_VFS_V0:
1813 fmtname = "vfsv0";
1814 break;
1815 case QFMT_VFS_V1:
1816 fmtname = "vfsv1";
1817 break;
1818 }
1819 seq_printf(seq, ",jqfmt=%s", fmtname);
1820 }
1821
1822 if (sbi->s_qf_names[USRQUOTA])
1823 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1824
1825 if (sbi->s_qf_names[GRPQUOTA])
1826 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1827 #endif
1828 }
1829
1830 static const char *token2str(int token)
1831 {
1832 const struct match_token *t;
1833
1834 for (t = tokens; t->token != Opt_err; t++)
1835 if (t->token == token && !strchr(t->pattern, '='))
1836 break;
1837 return t->pattern;
1838 }
1839
1840 /*
1841 * Show an option if
1842 * - it's set to a non-default value OR
1843 * - if the per-sb default is different from the global default
1844 */
1845 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1846 int nodefs)
1847 {
1848 struct ext4_sb_info *sbi = EXT4_SB(sb);
1849 struct ext4_super_block *es = sbi->s_es;
1850 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1851 const struct mount_opts *m;
1852 char sep = nodefs ? '\n' : ',';
1853
1854 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1855 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1856
1857 if (sbi->s_sb_block != 1)
1858 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1859
1860 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1861 int want_set = m->flags & MOPT_SET;
1862 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1863 (m->flags & MOPT_CLEAR_ERR))
1864 continue;
1865 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1866 continue; /* skip if same as the default */
1867 if ((want_set &&
1868 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1869 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1870 continue; /* select Opt_noFoo vs Opt_Foo */
1871 SEQ_OPTS_PRINT("%s", token2str(m->token));
1872 }
1873
1874 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1875 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1876 SEQ_OPTS_PRINT("resuid=%u",
1877 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1878 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1879 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1880 SEQ_OPTS_PRINT("resgid=%u",
1881 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1882 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1883 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1884 SEQ_OPTS_PUTS("errors=remount-ro");
1885 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1886 SEQ_OPTS_PUTS("errors=continue");
1887 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1888 SEQ_OPTS_PUTS("errors=panic");
1889 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1890 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1891 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1892 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1893 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1894 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1895 if (sb->s_flags & MS_I_VERSION)
1896 SEQ_OPTS_PUTS("i_version");
1897 if (nodefs || sbi->s_stripe)
1898 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1899 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1900 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1901 SEQ_OPTS_PUTS("data=journal");
1902 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1903 SEQ_OPTS_PUTS("data=ordered");
1904 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1905 SEQ_OPTS_PUTS("data=writeback");
1906 }
1907 if (nodefs ||
1908 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1909 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1910 sbi->s_inode_readahead_blks);
1911
1912 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1913 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1914 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1915 if (nodefs || sbi->s_max_dir_size_kb)
1916 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1917
1918 ext4_show_quota_options(seq, sb);
1919 return 0;
1920 }
1921
1922 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1923 {
1924 return _ext4_show_options(seq, root->d_sb, 0);
1925 }
1926
1927 int ext4_seq_options_show(struct seq_file *seq, void *offset)
1928 {
1929 struct super_block *sb = seq->private;
1930 int rc;
1931
1932 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1933 rc = _ext4_show_options(seq, sb, 1);
1934 seq_puts(seq, "\n");
1935 return rc;
1936 }
1937
1938 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1939 int read_only)
1940 {
1941 struct ext4_sb_info *sbi = EXT4_SB(sb);
1942 int res = 0;
1943
1944 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1945 ext4_msg(sb, KERN_ERR, "revision level too high, "
1946 "forcing read-only mode");
1947 res = MS_RDONLY;
1948 }
1949 if (read_only)
1950 goto done;
1951 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1952 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1953 "running e2fsck is recommended");
1954 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1955 ext4_msg(sb, KERN_WARNING,
1956 "warning: mounting fs with errors, "
1957 "running e2fsck is recommended");
1958 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1959 le16_to_cpu(es->s_mnt_count) >=
1960 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1961 ext4_msg(sb, KERN_WARNING,
1962 "warning: maximal mount count reached, "
1963 "running e2fsck is recommended");
1964 else if (le32_to_cpu(es->s_checkinterval) &&
1965 (le32_to_cpu(es->s_lastcheck) +
1966 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1967 ext4_msg(sb, KERN_WARNING,
1968 "warning: checktime reached, "
1969 "running e2fsck is recommended");
1970 if (!sbi->s_journal)
1971 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1972 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1973 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1974 le16_add_cpu(&es->s_mnt_count, 1);
1975 es->s_mtime = cpu_to_le32(get_seconds());
1976 ext4_update_dynamic_rev(sb);
1977 if (sbi->s_journal)
1978 ext4_set_feature_journal_needs_recovery(sb);
1979
1980 ext4_commit_super(sb, 1);
1981 done:
1982 if (test_opt(sb, DEBUG))
1983 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1984 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1985 sb->s_blocksize,
1986 sbi->s_groups_count,
1987 EXT4_BLOCKS_PER_GROUP(sb),
1988 EXT4_INODES_PER_GROUP(sb),
1989 sbi->s_mount_opt, sbi->s_mount_opt2);
1990
1991 cleancache_init_fs(sb);
1992 return res;
1993 }
1994
1995 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1996 {
1997 struct ext4_sb_info *sbi = EXT4_SB(sb);
1998 struct flex_groups *new_groups;
1999 int size;
2000
2001 if (!sbi->s_log_groups_per_flex)
2002 return 0;
2003
2004 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2005 if (size <= sbi->s_flex_groups_allocated)
2006 return 0;
2007
2008 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2009 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
2010 if (!new_groups) {
2011 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2012 size / (int) sizeof(struct flex_groups));
2013 return -ENOMEM;
2014 }
2015
2016 if (sbi->s_flex_groups) {
2017 memcpy(new_groups, sbi->s_flex_groups,
2018 (sbi->s_flex_groups_allocated *
2019 sizeof(struct flex_groups)));
2020 kvfree(sbi->s_flex_groups);
2021 }
2022 sbi->s_flex_groups = new_groups;
2023 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2024 return 0;
2025 }
2026
2027 static int ext4_fill_flex_info(struct super_block *sb)
2028 {
2029 struct ext4_sb_info *sbi = EXT4_SB(sb);
2030 struct ext4_group_desc *gdp = NULL;
2031 ext4_group_t flex_group;
2032 int i, err;
2033
2034 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2035 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2036 sbi->s_log_groups_per_flex = 0;
2037 return 1;
2038 }
2039
2040 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2041 if (err)
2042 goto failed;
2043
2044 for (i = 0; i < sbi->s_groups_count; i++) {
2045 gdp = ext4_get_group_desc(sb, i, NULL);
2046
2047 flex_group = ext4_flex_group(sbi, i);
2048 atomic_add(ext4_free_inodes_count(sb, gdp),
2049 &sbi->s_flex_groups[flex_group].free_inodes);
2050 atomic64_add(ext4_free_group_clusters(sb, gdp),
2051 &sbi->s_flex_groups[flex_group].free_clusters);
2052 atomic_add(ext4_used_dirs_count(sb, gdp),
2053 &sbi->s_flex_groups[flex_group].used_dirs);
2054 }
2055
2056 return 1;
2057 failed:
2058 return 0;
2059 }
2060
2061 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2062 struct ext4_group_desc *gdp)
2063 {
2064 int offset;
2065 __u16 crc = 0;
2066 __le32 le_group = cpu_to_le32(block_group);
2067 struct ext4_sb_info *sbi = EXT4_SB(sb);
2068
2069 if (ext4_has_metadata_csum(sbi->s_sb)) {
2070 /* Use new metadata_csum algorithm */
2071 __le16 save_csum;
2072 __u32 csum32;
2073
2074 save_csum = gdp->bg_checksum;
2075 gdp->bg_checksum = 0;
2076 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2077 sizeof(le_group));
2078 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2079 sbi->s_desc_size);
2080 gdp->bg_checksum = save_csum;
2081
2082 crc = csum32 & 0xFFFF;
2083 goto out;
2084 }
2085
2086 /* old crc16 code */
2087 if (!ext4_has_feature_gdt_csum(sb))
2088 return 0;
2089
2090 offset = offsetof(struct ext4_group_desc, bg_checksum);
2091
2092 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2093 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2094 crc = crc16(crc, (__u8 *)gdp, offset);
2095 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2096 /* for checksum of struct ext4_group_desc do the rest...*/
2097 if (ext4_has_feature_64bit(sb) &&
2098 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2099 crc = crc16(crc, (__u8 *)gdp + offset,
2100 le16_to_cpu(sbi->s_es->s_desc_size) -
2101 offset);
2102
2103 out:
2104 return cpu_to_le16(crc);
2105 }
2106
2107 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2108 struct ext4_group_desc *gdp)
2109 {
2110 if (ext4_has_group_desc_csum(sb) &&
2111 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2112 return 0;
2113
2114 return 1;
2115 }
2116
2117 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2118 struct ext4_group_desc *gdp)
2119 {
2120 if (!ext4_has_group_desc_csum(sb))
2121 return;
2122 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2123 }
2124
2125 /* Called at mount-time, super-block is locked */
2126 static int ext4_check_descriptors(struct super_block *sb,
2127 ext4_group_t *first_not_zeroed)
2128 {
2129 struct ext4_sb_info *sbi = EXT4_SB(sb);
2130 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2131 ext4_fsblk_t last_block;
2132 ext4_fsblk_t block_bitmap;
2133 ext4_fsblk_t inode_bitmap;
2134 ext4_fsblk_t inode_table;
2135 int flexbg_flag = 0;
2136 ext4_group_t i, grp = sbi->s_groups_count;
2137
2138 if (ext4_has_feature_flex_bg(sb))
2139 flexbg_flag = 1;
2140
2141 ext4_debug("Checking group descriptors");
2142
2143 for (i = 0; i < sbi->s_groups_count; i++) {
2144 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2145
2146 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2147 last_block = ext4_blocks_count(sbi->s_es) - 1;
2148 else
2149 last_block = first_block +
2150 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2151
2152 if ((grp == sbi->s_groups_count) &&
2153 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2154 grp = i;
2155
2156 block_bitmap = ext4_block_bitmap(sb, gdp);
2157 if (block_bitmap < first_block || block_bitmap > last_block) {
2158 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2159 "Block bitmap for group %u not in group "
2160 "(block %llu)!", i, block_bitmap);
2161 return 0;
2162 }
2163 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2164 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2165 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2166 "Inode bitmap for group %u not in group "
2167 "(block %llu)!", i, inode_bitmap);
2168 return 0;
2169 }
2170 inode_table = ext4_inode_table(sb, gdp);
2171 if (inode_table < first_block ||
2172 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2173 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2174 "Inode table for group %u not in group "
2175 "(block %llu)!", i, inode_table);
2176 return 0;
2177 }
2178 ext4_lock_group(sb, i);
2179 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2180 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2181 "Checksum for group %u failed (%u!=%u)",
2182 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2183 gdp)), le16_to_cpu(gdp->bg_checksum));
2184 if (!(sb->s_flags & MS_RDONLY)) {
2185 ext4_unlock_group(sb, i);
2186 return 0;
2187 }
2188 }
2189 ext4_unlock_group(sb, i);
2190 if (!flexbg_flag)
2191 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2192 }
2193 if (NULL != first_not_zeroed)
2194 *first_not_zeroed = grp;
2195 return 1;
2196 }
2197
2198 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2199 * the superblock) which were deleted from all directories, but held open by
2200 * a process at the time of a crash. We walk the list and try to delete these
2201 * inodes at recovery time (only with a read-write filesystem).
2202 *
2203 * In order to keep the orphan inode chain consistent during traversal (in
2204 * case of crash during recovery), we link each inode into the superblock
2205 * orphan list_head and handle it the same way as an inode deletion during
2206 * normal operation (which journals the operations for us).
2207 *
2208 * We only do an iget() and an iput() on each inode, which is very safe if we
2209 * accidentally point at an in-use or already deleted inode. The worst that
2210 * can happen in this case is that we get a "bit already cleared" message from
2211 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2212 * e2fsck was run on this filesystem, and it must have already done the orphan
2213 * inode cleanup for us, so we can safely abort without any further action.
2214 */
2215 static void ext4_orphan_cleanup(struct super_block *sb,
2216 struct ext4_super_block *es)
2217 {
2218 unsigned int s_flags = sb->s_flags;
2219 int nr_orphans = 0, nr_truncates = 0;
2220 #ifdef CONFIG_QUOTA
2221 int i;
2222 #endif
2223 if (!es->s_last_orphan) {
2224 jbd_debug(4, "no orphan inodes to clean up\n");
2225 return;
2226 }
2227
2228 if (bdev_read_only(sb->s_bdev)) {
2229 ext4_msg(sb, KERN_ERR, "write access "
2230 "unavailable, skipping orphan cleanup");
2231 return;
2232 }
2233
2234 /* Check if feature set would not allow a r/w mount */
2235 if (!ext4_feature_set_ok(sb, 0)) {
2236 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2237 "unknown ROCOMPAT features");
2238 return;
2239 }
2240
2241 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2242 /* don't clear list on RO mount w/ errors */
2243 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2244 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2245 "clearing orphan list.\n");
2246 es->s_last_orphan = 0;
2247 }
2248 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2249 return;
2250 }
2251
2252 if (s_flags & MS_RDONLY) {
2253 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2254 sb->s_flags &= ~MS_RDONLY;
2255 }
2256 #ifdef CONFIG_QUOTA
2257 /* Needed for iput() to work correctly and not trash data */
2258 sb->s_flags |= MS_ACTIVE;
2259 /* Turn on quotas so that they are updated correctly */
2260 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2261 if (EXT4_SB(sb)->s_qf_names[i]) {
2262 int ret = ext4_quota_on_mount(sb, i);
2263 if (ret < 0)
2264 ext4_msg(sb, KERN_ERR,
2265 "Cannot turn on journaled "
2266 "quota: error %d", ret);
2267 }
2268 }
2269 #endif
2270
2271 while (es->s_last_orphan) {
2272 struct inode *inode;
2273
2274 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2275 if (IS_ERR(inode)) {
2276 es->s_last_orphan = 0;
2277 break;
2278 }
2279
2280 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2281 dquot_initialize(inode);
2282 if (inode->i_nlink) {
2283 if (test_opt(sb, DEBUG))
2284 ext4_msg(sb, KERN_DEBUG,
2285 "%s: truncating inode %lu to %lld bytes",
2286 __func__, inode->i_ino, inode->i_size);
2287 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2288 inode->i_ino, inode->i_size);
2289 inode_lock(inode);
2290 truncate_inode_pages(inode->i_mapping, inode->i_size);
2291 ext4_truncate(inode);
2292 inode_unlock(inode);
2293 nr_truncates++;
2294 } else {
2295 if (test_opt(sb, DEBUG))
2296 ext4_msg(sb, KERN_DEBUG,
2297 "%s: deleting unreferenced inode %lu",
2298 __func__, inode->i_ino);
2299 jbd_debug(2, "deleting unreferenced inode %lu\n",
2300 inode->i_ino);
2301 nr_orphans++;
2302 }
2303 iput(inode); /* The delete magic happens here! */
2304 }
2305
2306 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2307
2308 if (nr_orphans)
2309 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2310 PLURAL(nr_orphans));
2311 if (nr_truncates)
2312 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2313 PLURAL(nr_truncates));
2314 #ifdef CONFIG_QUOTA
2315 /* Turn quotas off */
2316 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2317 if (sb_dqopt(sb)->files[i])
2318 dquot_quota_off(sb, i);
2319 }
2320 #endif
2321 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2322 }
2323
2324 /*
2325 * Maximal extent format file size.
2326 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2327 * extent format containers, within a sector_t, and within i_blocks
2328 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2329 * so that won't be a limiting factor.
2330 *
2331 * However there is other limiting factor. We do store extents in the form
2332 * of starting block and length, hence the resulting length of the extent
2333 * covering maximum file size must fit into on-disk format containers as
2334 * well. Given that length is always by 1 unit bigger than max unit (because
2335 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2336 *
2337 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2338 */
2339 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2340 {
2341 loff_t res;
2342 loff_t upper_limit = MAX_LFS_FILESIZE;
2343
2344 /* small i_blocks in vfs inode? */
2345 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2346 /*
2347 * CONFIG_LBDAF is not enabled implies the inode
2348 * i_block represent total blocks in 512 bytes
2349 * 32 == size of vfs inode i_blocks * 8
2350 */
2351 upper_limit = (1LL << 32) - 1;
2352
2353 /* total blocks in file system block size */
2354 upper_limit >>= (blkbits - 9);
2355 upper_limit <<= blkbits;
2356 }
2357
2358 /*
2359 * 32-bit extent-start container, ee_block. We lower the maxbytes
2360 * by one fs block, so ee_len can cover the extent of maximum file
2361 * size
2362 */
2363 res = (1LL << 32) - 1;
2364 res <<= blkbits;
2365
2366 /* Sanity check against vm- & vfs- imposed limits */
2367 if (res > upper_limit)
2368 res = upper_limit;
2369
2370 return res;
2371 }
2372
2373 /*
2374 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2375 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2376 * We need to be 1 filesystem block less than the 2^48 sector limit.
2377 */
2378 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2379 {
2380 loff_t res = EXT4_NDIR_BLOCKS;
2381 int meta_blocks;
2382 loff_t upper_limit;
2383 /* This is calculated to be the largest file size for a dense, block
2384 * mapped file such that the file's total number of 512-byte sectors,
2385 * including data and all indirect blocks, does not exceed (2^48 - 1).
2386 *
2387 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2388 * number of 512-byte sectors of the file.
2389 */
2390
2391 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2392 /*
2393 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2394 * the inode i_block field represents total file blocks in
2395 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2396 */
2397 upper_limit = (1LL << 32) - 1;
2398
2399 /* total blocks in file system block size */
2400 upper_limit >>= (bits - 9);
2401
2402 } else {
2403 /*
2404 * We use 48 bit ext4_inode i_blocks
2405 * With EXT4_HUGE_FILE_FL set the i_blocks
2406 * represent total number of blocks in
2407 * file system block size
2408 */
2409 upper_limit = (1LL << 48) - 1;
2410
2411 }
2412
2413 /* indirect blocks */
2414 meta_blocks = 1;
2415 /* double indirect blocks */
2416 meta_blocks += 1 + (1LL << (bits-2));
2417 /* tripple indirect blocks */
2418 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2419
2420 upper_limit -= meta_blocks;
2421 upper_limit <<= bits;
2422
2423 res += 1LL << (bits-2);
2424 res += 1LL << (2*(bits-2));
2425 res += 1LL << (3*(bits-2));
2426 res <<= bits;
2427 if (res > upper_limit)
2428 res = upper_limit;
2429
2430 if (res > MAX_LFS_FILESIZE)
2431 res = MAX_LFS_FILESIZE;
2432
2433 return res;
2434 }
2435
2436 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2437 ext4_fsblk_t logical_sb_block, int nr)
2438 {
2439 struct ext4_sb_info *sbi = EXT4_SB(sb);
2440 ext4_group_t bg, first_meta_bg;
2441 int has_super = 0;
2442
2443 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2444
2445 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2446 return logical_sb_block + nr + 1;
2447 bg = sbi->s_desc_per_block * nr;
2448 if (ext4_bg_has_super(sb, bg))
2449 has_super = 1;
2450
2451 /*
2452 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2453 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2454 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2455 * compensate.
2456 */
2457 if (sb->s_blocksize == 1024 && nr == 0 &&
2458 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2459 has_super++;
2460
2461 return (has_super + ext4_group_first_block_no(sb, bg));
2462 }
2463
2464 /**
2465 * ext4_get_stripe_size: Get the stripe size.
2466 * @sbi: In memory super block info
2467 *
2468 * If we have specified it via mount option, then
2469 * use the mount option value. If the value specified at mount time is
2470 * greater than the blocks per group use the super block value.
2471 * If the super block value is greater than blocks per group return 0.
2472 * Allocator needs it be less than blocks per group.
2473 *
2474 */
2475 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2476 {
2477 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2478 unsigned long stripe_width =
2479 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2480 int ret;
2481
2482 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2483 ret = sbi->s_stripe;
2484 else if (stripe_width <= sbi->s_blocks_per_group)
2485 ret = stripe_width;
2486 else if (stride <= sbi->s_blocks_per_group)
2487 ret = stride;
2488 else
2489 ret = 0;
2490
2491 /*
2492 * If the stripe width is 1, this makes no sense and
2493 * we set it to 0 to turn off stripe handling code.
2494 */
2495 if (ret <= 1)
2496 ret = 0;
2497
2498 return ret;
2499 }
2500
2501 /*
2502 * Check whether this filesystem can be mounted based on
2503 * the features present and the RDONLY/RDWR mount requested.
2504 * Returns 1 if this filesystem can be mounted as requested,
2505 * 0 if it cannot be.
2506 */
2507 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2508 {
2509 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2510 ext4_msg(sb, KERN_ERR,
2511 "Couldn't mount because of "
2512 "unsupported optional features (%x)",
2513 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2514 ~EXT4_FEATURE_INCOMPAT_SUPP));
2515 return 0;
2516 }
2517
2518 if (readonly)
2519 return 1;
2520
2521 if (ext4_has_feature_readonly(sb)) {
2522 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2523 sb->s_flags |= MS_RDONLY;
2524 return 1;
2525 }
2526
2527 /* Check that feature set is OK for a read-write mount */
2528 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2529 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2530 "unsupported optional features (%x)",
2531 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2532 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2533 return 0;
2534 }
2535 /*
2536 * Large file size enabled file system can only be mounted
2537 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2538 */
2539 if (ext4_has_feature_huge_file(sb)) {
2540 if (sizeof(blkcnt_t) < sizeof(u64)) {
2541 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2542 "cannot be mounted RDWR without "
2543 "CONFIG_LBDAF");
2544 return 0;
2545 }
2546 }
2547 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2548 ext4_msg(sb, KERN_ERR,
2549 "Can't support bigalloc feature without "
2550 "extents feature\n");
2551 return 0;
2552 }
2553
2554 #ifndef CONFIG_QUOTA
2555 if (ext4_has_feature_quota(sb) && !readonly) {
2556 ext4_msg(sb, KERN_ERR,
2557 "Filesystem with quota feature cannot be mounted RDWR "
2558 "without CONFIG_QUOTA");
2559 return 0;
2560 }
2561 if (ext4_has_feature_project(sb) && !readonly) {
2562 ext4_msg(sb, KERN_ERR,
2563 "Filesystem with project quota feature cannot be mounted RDWR "
2564 "without CONFIG_QUOTA");
2565 return 0;
2566 }
2567 #endif /* CONFIG_QUOTA */
2568 return 1;
2569 }
2570
2571 /*
2572 * This function is called once a day if we have errors logged
2573 * on the file system
2574 */
2575 static void print_daily_error_info(unsigned long arg)
2576 {
2577 struct super_block *sb = (struct super_block *) arg;
2578 struct ext4_sb_info *sbi;
2579 struct ext4_super_block *es;
2580
2581 sbi = EXT4_SB(sb);
2582 es = sbi->s_es;
2583
2584 if (es->s_error_count)
2585 /* fsck newer than v1.41.13 is needed to clean this condition. */
2586 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2587 le32_to_cpu(es->s_error_count));
2588 if (es->s_first_error_time) {
2589 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2590 sb->s_id, le32_to_cpu(es->s_first_error_time),
2591 (int) sizeof(es->s_first_error_func),
2592 es->s_first_error_func,
2593 le32_to_cpu(es->s_first_error_line));
2594 if (es->s_first_error_ino)
2595 printk(": inode %u",
2596 le32_to_cpu(es->s_first_error_ino));
2597 if (es->s_first_error_block)
2598 printk(": block %llu", (unsigned long long)
2599 le64_to_cpu(es->s_first_error_block));
2600 printk("\n");
2601 }
2602 if (es->s_last_error_time) {
2603 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2604 sb->s_id, le32_to_cpu(es->s_last_error_time),
2605 (int) sizeof(es->s_last_error_func),
2606 es->s_last_error_func,
2607 le32_to_cpu(es->s_last_error_line));
2608 if (es->s_last_error_ino)
2609 printk(": inode %u",
2610 le32_to_cpu(es->s_last_error_ino));
2611 if (es->s_last_error_block)
2612 printk(": block %llu", (unsigned long long)
2613 le64_to_cpu(es->s_last_error_block));
2614 printk("\n");
2615 }
2616 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2617 }
2618
2619 /* Find next suitable group and run ext4_init_inode_table */
2620 static int ext4_run_li_request(struct ext4_li_request *elr)
2621 {
2622 struct ext4_group_desc *gdp = NULL;
2623 ext4_group_t group, ngroups;
2624 struct super_block *sb;
2625 unsigned long timeout = 0;
2626 int ret = 0;
2627
2628 sb = elr->lr_super;
2629 ngroups = EXT4_SB(sb)->s_groups_count;
2630
2631 sb_start_write(sb);
2632 for (group = elr->lr_next_group; group < ngroups; group++) {
2633 gdp = ext4_get_group_desc(sb, group, NULL);
2634 if (!gdp) {
2635 ret = 1;
2636 break;
2637 }
2638
2639 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2640 break;
2641 }
2642
2643 if (group >= ngroups)
2644 ret = 1;
2645
2646 if (!ret) {
2647 timeout = jiffies;
2648 ret = ext4_init_inode_table(sb, group,
2649 elr->lr_timeout ? 0 : 1);
2650 if (elr->lr_timeout == 0) {
2651 timeout = (jiffies - timeout) *
2652 elr->lr_sbi->s_li_wait_mult;
2653 elr->lr_timeout = timeout;
2654 }
2655 elr->lr_next_sched = jiffies + elr->lr_timeout;
2656 elr->lr_next_group = group + 1;
2657 }
2658 sb_end_write(sb);
2659
2660 return ret;
2661 }
2662
2663 /*
2664 * Remove lr_request from the list_request and free the
2665 * request structure. Should be called with li_list_mtx held
2666 */
2667 static void ext4_remove_li_request(struct ext4_li_request *elr)
2668 {
2669 struct ext4_sb_info *sbi;
2670
2671 if (!elr)
2672 return;
2673
2674 sbi = elr->lr_sbi;
2675
2676 list_del(&elr->lr_request);
2677 sbi->s_li_request = NULL;
2678 kfree(elr);
2679 }
2680
2681 static void ext4_unregister_li_request(struct super_block *sb)
2682 {
2683 mutex_lock(&ext4_li_mtx);
2684 if (!ext4_li_info) {
2685 mutex_unlock(&ext4_li_mtx);
2686 return;
2687 }
2688
2689 mutex_lock(&ext4_li_info->li_list_mtx);
2690 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2691 mutex_unlock(&ext4_li_info->li_list_mtx);
2692 mutex_unlock(&ext4_li_mtx);
2693 }
2694
2695 static struct task_struct *ext4_lazyinit_task;
2696
2697 /*
2698 * This is the function where ext4lazyinit thread lives. It walks
2699 * through the request list searching for next scheduled filesystem.
2700 * When such a fs is found, run the lazy initialization request
2701 * (ext4_rn_li_request) and keep track of the time spend in this
2702 * function. Based on that time we compute next schedule time of
2703 * the request. When walking through the list is complete, compute
2704 * next waking time and put itself into sleep.
2705 */
2706 static int ext4_lazyinit_thread(void *arg)
2707 {
2708 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2709 struct list_head *pos, *n;
2710 struct ext4_li_request *elr;
2711 unsigned long next_wakeup, cur;
2712
2713 BUG_ON(NULL == eli);
2714
2715 cont_thread:
2716 while (true) {
2717 next_wakeup = MAX_JIFFY_OFFSET;
2718
2719 mutex_lock(&eli->li_list_mtx);
2720 if (list_empty(&eli->li_request_list)) {
2721 mutex_unlock(&eli->li_list_mtx);
2722 goto exit_thread;
2723 }
2724
2725 list_for_each_safe(pos, n, &eli->li_request_list) {
2726 elr = list_entry(pos, struct ext4_li_request,
2727 lr_request);
2728
2729 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2730 if (ext4_run_li_request(elr) != 0) {
2731 /* error, remove the lazy_init job */
2732 ext4_remove_li_request(elr);
2733 continue;
2734 }
2735 }
2736
2737 if (time_before(elr->lr_next_sched, next_wakeup))
2738 next_wakeup = elr->lr_next_sched;
2739 }
2740 mutex_unlock(&eli->li_list_mtx);
2741
2742 try_to_freeze();
2743
2744 cur = jiffies;
2745 if ((time_after_eq(cur, next_wakeup)) ||
2746 (MAX_JIFFY_OFFSET == next_wakeup)) {
2747 cond_resched();
2748 continue;
2749 }
2750
2751 schedule_timeout_interruptible(next_wakeup - cur);
2752
2753 if (kthread_should_stop()) {
2754 ext4_clear_request_list();
2755 goto exit_thread;
2756 }
2757 }
2758
2759 exit_thread:
2760 /*
2761 * It looks like the request list is empty, but we need
2762 * to check it under the li_list_mtx lock, to prevent any
2763 * additions into it, and of course we should lock ext4_li_mtx
2764 * to atomically free the list and ext4_li_info, because at
2765 * this point another ext4 filesystem could be registering
2766 * new one.
2767 */
2768 mutex_lock(&ext4_li_mtx);
2769 mutex_lock(&eli->li_list_mtx);
2770 if (!list_empty(&eli->li_request_list)) {
2771 mutex_unlock(&eli->li_list_mtx);
2772 mutex_unlock(&ext4_li_mtx);
2773 goto cont_thread;
2774 }
2775 mutex_unlock(&eli->li_list_mtx);
2776 kfree(ext4_li_info);
2777 ext4_li_info = NULL;
2778 mutex_unlock(&ext4_li_mtx);
2779
2780 return 0;
2781 }
2782
2783 static void ext4_clear_request_list(void)
2784 {
2785 struct list_head *pos, *n;
2786 struct ext4_li_request *elr;
2787
2788 mutex_lock(&ext4_li_info->li_list_mtx);
2789 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2790 elr = list_entry(pos, struct ext4_li_request,
2791 lr_request);
2792 ext4_remove_li_request(elr);
2793 }
2794 mutex_unlock(&ext4_li_info->li_list_mtx);
2795 }
2796
2797 static int ext4_run_lazyinit_thread(void)
2798 {
2799 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2800 ext4_li_info, "ext4lazyinit");
2801 if (IS_ERR(ext4_lazyinit_task)) {
2802 int err = PTR_ERR(ext4_lazyinit_task);
2803 ext4_clear_request_list();
2804 kfree(ext4_li_info);
2805 ext4_li_info = NULL;
2806 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2807 "initialization thread\n",
2808 err);
2809 return err;
2810 }
2811 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2812 return 0;
2813 }
2814
2815 /*
2816 * Check whether it make sense to run itable init. thread or not.
2817 * If there is at least one uninitialized inode table, return
2818 * corresponding group number, else the loop goes through all
2819 * groups and return total number of groups.
2820 */
2821 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2822 {
2823 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2824 struct ext4_group_desc *gdp = NULL;
2825
2826 for (group = 0; group < ngroups; group++) {
2827 gdp = ext4_get_group_desc(sb, group, NULL);
2828 if (!gdp)
2829 continue;
2830
2831 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2832 break;
2833 }
2834
2835 return group;
2836 }
2837
2838 static int ext4_li_info_new(void)
2839 {
2840 struct ext4_lazy_init *eli = NULL;
2841
2842 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2843 if (!eli)
2844 return -ENOMEM;
2845
2846 INIT_LIST_HEAD(&eli->li_request_list);
2847 mutex_init(&eli->li_list_mtx);
2848
2849 eli->li_state |= EXT4_LAZYINIT_QUIT;
2850
2851 ext4_li_info = eli;
2852
2853 return 0;
2854 }
2855
2856 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2857 ext4_group_t start)
2858 {
2859 struct ext4_sb_info *sbi = EXT4_SB(sb);
2860 struct ext4_li_request *elr;
2861
2862 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2863 if (!elr)
2864 return NULL;
2865
2866 elr->lr_super = sb;
2867 elr->lr_sbi = sbi;
2868 elr->lr_next_group = start;
2869
2870 /*
2871 * Randomize first schedule time of the request to
2872 * spread the inode table initialization requests
2873 * better.
2874 */
2875 elr->lr_next_sched = jiffies + (prandom_u32() %
2876 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2877 return elr;
2878 }
2879
2880 int ext4_register_li_request(struct super_block *sb,
2881 ext4_group_t first_not_zeroed)
2882 {
2883 struct ext4_sb_info *sbi = EXT4_SB(sb);
2884 struct ext4_li_request *elr = NULL;
2885 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2886 int ret = 0;
2887
2888 mutex_lock(&ext4_li_mtx);
2889 if (sbi->s_li_request != NULL) {
2890 /*
2891 * Reset timeout so it can be computed again, because
2892 * s_li_wait_mult might have changed.
2893 */
2894 sbi->s_li_request->lr_timeout = 0;
2895 goto out;
2896 }
2897
2898 if (first_not_zeroed == ngroups ||
2899 (sb->s_flags & MS_RDONLY) ||
2900 !test_opt(sb, INIT_INODE_TABLE))
2901 goto out;
2902
2903 elr = ext4_li_request_new(sb, first_not_zeroed);
2904 if (!elr) {
2905 ret = -ENOMEM;
2906 goto out;
2907 }
2908
2909 if (NULL == ext4_li_info) {
2910 ret = ext4_li_info_new();
2911 if (ret)
2912 goto out;
2913 }
2914
2915 mutex_lock(&ext4_li_info->li_list_mtx);
2916 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2917 mutex_unlock(&ext4_li_info->li_list_mtx);
2918
2919 sbi->s_li_request = elr;
2920 /*
2921 * set elr to NULL here since it has been inserted to
2922 * the request_list and the removal and free of it is
2923 * handled by ext4_clear_request_list from now on.
2924 */
2925 elr = NULL;
2926
2927 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2928 ret = ext4_run_lazyinit_thread();
2929 if (ret)
2930 goto out;
2931 }
2932 out:
2933 mutex_unlock(&ext4_li_mtx);
2934 if (ret)
2935 kfree(elr);
2936 return ret;
2937 }
2938
2939 /*
2940 * We do not need to lock anything since this is called on
2941 * module unload.
2942 */
2943 static void ext4_destroy_lazyinit_thread(void)
2944 {
2945 /*
2946 * If thread exited earlier
2947 * there's nothing to be done.
2948 */
2949 if (!ext4_li_info || !ext4_lazyinit_task)
2950 return;
2951
2952 kthread_stop(ext4_lazyinit_task);
2953 }
2954
2955 static int set_journal_csum_feature_set(struct super_block *sb)
2956 {
2957 int ret = 1;
2958 int compat, incompat;
2959 struct ext4_sb_info *sbi = EXT4_SB(sb);
2960
2961 if (ext4_has_metadata_csum(sb)) {
2962 /* journal checksum v3 */
2963 compat = 0;
2964 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
2965 } else {
2966 /* journal checksum v1 */
2967 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
2968 incompat = 0;
2969 }
2970
2971 jbd2_journal_clear_features(sbi->s_journal,
2972 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2973 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
2974 JBD2_FEATURE_INCOMPAT_CSUM_V2);
2975 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
2976 ret = jbd2_journal_set_features(sbi->s_journal,
2977 compat, 0,
2978 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
2979 incompat);
2980 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
2981 ret = jbd2_journal_set_features(sbi->s_journal,
2982 compat, 0,
2983 incompat);
2984 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2985 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2986 } else {
2987 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2988 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2989 }
2990
2991 return ret;
2992 }
2993
2994 /*
2995 * Note: calculating the overhead so we can be compatible with
2996 * historical BSD practice is quite difficult in the face of
2997 * clusters/bigalloc. This is because multiple metadata blocks from
2998 * different block group can end up in the same allocation cluster.
2999 * Calculating the exact overhead in the face of clustered allocation
3000 * requires either O(all block bitmaps) in memory or O(number of block
3001 * groups**2) in time. We will still calculate the superblock for
3002 * older file systems --- and if we come across with a bigalloc file
3003 * system with zero in s_overhead_clusters the estimate will be close to
3004 * correct especially for very large cluster sizes --- but for newer
3005 * file systems, it's better to calculate this figure once at mkfs
3006 * time, and store it in the superblock. If the superblock value is
3007 * present (even for non-bigalloc file systems), we will use it.
3008 */
3009 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3010 char *buf)
3011 {
3012 struct ext4_sb_info *sbi = EXT4_SB(sb);
3013 struct ext4_group_desc *gdp;
3014 ext4_fsblk_t first_block, last_block, b;
3015 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3016 int s, j, count = 0;
3017
3018 if (!ext4_has_feature_bigalloc(sb))
3019 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3020 sbi->s_itb_per_group + 2);
3021
3022 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3023 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3024 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3025 for (i = 0; i < ngroups; i++) {
3026 gdp = ext4_get_group_desc(sb, i, NULL);
3027 b = ext4_block_bitmap(sb, gdp);
3028 if (b >= first_block && b <= last_block) {
3029 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3030 count++;
3031 }
3032 b = ext4_inode_bitmap(sb, gdp);
3033 if (b >= first_block && b <= last_block) {
3034 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3035 count++;
3036 }
3037 b = ext4_inode_table(sb, gdp);
3038 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3039 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3040 int c = EXT4_B2C(sbi, b - first_block);
3041 ext4_set_bit(c, buf);
3042 count++;
3043 }
3044 if (i != grp)
3045 continue;
3046 s = 0;
3047 if (ext4_bg_has_super(sb, grp)) {
3048 ext4_set_bit(s++, buf);
3049 count++;
3050 }
3051 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3052 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3053 count++;
3054 }
3055 }
3056 if (!count)
3057 return 0;
3058 return EXT4_CLUSTERS_PER_GROUP(sb) -
3059 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3060 }
3061
3062 /*
3063 * Compute the overhead and stash it in sbi->s_overhead
3064 */
3065 int ext4_calculate_overhead(struct super_block *sb)
3066 {
3067 struct ext4_sb_info *sbi = EXT4_SB(sb);
3068 struct ext4_super_block *es = sbi->s_es;
3069 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3070 ext4_fsblk_t overhead = 0;
3071 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3072
3073 if (!buf)
3074 return -ENOMEM;
3075
3076 /*
3077 * Compute the overhead (FS structures). This is constant
3078 * for a given filesystem unless the number of block groups
3079 * changes so we cache the previous value until it does.
3080 */
3081
3082 /*
3083 * All of the blocks before first_data_block are overhead
3084 */
3085 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3086
3087 /*
3088 * Add the overhead found in each block group
3089 */
3090 for (i = 0; i < ngroups; i++) {
3091 int blks;
3092
3093 blks = count_overhead(sb, i, buf);
3094 overhead += blks;
3095 if (blks)
3096 memset(buf, 0, PAGE_SIZE);
3097 cond_resched();
3098 }
3099 /* Add the internal journal blocks as well */
3100 if (sbi->s_journal && !sbi->journal_bdev)
3101 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3102
3103 sbi->s_overhead = overhead;
3104 smp_wmb();
3105 free_page((unsigned long) buf);
3106 return 0;
3107 }
3108
3109 static void ext4_set_resv_clusters(struct super_block *sb)
3110 {
3111 ext4_fsblk_t resv_clusters;
3112 struct ext4_sb_info *sbi = EXT4_SB(sb);
3113
3114 /*
3115 * There's no need to reserve anything when we aren't using extents.
3116 * The space estimates are exact, there are no unwritten extents,
3117 * hole punching doesn't need new metadata... This is needed especially
3118 * to keep ext2/3 backward compatibility.
3119 */
3120 if (!ext4_has_feature_extents(sb))
3121 return;
3122 /*
3123 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3124 * This should cover the situations where we can not afford to run
3125 * out of space like for example punch hole, or converting
3126 * unwritten extents in delalloc path. In most cases such
3127 * allocation would require 1, or 2 blocks, higher numbers are
3128 * very rare.
3129 */
3130 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3131 sbi->s_cluster_bits);
3132
3133 do_div(resv_clusters, 50);
3134 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3135
3136 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3137 }
3138
3139 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3140 {
3141 char *orig_data = kstrdup(data, GFP_KERNEL);
3142 struct buffer_head *bh;
3143 struct ext4_super_block *es = NULL;
3144 struct ext4_sb_info *sbi;
3145 ext4_fsblk_t block;
3146 ext4_fsblk_t sb_block = get_sb_block(&data);
3147 ext4_fsblk_t logical_sb_block;
3148 unsigned long offset = 0;
3149 unsigned long journal_devnum = 0;
3150 unsigned long def_mount_opts;
3151 struct inode *root;
3152 const char *descr;
3153 int ret = -ENOMEM;
3154 int blocksize, clustersize;
3155 unsigned int db_count;
3156 unsigned int i;
3157 int needs_recovery, has_huge_files, has_bigalloc;
3158 __u64 blocks_count;
3159 int err = 0;
3160 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3161 ext4_group_t first_not_zeroed;
3162
3163 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3164 if (!sbi)
3165 goto out_free_orig;
3166
3167 sbi->s_blockgroup_lock =
3168 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3169 if (!sbi->s_blockgroup_lock) {
3170 kfree(sbi);
3171 goto out_free_orig;
3172 }
3173 sb->s_fs_info = sbi;
3174 sbi->s_sb = sb;
3175 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3176 sbi->s_sb_block = sb_block;
3177 if (sb->s_bdev->bd_part)
3178 sbi->s_sectors_written_start =
3179 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3180
3181 /* Cleanup superblock name */
3182 strreplace(sb->s_id, '/', '!');
3183
3184 /* -EINVAL is default */
3185 ret = -EINVAL;
3186 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3187 if (!blocksize) {
3188 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3189 goto out_fail;
3190 }
3191
3192 /*
3193 * The ext4 superblock will not be buffer aligned for other than 1kB
3194 * block sizes. We need to calculate the offset from buffer start.
3195 */
3196 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3197 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3198 offset = do_div(logical_sb_block, blocksize);
3199 } else {
3200 logical_sb_block = sb_block;
3201 }
3202
3203 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3204 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3205 goto out_fail;
3206 }
3207 /*
3208 * Note: s_es must be initialized as soon as possible because
3209 * some ext4 macro-instructions depend on its value
3210 */
3211 es = (struct ext4_super_block *) (bh->b_data + offset);
3212 sbi->s_es = es;
3213 sb->s_magic = le16_to_cpu(es->s_magic);
3214 if (sb->s_magic != EXT4_SUPER_MAGIC)
3215 goto cantfind_ext4;
3216 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3217
3218 /* Warn if metadata_csum and gdt_csum are both set. */
3219 if (ext4_has_feature_metadata_csum(sb) &&
3220 ext4_has_feature_gdt_csum(sb))
3221 ext4_warning(sb, "metadata_csum and uninit_bg are "
3222 "redundant flags; please run fsck.");
3223
3224 /* Check for a known checksum algorithm */
3225 if (!ext4_verify_csum_type(sb, es)) {
3226 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3227 "unknown checksum algorithm.");
3228 silent = 1;
3229 goto cantfind_ext4;
3230 }
3231
3232 /* Load the checksum driver */
3233 if (ext4_has_feature_metadata_csum(sb)) {
3234 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3235 if (IS_ERR(sbi->s_chksum_driver)) {
3236 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3237 ret = PTR_ERR(sbi->s_chksum_driver);
3238 sbi->s_chksum_driver = NULL;
3239 goto failed_mount;
3240 }
3241 }
3242
3243 /* Check superblock checksum */
3244 if (!ext4_superblock_csum_verify(sb, es)) {
3245 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3246 "invalid superblock checksum. Run e2fsck?");
3247 silent = 1;
3248 ret = -EFSBADCRC;
3249 goto cantfind_ext4;
3250 }
3251
3252 /* Precompute checksum seed for all metadata */
3253 if (ext4_has_feature_csum_seed(sb))
3254 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3255 else if (ext4_has_metadata_csum(sb))
3256 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3257 sizeof(es->s_uuid));
3258
3259 /* Set defaults before we parse the mount options */
3260 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3261 set_opt(sb, INIT_INODE_TABLE);
3262 if (def_mount_opts & EXT4_DEFM_DEBUG)
3263 set_opt(sb, DEBUG);
3264 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3265 set_opt(sb, GRPID);
3266 if (def_mount_opts & EXT4_DEFM_UID16)
3267 set_opt(sb, NO_UID32);
3268 /* xattr user namespace & acls are now defaulted on */
3269 set_opt(sb, XATTR_USER);
3270 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3271 set_opt(sb, POSIX_ACL);
3272 #endif
3273 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3274 if (ext4_has_metadata_csum(sb))
3275 set_opt(sb, JOURNAL_CHECKSUM);
3276
3277 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3278 set_opt(sb, JOURNAL_DATA);
3279 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3280 set_opt(sb, ORDERED_DATA);
3281 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3282 set_opt(sb, WRITEBACK_DATA);
3283
3284 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3285 set_opt(sb, ERRORS_PANIC);
3286 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3287 set_opt(sb, ERRORS_CONT);
3288 else
3289 set_opt(sb, ERRORS_RO);
3290 /* block_validity enabled by default; disable with noblock_validity */
3291 set_opt(sb, BLOCK_VALIDITY);
3292 if (def_mount_opts & EXT4_DEFM_DISCARD)
3293 set_opt(sb, DISCARD);
3294
3295 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3296 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3297 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3298 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3299 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3300
3301 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3302 set_opt(sb, BARRIER);
3303
3304 /*
3305 * enable delayed allocation by default
3306 * Use -o nodelalloc to turn it off
3307 */
3308 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3309 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3310 set_opt(sb, DELALLOC);
3311
3312 /*
3313 * set default s_li_wait_mult for lazyinit, for the case there is
3314 * no mount option specified.
3315 */
3316 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3317
3318 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3319 &journal_devnum, &journal_ioprio, 0)) {
3320 ext4_msg(sb, KERN_WARNING,
3321 "failed to parse options in superblock: %s",
3322 sbi->s_es->s_mount_opts);
3323 }
3324 sbi->s_def_mount_opt = sbi->s_mount_opt;
3325 if (!parse_options((char *) data, sb, &journal_devnum,
3326 &journal_ioprio, 0))
3327 goto failed_mount;
3328
3329 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3330 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3331 "with data=journal disables delayed "
3332 "allocation and O_DIRECT support!\n");
3333 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3334 ext4_msg(sb, KERN_ERR, "can't mount with "
3335 "both data=journal and delalloc");
3336 goto failed_mount;
3337 }
3338 if (test_opt(sb, DIOREAD_NOLOCK)) {
3339 ext4_msg(sb, KERN_ERR, "can't mount with "
3340 "both data=journal and dioread_nolock");
3341 goto failed_mount;
3342 }
3343 if (test_opt(sb, DAX)) {
3344 ext4_msg(sb, KERN_ERR, "can't mount with "
3345 "both data=journal and dax");
3346 goto failed_mount;
3347 }
3348 if (test_opt(sb, DELALLOC))
3349 clear_opt(sb, DELALLOC);
3350 } else {
3351 sb->s_iflags |= SB_I_CGROUPWB;
3352 }
3353
3354 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3355 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3356
3357 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3358 (ext4_has_compat_features(sb) ||
3359 ext4_has_ro_compat_features(sb) ||
3360 ext4_has_incompat_features(sb)))
3361 ext4_msg(sb, KERN_WARNING,
3362 "feature flags set on rev 0 fs, "
3363 "running e2fsck is recommended");
3364
3365 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3366 set_opt2(sb, HURD_COMPAT);
3367 if (ext4_has_feature_64bit(sb)) {
3368 ext4_msg(sb, KERN_ERR,
3369 "The Hurd can't support 64-bit file systems");
3370 goto failed_mount;
3371 }
3372 }
3373
3374 if (IS_EXT2_SB(sb)) {
3375 if (ext2_feature_set_ok(sb))
3376 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3377 "using the ext4 subsystem");
3378 else {
3379 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3380 "to feature incompatibilities");
3381 goto failed_mount;
3382 }
3383 }
3384
3385 if (IS_EXT3_SB(sb)) {
3386 if (ext3_feature_set_ok(sb))
3387 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3388 "using the ext4 subsystem");
3389 else {
3390 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3391 "to feature incompatibilities");
3392 goto failed_mount;
3393 }
3394 }
3395
3396 /*
3397 * Check feature flags regardless of the revision level, since we
3398 * previously didn't change the revision level when setting the flags,
3399 * so there is a chance incompat flags are set on a rev 0 filesystem.
3400 */
3401 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3402 goto failed_mount;
3403
3404 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3405 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3406 blocksize > EXT4_MAX_BLOCK_SIZE) {
3407 ext4_msg(sb, KERN_ERR,
3408 "Unsupported filesystem blocksize %d", blocksize);
3409 goto failed_mount;
3410 }
3411
3412 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3413 if (blocksize != PAGE_SIZE) {
3414 ext4_msg(sb, KERN_ERR,
3415 "error: unsupported blocksize for dax");
3416 goto failed_mount;
3417 }
3418 if (!sb->s_bdev->bd_disk->fops->direct_access) {
3419 ext4_msg(sb, KERN_ERR,
3420 "error: device does not support dax");
3421 goto failed_mount;
3422 }
3423 }
3424
3425 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3426 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3427 es->s_encryption_level);
3428 goto failed_mount;
3429 }
3430
3431 if (sb->s_blocksize != blocksize) {
3432 /* Validate the filesystem blocksize */
3433 if (!sb_set_blocksize(sb, blocksize)) {
3434 ext4_msg(sb, KERN_ERR, "bad block size %d",
3435 blocksize);
3436 goto failed_mount;
3437 }
3438
3439 brelse(bh);
3440 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3441 offset = do_div(logical_sb_block, blocksize);
3442 bh = sb_bread_unmovable(sb, logical_sb_block);
3443 if (!bh) {
3444 ext4_msg(sb, KERN_ERR,
3445 "Can't read superblock on 2nd try");
3446 goto failed_mount;
3447 }
3448 es = (struct ext4_super_block *)(bh->b_data + offset);
3449 sbi->s_es = es;
3450 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3451 ext4_msg(sb, KERN_ERR,
3452 "Magic mismatch, very weird!");
3453 goto failed_mount;
3454 }
3455 }
3456
3457 has_huge_files = ext4_has_feature_huge_file(sb);
3458 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3459 has_huge_files);
3460 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3461
3462 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3463 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3464 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3465 } else {
3466 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3467 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3468 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3469 (!is_power_of_2(sbi->s_inode_size)) ||
3470 (sbi->s_inode_size > blocksize)) {
3471 ext4_msg(sb, KERN_ERR,
3472 "unsupported inode size: %d",
3473 sbi->s_inode_size);
3474 goto failed_mount;
3475 }
3476 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3477 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3478 }
3479
3480 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3481 if (ext4_has_feature_64bit(sb)) {
3482 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3483 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3484 !is_power_of_2(sbi->s_desc_size)) {
3485 ext4_msg(sb, KERN_ERR,
3486 "unsupported descriptor size %lu",
3487 sbi->s_desc_size);
3488 goto failed_mount;
3489 }
3490 } else
3491 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3492
3493 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3494 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3495 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3496 goto cantfind_ext4;
3497
3498 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3499 if (sbi->s_inodes_per_block == 0)
3500 goto cantfind_ext4;
3501 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3502 sbi->s_inodes_per_block;
3503 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3504 sbi->s_sbh = bh;
3505 sbi->s_mount_state = le16_to_cpu(es->s_state);
3506 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3507 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3508
3509 for (i = 0; i < 4; i++)
3510 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3511 sbi->s_def_hash_version = es->s_def_hash_version;
3512 if (ext4_has_feature_dir_index(sb)) {
3513 i = le32_to_cpu(es->s_flags);
3514 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3515 sbi->s_hash_unsigned = 3;
3516 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3517 #ifdef __CHAR_UNSIGNED__
3518 if (!(sb->s_flags & MS_RDONLY))
3519 es->s_flags |=
3520 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3521 sbi->s_hash_unsigned = 3;
3522 #else
3523 if (!(sb->s_flags & MS_RDONLY))
3524 es->s_flags |=
3525 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3526 #endif
3527 }
3528 }
3529
3530 /* Handle clustersize */
3531 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3532 has_bigalloc = ext4_has_feature_bigalloc(sb);
3533 if (has_bigalloc) {
3534 if (clustersize < blocksize) {
3535 ext4_msg(sb, KERN_ERR,
3536 "cluster size (%d) smaller than "
3537 "block size (%d)", clustersize, blocksize);
3538 goto failed_mount;
3539 }
3540 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3541 le32_to_cpu(es->s_log_block_size);
3542 sbi->s_clusters_per_group =
3543 le32_to_cpu(es->s_clusters_per_group);
3544 if (sbi->s_clusters_per_group > blocksize * 8) {
3545 ext4_msg(sb, KERN_ERR,
3546 "#clusters per group too big: %lu",
3547 sbi->s_clusters_per_group);
3548 goto failed_mount;
3549 }
3550 if (sbi->s_blocks_per_group !=
3551 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3552 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3553 "clusters per group (%lu) inconsistent",
3554 sbi->s_blocks_per_group,
3555 sbi->s_clusters_per_group);
3556 goto failed_mount;
3557 }
3558 } else {
3559 if (clustersize != blocksize) {
3560 ext4_warning(sb, "fragment/cluster size (%d) != "
3561 "block size (%d)", clustersize,
3562 blocksize);
3563 clustersize = blocksize;
3564 }
3565 if (sbi->s_blocks_per_group > blocksize * 8) {
3566 ext4_msg(sb, KERN_ERR,
3567 "#blocks per group too big: %lu",
3568 sbi->s_blocks_per_group);
3569 goto failed_mount;
3570 }
3571 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3572 sbi->s_cluster_bits = 0;
3573 }
3574 sbi->s_cluster_ratio = clustersize / blocksize;
3575
3576 if (sbi->s_inodes_per_group > blocksize * 8) {
3577 ext4_msg(sb, KERN_ERR,
3578 "#inodes per group too big: %lu",
3579 sbi->s_inodes_per_group);
3580 goto failed_mount;
3581 }
3582
3583 /* Do we have standard group size of clustersize * 8 blocks ? */
3584 if (sbi->s_blocks_per_group == clustersize << 3)
3585 set_opt2(sb, STD_GROUP_SIZE);
3586
3587 /*
3588 * Test whether we have more sectors than will fit in sector_t,
3589 * and whether the max offset is addressable by the page cache.
3590 */
3591 err = generic_check_addressable(sb->s_blocksize_bits,
3592 ext4_blocks_count(es));
3593 if (err) {
3594 ext4_msg(sb, KERN_ERR, "filesystem"
3595 " too large to mount safely on this system");
3596 if (sizeof(sector_t) < 8)
3597 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3598 goto failed_mount;
3599 }
3600
3601 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3602 goto cantfind_ext4;
3603
3604 /* check blocks count against device size */
3605 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3606 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3607 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3608 "exceeds size of device (%llu blocks)",
3609 ext4_blocks_count(es), blocks_count);
3610 goto failed_mount;
3611 }
3612
3613 /*
3614 * It makes no sense for the first data block to be beyond the end
3615 * of the filesystem.
3616 */
3617 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3618 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3619 "block %u is beyond end of filesystem (%llu)",
3620 le32_to_cpu(es->s_first_data_block),
3621 ext4_blocks_count(es));
3622 goto failed_mount;
3623 }
3624 blocks_count = (ext4_blocks_count(es) -
3625 le32_to_cpu(es->s_first_data_block) +
3626 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3627 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3628 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3629 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3630 "(block count %llu, first data block %u, "
3631 "blocks per group %lu)", sbi->s_groups_count,
3632 ext4_blocks_count(es),
3633 le32_to_cpu(es->s_first_data_block),
3634 EXT4_BLOCKS_PER_GROUP(sb));
3635 goto failed_mount;
3636 }
3637 sbi->s_groups_count = blocks_count;
3638 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3639 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3640 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3641 EXT4_DESC_PER_BLOCK(sb);
3642 sbi->s_group_desc = ext4_kvmalloc(db_count *
3643 sizeof(struct buffer_head *),
3644 GFP_KERNEL);
3645 if (sbi->s_group_desc == NULL) {
3646 ext4_msg(sb, KERN_ERR, "not enough memory");
3647 ret = -ENOMEM;
3648 goto failed_mount;
3649 }
3650
3651 bgl_lock_init(sbi->s_blockgroup_lock);
3652
3653 for (i = 0; i < db_count; i++) {
3654 block = descriptor_loc(sb, logical_sb_block, i);
3655 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3656 if (!sbi->s_group_desc[i]) {
3657 ext4_msg(sb, KERN_ERR,
3658 "can't read group descriptor %d", i);
3659 db_count = i;
3660 goto failed_mount2;
3661 }
3662 }
3663 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3664 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3665 ret = -EFSCORRUPTED;
3666 goto failed_mount2;
3667 }
3668
3669 sbi->s_gdb_count = db_count;
3670 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3671 spin_lock_init(&sbi->s_next_gen_lock);
3672
3673 setup_timer(&sbi->s_err_report, print_daily_error_info,
3674 (unsigned long) sb);
3675
3676 /* Register extent status tree shrinker */
3677 if (ext4_es_register_shrinker(sbi))
3678 goto failed_mount3;
3679
3680 sbi->s_stripe = ext4_get_stripe_size(sbi);
3681 sbi->s_extent_max_zeroout_kb = 32;
3682
3683 /*
3684 * set up enough so that it can read an inode
3685 */
3686 sb->s_op = &ext4_sops;
3687 sb->s_export_op = &ext4_export_ops;
3688 sb->s_xattr = ext4_xattr_handlers;
3689 #ifdef CONFIG_QUOTA
3690 sb->dq_op = &ext4_quota_operations;
3691 if (ext4_has_feature_quota(sb))
3692 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3693 else
3694 sb->s_qcop = &ext4_qctl_operations;
3695 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3696 #endif
3697 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3698
3699 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3700 mutex_init(&sbi->s_orphan_lock);
3701
3702 sb->s_root = NULL;
3703
3704 needs_recovery = (es->s_last_orphan != 0 ||
3705 ext4_has_feature_journal_needs_recovery(sb));
3706
3707 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3708 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3709 goto failed_mount3a;
3710
3711 /*
3712 * The first inode we look at is the journal inode. Don't try
3713 * root first: it may be modified in the journal!
3714 */
3715 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3716 if (ext4_load_journal(sb, es, journal_devnum))
3717 goto failed_mount3a;
3718 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3719 ext4_has_feature_journal_needs_recovery(sb)) {
3720 ext4_msg(sb, KERN_ERR, "required journal recovery "
3721 "suppressed and not mounted read-only");
3722 goto failed_mount_wq;
3723 } else {
3724 /* Nojournal mode, all journal mount options are illegal */
3725 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3726 ext4_msg(sb, KERN_ERR, "can't mount with "
3727 "journal_checksum, fs mounted w/o journal");
3728 goto failed_mount_wq;
3729 }
3730 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3731 ext4_msg(sb, KERN_ERR, "can't mount with "
3732 "journal_async_commit, fs mounted w/o journal");
3733 goto failed_mount_wq;
3734 }
3735 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3736 ext4_msg(sb, KERN_ERR, "can't mount with "
3737 "commit=%lu, fs mounted w/o journal",
3738 sbi->s_commit_interval / HZ);
3739 goto failed_mount_wq;
3740 }
3741 if (EXT4_MOUNT_DATA_FLAGS &
3742 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3743 ext4_msg(sb, KERN_ERR, "can't mount with "
3744 "data=, fs mounted w/o journal");
3745 goto failed_mount_wq;
3746 }
3747 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
3748 clear_opt(sb, JOURNAL_CHECKSUM);
3749 clear_opt(sb, DATA_FLAGS);
3750 sbi->s_journal = NULL;
3751 needs_recovery = 0;
3752 goto no_journal;
3753 }
3754
3755 if (ext4_has_feature_64bit(sb) &&
3756 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3757 JBD2_FEATURE_INCOMPAT_64BIT)) {
3758 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3759 goto failed_mount_wq;
3760 }
3761
3762 if (!set_journal_csum_feature_set(sb)) {
3763 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3764 "feature set");
3765 goto failed_mount_wq;
3766 }
3767
3768 /* We have now updated the journal if required, so we can
3769 * validate the data journaling mode. */
3770 switch (test_opt(sb, DATA_FLAGS)) {
3771 case 0:
3772 /* No mode set, assume a default based on the journal
3773 * capabilities: ORDERED_DATA if the journal can
3774 * cope, else JOURNAL_DATA
3775 */
3776 if (jbd2_journal_check_available_features
3777 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3778 set_opt(sb, ORDERED_DATA);
3779 else
3780 set_opt(sb, JOURNAL_DATA);
3781 break;
3782
3783 case EXT4_MOUNT_ORDERED_DATA:
3784 case EXT4_MOUNT_WRITEBACK_DATA:
3785 if (!jbd2_journal_check_available_features
3786 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3787 ext4_msg(sb, KERN_ERR, "Journal does not support "
3788 "requested data journaling mode");
3789 goto failed_mount_wq;
3790 }
3791 default:
3792 break;
3793 }
3794 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3795
3796 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3797
3798 no_journal:
3799 if (ext4_mballoc_ready) {
3800 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
3801 if (!sbi->s_mb_cache) {
3802 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
3803 goto failed_mount_wq;
3804 }
3805 }
3806
3807 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
3808 (blocksize != PAGE_CACHE_SIZE)) {
3809 ext4_msg(sb, KERN_ERR,
3810 "Unsupported blocksize for fs encryption");
3811 goto failed_mount_wq;
3812 }
3813
3814 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
3815 !ext4_has_feature_encrypt(sb)) {
3816 ext4_set_feature_encrypt(sb);
3817 ext4_commit_super(sb, 1);
3818 }
3819
3820 /*
3821 * Get the # of file system overhead blocks from the
3822 * superblock if present.
3823 */
3824 if (es->s_overhead_clusters)
3825 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3826 else {
3827 err = ext4_calculate_overhead(sb);
3828 if (err)
3829 goto failed_mount_wq;
3830 }
3831
3832 /*
3833 * The maximum number of concurrent works can be high and
3834 * concurrency isn't really necessary. Limit it to 1.
3835 */
3836 EXT4_SB(sb)->rsv_conversion_wq =
3837 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3838 if (!EXT4_SB(sb)->rsv_conversion_wq) {
3839 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
3840 ret = -ENOMEM;
3841 goto failed_mount4;
3842 }
3843
3844 /*
3845 * The jbd2_journal_load will have done any necessary log recovery,
3846 * so we can safely mount the rest of the filesystem now.
3847 */
3848
3849 root = ext4_iget(sb, EXT4_ROOT_INO);
3850 if (IS_ERR(root)) {
3851 ext4_msg(sb, KERN_ERR, "get root inode failed");
3852 ret = PTR_ERR(root);
3853 root = NULL;
3854 goto failed_mount4;
3855 }
3856 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3857 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3858 iput(root);
3859 goto failed_mount4;
3860 }
3861 sb->s_root = d_make_root(root);
3862 if (!sb->s_root) {
3863 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3864 ret = -ENOMEM;
3865 goto failed_mount4;
3866 }
3867
3868 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3869 sb->s_flags |= MS_RDONLY;
3870
3871 /* determine the minimum size of new large inodes, if present */
3872 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3873 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3874 EXT4_GOOD_OLD_INODE_SIZE;
3875 if (ext4_has_feature_extra_isize(sb)) {
3876 if (sbi->s_want_extra_isize <
3877 le16_to_cpu(es->s_want_extra_isize))
3878 sbi->s_want_extra_isize =
3879 le16_to_cpu(es->s_want_extra_isize);
3880 if (sbi->s_want_extra_isize <
3881 le16_to_cpu(es->s_min_extra_isize))
3882 sbi->s_want_extra_isize =
3883 le16_to_cpu(es->s_min_extra_isize);
3884 }
3885 }
3886 /* Check if enough inode space is available */
3887 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3888 sbi->s_inode_size) {
3889 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3890 EXT4_GOOD_OLD_INODE_SIZE;
3891 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3892 "available");
3893 }
3894
3895 ext4_set_resv_clusters(sb);
3896
3897 err = ext4_setup_system_zone(sb);
3898 if (err) {
3899 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3900 "zone (%d)", err);
3901 goto failed_mount4a;
3902 }
3903
3904 ext4_ext_init(sb);
3905 err = ext4_mb_init(sb);
3906 if (err) {
3907 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3908 err);
3909 goto failed_mount5;
3910 }
3911
3912 block = ext4_count_free_clusters(sb);
3913 ext4_free_blocks_count_set(sbi->s_es,
3914 EXT4_C2B(sbi, block));
3915 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
3916 GFP_KERNEL);
3917 if (!err) {
3918 unsigned long freei = ext4_count_free_inodes(sb);
3919 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
3920 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
3921 GFP_KERNEL);
3922 }
3923 if (!err)
3924 err = percpu_counter_init(&sbi->s_dirs_counter,
3925 ext4_count_dirs(sb), GFP_KERNEL);
3926 if (!err)
3927 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
3928 GFP_KERNEL);
3929 if (err) {
3930 ext4_msg(sb, KERN_ERR, "insufficient memory");
3931 goto failed_mount6;
3932 }
3933
3934 if (ext4_has_feature_flex_bg(sb))
3935 if (!ext4_fill_flex_info(sb)) {
3936 ext4_msg(sb, KERN_ERR,
3937 "unable to initialize "
3938 "flex_bg meta info!");
3939 goto failed_mount6;
3940 }
3941
3942 err = ext4_register_li_request(sb, first_not_zeroed);
3943 if (err)
3944 goto failed_mount6;
3945
3946 err = ext4_register_sysfs(sb);
3947 if (err)
3948 goto failed_mount7;
3949
3950 #ifdef CONFIG_QUOTA
3951 /* Enable quota usage during mount. */
3952 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
3953 err = ext4_enable_quotas(sb);
3954 if (err)
3955 goto failed_mount8;
3956 }
3957 #endif /* CONFIG_QUOTA */
3958
3959 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3960 ext4_orphan_cleanup(sb, es);
3961 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3962 if (needs_recovery) {
3963 ext4_msg(sb, KERN_INFO, "recovery complete");
3964 ext4_mark_recovery_complete(sb, es);
3965 }
3966 if (EXT4_SB(sb)->s_journal) {
3967 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3968 descr = " journalled data mode";
3969 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3970 descr = " ordered data mode";
3971 else
3972 descr = " writeback data mode";
3973 } else
3974 descr = "out journal";
3975
3976 if (test_opt(sb, DISCARD)) {
3977 struct request_queue *q = bdev_get_queue(sb->s_bdev);
3978 if (!blk_queue_discard(q))
3979 ext4_msg(sb, KERN_WARNING,
3980 "mounting with \"discard\" option, but "
3981 "the device does not support discard");
3982 }
3983
3984 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
3985 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3986 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3987 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3988
3989 if (es->s_error_count)
3990 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3991
3992 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
3993 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
3994 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
3995 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
3996
3997 kfree(orig_data);
3998 return 0;
3999
4000 cantfind_ext4:
4001 if (!silent)
4002 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4003 goto failed_mount;
4004
4005 #ifdef CONFIG_QUOTA
4006 failed_mount8:
4007 ext4_unregister_sysfs(sb);
4008 #endif
4009 failed_mount7:
4010 ext4_unregister_li_request(sb);
4011 failed_mount6:
4012 ext4_mb_release(sb);
4013 if (sbi->s_flex_groups)
4014 kvfree(sbi->s_flex_groups);
4015 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4016 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4017 percpu_counter_destroy(&sbi->s_dirs_counter);
4018 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4019 failed_mount5:
4020 ext4_ext_release(sb);
4021 ext4_release_system_zone(sb);
4022 failed_mount4a:
4023 dput(sb->s_root);
4024 sb->s_root = NULL;
4025 failed_mount4:
4026 ext4_msg(sb, KERN_ERR, "mount failed");
4027 if (EXT4_SB(sb)->rsv_conversion_wq)
4028 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4029 failed_mount_wq:
4030 if (sbi->s_journal) {
4031 jbd2_journal_destroy(sbi->s_journal);
4032 sbi->s_journal = NULL;
4033 }
4034 failed_mount3a:
4035 ext4_es_unregister_shrinker(sbi);
4036 failed_mount3:
4037 del_timer_sync(&sbi->s_err_report);
4038 if (sbi->s_mmp_tsk)
4039 kthread_stop(sbi->s_mmp_tsk);
4040 failed_mount2:
4041 for (i = 0; i < db_count; i++)
4042 brelse(sbi->s_group_desc[i]);
4043 kvfree(sbi->s_group_desc);
4044 failed_mount:
4045 if (sbi->s_chksum_driver)
4046 crypto_free_shash(sbi->s_chksum_driver);
4047 #ifdef CONFIG_QUOTA
4048 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4049 kfree(sbi->s_qf_names[i]);
4050 #endif
4051 ext4_blkdev_remove(sbi);
4052 brelse(bh);
4053 out_fail:
4054 sb->s_fs_info = NULL;
4055 kfree(sbi->s_blockgroup_lock);
4056 kfree(sbi);
4057 out_free_orig:
4058 kfree(orig_data);
4059 return err ? err : ret;
4060 }
4061
4062 /*
4063 * Setup any per-fs journal parameters now. We'll do this both on
4064 * initial mount, once the journal has been initialised but before we've
4065 * done any recovery; and again on any subsequent remount.
4066 */
4067 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4068 {
4069 struct ext4_sb_info *sbi = EXT4_SB(sb);
4070
4071 journal->j_commit_interval = sbi->s_commit_interval;
4072 journal->j_min_batch_time = sbi->s_min_batch_time;
4073 journal->j_max_batch_time = sbi->s_max_batch_time;
4074
4075 write_lock(&journal->j_state_lock);
4076 if (test_opt(sb, BARRIER))
4077 journal->j_flags |= JBD2_BARRIER;
4078 else
4079 journal->j_flags &= ~JBD2_BARRIER;
4080 if (test_opt(sb, DATA_ERR_ABORT))
4081 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4082 else
4083 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4084 write_unlock(&journal->j_state_lock);
4085 }
4086
4087 static journal_t *ext4_get_journal(struct super_block *sb,
4088 unsigned int journal_inum)
4089 {
4090 struct inode *journal_inode;
4091 journal_t *journal;
4092
4093 BUG_ON(!ext4_has_feature_journal(sb));
4094
4095 /* First, test for the existence of a valid inode on disk. Bad
4096 * things happen if we iget() an unused inode, as the subsequent
4097 * iput() will try to delete it. */
4098
4099 journal_inode = ext4_iget(sb, journal_inum);
4100 if (IS_ERR(journal_inode)) {
4101 ext4_msg(sb, KERN_ERR, "no journal found");
4102 return NULL;
4103 }
4104 if (!journal_inode->i_nlink) {
4105 make_bad_inode(journal_inode);
4106 iput(journal_inode);
4107 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4108 return NULL;
4109 }
4110
4111 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4112 journal_inode, journal_inode->i_size);
4113 if (!S_ISREG(journal_inode->i_mode)) {
4114 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4115 iput(journal_inode);
4116 return NULL;
4117 }
4118
4119 journal = jbd2_journal_init_inode(journal_inode);
4120 if (!journal) {
4121 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4122 iput(journal_inode);
4123 return NULL;
4124 }
4125 journal->j_private = sb;
4126 ext4_init_journal_params(sb, journal);
4127 return journal;
4128 }
4129
4130 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4131 dev_t j_dev)
4132 {
4133 struct buffer_head *bh;
4134 journal_t *journal;
4135 ext4_fsblk_t start;
4136 ext4_fsblk_t len;
4137 int hblock, blocksize;
4138 ext4_fsblk_t sb_block;
4139 unsigned long offset;
4140 struct ext4_super_block *es;
4141 struct block_device *bdev;
4142
4143 BUG_ON(!ext4_has_feature_journal(sb));
4144
4145 bdev = ext4_blkdev_get(j_dev, sb);
4146 if (bdev == NULL)
4147 return NULL;
4148
4149 blocksize = sb->s_blocksize;
4150 hblock = bdev_logical_block_size(bdev);
4151 if (blocksize < hblock) {
4152 ext4_msg(sb, KERN_ERR,
4153 "blocksize too small for journal device");
4154 goto out_bdev;
4155 }
4156
4157 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4158 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4159 set_blocksize(bdev, blocksize);
4160 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4161 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4162 "external journal");
4163 goto out_bdev;
4164 }
4165
4166 es = (struct ext4_super_block *) (bh->b_data + offset);
4167 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4168 !(le32_to_cpu(es->s_feature_incompat) &
4169 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4170 ext4_msg(sb, KERN_ERR, "external journal has "
4171 "bad superblock");
4172 brelse(bh);
4173 goto out_bdev;
4174 }
4175
4176 if ((le32_to_cpu(es->s_feature_ro_compat) &
4177 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4178 es->s_checksum != ext4_superblock_csum(sb, es)) {
4179 ext4_msg(sb, KERN_ERR, "external journal has "
4180 "corrupt superblock");
4181 brelse(bh);
4182 goto out_bdev;
4183 }
4184
4185 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4186 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4187 brelse(bh);
4188 goto out_bdev;
4189 }
4190
4191 len = ext4_blocks_count(es);
4192 start = sb_block + 1;
4193 brelse(bh); /* we're done with the superblock */
4194
4195 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4196 start, len, blocksize);
4197 if (!journal) {
4198 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4199 goto out_bdev;
4200 }
4201 journal->j_private = sb;
4202 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4203 wait_on_buffer(journal->j_sb_buffer);
4204 if (!buffer_uptodate(journal->j_sb_buffer)) {
4205 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4206 goto out_journal;
4207 }
4208 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4209 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4210 "user (unsupported) - %d",
4211 be32_to_cpu(journal->j_superblock->s_nr_users));
4212 goto out_journal;
4213 }
4214 EXT4_SB(sb)->journal_bdev = bdev;
4215 ext4_init_journal_params(sb, journal);
4216 return journal;
4217
4218 out_journal:
4219 jbd2_journal_destroy(journal);
4220 out_bdev:
4221 ext4_blkdev_put(bdev);
4222 return NULL;
4223 }
4224
4225 static int ext4_load_journal(struct super_block *sb,
4226 struct ext4_super_block *es,
4227 unsigned long journal_devnum)
4228 {
4229 journal_t *journal;
4230 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4231 dev_t journal_dev;
4232 int err = 0;
4233 int really_read_only;
4234
4235 BUG_ON(!ext4_has_feature_journal(sb));
4236
4237 if (journal_devnum &&
4238 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4239 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4240 "numbers have changed");
4241 journal_dev = new_decode_dev(journal_devnum);
4242 } else
4243 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4244
4245 really_read_only = bdev_read_only(sb->s_bdev);
4246
4247 /*
4248 * Are we loading a blank journal or performing recovery after a
4249 * crash? For recovery, we need to check in advance whether we
4250 * can get read-write access to the device.
4251 */
4252 if (ext4_has_feature_journal_needs_recovery(sb)) {
4253 if (sb->s_flags & MS_RDONLY) {
4254 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4255 "required on readonly filesystem");
4256 if (really_read_only) {
4257 ext4_msg(sb, KERN_ERR, "write access "
4258 "unavailable, cannot proceed");
4259 return -EROFS;
4260 }
4261 ext4_msg(sb, KERN_INFO, "write access will "
4262 "be enabled during recovery");
4263 }
4264 }
4265
4266 if (journal_inum && journal_dev) {
4267 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4268 "and inode journals!");
4269 return -EINVAL;
4270 }
4271
4272 if (journal_inum) {
4273 if (!(journal = ext4_get_journal(sb, journal_inum)))
4274 return -EINVAL;
4275 } else {
4276 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4277 return -EINVAL;
4278 }
4279
4280 if (!(journal->j_flags & JBD2_BARRIER))
4281 ext4_msg(sb, KERN_INFO, "barriers disabled");
4282
4283 if (!ext4_has_feature_journal_needs_recovery(sb))
4284 err = jbd2_journal_wipe(journal, !really_read_only);
4285 if (!err) {
4286 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4287 if (save)
4288 memcpy(save, ((char *) es) +
4289 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4290 err = jbd2_journal_load(journal);
4291 if (save)
4292 memcpy(((char *) es) + EXT4_S_ERR_START,
4293 save, EXT4_S_ERR_LEN);
4294 kfree(save);
4295 }
4296
4297 if (err) {
4298 ext4_msg(sb, KERN_ERR, "error loading journal");
4299 jbd2_journal_destroy(journal);
4300 return err;
4301 }
4302
4303 EXT4_SB(sb)->s_journal = journal;
4304 ext4_clear_journal_err(sb, es);
4305
4306 if (!really_read_only && journal_devnum &&
4307 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4308 es->s_journal_dev = cpu_to_le32(journal_devnum);
4309
4310 /* Make sure we flush the recovery flag to disk. */
4311 ext4_commit_super(sb, 1);
4312 }
4313
4314 return 0;
4315 }
4316
4317 static int ext4_commit_super(struct super_block *sb, int sync)
4318 {
4319 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4320 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4321 int error = 0;
4322
4323 if (!sbh || block_device_ejected(sb))
4324 return error;
4325 if (buffer_write_io_error(sbh)) {
4326 /*
4327 * Oh, dear. A previous attempt to write the
4328 * superblock failed. This could happen because the
4329 * USB device was yanked out. Or it could happen to
4330 * be a transient write error and maybe the block will
4331 * be remapped. Nothing we can do but to retry the
4332 * write and hope for the best.
4333 */
4334 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4335 "superblock detected");
4336 clear_buffer_write_io_error(sbh);
4337 set_buffer_uptodate(sbh);
4338 }
4339 /*
4340 * If the file system is mounted read-only, don't update the
4341 * superblock write time. This avoids updating the superblock
4342 * write time when we are mounting the root file system
4343 * read/only but we need to replay the journal; at that point,
4344 * for people who are east of GMT and who make their clock
4345 * tick in localtime for Windows bug-for-bug compatibility,
4346 * the clock is set in the future, and this will cause e2fsck
4347 * to complain and force a full file system check.
4348 */
4349 if (!(sb->s_flags & MS_RDONLY))
4350 es->s_wtime = cpu_to_le32(get_seconds());
4351 if (sb->s_bdev->bd_part)
4352 es->s_kbytes_written =
4353 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4354 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4355 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4356 else
4357 es->s_kbytes_written =
4358 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4359 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4360 ext4_free_blocks_count_set(es,
4361 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4362 &EXT4_SB(sb)->s_freeclusters_counter)));
4363 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4364 es->s_free_inodes_count =
4365 cpu_to_le32(percpu_counter_sum_positive(
4366 &EXT4_SB(sb)->s_freeinodes_counter));
4367 BUFFER_TRACE(sbh, "marking dirty");
4368 ext4_superblock_csum_set(sb);
4369 mark_buffer_dirty(sbh);
4370 if (sync) {
4371 error = __sync_dirty_buffer(sbh,
4372 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC);
4373 if (error)
4374 return error;
4375
4376 error = buffer_write_io_error(sbh);
4377 if (error) {
4378 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4379 "superblock");
4380 clear_buffer_write_io_error(sbh);
4381 set_buffer_uptodate(sbh);
4382 }
4383 }
4384 return error;
4385 }
4386
4387 /*
4388 * Have we just finished recovery? If so, and if we are mounting (or
4389 * remounting) the filesystem readonly, then we will end up with a
4390 * consistent fs on disk. Record that fact.
4391 */
4392 static void ext4_mark_recovery_complete(struct super_block *sb,
4393 struct ext4_super_block *es)
4394 {
4395 journal_t *journal = EXT4_SB(sb)->s_journal;
4396
4397 if (!ext4_has_feature_journal(sb)) {
4398 BUG_ON(journal != NULL);
4399 return;
4400 }
4401 jbd2_journal_lock_updates(journal);
4402 if (jbd2_journal_flush(journal) < 0)
4403 goto out;
4404
4405 if (ext4_has_feature_journal_needs_recovery(sb) &&
4406 sb->s_flags & MS_RDONLY) {
4407 ext4_clear_feature_journal_needs_recovery(sb);
4408 ext4_commit_super(sb, 1);
4409 }
4410
4411 out:
4412 jbd2_journal_unlock_updates(journal);
4413 }
4414
4415 /*
4416 * If we are mounting (or read-write remounting) a filesystem whose journal
4417 * has recorded an error from a previous lifetime, move that error to the
4418 * main filesystem now.
4419 */
4420 static void ext4_clear_journal_err(struct super_block *sb,
4421 struct ext4_super_block *es)
4422 {
4423 journal_t *journal;
4424 int j_errno;
4425 const char *errstr;
4426
4427 BUG_ON(!ext4_has_feature_journal(sb));
4428
4429 journal = EXT4_SB(sb)->s_journal;
4430
4431 /*
4432 * Now check for any error status which may have been recorded in the
4433 * journal by a prior ext4_error() or ext4_abort()
4434 */
4435
4436 j_errno = jbd2_journal_errno(journal);
4437 if (j_errno) {
4438 char nbuf[16];
4439
4440 errstr = ext4_decode_error(sb, j_errno, nbuf);
4441 ext4_warning(sb, "Filesystem error recorded "
4442 "from previous mount: %s", errstr);
4443 ext4_warning(sb, "Marking fs in need of filesystem check.");
4444
4445 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4446 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4447 ext4_commit_super(sb, 1);
4448
4449 jbd2_journal_clear_err(journal);
4450 jbd2_journal_update_sb_errno(journal);
4451 }
4452 }
4453
4454 /*
4455 * Force the running and committing transactions to commit,
4456 * and wait on the commit.
4457 */
4458 int ext4_force_commit(struct super_block *sb)
4459 {
4460 journal_t *journal;
4461
4462 if (sb->s_flags & MS_RDONLY)
4463 return 0;
4464
4465 journal = EXT4_SB(sb)->s_journal;
4466 return ext4_journal_force_commit(journal);
4467 }
4468
4469 static int ext4_sync_fs(struct super_block *sb, int wait)
4470 {
4471 int ret = 0;
4472 tid_t target;
4473 bool needs_barrier = false;
4474 struct ext4_sb_info *sbi = EXT4_SB(sb);
4475
4476 trace_ext4_sync_fs(sb, wait);
4477 flush_workqueue(sbi->rsv_conversion_wq);
4478 /*
4479 * Writeback quota in non-journalled quota case - journalled quota has
4480 * no dirty dquots
4481 */
4482 dquot_writeback_dquots(sb, -1);
4483 /*
4484 * Data writeback is possible w/o journal transaction, so barrier must
4485 * being sent at the end of the function. But we can skip it if
4486 * transaction_commit will do it for us.
4487 */
4488 if (sbi->s_journal) {
4489 target = jbd2_get_latest_transaction(sbi->s_journal);
4490 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4491 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4492 needs_barrier = true;
4493
4494 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4495 if (wait)
4496 ret = jbd2_log_wait_commit(sbi->s_journal,
4497 target);
4498 }
4499 } else if (wait && test_opt(sb, BARRIER))
4500 needs_barrier = true;
4501 if (needs_barrier) {
4502 int err;
4503 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4504 if (!ret)
4505 ret = err;
4506 }
4507
4508 return ret;
4509 }
4510
4511 /*
4512 * LVM calls this function before a (read-only) snapshot is created. This
4513 * gives us a chance to flush the journal completely and mark the fs clean.
4514 *
4515 * Note that only this function cannot bring a filesystem to be in a clean
4516 * state independently. It relies on upper layer to stop all data & metadata
4517 * modifications.
4518 */
4519 static int ext4_freeze(struct super_block *sb)
4520 {
4521 int error = 0;
4522 journal_t *journal;
4523
4524 if (sb->s_flags & MS_RDONLY)
4525 return 0;
4526
4527 journal = EXT4_SB(sb)->s_journal;
4528
4529 if (journal) {
4530 /* Now we set up the journal barrier. */
4531 jbd2_journal_lock_updates(journal);
4532
4533 /*
4534 * Don't clear the needs_recovery flag if we failed to
4535 * flush the journal.
4536 */
4537 error = jbd2_journal_flush(journal);
4538 if (error < 0)
4539 goto out;
4540
4541 /* Journal blocked and flushed, clear needs_recovery flag. */
4542 ext4_clear_feature_journal_needs_recovery(sb);
4543 }
4544
4545 error = ext4_commit_super(sb, 1);
4546 out:
4547 if (journal)
4548 /* we rely on upper layer to stop further updates */
4549 jbd2_journal_unlock_updates(journal);
4550 return error;
4551 }
4552
4553 /*
4554 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4555 * flag here, even though the filesystem is not technically dirty yet.
4556 */
4557 static int ext4_unfreeze(struct super_block *sb)
4558 {
4559 if (sb->s_flags & MS_RDONLY)
4560 return 0;
4561
4562 if (EXT4_SB(sb)->s_journal) {
4563 /* Reset the needs_recovery flag before the fs is unlocked. */
4564 ext4_set_feature_journal_needs_recovery(sb);
4565 }
4566
4567 ext4_commit_super(sb, 1);
4568 return 0;
4569 }
4570
4571 /*
4572 * Structure to save mount options for ext4_remount's benefit
4573 */
4574 struct ext4_mount_options {
4575 unsigned long s_mount_opt;
4576 unsigned long s_mount_opt2;
4577 kuid_t s_resuid;
4578 kgid_t s_resgid;
4579 unsigned long s_commit_interval;
4580 u32 s_min_batch_time, s_max_batch_time;
4581 #ifdef CONFIG_QUOTA
4582 int s_jquota_fmt;
4583 char *s_qf_names[EXT4_MAXQUOTAS];
4584 #endif
4585 };
4586
4587 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4588 {
4589 struct ext4_super_block *es;
4590 struct ext4_sb_info *sbi = EXT4_SB(sb);
4591 unsigned long old_sb_flags;
4592 struct ext4_mount_options old_opts;
4593 int enable_quota = 0;
4594 ext4_group_t g;
4595 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4596 int err = 0;
4597 #ifdef CONFIG_QUOTA
4598 int i, j;
4599 #endif
4600 char *orig_data = kstrdup(data, GFP_KERNEL);
4601
4602 /* Store the original options */
4603 old_sb_flags = sb->s_flags;
4604 old_opts.s_mount_opt = sbi->s_mount_opt;
4605 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4606 old_opts.s_resuid = sbi->s_resuid;
4607 old_opts.s_resgid = sbi->s_resgid;
4608 old_opts.s_commit_interval = sbi->s_commit_interval;
4609 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4610 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4611 #ifdef CONFIG_QUOTA
4612 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4613 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4614 if (sbi->s_qf_names[i]) {
4615 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4616 GFP_KERNEL);
4617 if (!old_opts.s_qf_names[i]) {
4618 for (j = 0; j < i; j++)
4619 kfree(old_opts.s_qf_names[j]);
4620 kfree(orig_data);
4621 return -ENOMEM;
4622 }
4623 } else
4624 old_opts.s_qf_names[i] = NULL;
4625 #endif
4626 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4627 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4628
4629 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4630 err = -EINVAL;
4631 goto restore_opts;
4632 }
4633
4634 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4635 test_opt(sb, JOURNAL_CHECKSUM)) {
4636 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4637 "during remount not supported; ignoring");
4638 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4639 }
4640
4641 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4642 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4643 ext4_msg(sb, KERN_ERR, "can't mount with "
4644 "both data=journal and delalloc");
4645 err = -EINVAL;
4646 goto restore_opts;
4647 }
4648 if (test_opt(sb, DIOREAD_NOLOCK)) {
4649 ext4_msg(sb, KERN_ERR, "can't mount with "
4650 "both data=journal and dioread_nolock");
4651 err = -EINVAL;
4652 goto restore_opts;
4653 }
4654 if (test_opt(sb, DAX)) {
4655 ext4_msg(sb, KERN_ERR, "can't mount with "
4656 "both data=journal and dax");
4657 err = -EINVAL;
4658 goto restore_opts;
4659 }
4660 }
4661
4662 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4663 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4664 "dax flag with busy inodes while remounting");
4665 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4666 }
4667
4668 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4669 ext4_abort(sb, "Abort forced by user");
4670
4671 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4672 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4673
4674 es = sbi->s_es;
4675
4676 if (sbi->s_journal) {
4677 ext4_init_journal_params(sb, sbi->s_journal);
4678 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4679 }
4680
4681 if (*flags & MS_LAZYTIME)
4682 sb->s_flags |= MS_LAZYTIME;
4683
4684 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4685 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4686 err = -EROFS;
4687 goto restore_opts;
4688 }
4689
4690 if (*flags & MS_RDONLY) {
4691 err = sync_filesystem(sb);
4692 if (err < 0)
4693 goto restore_opts;
4694 err = dquot_suspend(sb, -1);
4695 if (err < 0)
4696 goto restore_opts;
4697
4698 /*
4699 * First of all, the unconditional stuff we have to do
4700 * to disable replay of the journal when we next remount
4701 */
4702 sb->s_flags |= MS_RDONLY;
4703
4704 /*
4705 * OK, test if we are remounting a valid rw partition
4706 * readonly, and if so set the rdonly flag and then
4707 * mark the partition as valid again.
4708 */
4709 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4710 (sbi->s_mount_state & EXT4_VALID_FS))
4711 es->s_state = cpu_to_le16(sbi->s_mount_state);
4712
4713 if (sbi->s_journal)
4714 ext4_mark_recovery_complete(sb, es);
4715 } else {
4716 /* Make sure we can mount this feature set readwrite */
4717 if (ext4_has_feature_readonly(sb) ||
4718 !ext4_feature_set_ok(sb, 0)) {
4719 err = -EROFS;
4720 goto restore_opts;
4721 }
4722 /*
4723 * Make sure the group descriptor checksums
4724 * are sane. If they aren't, refuse to remount r/w.
4725 */
4726 for (g = 0; g < sbi->s_groups_count; g++) {
4727 struct ext4_group_desc *gdp =
4728 ext4_get_group_desc(sb, g, NULL);
4729
4730 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4731 ext4_msg(sb, KERN_ERR,
4732 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4733 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4734 le16_to_cpu(gdp->bg_checksum));
4735 err = -EFSBADCRC;
4736 goto restore_opts;
4737 }
4738 }
4739
4740 /*
4741 * If we have an unprocessed orphan list hanging
4742 * around from a previously readonly bdev mount,
4743 * require a full umount/remount for now.
4744 */
4745 if (es->s_last_orphan) {
4746 ext4_msg(sb, KERN_WARNING, "Couldn't "
4747 "remount RDWR because of unprocessed "
4748 "orphan inode list. Please "
4749 "umount/remount instead");
4750 err = -EINVAL;
4751 goto restore_opts;
4752 }
4753
4754 /*
4755 * Mounting a RDONLY partition read-write, so reread
4756 * and store the current valid flag. (It may have
4757 * been changed by e2fsck since we originally mounted
4758 * the partition.)
4759 */
4760 if (sbi->s_journal)
4761 ext4_clear_journal_err(sb, es);
4762 sbi->s_mount_state = le16_to_cpu(es->s_state);
4763 if (!ext4_setup_super(sb, es, 0))
4764 sb->s_flags &= ~MS_RDONLY;
4765 if (ext4_has_feature_mmp(sb))
4766 if (ext4_multi_mount_protect(sb,
4767 le64_to_cpu(es->s_mmp_block))) {
4768 err = -EROFS;
4769 goto restore_opts;
4770 }
4771 enable_quota = 1;
4772 }
4773 }
4774
4775 /*
4776 * Reinitialize lazy itable initialization thread based on
4777 * current settings
4778 */
4779 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4780 ext4_unregister_li_request(sb);
4781 else {
4782 ext4_group_t first_not_zeroed;
4783 first_not_zeroed = ext4_has_uninit_itable(sb);
4784 ext4_register_li_request(sb, first_not_zeroed);
4785 }
4786
4787 ext4_setup_system_zone(sb);
4788 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4789 ext4_commit_super(sb, 1);
4790
4791 #ifdef CONFIG_QUOTA
4792 /* Release old quota file names */
4793 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4794 kfree(old_opts.s_qf_names[i]);
4795 if (enable_quota) {
4796 if (sb_any_quota_suspended(sb))
4797 dquot_resume(sb, -1);
4798 else if (ext4_has_feature_quota(sb)) {
4799 err = ext4_enable_quotas(sb);
4800 if (err)
4801 goto restore_opts;
4802 }
4803 }
4804 #endif
4805
4806 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
4807 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4808 kfree(orig_data);
4809 return 0;
4810
4811 restore_opts:
4812 sb->s_flags = old_sb_flags;
4813 sbi->s_mount_opt = old_opts.s_mount_opt;
4814 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4815 sbi->s_resuid = old_opts.s_resuid;
4816 sbi->s_resgid = old_opts.s_resgid;
4817 sbi->s_commit_interval = old_opts.s_commit_interval;
4818 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4819 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4820 #ifdef CONFIG_QUOTA
4821 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4822 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
4823 kfree(sbi->s_qf_names[i]);
4824 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4825 }
4826 #endif
4827 kfree(orig_data);
4828 return err;
4829 }
4830
4831 #ifdef CONFIG_QUOTA
4832 static int ext4_statfs_project(struct super_block *sb,
4833 kprojid_t projid, struct kstatfs *buf)
4834 {
4835 struct kqid qid;
4836 struct dquot *dquot;
4837 u64 limit;
4838 u64 curblock;
4839
4840 qid = make_kqid_projid(projid);
4841 dquot = dqget(sb, qid);
4842 if (IS_ERR(dquot))
4843 return PTR_ERR(dquot);
4844 spin_lock(&dq_data_lock);
4845
4846 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
4847 dquot->dq_dqb.dqb_bsoftlimit :
4848 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
4849 if (limit && buf->f_blocks > limit) {
4850 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
4851 buf->f_blocks = limit;
4852 buf->f_bfree = buf->f_bavail =
4853 (buf->f_blocks > curblock) ?
4854 (buf->f_blocks - curblock) : 0;
4855 }
4856
4857 limit = dquot->dq_dqb.dqb_isoftlimit ?
4858 dquot->dq_dqb.dqb_isoftlimit :
4859 dquot->dq_dqb.dqb_ihardlimit;
4860 if (limit && buf->f_files > limit) {
4861 buf->f_files = limit;
4862 buf->f_ffree =
4863 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
4864 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
4865 }
4866
4867 spin_unlock(&dq_data_lock);
4868 dqput(dquot);
4869 return 0;
4870 }
4871 #endif
4872
4873 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4874 {
4875 struct super_block *sb = dentry->d_sb;
4876 struct ext4_sb_info *sbi = EXT4_SB(sb);
4877 struct ext4_super_block *es = sbi->s_es;
4878 ext4_fsblk_t overhead = 0, resv_blocks;
4879 u64 fsid;
4880 s64 bfree;
4881 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4882
4883 if (!test_opt(sb, MINIX_DF))
4884 overhead = sbi->s_overhead;
4885
4886 buf->f_type = EXT4_SUPER_MAGIC;
4887 buf->f_bsize = sb->s_blocksize;
4888 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4889 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4890 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4891 /* prevent underflow in case that few free space is available */
4892 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4893 buf->f_bavail = buf->f_bfree -
4894 (ext4_r_blocks_count(es) + resv_blocks);
4895 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4896 buf->f_bavail = 0;
4897 buf->f_files = le32_to_cpu(es->s_inodes_count);
4898 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4899 buf->f_namelen = EXT4_NAME_LEN;
4900 fsid = le64_to_cpup((void *)es->s_uuid) ^
4901 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4902 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4903 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4904
4905 #ifdef CONFIG_QUOTA
4906 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
4907 sb_has_quota_limits_enabled(sb, PRJQUOTA))
4908 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
4909 #endif
4910 return 0;
4911 }
4912
4913 /* Helper function for writing quotas on sync - we need to start transaction
4914 * before quota file is locked for write. Otherwise the are possible deadlocks:
4915 * Process 1 Process 2
4916 * ext4_create() quota_sync()
4917 * jbd2_journal_start() write_dquot()
4918 * dquot_initialize() down(dqio_mutex)
4919 * down(dqio_mutex) jbd2_journal_start()
4920 *
4921 */
4922
4923 #ifdef CONFIG_QUOTA
4924
4925 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4926 {
4927 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4928 }
4929
4930 static int ext4_write_dquot(struct dquot *dquot)
4931 {
4932 int ret, err;
4933 handle_t *handle;
4934 struct inode *inode;
4935
4936 inode = dquot_to_inode(dquot);
4937 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4938 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4939 if (IS_ERR(handle))
4940 return PTR_ERR(handle);
4941 ret = dquot_commit(dquot);
4942 err = ext4_journal_stop(handle);
4943 if (!ret)
4944 ret = err;
4945 return ret;
4946 }
4947
4948 static int ext4_acquire_dquot(struct dquot *dquot)
4949 {
4950 int ret, err;
4951 handle_t *handle;
4952
4953 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4954 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4955 if (IS_ERR(handle))
4956 return PTR_ERR(handle);
4957 ret = dquot_acquire(dquot);
4958 err = ext4_journal_stop(handle);
4959 if (!ret)
4960 ret = err;
4961 return ret;
4962 }
4963
4964 static int ext4_release_dquot(struct dquot *dquot)
4965 {
4966 int ret, err;
4967 handle_t *handle;
4968
4969 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4970 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4971 if (IS_ERR(handle)) {
4972 /* Release dquot anyway to avoid endless cycle in dqput() */
4973 dquot_release(dquot);
4974 return PTR_ERR(handle);
4975 }
4976 ret = dquot_release(dquot);
4977 err = ext4_journal_stop(handle);
4978 if (!ret)
4979 ret = err;
4980 return ret;
4981 }
4982
4983 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4984 {
4985 struct super_block *sb = dquot->dq_sb;
4986 struct ext4_sb_info *sbi = EXT4_SB(sb);
4987
4988 /* Are we journaling quotas? */
4989 if (ext4_has_feature_quota(sb) ||
4990 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4991 dquot_mark_dquot_dirty(dquot);
4992 return ext4_write_dquot(dquot);
4993 } else {
4994 return dquot_mark_dquot_dirty(dquot);
4995 }
4996 }
4997
4998 static int ext4_write_info(struct super_block *sb, int type)
4999 {
5000 int ret, err;
5001 handle_t *handle;
5002
5003 /* Data block + inode block */
5004 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5005 if (IS_ERR(handle))
5006 return PTR_ERR(handle);
5007 ret = dquot_commit_info(sb, type);
5008 err = ext4_journal_stop(handle);
5009 if (!ret)
5010 ret = err;
5011 return ret;
5012 }
5013
5014 /*
5015 * Turn on quotas during mount time - we need to find
5016 * the quota file and such...
5017 */
5018 static int ext4_quota_on_mount(struct super_block *sb, int type)
5019 {
5020 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5021 EXT4_SB(sb)->s_jquota_fmt, type);
5022 }
5023
5024 /*
5025 * Standard function to be called on quota_on
5026 */
5027 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5028 struct path *path)
5029 {
5030 int err;
5031
5032 if (!test_opt(sb, QUOTA))
5033 return -EINVAL;
5034
5035 /* Quotafile not on the same filesystem? */
5036 if (path->dentry->d_sb != sb)
5037 return -EXDEV;
5038 /* Journaling quota? */
5039 if (EXT4_SB(sb)->s_qf_names[type]) {
5040 /* Quotafile not in fs root? */
5041 if (path->dentry->d_parent != sb->s_root)
5042 ext4_msg(sb, KERN_WARNING,
5043 "Quota file not on filesystem root. "
5044 "Journaled quota will not work");
5045 }
5046
5047 /*
5048 * When we journal data on quota file, we have to flush journal to see
5049 * all updates to the file when we bypass pagecache...
5050 */
5051 if (EXT4_SB(sb)->s_journal &&
5052 ext4_should_journal_data(d_inode(path->dentry))) {
5053 /*
5054 * We don't need to lock updates but journal_flush() could
5055 * otherwise be livelocked...
5056 */
5057 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5058 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5059 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5060 if (err)
5061 return err;
5062 }
5063
5064 return dquot_quota_on(sb, type, format_id, path);
5065 }
5066
5067 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5068 unsigned int flags)
5069 {
5070 int err;
5071 struct inode *qf_inode;
5072 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5073 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5074 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5075 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5076 };
5077
5078 BUG_ON(!ext4_has_feature_quota(sb));
5079
5080 if (!qf_inums[type])
5081 return -EPERM;
5082
5083 qf_inode = ext4_iget(sb, qf_inums[type]);
5084 if (IS_ERR(qf_inode)) {
5085 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5086 return PTR_ERR(qf_inode);
5087 }
5088
5089 /* Don't account quota for quota files to avoid recursion */
5090 qf_inode->i_flags |= S_NOQUOTA;
5091 err = dquot_enable(qf_inode, type, format_id, flags);
5092 iput(qf_inode);
5093
5094 return err;
5095 }
5096
5097 /* Enable usage tracking for all quota types. */
5098 static int ext4_enable_quotas(struct super_block *sb)
5099 {
5100 int type, err = 0;
5101 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5102 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5103 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5104 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5105 };
5106
5107 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5108 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5109 if (qf_inums[type]) {
5110 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5111 DQUOT_USAGE_ENABLED);
5112 if (err) {
5113 ext4_warning(sb,
5114 "Failed to enable quota tracking "
5115 "(type=%d, err=%d). Please run "
5116 "e2fsck to fix.", type, err);
5117 return err;
5118 }
5119 }
5120 }
5121 return 0;
5122 }
5123
5124 static int ext4_quota_off(struct super_block *sb, int type)
5125 {
5126 struct inode *inode = sb_dqopt(sb)->files[type];
5127 handle_t *handle;
5128
5129 /* Force all delayed allocation blocks to be allocated.
5130 * Caller already holds s_umount sem */
5131 if (test_opt(sb, DELALLOC))
5132 sync_filesystem(sb);
5133
5134 if (!inode)
5135 goto out;
5136
5137 /* Update modification times of quota files when userspace can
5138 * start looking at them */
5139 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5140 if (IS_ERR(handle))
5141 goto out;
5142 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5143 ext4_mark_inode_dirty(handle, inode);
5144 ext4_journal_stop(handle);
5145
5146 out:
5147 return dquot_quota_off(sb, type);
5148 }
5149
5150 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5151 * acquiring the locks... As quota files are never truncated and quota code
5152 * itself serializes the operations (and no one else should touch the files)
5153 * we don't have to be afraid of races */
5154 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5155 size_t len, loff_t off)
5156 {
5157 struct inode *inode = sb_dqopt(sb)->files[type];
5158 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5159 int offset = off & (sb->s_blocksize - 1);
5160 int tocopy;
5161 size_t toread;
5162 struct buffer_head *bh;
5163 loff_t i_size = i_size_read(inode);
5164
5165 if (off > i_size)
5166 return 0;
5167 if (off+len > i_size)
5168 len = i_size-off;
5169 toread = len;
5170 while (toread > 0) {
5171 tocopy = sb->s_blocksize - offset < toread ?
5172 sb->s_blocksize - offset : toread;
5173 bh = ext4_bread(NULL, inode, blk, 0);
5174 if (IS_ERR(bh))
5175 return PTR_ERR(bh);
5176 if (!bh) /* A hole? */
5177 memset(data, 0, tocopy);
5178 else
5179 memcpy(data, bh->b_data+offset, tocopy);
5180 brelse(bh);
5181 offset = 0;
5182 toread -= tocopy;
5183 data += tocopy;
5184 blk++;
5185 }
5186 return len;
5187 }
5188
5189 /* Write to quotafile (we know the transaction is already started and has
5190 * enough credits) */
5191 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5192 const char *data, size_t len, loff_t off)
5193 {
5194 struct inode *inode = sb_dqopt(sb)->files[type];
5195 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5196 int err, offset = off & (sb->s_blocksize - 1);
5197 int retries = 0;
5198 struct buffer_head *bh;
5199 handle_t *handle = journal_current_handle();
5200
5201 if (EXT4_SB(sb)->s_journal && !handle) {
5202 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5203 " cancelled because transaction is not started",
5204 (unsigned long long)off, (unsigned long long)len);
5205 return -EIO;
5206 }
5207 /*
5208 * Since we account only one data block in transaction credits,
5209 * then it is impossible to cross a block boundary.
5210 */
5211 if (sb->s_blocksize - offset < len) {
5212 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5213 " cancelled because not block aligned",
5214 (unsigned long long)off, (unsigned long long)len);
5215 return -EIO;
5216 }
5217
5218 do {
5219 bh = ext4_bread(handle, inode, blk,
5220 EXT4_GET_BLOCKS_CREATE |
5221 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5222 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5223 ext4_should_retry_alloc(inode->i_sb, &retries));
5224 if (IS_ERR(bh))
5225 return PTR_ERR(bh);
5226 if (!bh)
5227 goto out;
5228 BUFFER_TRACE(bh, "get write access");
5229 err = ext4_journal_get_write_access(handle, bh);
5230 if (err) {
5231 brelse(bh);
5232 return err;
5233 }
5234 lock_buffer(bh);
5235 memcpy(bh->b_data+offset, data, len);
5236 flush_dcache_page(bh->b_page);
5237 unlock_buffer(bh);
5238 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5239 brelse(bh);
5240 out:
5241 if (inode->i_size < off + len) {
5242 i_size_write(inode, off + len);
5243 EXT4_I(inode)->i_disksize = inode->i_size;
5244 ext4_mark_inode_dirty(handle, inode);
5245 }
5246 return len;
5247 }
5248
5249 #endif
5250
5251 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5252 const char *dev_name, void *data)
5253 {
5254 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5255 }
5256
5257 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5258 static inline void register_as_ext2(void)
5259 {
5260 int err = register_filesystem(&ext2_fs_type);
5261 if (err)
5262 printk(KERN_WARNING
5263 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5264 }
5265
5266 static inline void unregister_as_ext2(void)
5267 {
5268 unregister_filesystem(&ext2_fs_type);
5269 }
5270
5271 static inline int ext2_feature_set_ok(struct super_block *sb)
5272 {
5273 if (ext4_has_unknown_ext2_incompat_features(sb))
5274 return 0;
5275 if (sb->s_flags & MS_RDONLY)
5276 return 1;
5277 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5278 return 0;
5279 return 1;
5280 }
5281 #else
5282 static inline void register_as_ext2(void) { }
5283 static inline void unregister_as_ext2(void) { }
5284 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5285 #endif
5286
5287 static inline void register_as_ext3(void)
5288 {
5289 int err = register_filesystem(&ext3_fs_type);
5290 if (err)
5291 printk(KERN_WARNING
5292 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5293 }
5294
5295 static inline void unregister_as_ext3(void)
5296 {
5297 unregister_filesystem(&ext3_fs_type);
5298 }
5299
5300 static inline int ext3_feature_set_ok(struct super_block *sb)
5301 {
5302 if (ext4_has_unknown_ext3_incompat_features(sb))
5303 return 0;
5304 if (!ext4_has_feature_journal(sb))
5305 return 0;
5306 if (sb->s_flags & MS_RDONLY)
5307 return 1;
5308 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5309 return 0;
5310 return 1;
5311 }
5312
5313 static struct file_system_type ext4_fs_type = {
5314 .owner = THIS_MODULE,
5315 .name = "ext4",
5316 .mount = ext4_mount,
5317 .kill_sb = kill_block_super,
5318 .fs_flags = FS_REQUIRES_DEV,
5319 };
5320 MODULE_ALIAS_FS("ext4");
5321
5322 /* Shared across all ext4 file systems */
5323 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5324 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5325
5326 static int __init ext4_init_fs(void)
5327 {
5328 int i, err;
5329
5330 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5331 ext4_li_info = NULL;
5332 mutex_init(&ext4_li_mtx);
5333
5334 /* Build-time check for flags consistency */
5335 ext4_check_flag_values();
5336
5337 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5338 mutex_init(&ext4__aio_mutex[i]);
5339 init_waitqueue_head(&ext4__ioend_wq[i]);
5340 }
5341
5342 err = ext4_init_es();
5343 if (err)
5344 return err;
5345
5346 err = ext4_init_pageio();
5347 if (err)
5348 goto out5;
5349
5350 err = ext4_init_system_zone();
5351 if (err)
5352 goto out4;
5353
5354 err = ext4_init_sysfs();
5355 if (err)
5356 goto out3;
5357
5358 err = ext4_init_mballoc();
5359 if (err)
5360 goto out2;
5361 else
5362 ext4_mballoc_ready = 1;
5363 err = init_inodecache();
5364 if (err)
5365 goto out1;
5366 register_as_ext3();
5367 register_as_ext2();
5368 err = register_filesystem(&ext4_fs_type);
5369 if (err)
5370 goto out;
5371
5372 return 0;
5373 out:
5374 unregister_as_ext2();
5375 unregister_as_ext3();
5376 destroy_inodecache();
5377 out1:
5378 ext4_mballoc_ready = 0;
5379 ext4_exit_mballoc();
5380 out2:
5381 ext4_exit_sysfs();
5382 out3:
5383 ext4_exit_system_zone();
5384 out4:
5385 ext4_exit_pageio();
5386 out5:
5387 ext4_exit_es();
5388
5389 return err;
5390 }
5391
5392 static void __exit ext4_exit_fs(void)
5393 {
5394 ext4_exit_crypto();
5395 ext4_destroy_lazyinit_thread();
5396 unregister_as_ext2();
5397 unregister_as_ext3();
5398 unregister_filesystem(&ext4_fs_type);
5399 destroy_inodecache();
5400 ext4_exit_mballoc();
5401 ext4_exit_sysfs();
5402 ext4_exit_system_zone();
5403 ext4_exit_pageio();
5404 ext4_exit_es();
5405 }
5406
5407 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5408 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5409 MODULE_LICENSE("GPL");
5410 module_init(ext4_init_fs)
5411 module_exit(ext4_exit_fs)
This page took 0.139582 seconds and 6 git commands to generate.