Merge tag 'ktest-v3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[deliverable/linux.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62 static int ext4_mballoc_ready;
63
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
86
87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
88 static struct file_system_type ext2_fs_type = {
89 .owner = THIS_MODULE,
90 .name = "ext2",
91 .mount = ext4_mount,
92 .kill_sb = kill_block_super,
93 .fs_flags = FS_REQUIRES_DEV,
94 };
95 MODULE_ALIAS_FS("ext2");
96 MODULE_ALIAS("ext2");
97 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
98 #else
99 #define IS_EXT2_SB(sb) (0)
100 #endif
101
102
103 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
104 static struct file_system_type ext3_fs_type = {
105 .owner = THIS_MODULE,
106 .name = "ext3",
107 .mount = ext4_mount,
108 .kill_sb = kill_block_super,
109 .fs_flags = FS_REQUIRES_DEV,
110 };
111 MODULE_ALIAS_FS("ext3");
112 MODULE_ALIAS("ext3");
113 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
114 #else
115 #define IS_EXT3_SB(sb) (0)
116 #endif
117
118 static int ext4_verify_csum_type(struct super_block *sb,
119 struct ext4_super_block *es)
120 {
121 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
122 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
123 return 1;
124
125 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
126 }
127
128 static __le32 ext4_superblock_csum(struct super_block *sb,
129 struct ext4_super_block *es)
130 {
131 struct ext4_sb_info *sbi = EXT4_SB(sb);
132 int offset = offsetof(struct ext4_super_block, s_checksum);
133 __u32 csum;
134
135 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
136
137 return cpu_to_le32(csum);
138 }
139
140 static int ext4_superblock_csum_verify(struct super_block *sb,
141 struct ext4_super_block *es)
142 {
143 if (!ext4_has_metadata_csum(sb))
144 return 1;
145
146 return es->s_checksum == ext4_superblock_csum(sb, es);
147 }
148
149 void ext4_superblock_csum_set(struct super_block *sb)
150 {
151 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
152
153 if (!ext4_has_metadata_csum(sb))
154 return;
155
156 es->s_checksum = ext4_superblock_csum(sb, es);
157 }
158
159 void *ext4_kvmalloc(size_t size, gfp_t flags)
160 {
161 void *ret;
162
163 ret = kmalloc(size, flags | __GFP_NOWARN);
164 if (!ret)
165 ret = __vmalloc(size, flags, PAGE_KERNEL);
166 return ret;
167 }
168
169 void *ext4_kvzalloc(size_t size, gfp_t flags)
170 {
171 void *ret;
172
173 ret = kzalloc(size, flags | __GFP_NOWARN);
174 if (!ret)
175 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
176 return ret;
177 }
178
179 void ext4_kvfree(void *ptr)
180 {
181 if (is_vmalloc_addr(ptr))
182 vfree(ptr);
183 else
184 kfree(ptr);
185
186 }
187
188 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
189 struct ext4_group_desc *bg)
190 {
191 return le32_to_cpu(bg->bg_block_bitmap_lo) |
192 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
193 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
194 }
195
196 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
197 struct ext4_group_desc *bg)
198 {
199 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
200 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
201 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
202 }
203
204 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
205 struct ext4_group_desc *bg)
206 {
207 return le32_to_cpu(bg->bg_inode_table_lo) |
208 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
209 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
210 }
211
212 __u32 ext4_free_group_clusters(struct super_block *sb,
213 struct ext4_group_desc *bg)
214 {
215 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
216 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
217 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
218 }
219
220 __u32 ext4_free_inodes_count(struct super_block *sb,
221 struct ext4_group_desc *bg)
222 {
223 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
224 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
225 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
226 }
227
228 __u32 ext4_used_dirs_count(struct super_block *sb,
229 struct ext4_group_desc *bg)
230 {
231 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
232 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
233 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
234 }
235
236 __u32 ext4_itable_unused_count(struct super_block *sb,
237 struct ext4_group_desc *bg)
238 {
239 return le16_to_cpu(bg->bg_itable_unused_lo) |
240 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
241 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
242 }
243
244 void ext4_block_bitmap_set(struct super_block *sb,
245 struct ext4_group_desc *bg, ext4_fsblk_t blk)
246 {
247 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
248 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
249 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
250 }
251
252 void ext4_inode_bitmap_set(struct super_block *sb,
253 struct ext4_group_desc *bg, ext4_fsblk_t blk)
254 {
255 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
256 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
257 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
258 }
259
260 void ext4_inode_table_set(struct super_block *sb,
261 struct ext4_group_desc *bg, ext4_fsblk_t blk)
262 {
263 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
264 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
265 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
266 }
267
268 void ext4_free_group_clusters_set(struct super_block *sb,
269 struct ext4_group_desc *bg, __u32 count)
270 {
271 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
272 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
273 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
274 }
275
276 void ext4_free_inodes_set(struct super_block *sb,
277 struct ext4_group_desc *bg, __u32 count)
278 {
279 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
280 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
281 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
282 }
283
284 void ext4_used_dirs_set(struct super_block *sb,
285 struct ext4_group_desc *bg, __u32 count)
286 {
287 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
288 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
289 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
290 }
291
292 void ext4_itable_unused_set(struct super_block *sb,
293 struct ext4_group_desc *bg, __u32 count)
294 {
295 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
296 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
297 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
298 }
299
300
301 static void __save_error_info(struct super_block *sb, const char *func,
302 unsigned int line)
303 {
304 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
305
306 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
307 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
308 es->s_last_error_time = cpu_to_le32(get_seconds());
309 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
310 es->s_last_error_line = cpu_to_le32(line);
311 if (!es->s_first_error_time) {
312 es->s_first_error_time = es->s_last_error_time;
313 strncpy(es->s_first_error_func, func,
314 sizeof(es->s_first_error_func));
315 es->s_first_error_line = cpu_to_le32(line);
316 es->s_first_error_ino = es->s_last_error_ino;
317 es->s_first_error_block = es->s_last_error_block;
318 }
319 /*
320 * Start the daily error reporting function if it hasn't been
321 * started already
322 */
323 if (!es->s_error_count)
324 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
325 le32_add_cpu(&es->s_error_count, 1);
326 }
327
328 static void save_error_info(struct super_block *sb, const char *func,
329 unsigned int line)
330 {
331 __save_error_info(sb, func, line);
332 ext4_commit_super(sb, 1);
333 }
334
335 /*
336 * The del_gendisk() function uninitializes the disk-specific data
337 * structures, including the bdi structure, without telling anyone
338 * else. Once this happens, any attempt to call mark_buffer_dirty()
339 * (for example, by ext4_commit_super), will cause a kernel OOPS.
340 * This is a kludge to prevent these oops until we can put in a proper
341 * hook in del_gendisk() to inform the VFS and file system layers.
342 */
343 static int block_device_ejected(struct super_block *sb)
344 {
345 struct inode *bd_inode = sb->s_bdev->bd_inode;
346 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
347
348 return bdi->dev == NULL;
349 }
350
351 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
352 {
353 struct super_block *sb = journal->j_private;
354 struct ext4_sb_info *sbi = EXT4_SB(sb);
355 int error = is_journal_aborted(journal);
356 struct ext4_journal_cb_entry *jce;
357
358 BUG_ON(txn->t_state == T_FINISHED);
359 spin_lock(&sbi->s_md_lock);
360 while (!list_empty(&txn->t_private_list)) {
361 jce = list_entry(txn->t_private_list.next,
362 struct ext4_journal_cb_entry, jce_list);
363 list_del_init(&jce->jce_list);
364 spin_unlock(&sbi->s_md_lock);
365 jce->jce_func(sb, jce, error);
366 spin_lock(&sbi->s_md_lock);
367 }
368 spin_unlock(&sbi->s_md_lock);
369 }
370
371 /* Deal with the reporting of failure conditions on a filesystem such as
372 * inconsistencies detected or read IO failures.
373 *
374 * On ext2, we can store the error state of the filesystem in the
375 * superblock. That is not possible on ext4, because we may have other
376 * write ordering constraints on the superblock which prevent us from
377 * writing it out straight away; and given that the journal is about to
378 * be aborted, we can't rely on the current, or future, transactions to
379 * write out the superblock safely.
380 *
381 * We'll just use the jbd2_journal_abort() error code to record an error in
382 * the journal instead. On recovery, the journal will complain about
383 * that error until we've noted it down and cleared it.
384 */
385
386 static void ext4_handle_error(struct super_block *sb)
387 {
388 if (sb->s_flags & MS_RDONLY)
389 return;
390
391 if (!test_opt(sb, ERRORS_CONT)) {
392 journal_t *journal = EXT4_SB(sb)->s_journal;
393
394 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
395 if (journal)
396 jbd2_journal_abort(journal, -EIO);
397 }
398 if (test_opt(sb, ERRORS_RO)) {
399 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
400 /*
401 * Make sure updated value of ->s_mount_flags will be visible
402 * before ->s_flags update
403 */
404 smp_wmb();
405 sb->s_flags |= MS_RDONLY;
406 }
407 if (test_opt(sb, ERRORS_PANIC))
408 panic("EXT4-fs (device %s): panic forced after error\n",
409 sb->s_id);
410 }
411
412 #define ext4_error_ratelimit(sb) \
413 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
414 "EXT4-fs error")
415
416 void __ext4_error(struct super_block *sb, const char *function,
417 unsigned int line, const char *fmt, ...)
418 {
419 struct va_format vaf;
420 va_list args;
421
422 if (ext4_error_ratelimit(sb)) {
423 va_start(args, fmt);
424 vaf.fmt = fmt;
425 vaf.va = &args;
426 printk(KERN_CRIT
427 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
428 sb->s_id, function, line, current->comm, &vaf);
429 va_end(args);
430 }
431 save_error_info(sb, function, line);
432 ext4_handle_error(sb);
433 }
434
435 void __ext4_error_inode(struct inode *inode, const char *function,
436 unsigned int line, ext4_fsblk_t block,
437 const char *fmt, ...)
438 {
439 va_list args;
440 struct va_format vaf;
441 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
442
443 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
444 es->s_last_error_block = cpu_to_le64(block);
445 if (ext4_error_ratelimit(inode->i_sb)) {
446 va_start(args, fmt);
447 vaf.fmt = fmt;
448 vaf.va = &args;
449 if (block)
450 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
451 "inode #%lu: block %llu: comm %s: %pV\n",
452 inode->i_sb->s_id, function, line, inode->i_ino,
453 block, current->comm, &vaf);
454 else
455 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
456 "inode #%lu: comm %s: %pV\n",
457 inode->i_sb->s_id, function, line, inode->i_ino,
458 current->comm, &vaf);
459 va_end(args);
460 }
461 save_error_info(inode->i_sb, function, line);
462 ext4_handle_error(inode->i_sb);
463 }
464
465 void __ext4_error_file(struct file *file, const char *function,
466 unsigned int line, ext4_fsblk_t block,
467 const char *fmt, ...)
468 {
469 va_list args;
470 struct va_format vaf;
471 struct ext4_super_block *es;
472 struct inode *inode = file_inode(file);
473 char pathname[80], *path;
474
475 es = EXT4_SB(inode->i_sb)->s_es;
476 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
477 if (ext4_error_ratelimit(inode->i_sb)) {
478 path = d_path(&(file->f_path), pathname, sizeof(pathname));
479 if (IS_ERR(path))
480 path = "(unknown)";
481 va_start(args, fmt);
482 vaf.fmt = fmt;
483 vaf.va = &args;
484 if (block)
485 printk(KERN_CRIT
486 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
487 "block %llu: comm %s: path %s: %pV\n",
488 inode->i_sb->s_id, function, line, inode->i_ino,
489 block, current->comm, path, &vaf);
490 else
491 printk(KERN_CRIT
492 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
493 "comm %s: path %s: %pV\n",
494 inode->i_sb->s_id, function, line, inode->i_ino,
495 current->comm, path, &vaf);
496 va_end(args);
497 }
498 save_error_info(inode->i_sb, function, line);
499 ext4_handle_error(inode->i_sb);
500 }
501
502 const char *ext4_decode_error(struct super_block *sb, int errno,
503 char nbuf[16])
504 {
505 char *errstr = NULL;
506
507 switch (errno) {
508 case -EIO:
509 errstr = "IO failure";
510 break;
511 case -ENOMEM:
512 errstr = "Out of memory";
513 break;
514 case -EROFS:
515 if (!sb || (EXT4_SB(sb)->s_journal &&
516 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
517 errstr = "Journal has aborted";
518 else
519 errstr = "Readonly filesystem";
520 break;
521 default:
522 /* If the caller passed in an extra buffer for unknown
523 * errors, textualise them now. Else we just return
524 * NULL. */
525 if (nbuf) {
526 /* Check for truncated error codes... */
527 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
528 errstr = nbuf;
529 }
530 break;
531 }
532
533 return errstr;
534 }
535
536 /* __ext4_std_error decodes expected errors from journaling functions
537 * automatically and invokes the appropriate error response. */
538
539 void __ext4_std_error(struct super_block *sb, const char *function,
540 unsigned int line, int errno)
541 {
542 char nbuf[16];
543 const char *errstr;
544
545 /* Special case: if the error is EROFS, and we're not already
546 * inside a transaction, then there's really no point in logging
547 * an error. */
548 if (errno == -EROFS && journal_current_handle() == NULL &&
549 (sb->s_flags & MS_RDONLY))
550 return;
551
552 if (ext4_error_ratelimit(sb)) {
553 errstr = ext4_decode_error(sb, errno, nbuf);
554 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
555 sb->s_id, function, line, errstr);
556 }
557
558 save_error_info(sb, function, line);
559 ext4_handle_error(sb);
560 }
561
562 /*
563 * ext4_abort is a much stronger failure handler than ext4_error. The
564 * abort function may be used to deal with unrecoverable failures such
565 * as journal IO errors or ENOMEM at a critical moment in log management.
566 *
567 * We unconditionally force the filesystem into an ABORT|READONLY state,
568 * unless the error response on the fs has been set to panic in which
569 * case we take the easy way out and panic immediately.
570 */
571
572 void __ext4_abort(struct super_block *sb, const char *function,
573 unsigned int line, const char *fmt, ...)
574 {
575 va_list args;
576
577 save_error_info(sb, function, line);
578 va_start(args, fmt);
579 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
580 function, line);
581 vprintk(fmt, args);
582 printk("\n");
583 va_end(args);
584
585 if ((sb->s_flags & MS_RDONLY) == 0) {
586 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
587 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
588 /*
589 * Make sure updated value of ->s_mount_flags will be visible
590 * before ->s_flags update
591 */
592 smp_wmb();
593 sb->s_flags |= MS_RDONLY;
594 if (EXT4_SB(sb)->s_journal)
595 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
596 save_error_info(sb, function, line);
597 }
598 if (test_opt(sb, ERRORS_PANIC))
599 panic("EXT4-fs panic from previous error\n");
600 }
601
602 void __ext4_msg(struct super_block *sb,
603 const char *prefix, const char *fmt, ...)
604 {
605 struct va_format vaf;
606 va_list args;
607
608 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
609 return;
610
611 va_start(args, fmt);
612 vaf.fmt = fmt;
613 vaf.va = &args;
614 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
615 va_end(args);
616 }
617
618 void __ext4_warning(struct super_block *sb, const char *function,
619 unsigned int line, const char *fmt, ...)
620 {
621 struct va_format vaf;
622 va_list args;
623
624 if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
625 "EXT4-fs warning"))
626 return;
627
628 va_start(args, fmt);
629 vaf.fmt = fmt;
630 vaf.va = &args;
631 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
632 sb->s_id, function, line, &vaf);
633 va_end(args);
634 }
635
636 void __ext4_grp_locked_error(const char *function, unsigned int line,
637 struct super_block *sb, ext4_group_t grp,
638 unsigned long ino, ext4_fsblk_t block,
639 const char *fmt, ...)
640 __releases(bitlock)
641 __acquires(bitlock)
642 {
643 struct va_format vaf;
644 va_list args;
645 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
646
647 es->s_last_error_ino = cpu_to_le32(ino);
648 es->s_last_error_block = cpu_to_le64(block);
649 __save_error_info(sb, function, line);
650
651 if (ext4_error_ratelimit(sb)) {
652 va_start(args, fmt);
653 vaf.fmt = fmt;
654 vaf.va = &args;
655 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
656 sb->s_id, function, line, grp);
657 if (ino)
658 printk(KERN_CONT "inode %lu: ", ino);
659 if (block)
660 printk(KERN_CONT "block %llu:",
661 (unsigned long long) block);
662 printk(KERN_CONT "%pV\n", &vaf);
663 va_end(args);
664 }
665
666 if (test_opt(sb, ERRORS_CONT)) {
667 ext4_commit_super(sb, 0);
668 return;
669 }
670
671 ext4_unlock_group(sb, grp);
672 ext4_handle_error(sb);
673 /*
674 * We only get here in the ERRORS_RO case; relocking the group
675 * may be dangerous, but nothing bad will happen since the
676 * filesystem will have already been marked read/only and the
677 * journal has been aborted. We return 1 as a hint to callers
678 * who might what to use the return value from
679 * ext4_grp_locked_error() to distinguish between the
680 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
681 * aggressively from the ext4 function in question, with a
682 * more appropriate error code.
683 */
684 ext4_lock_group(sb, grp);
685 return;
686 }
687
688 void ext4_update_dynamic_rev(struct super_block *sb)
689 {
690 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
691
692 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
693 return;
694
695 ext4_warning(sb,
696 "updating to rev %d because of new feature flag, "
697 "running e2fsck is recommended",
698 EXT4_DYNAMIC_REV);
699
700 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
701 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
702 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
703 /* leave es->s_feature_*compat flags alone */
704 /* es->s_uuid will be set by e2fsck if empty */
705
706 /*
707 * The rest of the superblock fields should be zero, and if not it
708 * means they are likely already in use, so leave them alone. We
709 * can leave it up to e2fsck to clean up any inconsistencies there.
710 */
711 }
712
713 /*
714 * Open the external journal device
715 */
716 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
717 {
718 struct block_device *bdev;
719 char b[BDEVNAME_SIZE];
720
721 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
722 if (IS_ERR(bdev))
723 goto fail;
724 return bdev;
725
726 fail:
727 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
728 __bdevname(dev, b), PTR_ERR(bdev));
729 return NULL;
730 }
731
732 /*
733 * Release the journal device
734 */
735 static void ext4_blkdev_put(struct block_device *bdev)
736 {
737 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
738 }
739
740 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
741 {
742 struct block_device *bdev;
743 bdev = sbi->journal_bdev;
744 if (bdev) {
745 ext4_blkdev_put(bdev);
746 sbi->journal_bdev = NULL;
747 }
748 }
749
750 static inline struct inode *orphan_list_entry(struct list_head *l)
751 {
752 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
753 }
754
755 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
756 {
757 struct list_head *l;
758
759 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
760 le32_to_cpu(sbi->s_es->s_last_orphan));
761
762 printk(KERN_ERR "sb_info orphan list:\n");
763 list_for_each(l, &sbi->s_orphan) {
764 struct inode *inode = orphan_list_entry(l);
765 printk(KERN_ERR " "
766 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
767 inode->i_sb->s_id, inode->i_ino, inode,
768 inode->i_mode, inode->i_nlink,
769 NEXT_ORPHAN(inode));
770 }
771 }
772
773 static void ext4_put_super(struct super_block *sb)
774 {
775 struct ext4_sb_info *sbi = EXT4_SB(sb);
776 struct ext4_super_block *es = sbi->s_es;
777 int i, err;
778
779 ext4_unregister_li_request(sb);
780 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
781
782 flush_workqueue(sbi->rsv_conversion_wq);
783 destroy_workqueue(sbi->rsv_conversion_wq);
784
785 if (sbi->s_journal) {
786 err = jbd2_journal_destroy(sbi->s_journal);
787 sbi->s_journal = NULL;
788 if (err < 0)
789 ext4_abort(sb, "Couldn't clean up the journal");
790 }
791
792 ext4_es_unregister_shrinker(sbi);
793 del_timer_sync(&sbi->s_err_report);
794 ext4_release_system_zone(sb);
795 ext4_mb_release(sb);
796 ext4_ext_release(sb);
797 ext4_xattr_put_super(sb);
798
799 if (!(sb->s_flags & MS_RDONLY)) {
800 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
801 es->s_state = cpu_to_le16(sbi->s_mount_state);
802 }
803 if (!(sb->s_flags & MS_RDONLY))
804 ext4_commit_super(sb, 1);
805
806 if (sbi->s_proc) {
807 remove_proc_entry("options", sbi->s_proc);
808 remove_proc_entry(sb->s_id, ext4_proc_root);
809 }
810 kobject_del(&sbi->s_kobj);
811
812 for (i = 0; i < sbi->s_gdb_count; i++)
813 brelse(sbi->s_group_desc[i]);
814 ext4_kvfree(sbi->s_group_desc);
815 ext4_kvfree(sbi->s_flex_groups);
816 percpu_counter_destroy(&sbi->s_freeclusters_counter);
817 percpu_counter_destroy(&sbi->s_freeinodes_counter);
818 percpu_counter_destroy(&sbi->s_dirs_counter);
819 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
820 brelse(sbi->s_sbh);
821 #ifdef CONFIG_QUOTA
822 for (i = 0; i < EXT4_MAXQUOTAS; i++)
823 kfree(sbi->s_qf_names[i]);
824 #endif
825
826 /* Debugging code just in case the in-memory inode orphan list
827 * isn't empty. The on-disk one can be non-empty if we've
828 * detected an error and taken the fs readonly, but the
829 * in-memory list had better be clean by this point. */
830 if (!list_empty(&sbi->s_orphan))
831 dump_orphan_list(sb, sbi);
832 J_ASSERT(list_empty(&sbi->s_orphan));
833
834 invalidate_bdev(sb->s_bdev);
835 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
836 /*
837 * Invalidate the journal device's buffers. We don't want them
838 * floating about in memory - the physical journal device may
839 * hotswapped, and it breaks the `ro-after' testing code.
840 */
841 sync_blockdev(sbi->journal_bdev);
842 invalidate_bdev(sbi->journal_bdev);
843 ext4_blkdev_remove(sbi);
844 }
845 if (sbi->s_mb_cache) {
846 ext4_xattr_destroy_cache(sbi->s_mb_cache);
847 sbi->s_mb_cache = NULL;
848 }
849 if (sbi->s_mmp_tsk)
850 kthread_stop(sbi->s_mmp_tsk);
851 sb->s_fs_info = NULL;
852 /*
853 * Now that we are completely done shutting down the
854 * superblock, we need to actually destroy the kobject.
855 */
856 kobject_put(&sbi->s_kobj);
857 wait_for_completion(&sbi->s_kobj_unregister);
858 if (sbi->s_chksum_driver)
859 crypto_free_shash(sbi->s_chksum_driver);
860 kfree(sbi->s_blockgroup_lock);
861 kfree(sbi);
862 }
863
864 static struct kmem_cache *ext4_inode_cachep;
865
866 /*
867 * Called inside transaction, so use GFP_NOFS
868 */
869 static struct inode *ext4_alloc_inode(struct super_block *sb)
870 {
871 struct ext4_inode_info *ei;
872
873 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
874 if (!ei)
875 return NULL;
876
877 ei->vfs_inode.i_version = 1;
878 spin_lock_init(&ei->i_raw_lock);
879 INIT_LIST_HEAD(&ei->i_prealloc_list);
880 spin_lock_init(&ei->i_prealloc_lock);
881 ext4_es_init_tree(&ei->i_es_tree);
882 rwlock_init(&ei->i_es_lock);
883 INIT_LIST_HEAD(&ei->i_es_lru);
884 ei->i_es_all_nr = 0;
885 ei->i_es_lru_nr = 0;
886 ei->i_touch_when = 0;
887 ei->i_reserved_data_blocks = 0;
888 ei->i_reserved_meta_blocks = 0;
889 ei->i_allocated_meta_blocks = 0;
890 ei->i_da_metadata_calc_len = 0;
891 ei->i_da_metadata_calc_last_lblock = 0;
892 spin_lock_init(&(ei->i_block_reservation_lock));
893 #ifdef CONFIG_QUOTA
894 ei->i_reserved_quota = 0;
895 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
896 #endif
897 ei->jinode = NULL;
898 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
899 spin_lock_init(&ei->i_completed_io_lock);
900 ei->i_sync_tid = 0;
901 ei->i_datasync_tid = 0;
902 atomic_set(&ei->i_ioend_count, 0);
903 atomic_set(&ei->i_unwritten, 0);
904 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
905
906 return &ei->vfs_inode;
907 }
908
909 static int ext4_drop_inode(struct inode *inode)
910 {
911 int drop = generic_drop_inode(inode);
912
913 trace_ext4_drop_inode(inode, drop);
914 return drop;
915 }
916
917 static void ext4_i_callback(struct rcu_head *head)
918 {
919 struct inode *inode = container_of(head, struct inode, i_rcu);
920 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
921 }
922
923 static void ext4_destroy_inode(struct inode *inode)
924 {
925 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
926 ext4_msg(inode->i_sb, KERN_ERR,
927 "Inode %lu (%p): orphan list check failed!",
928 inode->i_ino, EXT4_I(inode));
929 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
930 EXT4_I(inode), sizeof(struct ext4_inode_info),
931 true);
932 dump_stack();
933 }
934 call_rcu(&inode->i_rcu, ext4_i_callback);
935 }
936
937 static void init_once(void *foo)
938 {
939 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
940
941 INIT_LIST_HEAD(&ei->i_orphan);
942 init_rwsem(&ei->xattr_sem);
943 init_rwsem(&ei->i_data_sem);
944 inode_init_once(&ei->vfs_inode);
945 }
946
947 static int __init init_inodecache(void)
948 {
949 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
950 sizeof(struct ext4_inode_info),
951 0, (SLAB_RECLAIM_ACCOUNT|
952 SLAB_MEM_SPREAD),
953 init_once);
954 if (ext4_inode_cachep == NULL)
955 return -ENOMEM;
956 return 0;
957 }
958
959 static void destroy_inodecache(void)
960 {
961 /*
962 * Make sure all delayed rcu free inodes are flushed before we
963 * destroy cache.
964 */
965 rcu_barrier();
966 kmem_cache_destroy(ext4_inode_cachep);
967 }
968
969 void ext4_clear_inode(struct inode *inode)
970 {
971 invalidate_inode_buffers(inode);
972 clear_inode(inode);
973 dquot_drop(inode);
974 ext4_discard_preallocations(inode);
975 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
976 ext4_es_lru_del(inode);
977 if (EXT4_I(inode)->jinode) {
978 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
979 EXT4_I(inode)->jinode);
980 jbd2_free_inode(EXT4_I(inode)->jinode);
981 EXT4_I(inode)->jinode = NULL;
982 }
983 }
984
985 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
986 u64 ino, u32 generation)
987 {
988 struct inode *inode;
989
990 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
991 return ERR_PTR(-ESTALE);
992 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
993 return ERR_PTR(-ESTALE);
994
995 /* iget isn't really right if the inode is currently unallocated!!
996 *
997 * ext4_read_inode will return a bad_inode if the inode had been
998 * deleted, so we should be safe.
999 *
1000 * Currently we don't know the generation for parent directory, so
1001 * a generation of 0 means "accept any"
1002 */
1003 inode = ext4_iget_normal(sb, ino);
1004 if (IS_ERR(inode))
1005 return ERR_CAST(inode);
1006 if (generation && inode->i_generation != generation) {
1007 iput(inode);
1008 return ERR_PTR(-ESTALE);
1009 }
1010
1011 return inode;
1012 }
1013
1014 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1015 int fh_len, int fh_type)
1016 {
1017 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1018 ext4_nfs_get_inode);
1019 }
1020
1021 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1022 int fh_len, int fh_type)
1023 {
1024 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1025 ext4_nfs_get_inode);
1026 }
1027
1028 /*
1029 * Try to release metadata pages (indirect blocks, directories) which are
1030 * mapped via the block device. Since these pages could have journal heads
1031 * which would prevent try_to_free_buffers() from freeing them, we must use
1032 * jbd2 layer's try_to_free_buffers() function to release them.
1033 */
1034 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1035 gfp_t wait)
1036 {
1037 journal_t *journal = EXT4_SB(sb)->s_journal;
1038
1039 WARN_ON(PageChecked(page));
1040 if (!page_has_buffers(page))
1041 return 0;
1042 if (journal)
1043 return jbd2_journal_try_to_free_buffers(journal, page,
1044 wait & ~__GFP_WAIT);
1045 return try_to_free_buffers(page);
1046 }
1047
1048 #ifdef CONFIG_QUOTA
1049 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1050 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1051
1052 static int ext4_write_dquot(struct dquot *dquot);
1053 static int ext4_acquire_dquot(struct dquot *dquot);
1054 static int ext4_release_dquot(struct dquot *dquot);
1055 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1056 static int ext4_write_info(struct super_block *sb, int type);
1057 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1058 struct path *path);
1059 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1060 int format_id);
1061 static int ext4_quota_off(struct super_block *sb, int type);
1062 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1063 static int ext4_quota_on_mount(struct super_block *sb, int type);
1064 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1065 size_t len, loff_t off);
1066 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1067 const char *data, size_t len, loff_t off);
1068 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1069 unsigned int flags);
1070 static int ext4_enable_quotas(struct super_block *sb);
1071
1072 static struct dquot **ext4_get_dquots(struct inode *inode)
1073 {
1074 return EXT4_I(inode)->i_dquot;
1075 }
1076
1077 static const struct dquot_operations ext4_quota_operations = {
1078 .get_reserved_space = ext4_get_reserved_space,
1079 .write_dquot = ext4_write_dquot,
1080 .acquire_dquot = ext4_acquire_dquot,
1081 .release_dquot = ext4_release_dquot,
1082 .mark_dirty = ext4_mark_dquot_dirty,
1083 .write_info = ext4_write_info,
1084 .alloc_dquot = dquot_alloc,
1085 .destroy_dquot = dquot_destroy,
1086 };
1087
1088 static const struct quotactl_ops ext4_qctl_operations = {
1089 .quota_on = ext4_quota_on,
1090 .quota_off = ext4_quota_off,
1091 .quota_sync = dquot_quota_sync,
1092 .get_info = dquot_get_dqinfo,
1093 .set_info = dquot_set_dqinfo,
1094 .get_dqblk = dquot_get_dqblk,
1095 .set_dqblk = dquot_set_dqblk
1096 };
1097
1098 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1099 .quota_on_meta = ext4_quota_on_sysfile,
1100 .quota_off = ext4_quota_off_sysfile,
1101 .quota_sync = dquot_quota_sync,
1102 .get_info = dquot_get_dqinfo,
1103 .set_info = dquot_set_dqinfo,
1104 .get_dqblk = dquot_get_dqblk,
1105 .set_dqblk = dquot_set_dqblk
1106 };
1107 #endif
1108
1109 static const struct super_operations ext4_sops = {
1110 .alloc_inode = ext4_alloc_inode,
1111 .destroy_inode = ext4_destroy_inode,
1112 .write_inode = ext4_write_inode,
1113 .dirty_inode = ext4_dirty_inode,
1114 .drop_inode = ext4_drop_inode,
1115 .evict_inode = ext4_evict_inode,
1116 .put_super = ext4_put_super,
1117 .sync_fs = ext4_sync_fs,
1118 .freeze_fs = ext4_freeze,
1119 .unfreeze_fs = ext4_unfreeze,
1120 .statfs = ext4_statfs,
1121 .remount_fs = ext4_remount,
1122 .show_options = ext4_show_options,
1123 #ifdef CONFIG_QUOTA
1124 .quota_read = ext4_quota_read,
1125 .quota_write = ext4_quota_write,
1126 .get_dquots = ext4_get_dquots,
1127 #endif
1128 .bdev_try_to_free_page = bdev_try_to_free_page,
1129 };
1130
1131 static const struct export_operations ext4_export_ops = {
1132 .fh_to_dentry = ext4_fh_to_dentry,
1133 .fh_to_parent = ext4_fh_to_parent,
1134 .get_parent = ext4_get_parent,
1135 };
1136
1137 enum {
1138 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1139 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1140 Opt_nouid32, Opt_debug, Opt_removed,
1141 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1142 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1143 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1144 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1145 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1146 Opt_data_err_abort, Opt_data_err_ignore,
1147 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1148 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1149 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1150 Opt_usrquota, Opt_grpquota, Opt_i_version,
1151 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1152 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1153 Opt_inode_readahead_blks, Opt_journal_ioprio,
1154 Opt_dioread_nolock, Opt_dioread_lock,
1155 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1156 Opt_max_dir_size_kb,
1157 };
1158
1159 static const match_table_t tokens = {
1160 {Opt_bsd_df, "bsddf"},
1161 {Opt_minix_df, "minixdf"},
1162 {Opt_grpid, "grpid"},
1163 {Opt_grpid, "bsdgroups"},
1164 {Opt_nogrpid, "nogrpid"},
1165 {Opt_nogrpid, "sysvgroups"},
1166 {Opt_resgid, "resgid=%u"},
1167 {Opt_resuid, "resuid=%u"},
1168 {Opt_sb, "sb=%u"},
1169 {Opt_err_cont, "errors=continue"},
1170 {Opt_err_panic, "errors=panic"},
1171 {Opt_err_ro, "errors=remount-ro"},
1172 {Opt_nouid32, "nouid32"},
1173 {Opt_debug, "debug"},
1174 {Opt_removed, "oldalloc"},
1175 {Opt_removed, "orlov"},
1176 {Opt_user_xattr, "user_xattr"},
1177 {Opt_nouser_xattr, "nouser_xattr"},
1178 {Opt_acl, "acl"},
1179 {Opt_noacl, "noacl"},
1180 {Opt_noload, "norecovery"},
1181 {Opt_noload, "noload"},
1182 {Opt_removed, "nobh"},
1183 {Opt_removed, "bh"},
1184 {Opt_commit, "commit=%u"},
1185 {Opt_min_batch_time, "min_batch_time=%u"},
1186 {Opt_max_batch_time, "max_batch_time=%u"},
1187 {Opt_journal_dev, "journal_dev=%u"},
1188 {Opt_journal_path, "journal_path=%s"},
1189 {Opt_journal_checksum, "journal_checksum"},
1190 {Opt_journal_async_commit, "journal_async_commit"},
1191 {Opt_abort, "abort"},
1192 {Opt_data_journal, "data=journal"},
1193 {Opt_data_ordered, "data=ordered"},
1194 {Opt_data_writeback, "data=writeback"},
1195 {Opt_data_err_abort, "data_err=abort"},
1196 {Opt_data_err_ignore, "data_err=ignore"},
1197 {Opt_offusrjquota, "usrjquota="},
1198 {Opt_usrjquota, "usrjquota=%s"},
1199 {Opt_offgrpjquota, "grpjquota="},
1200 {Opt_grpjquota, "grpjquota=%s"},
1201 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1202 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1203 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1204 {Opt_grpquota, "grpquota"},
1205 {Opt_noquota, "noquota"},
1206 {Opt_quota, "quota"},
1207 {Opt_usrquota, "usrquota"},
1208 {Opt_barrier, "barrier=%u"},
1209 {Opt_barrier, "barrier"},
1210 {Opt_nobarrier, "nobarrier"},
1211 {Opt_i_version, "i_version"},
1212 {Opt_stripe, "stripe=%u"},
1213 {Opt_delalloc, "delalloc"},
1214 {Opt_nodelalloc, "nodelalloc"},
1215 {Opt_removed, "mblk_io_submit"},
1216 {Opt_removed, "nomblk_io_submit"},
1217 {Opt_block_validity, "block_validity"},
1218 {Opt_noblock_validity, "noblock_validity"},
1219 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1220 {Opt_journal_ioprio, "journal_ioprio=%u"},
1221 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1222 {Opt_auto_da_alloc, "auto_da_alloc"},
1223 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1224 {Opt_dioread_nolock, "dioread_nolock"},
1225 {Opt_dioread_lock, "dioread_lock"},
1226 {Opt_discard, "discard"},
1227 {Opt_nodiscard, "nodiscard"},
1228 {Opt_init_itable, "init_itable=%u"},
1229 {Opt_init_itable, "init_itable"},
1230 {Opt_noinit_itable, "noinit_itable"},
1231 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1232 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1233 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1234 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1235 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1236 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1237 {Opt_err, NULL},
1238 };
1239
1240 static ext4_fsblk_t get_sb_block(void **data)
1241 {
1242 ext4_fsblk_t sb_block;
1243 char *options = (char *) *data;
1244
1245 if (!options || strncmp(options, "sb=", 3) != 0)
1246 return 1; /* Default location */
1247
1248 options += 3;
1249 /* TODO: use simple_strtoll with >32bit ext4 */
1250 sb_block = simple_strtoul(options, &options, 0);
1251 if (*options && *options != ',') {
1252 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1253 (char *) *data);
1254 return 1;
1255 }
1256 if (*options == ',')
1257 options++;
1258 *data = (void *) options;
1259
1260 return sb_block;
1261 }
1262
1263 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1264 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1265 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1266
1267 #ifdef CONFIG_QUOTA
1268 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1269 {
1270 struct ext4_sb_info *sbi = EXT4_SB(sb);
1271 char *qname;
1272 int ret = -1;
1273
1274 if (sb_any_quota_loaded(sb) &&
1275 !sbi->s_qf_names[qtype]) {
1276 ext4_msg(sb, KERN_ERR,
1277 "Cannot change journaled "
1278 "quota options when quota turned on");
1279 return -1;
1280 }
1281 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1282 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1283 "when QUOTA feature is enabled");
1284 return -1;
1285 }
1286 qname = match_strdup(args);
1287 if (!qname) {
1288 ext4_msg(sb, KERN_ERR,
1289 "Not enough memory for storing quotafile name");
1290 return -1;
1291 }
1292 if (sbi->s_qf_names[qtype]) {
1293 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1294 ret = 1;
1295 else
1296 ext4_msg(sb, KERN_ERR,
1297 "%s quota file already specified",
1298 QTYPE2NAME(qtype));
1299 goto errout;
1300 }
1301 if (strchr(qname, '/')) {
1302 ext4_msg(sb, KERN_ERR,
1303 "quotafile must be on filesystem root");
1304 goto errout;
1305 }
1306 sbi->s_qf_names[qtype] = qname;
1307 set_opt(sb, QUOTA);
1308 return 1;
1309 errout:
1310 kfree(qname);
1311 return ret;
1312 }
1313
1314 static int clear_qf_name(struct super_block *sb, int qtype)
1315 {
1316
1317 struct ext4_sb_info *sbi = EXT4_SB(sb);
1318
1319 if (sb_any_quota_loaded(sb) &&
1320 sbi->s_qf_names[qtype]) {
1321 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1322 " when quota turned on");
1323 return -1;
1324 }
1325 kfree(sbi->s_qf_names[qtype]);
1326 sbi->s_qf_names[qtype] = NULL;
1327 return 1;
1328 }
1329 #endif
1330
1331 #define MOPT_SET 0x0001
1332 #define MOPT_CLEAR 0x0002
1333 #define MOPT_NOSUPPORT 0x0004
1334 #define MOPT_EXPLICIT 0x0008
1335 #define MOPT_CLEAR_ERR 0x0010
1336 #define MOPT_GTE0 0x0020
1337 #ifdef CONFIG_QUOTA
1338 #define MOPT_Q 0
1339 #define MOPT_QFMT 0x0040
1340 #else
1341 #define MOPT_Q MOPT_NOSUPPORT
1342 #define MOPT_QFMT MOPT_NOSUPPORT
1343 #endif
1344 #define MOPT_DATAJ 0x0080
1345 #define MOPT_NO_EXT2 0x0100
1346 #define MOPT_NO_EXT3 0x0200
1347 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1348 #define MOPT_STRING 0x0400
1349
1350 static const struct mount_opts {
1351 int token;
1352 int mount_opt;
1353 int flags;
1354 } ext4_mount_opts[] = {
1355 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1356 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1357 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1358 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1359 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1360 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1361 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1362 MOPT_EXT4_ONLY | MOPT_SET},
1363 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1364 MOPT_EXT4_ONLY | MOPT_CLEAR},
1365 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1366 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1367 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1368 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1369 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1370 MOPT_EXT4_ONLY | MOPT_CLEAR},
1371 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1372 MOPT_EXT4_ONLY | MOPT_SET},
1373 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1374 EXT4_MOUNT_JOURNAL_CHECKSUM),
1375 MOPT_EXT4_ONLY | MOPT_SET},
1376 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1377 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1378 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1379 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1380 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1381 MOPT_NO_EXT2 | MOPT_SET},
1382 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1383 MOPT_NO_EXT2 | MOPT_CLEAR},
1384 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1385 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1386 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1387 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1388 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1389 {Opt_commit, 0, MOPT_GTE0},
1390 {Opt_max_batch_time, 0, MOPT_GTE0},
1391 {Opt_min_batch_time, 0, MOPT_GTE0},
1392 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1393 {Opt_init_itable, 0, MOPT_GTE0},
1394 {Opt_stripe, 0, MOPT_GTE0},
1395 {Opt_resuid, 0, MOPT_GTE0},
1396 {Opt_resgid, 0, MOPT_GTE0},
1397 {Opt_journal_dev, 0, MOPT_GTE0},
1398 {Opt_journal_path, 0, MOPT_STRING},
1399 {Opt_journal_ioprio, 0, MOPT_GTE0},
1400 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1401 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1402 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1403 MOPT_NO_EXT2 | MOPT_DATAJ},
1404 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1405 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1406 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1407 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1408 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1409 #else
1410 {Opt_acl, 0, MOPT_NOSUPPORT},
1411 {Opt_noacl, 0, MOPT_NOSUPPORT},
1412 #endif
1413 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1414 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1415 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1416 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1417 MOPT_SET | MOPT_Q},
1418 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1419 MOPT_SET | MOPT_Q},
1420 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1421 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1422 {Opt_usrjquota, 0, MOPT_Q},
1423 {Opt_grpjquota, 0, MOPT_Q},
1424 {Opt_offusrjquota, 0, MOPT_Q},
1425 {Opt_offgrpjquota, 0, MOPT_Q},
1426 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1427 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1428 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1429 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1430 {Opt_err, 0, 0}
1431 };
1432
1433 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1434 substring_t *args, unsigned long *journal_devnum,
1435 unsigned int *journal_ioprio, int is_remount)
1436 {
1437 struct ext4_sb_info *sbi = EXT4_SB(sb);
1438 const struct mount_opts *m;
1439 kuid_t uid;
1440 kgid_t gid;
1441 int arg = 0;
1442
1443 #ifdef CONFIG_QUOTA
1444 if (token == Opt_usrjquota)
1445 return set_qf_name(sb, USRQUOTA, &args[0]);
1446 else if (token == Opt_grpjquota)
1447 return set_qf_name(sb, GRPQUOTA, &args[0]);
1448 else if (token == Opt_offusrjquota)
1449 return clear_qf_name(sb, USRQUOTA);
1450 else if (token == Opt_offgrpjquota)
1451 return clear_qf_name(sb, GRPQUOTA);
1452 #endif
1453 switch (token) {
1454 case Opt_noacl:
1455 case Opt_nouser_xattr:
1456 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1457 break;
1458 case Opt_sb:
1459 return 1; /* handled by get_sb_block() */
1460 case Opt_removed:
1461 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1462 return 1;
1463 case Opt_abort:
1464 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1465 return 1;
1466 case Opt_i_version:
1467 sb->s_flags |= MS_I_VERSION;
1468 return 1;
1469 }
1470
1471 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1472 if (token == m->token)
1473 break;
1474
1475 if (m->token == Opt_err) {
1476 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1477 "or missing value", opt);
1478 return -1;
1479 }
1480
1481 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1482 ext4_msg(sb, KERN_ERR,
1483 "Mount option \"%s\" incompatible with ext2", opt);
1484 return -1;
1485 }
1486 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1487 ext4_msg(sb, KERN_ERR,
1488 "Mount option \"%s\" incompatible with ext3", opt);
1489 return -1;
1490 }
1491
1492 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1493 return -1;
1494 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1495 return -1;
1496 if (m->flags & MOPT_EXPLICIT)
1497 set_opt2(sb, EXPLICIT_DELALLOC);
1498 if (m->flags & MOPT_CLEAR_ERR)
1499 clear_opt(sb, ERRORS_MASK);
1500 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1501 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1502 "options when quota turned on");
1503 return -1;
1504 }
1505
1506 if (m->flags & MOPT_NOSUPPORT) {
1507 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1508 } else if (token == Opt_commit) {
1509 if (arg == 0)
1510 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1511 sbi->s_commit_interval = HZ * arg;
1512 } else if (token == Opt_max_batch_time) {
1513 sbi->s_max_batch_time = arg;
1514 } else if (token == Opt_min_batch_time) {
1515 sbi->s_min_batch_time = arg;
1516 } else if (token == Opt_inode_readahead_blks) {
1517 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1518 ext4_msg(sb, KERN_ERR,
1519 "EXT4-fs: inode_readahead_blks must be "
1520 "0 or a power of 2 smaller than 2^31");
1521 return -1;
1522 }
1523 sbi->s_inode_readahead_blks = arg;
1524 } else if (token == Opt_init_itable) {
1525 set_opt(sb, INIT_INODE_TABLE);
1526 if (!args->from)
1527 arg = EXT4_DEF_LI_WAIT_MULT;
1528 sbi->s_li_wait_mult = arg;
1529 } else if (token == Opt_max_dir_size_kb) {
1530 sbi->s_max_dir_size_kb = arg;
1531 } else if (token == Opt_stripe) {
1532 sbi->s_stripe = arg;
1533 } else if (token == Opt_resuid) {
1534 uid = make_kuid(current_user_ns(), arg);
1535 if (!uid_valid(uid)) {
1536 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1537 return -1;
1538 }
1539 sbi->s_resuid = uid;
1540 } else if (token == Opt_resgid) {
1541 gid = make_kgid(current_user_ns(), arg);
1542 if (!gid_valid(gid)) {
1543 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1544 return -1;
1545 }
1546 sbi->s_resgid = gid;
1547 } else if (token == Opt_journal_dev) {
1548 if (is_remount) {
1549 ext4_msg(sb, KERN_ERR,
1550 "Cannot specify journal on remount");
1551 return -1;
1552 }
1553 *journal_devnum = arg;
1554 } else if (token == Opt_journal_path) {
1555 char *journal_path;
1556 struct inode *journal_inode;
1557 struct path path;
1558 int error;
1559
1560 if (is_remount) {
1561 ext4_msg(sb, KERN_ERR,
1562 "Cannot specify journal on remount");
1563 return -1;
1564 }
1565 journal_path = match_strdup(&args[0]);
1566 if (!journal_path) {
1567 ext4_msg(sb, KERN_ERR, "error: could not dup "
1568 "journal device string");
1569 return -1;
1570 }
1571
1572 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1573 if (error) {
1574 ext4_msg(sb, KERN_ERR, "error: could not find "
1575 "journal device path: error %d", error);
1576 kfree(journal_path);
1577 return -1;
1578 }
1579
1580 journal_inode = path.dentry->d_inode;
1581 if (!S_ISBLK(journal_inode->i_mode)) {
1582 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1583 "is not a block device", journal_path);
1584 path_put(&path);
1585 kfree(journal_path);
1586 return -1;
1587 }
1588
1589 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1590 path_put(&path);
1591 kfree(journal_path);
1592 } else if (token == Opt_journal_ioprio) {
1593 if (arg > 7) {
1594 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1595 " (must be 0-7)");
1596 return -1;
1597 }
1598 *journal_ioprio =
1599 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1600 } else if (m->flags & MOPT_DATAJ) {
1601 if (is_remount) {
1602 if (!sbi->s_journal)
1603 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1604 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1605 ext4_msg(sb, KERN_ERR,
1606 "Cannot change data mode on remount");
1607 return -1;
1608 }
1609 } else {
1610 clear_opt(sb, DATA_FLAGS);
1611 sbi->s_mount_opt |= m->mount_opt;
1612 }
1613 #ifdef CONFIG_QUOTA
1614 } else if (m->flags & MOPT_QFMT) {
1615 if (sb_any_quota_loaded(sb) &&
1616 sbi->s_jquota_fmt != m->mount_opt) {
1617 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1618 "quota options when quota turned on");
1619 return -1;
1620 }
1621 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1622 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1623 ext4_msg(sb, KERN_ERR,
1624 "Cannot set journaled quota options "
1625 "when QUOTA feature is enabled");
1626 return -1;
1627 }
1628 sbi->s_jquota_fmt = m->mount_opt;
1629 #endif
1630 } else {
1631 if (!args->from)
1632 arg = 1;
1633 if (m->flags & MOPT_CLEAR)
1634 arg = !arg;
1635 else if (unlikely(!(m->flags & MOPT_SET))) {
1636 ext4_msg(sb, KERN_WARNING,
1637 "buggy handling of option %s", opt);
1638 WARN_ON(1);
1639 return -1;
1640 }
1641 if (arg != 0)
1642 sbi->s_mount_opt |= m->mount_opt;
1643 else
1644 sbi->s_mount_opt &= ~m->mount_opt;
1645 }
1646 return 1;
1647 }
1648
1649 static int parse_options(char *options, struct super_block *sb,
1650 unsigned long *journal_devnum,
1651 unsigned int *journal_ioprio,
1652 int is_remount)
1653 {
1654 struct ext4_sb_info *sbi = EXT4_SB(sb);
1655 char *p;
1656 substring_t args[MAX_OPT_ARGS];
1657 int token;
1658
1659 if (!options)
1660 return 1;
1661
1662 while ((p = strsep(&options, ",")) != NULL) {
1663 if (!*p)
1664 continue;
1665 /*
1666 * Initialize args struct so we know whether arg was
1667 * found; some options take optional arguments.
1668 */
1669 args[0].to = args[0].from = NULL;
1670 token = match_token(p, tokens, args);
1671 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1672 journal_ioprio, is_remount) < 0)
1673 return 0;
1674 }
1675 #ifdef CONFIG_QUOTA
1676 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1677 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1678 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1679 "feature is enabled");
1680 return 0;
1681 }
1682 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1683 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1684 clear_opt(sb, USRQUOTA);
1685
1686 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1687 clear_opt(sb, GRPQUOTA);
1688
1689 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1690 ext4_msg(sb, KERN_ERR, "old and new quota "
1691 "format mixing");
1692 return 0;
1693 }
1694
1695 if (!sbi->s_jquota_fmt) {
1696 ext4_msg(sb, KERN_ERR, "journaled quota format "
1697 "not specified");
1698 return 0;
1699 }
1700 }
1701 #endif
1702 if (test_opt(sb, DIOREAD_NOLOCK)) {
1703 int blocksize =
1704 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1705
1706 if (blocksize < PAGE_CACHE_SIZE) {
1707 ext4_msg(sb, KERN_ERR, "can't mount with "
1708 "dioread_nolock if block size != PAGE_SIZE");
1709 return 0;
1710 }
1711 }
1712 return 1;
1713 }
1714
1715 static inline void ext4_show_quota_options(struct seq_file *seq,
1716 struct super_block *sb)
1717 {
1718 #if defined(CONFIG_QUOTA)
1719 struct ext4_sb_info *sbi = EXT4_SB(sb);
1720
1721 if (sbi->s_jquota_fmt) {
1722 char *fmtname = "";
1723
1724 switch (sbi->s_jquota_fmt) {
1725 case QFMT_VFS_OLD:
1726 fmtname = "vfsold";
1727 break;
1728 case QFMT_VFS_V0:
1729 fmtname = "vfsv0";
1730 break;
1731 case QFMT_VFS_V1:
1732 fmtname = "vfsv1";
1733 break;
1734 }
1735 seq_printf(seq, ",jqfmt=%s", fmtname);
1736 }
1737
1738 if (sbi->s_qf_names[USRQUOTA])
1739 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1740
1741 if (sbi->s_qf_names[GRPQUOTA])
1742 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1743 #endif
1744 }
1745
1746 static const char *token2str(int token)
1747 {
1748 const struct match_token *t;
1749
1750 for (t = tokens; t->token != Opt_err; t++)
1751 if (t->token == token && !strchr(t->pattern, '='))
1752 break;
1753 return t->pattern;
1754 }
1755
1756 /*
1757 * Show an option if
1758 * - it's set to a non-default value OR
1759 * - if the per-sb default is different from the global default
1760 */
1761 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1762 int nodefs)
1763 {
1764 struct ext4_sb_info *sbi = EXT4_SB(sb);
1765 struct ext4_super_block *es = sbi->s_es;
1766 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1767 const struct mount_opts *m;
1768 char sep = nodefs ? '\n' : ',';
1769
1770 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1771 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1772
1773 if (sbi->s_sb_block != 1)
1774 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1775
1776 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1777 int want_set = m->flags & MOPT_SET;
1778 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1779 (m->flags & MOPT_CLEAR_ERR))
1780 continue;
1781 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1782 continue; /* skip if same as the default */
1783 if ((want_set &&
1784 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1785 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1786 continue; /* select Opt_noFoo vs Opt_Foo */
1787 SEQ_OPTS_PRINT("%s", token2str(m->token));
1788 }
1789
1790 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1791 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1792 SEQ_OPTS_PRINT("resuid=%u",
1793 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1794 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1795 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1796 SEQ_OPTS_PRINT("resgid=%u",
1797 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1798 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1799 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1800 SEQ_OPTS_PUTS("errors=remount-ro");
1801 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1802 SEQ_OPTS_PUTS("errors=continue");
1803 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1804 SEQ_OPTS_PUTS("errors=panic");
1805 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1806 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1807 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1808 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1809 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1810 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1811 if (sb->s_flags & MS_I_VERSION)
1812 SEQ_OPTS_PUTS("i_version");
1813 if (nodefs || sbi->s_stripe)
1814 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1815 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1816 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1817 SEQ_OPTS_PUTS("data=journal");
1818 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1819 SEQ_OPTS_PUTS("data=ordered");
1820 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1821 SEQ_OPTS_PUTS("data=writeback");
1822 }
1823 if (nodefs ||
1824 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1825 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1826 sbi->s_inode_readahead_blks);
1827
1828 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1829 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1830 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1831 if (nodefs || sbi->s_max_dir_size_kb)
1832 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1833
1834 ext4_show_quota_options(seq, sb);
1835 return 0;
1836 }
1837
1838 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1839 {
1840 return _ext4_show_options(seq, root->d_sb, 0);
1841 }
1842
1843 static int options_seq_show(struct seq_file *seq, void *offset)
1844 {
1845 struct super_block *sb = seq->private;
1846 int rc;
1847
1848 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1849 rc = _ext4_show_options(seq, sb, 1);
1850 seq_puts(seq, "\n");
1851 return rc;
1852 }
1853
1854 static int options_open_fs(struct inode *inode, struct file *file)
1855 {
1856 return single_open(file, options_seq_show, PDE_DATA(inode));
1857 }
1858
1859 static const struct file_operations ext4_seq_options_fops = {
1860 .owner = THIS_MODULE,
1861 .open = options_open_fs,
1862 .read = seq_read,
1863 .llseek = seq_lseek,
1864 .release = single_release,
1865 };
1866
1867 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1868 int read_only)
1869 {
1870 struct ext4_sb_info *sbi = EXT4_SB(sb);
1871 int res = 0;
1872
1873 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1874 ext4_msg(sb, KERN_ERR, "revision level too high, "
1875 "forcing read-only mode");
1876 res = MS_RDONLY;
1877 }
1878 if (read_only)
1879 goto done;
1880 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1881 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1882 "running e2fsck is recommended");
1883 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1884 ext4_msg(sb, KERN_WARNING,
1885 "warning: mounting fs with errors, "
1886 "running e2fsck is recommended");
1887 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1888 le16_to_cpu(es->s_mnt_count) >=
1889 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1890 ext4_msg(sb, KERN_WARNING,
1891 "warning: maximal mount count reached, "
1892 "running e2fsck is recommended");
1893 else if (le32_to_cpu(es->s_checkinterval) &&
1894 (le32_to_cpu(es->s_lastcheck) +
1895 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1896 ext4_msg(sb, KERN_WARNING,
1897 "warning: checktime reached, "
1898 "running e2fsck is recommended");
1899 if (!sbi->s_journal)
1900 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1901 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1902 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1903 le16_add_cpu(&es->s_mnt_count, 1);
1904 es->s_mtime = cpu_to_le32(get_seconds());
1905 ext4_update_dynamic_rev(sb);
1906 if (sbi->s_journal)
1907 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1908
1909 ext4_commit_super(sb, 1);
1910 done:
1911 if (test_opt(sb, DEBUG))
1912 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1913 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1914 sb->s_blocksize,
1915 sbi->s_groups_count,
1916 EXT4_BLOCKS_PER_GROUP(sb),
1917 EXT4_INODES_PER_GROUP(sb),
1918 sbi->s_mount_opt, sbi->s_mount_opt2);
1919
1920 cleancache_init_fs(sb);
1921 return res;
1922 }
1923
1924 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1925 {
1926 struct ext4_sb_info *sbi = EXT4_SB(sb);
1927 struct flex_groups *new_groups;
1928 int size;
1929
1930 if (!sbi->s_log_groups_per_flex)
1931 return 0;
1932
1933 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1934 if (size <= sbi->s_flex_groups_allocated)
1935 return 0;
1936
1937 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1938 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1939 if (!new_groups) {
1940 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1941 size / (int) sizeof(struct flex_groups));
1942 return -ENOMEM;
1943 }
1944
1945 if (sbi->s_flex_groups) {
1946 memcpy(new_groups, sbi->s_flex_groups,
1947 (sbi->s_flex_groups_allocated *
1948 sizeof(struct flex_groups)));
1949 ext4_kvfree(sbi->s_flex_groups);
1950 }
1951 sbi->s_flex_groups = new_groups;
1952 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1953 return 0;
1954 }
1955
1956 static int ext4_fill_flex_info(struct super_block *sb)
1957 {
1958 struct ext4_sb_info *sbi = EXT4_SB(sb);
1959 struct ext4_group_desc *gdp = NULL;
1960 ext4_group_t flex_group;
1961 int i, err;
1962
1963 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1964 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1965 sbi->s_log_groups_per_flex = 0;
1966 return 1;
1967 }
1968
1969 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1970 if (err)
1971 goto failed;
1972
1973 for (i = 0; i < sbi->s_groups_count; i++) {
1974 gdp = ext4_get_group_desc(sb, i, NULL);
1975
1976 flex_group = ext4_flex_group(sbi, i);
1977 atomic_add(ext4_free_inodes_count(sb, gdp),
1978 &sbi->s_flex_groups[flex_group].free_inodes);
1979 atomic64_add(ext4_free_group_clusters(sb, gdp),
1980 &sbi->s_flex_groups[flex_group].free_clusters);
1981 atomic_add(ext4_used_dirs_count(sb, gdp),
1982 &sbi->s_flex_groups[flex_group].used_dirs);
1983 }
1984
1985 return 1;
1986 failed:
1987 return 0;
1988 }
1989
1990 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1991 struct ext4_group_desc *gdp)
1992 {
1993 int offset;
1994 __u16 crc = 0;
1995 __le32 le_group = cpu_to_le32(block_group);
1996
1997 if (ext4_has_metadata_csum(sbi->s_sb)) {
1998 /* Use new metadata_csum algorithm */
1999 __le16 save_csum;
2000 __u32 csum32;
2001
2002 save_csum = gdp->bg_checksum;
2003 gdp->bg_checksum = 0;
2004 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2005 sizeof(le_group));
2006 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2007 sbi->s_desc_size);
2008 gdp->bg_checksum = save_csum;
2009
2010 crc = csum32 & 0xFFFF;
2011 goto out;
2012 }
2013
2014 /* old crc16 code */
2015 if (!(sbi->s_es->s_feature_ro_compat &
2016 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)))
2017 return 0;
2018
2019 offset = offsetof(struct ext4_group_desc, bg_checksum);
2020
2021 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2022 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2023 crc = crc16(crc, (__u8 *)gdp, offset);
2024 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2025 /* for checksum of struct ext4_group_desc do the rest...*/
2026 if ((sbi->s_es->s_feature_incompat &
2027 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2028 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2029 crc = crc16(crc, (__u8 *)gdp + offset,
2030 le16_to_cpu(sbi->s_es->s_desc_size) -
2031 offset);
2032
2033 out:
2034 return cpu_to_le16(crc);
2035 }
2036
2037 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2038 struct ext4_group_desc *gdp)
2039 {
2040 if (ext4_has_group_desc_csum(sb) &&
2041 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2042 block_group, gdp)))
2043 return 0;
2044
2045 return 1;
2046 }
2047
2048 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2049 struct ext4_group_desc *gdp)
2050 {
2051 if (!ext4_has_group_desc_csum(sb))
2052 return;
2053 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2054 }
2055
2056 /* Called at mount-time, super-block is locked */
2057 static int ext4_check_descriptors(struct super_block *sb,
2058 ext4_group_t *first_not_zeroed)
2059 {
2060 struct ext4_sb_info *sbi = EXT4_SB(sb);
2061 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2062 ext4_fsblk_t last_block;
2063 ext4_fsblk_t block_bitmap;
2064 ext4_fsblk_t inode_bitmap;
2065 ext4_fsblk_t inode_table;
2066 int flexbg_flag = 0;
2067 ext4_group_t i, grp = sbi->s_groups_count;
2068
2069 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2070 flexbg_flag = 1;
2071
2072 ext4_debug("Checking group descriptors");
2073
2074 for (i = 0; i < sbi->s_groups_count; i++) {
2075 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2076
2077 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2078 last_block = ext4_blocks_count(sbi->s_es) - 1;
2079 else
2080 last_block = first_block +
2081 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2082
2083 if ((grp == sbi->s_groups_count) &&
2084 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2085 grp = i;
2086
2087 block_bitmap = ext4_block_bitmap(sb, gdp);
2088 if (block_bitmap < first_block || block_bitmap > last_block) {
2089 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2090 "Block bitmap for group %u not in group "
2091 "(block %llu)!", i, block_bitmap);
2092 return 0;
2093 }
2094 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2095 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2096 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2097 "Inode bitmap for group %u not in group "
2098 "(block %llu)!", i, inode_bitmap);
2099 return 0;
2100 }
2101 inode_table = ext4_inode_table(sb, gdp);
2102 if (inode_table < first_block ||
2103 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2104 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2105 "Inode table for group %u not in group "
2106 "(block %llu)!", i, inode_table);
2107 return 0;
2108 }
2109 ext4_lock_group(sb, i);
2110 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2111 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2112 "Checksum for group %u failed (%u!=%u)",
2113 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2114 gdp)), le16_to_cpu(gdp->bg_checksum));
2115 if (!(sb->s_flags & MS_RDONLY)) {
2116 ext4_unlock_group(sb, i);
2117 return 0;
2118 }
2119 }
2120 ext4_unlock_group(sb, i);
2121 if (!flexbg_flag)
2122 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2123 }
2124 if (NULL != first_not_zeroed)
2125 *first_not_zeroed = grp;
2126 return 1;
2127 }
2128
2129 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2130 * the superblock) which were deleted from all directories, but held open by
2131 * a process at the time of a crash. We walk the list and try to delete these
2132 * inodes at recovery time (only with a read-write filesystem).
2133 *
2134 * In order to keep the orphan inode chain consistent during traversal (in
2135 * case of crash during recovery), we link each inode into the superblock
2136 * orphan list_head and handle it the same way as an inode deletion during
2137 * normal operation (which journals the operations for us).
2138 *
2139 * We only do an iget() and an iput() on each inode, which is very safe if we
2140 * accidentally point at an in-use or already deleted inode. The worst that
2141 * can happen in this case is that we get a "bit already cleared" message from
2142 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2143 * e2fsck was run on this filesystem, and it must have already done the orphan
2144 * inode cleanup for us, so we can safely abort without any further action.
2145 */
2146 static void ext4_orphan_cleanup(struct super_block *sb,
2147 struct ext4_super_block *es)
2148 {
2149 unsigned int s_flags = sb->s_flags;
2150 int nr_orphans = 0, nr_truncates = 0;
2151 #ifdef CONFIG_QUOTA
2152 int i;
2153 #endif
2154 if (!es->s_last_orphan) {
2155 jbd_debug(4, "no orphan inodes to clean up\n");
2156 return;
2157 }
2158
2159 if (bdev_read_only(sb->s_bdev)) {
2160 ext4_msg(sb, KERN_ERR, "write access "
2161 "unavailable, skipping orphan cleanup");
2162 return;
2163 }
2164
2165 /* Check if feature set would not allow a r/w mount */
2166 if (!ext4_feature_set_ok(sb, 0)) {
2167 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2168 "unknown ROCOMPAT features");
2169 return;
2170 }
2171
2172 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2173 /* don't clear list on RO mount w/ errors */
2174 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2175 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2176 "clearing orphan list.\n");
2177 es->s_last_orphan = 0;
2178 }
2179 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2180 return;
2181 }
2182
2183 if (s_flags & MS_RDONLY) {
2184 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2185 sb->s_flags &= ~MS_RDONLY;
2186 }
2187 #ifdef CONFIG_QUOTA
2188 /* Needed for iput() to work correctly and not trash data */
2189 sb->s_flags |= MS_ACTIVE;
2190 /* Turn on quotas so that they are updated correctly */
2191 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2192 if (EXT4_SB(sb)->s_qf_names[i]) {
2193 int ret = ext4_quota_on_mount(sb, i);
2194 if (ret < 0)
2195 ext4_msg(sb, KERN_ERR,
2196 "Cannot turn on journaled "
2197 "quota: error %d", ret);
2198 }
2199 }
2200 #endif
2201
2202 while (es->s_last_orphan) {
2203 struct inode *inode;
2204
2205 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2206 if (IS_ERR(inode)) {
2207 es->s_last_orphan = 0;
2208 break;
2209 }
2210
2211 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2212 dquot_initialize(inode);
2213 if (inode->i_nlink) {
2214 if (test_opt(sb, DEBUG))
2215 ext4_msg(sb, KERN_DEBUG,
2216 "%s: truncating inode %lu to %lld bytes",
2217 __func__, inode->i_ino, inode->i_size);
2218 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2219 inode->i_ino, inode->i_size);
2220 mutex_lock(&inode->i_mutex);
2221 truncate_inode_pages(inode->i_mapping, inode->i_size);
2222 ext4_truncate(inode);
2223 mutex_unlock(&inode->i_mutex);
2224 nr_truncates++;
2225 } else {
2226 if (test_opt(sb, DEBUG))
2227 ext4_msg(sb, KERN_DEBUG,
2228 "%s: deleting unreferenced inode %lu",
2229 __func__, inode->i_ino);
2230 jbd_debug(2, "deleting unreferenced inode %lu\n",
2231 inode->i_ino);
2232 nr_orphans++;
2233 }
2234 iput(inode); /* The delete magic happens here! */
2235 }
2236
2237 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2238
2239 if (nr_orphans)
2240 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2241 PLURAL(nr_orphans));
2242 if (nr_truncates)
2243 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2244 PLURAL(nr_truncates));
2245 #ifdef CONFIG_QUOTA
2246 /* Turn quotas off */
2247 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2248 if (sb_dqopt(sb)->files[i])
2249 dquot_quota_off(sb, i);
2250 }
2251 #endif
2252 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2253 }
2254
2255 /*
2256 * Maximal extent format file size.
2257 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2258 * extent format containers, within a sector_t, and within i_blocks
2259 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2260 * so that won't be a limiting factor.
2261 *
2262 * However there is other limiting factor. We do store extents in the form
2263 * of starting block and length, hence the resulting length of the extent
2264 * covering maximum file size must fit into on-disk format containers as
2265 * well. Given that length is always by 1 unit bigger than max unit (because
2266 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2267 *
2268 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2269 */
2270 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2271 {
2272 loff_t res;
2273 loff_t upper_limit = MAX_LFS_FILESIZE;
2274
2275 /* small i_blocks in vfs inode? */
2276 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2277 /*
2278 * CONFIG_LBDAF is not enabled implies the inode
2279 * i_block represent total blocks in 512 bytes
2280 * 32 == size of vfs inode i_blocks * 8
2281 */
2282 upper_limit = (1LL << 32) - 1;
2283
2284 /* total blocks in file system block size */
2285 upper_limit >>= (blkbits - 9);
2286 upper_limit <<= blkbits;
2287 }
2288
2289 /*
2290 * 32-bit extent-start container, ee_block. We lower the maxbytes
2291 * by one fs block, so ee_len can cover the extent of maximum file
2292 * size
2293 */
2294 res = (1LL << 32) - 1;
2295 res <<= blkbits;
2296
2297 /* Sanity check against vm- & vfs- imposed limits */
2298 if (res > upper_limit)
2299 res = upper_limit;
2300
2301 return res;
2302 }
2303
2304 /*
2305 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2306 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2307 * We need to be 1 filesystem block less than the 2^48 sector limit.
2308 */
2309 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2310 {
2311 loff_t res = EXT4_NDIR_BLOCKS;
2312 int meta_blocks;
2313 loff_t upper_limit;
2314 /* This is calculated to be the largest file size for a dense, block
2315 * mapped file such that the file's total number of 512-byte sectors,
2316 * including data and all indirect blocks, does not exceed (2^48 - 1).
2317 *
2318 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2319 * number of 512-byte sectors of the file.
2320 */
2321
2322 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2323 /*
2324 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2325 * the inode i_block field represents total file blocks in
2326 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2327 */
2328 upper_limit = (1LL << 32) - 1;
2329
2330 /* total blocks in file system block size */
2331 upper_limit >>= (bits - 9);
2332
2333 } else {
2334 /*
2335 * We use 48 bit ext4_inode i_blocks
2336 * With EXT4_HUGE_FILE_FL set the i_blocks
2337 * represent total number of blocks in
2338 * file system block size
2339 */
2340 upper_limit = (1LL << 48) - 1;
2341
2342 }
2343
2344 /* indirect blocks */
2345 meta_blocks = 1;
2346 /* double indirect blocks */
2347 meta_blocks += 1 + (1LL << (bits-2));
2348 /* tripple indirect blocks */
2349 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2350
2351 upper_limit -= meta_blocks;
2352 upper_limit <<= bits;
2353
2354 res += 1LL << (bits-2);
2355 res += 1LL << (2*(bits-2));
2356 res += 1LL << (3*(bits-2));
2357 res <<= bits;
2358 if (res > upper_limit)
2359 res = upper_limit;
2360
2361 if (res > MAX_LFS_FILESIZE)
2362 res = MAX_LFS_FILESIZE;
2363
2364 return res;
2365 }
2366
2367 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2368 ext4_fsblk_t logical_sb_block, int nr)
2369 {
2370 struct ext4_sb_info *sbi = EXT4_SB(sb);
2371 ext4_group_t bg, first_meta_bg;
2372 int has_super = 0;
2373
2374 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2375
2376 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2377 nr < first_meta_bg)
2378 return logical_sb_block + nr + 1;
2379 bg = sbi->s_desc_per_block * nr;
2380 if (ext4_bg_has_super(sb, bg))
2381 has_super = 1;
2382
2383 /*
2384 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2385 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2386 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2387 * compensate.
2388 */
2389 if (sb->s_blocksize == 1024 && nr == 0 &&
2390 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2391 has_super++;
2392
2393 return (has_super + ext4_group_first_block_no(sb, bg));
2394 }
2395
2396 /**
2397 * ext4_get_stripe_size: Get the stripe size.
2398 * @sbi: In memory super block info
2399 *
2400 * If we have specified it via mount option, then
2401 * use the mount option value. If the value specified at mount time is
2402 * greater than the blocks per group use the super block value.
2403 * If the super block value is greater than blocks per group return 0.
2404 * Allocator needs it be less than blocks per group.
2405 *
2406 */
2407 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2408 {
2409 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2410 unsigned long stripe_width =
2411 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2412 int ret;
2413
2414 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2415 ret = sbi->s_stripe;
2416 else if (stripe_width <= sbi->s_blocks_per_group)
2417 ret = stripe_width;
2418 else if (stride <= sbi->s_blocks_per_group)
2419 ret = stride;
2420 else
2421 ret = 0;
2422
2423 /*
2424 * If the stripe width is 1, this makes no sense and
2425 * we set it to 0 to turn off stripe handling code.
2426 */
2427 if (ret <= 1)
2428 ret = 0;
2429
2430 return ret;
2431 }
2432
2433 /* sysfs supprt */
2434
2435 struct ext4_attr {
2436 struct attribute attr;
2437 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2438 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2439 const char *, size_t);
2440 union {
2441 int offset;
2442 int deprecated_val;
2443 } u;
2444 };
2445
2446 static int parse_strtoull(const char *buf,
2447 unsigned long long max, unsigned long long *value)
2448 {
2449 int ret;
2450
2451 ret = kstrtoull(skip_spaces(buf), 0, value);
2452 if (!ret && *value > max)
2453 ret = -EINVAL;
2454 return ret;
2455 }
2456
2457 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2458 struct ext4_sb_info *sbi,
2459 char *buf)
2460 {
2461 return snprintf(buf, PAGE_SIZE, "%llu\n",
2462 (s64) EXT4_C2B(sbi,
2463 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2464 }
2465
2466 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2467 struct ext4_sb_info *sbi, char *buf)
2468 {
2469 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2470
2471 if (!sb->s_bdev->bd_part)
2472 return snprintf(buf, PAGE_SIZE, "0\n");
2473 return snprintf(buf, PAGE_SIZE, "%lu\n",
2474 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2475 sbi->s_sectors_written_start) >> 1);
2476 }
2477
2478 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2479 struct ext4_sb_info *sbi, char *buf)
2480 {
2481 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2482
2483 if (!sb->s_bdev->bd_part)
2484 return snprintf(buf, PAGE_SIZE, "0\n");
2485 return snprintf(buf, PAGE_SIZE, "%llu\n",
2486 (unsigned long long)(sbi->s_kbytes_written +
2487 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2488 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2489 }
2490
2491 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2492 struct ext4_sb_info *sbi,
2493 const char *buf, size_t count)
2494 {
2495 unsigned long t;
2496 int ret;
2497
2498 ret = kstrtoul(skip_spaces(buf), 0, &t);
2499 if (ret)
2500 return ret;
2501
2502 if (t && (!is_power_of_2(t) || t > 0x40000000))
2503 return -EINVAL;
2504
2505 sbi->s_inode_readahead_blks = t;
2506 return count;
2507 }
2508
2509 static ssize_t sbi_ui_show(struct ext4_attr *a,
2510 struct ext4_sb_info *sbi, char *buf)
2511 {
2512 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2513
2514 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2515 }
2516
2517 static ssize_t sbi_ui_store(struct ext4_attr *a,
2518 struct ext4_sb_info *sbi,
2519 const char *buf, size_t count)
2520 {
2521 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2522 unsigned long t;
2523 int ret;
2524
2525 ret = kstrtoul(skip_spaces(buf), 0, &t);
2526 if (ret)
2527 return ret;
2528 *ui = t;
2529 return count;
2530 }
2531
2532 static ssize_t es_ui_show(struct ext4_attr *a,
2533 struct ext4_sb_info *sbi, char *buf)
2534 {
2535
2536 unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) +
2537 a->u.offset);
2538
2539 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2540 }
2541
2542 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2543 struct ext4_sb_info *sbi, char *buf)
2544 {
2545 return snprintf(buf, PAGE_SIZE, "%llu\n",
2546 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2547 }
2548
2549 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2550 struct ext4_sb_info *sbi,
2551 const char *buf, size_t count)
2552 {
2553 unsigned long long val;
2554 int ret;
2555
2556 if (parse_strtoull(buf, -1ULL, &val))
2557 return -EINVAL;
2558 ret = ext4_reserve_clusters(sbi, val);
2559
2560 return ret ? ret : count;
2561 }
2562
2563 static ssize_t trigger_test_error(struct ext4_attr *a,
2564 struct ext4_sb_info *sbi,
2565 const char *buf, size_t count)
2566 {
2567 int len = count;
2568
2569 if (!capable(CAP_SYS_ADMIN))
2570 return -EPERM;
2571
2572 if (len && buf[len-1] == '\n')
2573 len--;
2574
2575 if (len)
2576 ext4_error(sbi->s_sb, "%.*s", len, buf);
2577 return count;
2578 }
2579
2580 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2581 struct ext4_sb_info *sbi, char *buf)
2582 {
2583 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2584 }
2585
2586 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2587 static struct ext4_attr ext4_attr_##_name = { \
2588 .attr = {.name = __stringify(_name), .mode = _mode }, \
2589 .show = _show, \
2590 .store = _store, \
2591 .u = { \
2592 .offset = offsetof(struct ext4_sb_info, _elname),\
2593 }, \
2594 }
2595
2596 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname) \
2597 static struct ext4_attr ext4_attr_##_name = { \
2598 .attr = {.name = __stringify(_name), .mode = _mode }, \
2599 .show = _show, \
2600 .store = _store, \
2601 .u = { \
2602 .offset = offsetof(struct ext4_super_block, _elname), \
2603 }, \
2604 }
2605
2606 #define EXT4_ATTR(name, mode, show, store) \
2607 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2608
2609 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2610 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2611 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2612
2613 #define EXT4_RO_ATTR_ES_UI(name, elname) \
2614 EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname)
2615 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2616 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2617
2618 #define ATTR_LIST(name) &ext4_attr_##name.attr
2619 #define EXT4_DEPRECATED_ATTR(_name, _val) \
2620 static struct ext4_attr ext4_attr_##_name = { \
2621 .attr = {.name = __stringify(_name), .mode = 0444 }, \
2622 .show = sbi_deprecated_show, \
2623 .u = { \
2624 .deprecated_val = _val, \
2625 }, \
2626 }
2627
2628 EXT4_RO_ATTR(delayed_allocation_blocks);
2629 EXT4_RO_ATTR(session_write_kbytes);
2630 EXT4_RO_ATTR(lifetime_write_kbytes);
2631 EXT4_RW_ATTR(reserved_clusters);
2632 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2633 inode_readahead_blks_store, s_inode_readahead_blks);
2634 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2635 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2636 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2637 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2638 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2639 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2640 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2641 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2642 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2643 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2644 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval);
2645 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst);
2646 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval);
2647 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
2648 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
2649 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
2650 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count);
2651 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time);
2652 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time);
2653
2654 static struct attribute *ext4_attrs[] = {
2655 ATTR_LIST(delayed_allocation_blocks),
2656 ATTR_LIST(session_write_kbytes),
2657 ATTR_LIST(lifetime_write_kbytes),
2658 ATTR_LIST(reserved_clusters),
2659 ATTR_LIST(inode_readahead_blks),
2660 ATTR_LIST(inode_goal),
2661 ATTR_LIST(mb_stats),
2662 ATTR_LIST(mb_max_to_scan),
2663 ATTR_LIST(mb_min_to_scan),
2664 ATTR_LIST(mb_order2_req),
2665 ATTR_LIST(mb_stream_req),
2666 ATTR_LIST(mb_group_prealloc),
2667 ATTR_LIST(max_writeback_mb_bump),
2668 ATTR_LIST(extent_max_zeroout_kb),
2669 ATTR_LIST(trigger_fs_error),
2670 ATTR_LIST(err_ratelimit_interval_ms),
2671 ATTR_LIST(err_ratelimit_burst),
2672 ATTR_LIST(warning_ratelimit_interval_ms),
2673 ATTR_LIST(warning_ratelimit_burst),
2674 ATTR_LIST(msg_ratelimit_interval_ms),
2675 ATTR_LIST(msg_ratelimit_burst),
2676 ATTR_LIST(errors_count),
2677 ATTR_LIST(first_error_time),
2678 ATTR_LIST(last_error_time),
2679 NULL,
2680 };
2681
2682 /* Features this copy of ext4 supports */
2683 EXT4_INFO_ATTR(lazy_itable_init);
2684 EXT4_INFO_ATTR(batched_discard);
2685 EXT4_INFO_ATTR(meta_bg_resize);
2686
2687 static struct attribute *ext4_feat_attrs[] = {
2688 ATTR_LIST(lazy_itable_init),
2689 ATTR_LIST(batched_discard),
2690 ATTR_LIST(meta_bg_resize),
2691 NULL,
2692 };
2693
2694 static ssize_t ext4_attr_show(struct kobject *kobj,
2695 struct attribute *attr, char *buf)
2696 {
2697 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2698 s_kobj);
2699 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2700
2701 return a->show ? a->show(a, sbi, buf) : 0;
2702 }
2703
2704 static ssize_t ext4_attr_store(struct kobject *kobj,
2705 struct attribute *attr,
2706 const char *buf, size_t len)
2707 {
2708 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2709 s_kobj);
2710 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2711
2712 return a->store ? a->store(a, sbi, buf, len) : 0;
2713 }
2714
2715 static void ext4_sb_release(struct kobject *kobj)
2716 {
2717 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2718 s_kobj);
2719 complete(&sbi->s_kobj_unregister);
2720 }
2721
2722 static const struct sysfs_ops ext4_attr_ops = {
2723 .show = ext4_attr_show,
2724 .store = ext4_attr_store,
2725 };
2726
2727 static struct kobj_type ext4_ktype = {
2728 .default_attrs = ext4_attrs,
2729 .sysfs_ops = &ext4_attr_ops,
2730 .release = ext4_sb_release,
2731 };
2732
2733 static void ext4_feat_release(struct kobject *kobj)
2734 {
2735 complete(&ext4_feat->f_kobj_unregister);
2736 }
2737
2738 static ssize_t ext4_feat_show(struct kobject *kobj,
2739 struct attribute *attr, char *buf)
2740 {
2741 return snprintf(buf, PAGE_SIZE, "supported\n");
2742 }
2743
2744 /*
2745 * We can not use ext4_attr_show/store because it relies on the kobject
2746 * being embedded in the ext4_sb_info structure which is definitely not
2747 * true in this case.
2748 */
2749 static const struct sysfs_ops ext4_feat_ops = {
2750 .show = ext4_feat_show,
2751 .store = NULL,
2752 };
2753
2754 static struct kobj_type ext4_feat_ktype = {
2755 .default_attrs = ext4_feat_attrs,
2756 .sysfs_ops = &ext4_feat_ops,
2757 .release = ext4_feat_release,
2758 };
2759
2760 /*
2761 * Check whether this filesystem can be mounted based on
2762 * the features present and the RDONLY/RDWR mount requested.
2763 * Returns 1 if this filesystem can be mounted as requested,
2764 * 0 if it cannot be.
2765 */
2766 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2767 {
2768 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2769 ext4_msg(sb, KERN_ERR,
2770 "Couldn't mount because of "
2771 "unsupported optional features (%x)",
2772 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2773 ~EXT4_FEATURE_INCOMPAT_SUPP));
2774 return 0;
2775 }
2776
2777 if (readonly)
2778 return 1;
2779
2780 /* Check that feature set is OK for a read-write mount */
2781 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2782 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2783 "unsupported optional features (%x)",
2784 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2785 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2786 return 0;
2787 }
2788 /*
2789 * Large file size enabled file system can only be mounted
2790 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2791 */
2792 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2793 if (sizeof(blkcnt_t) < sizeof(u64)) {
2794 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2795 "cannot be mounted RDWR without "
2796 "CONFIG_LBDAF");
2797 return 0;
2798 }
2799 }
2800 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2801 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2802 ext4_msg(sb, KERN_ERR,
2803 "Can't support bigalloc feature without "
2804 "extents feature\n");
2805 return 0;
2806 }
2807
2808 #ifndef CONFIG_QUOTA
2809 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2810 !readonly) {
2811 ext4_msg(sb, KERN_ERR,
2812 "Filesystem with quota feature cannot be mounted RDWR "
2813 "without CONFIG_QUOTA");
2814 return 0;
2815 }
2816 #endif /* CONFIG_QUOTA */
2817 return 1;
2818 }
2819
2820 /*
2821 * This function is called once a day if we have errors logged
2822 * on the file system
2823 */
2824 static void print_daily_error_info(unsigned long arg)
2825 {
2826 struct super_block *sb = (struct super_block *) arg;
2827 struct ext4_sb_info *sbi;
2828 struct ext4_super_block *es;
2829
2830 sbi = EXT4_SB(sb);
2831 es = sbi->s_es;
2832
2833 if (es->s_error_count)
2834 /* fsck newer than v1.41.13 is needed to clean this condition. */
2835 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2836 le32_to_cpu(es->s_error_count));
2837 if (es->s_first_error_time) {
2838 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2839 sb->s_id, le32_to_cpu(es->s_first_error_time),
2840 (int) sizeof(es->s_first_error_func),
2841 es->s_first_error_func,
2842 le32_to_cpu(es->s_first_error_line));
2843 if (es->s_first_error_ino)
2844 printk(": inode %u",
2845 le32_to_cpu(es->s_first_error_ino));
2846 if (es->s_first_error_block)
2847 printk(": block %llu", (unsigned long long)
2848 le64_to_cpu(es->s_first_error_block));
2849 printk("\n");
2850 }
2851 if (es->s_last_error_time) {
2852 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2853 sb->s_id, le32_to_cpu(es->s_last_error_time),
2854 (int) sizeof(es->s_last_error_func),
2855 es->s_last_error_func,
2856 le32_to_cpu(es->s_last_error_line));
2857 if (es->s_last_error_ino)
2858 printk(": inode %u",
2859 le32_to_cpu(es->s_last_error_ino));
2860 if (es->s_last_error_block)
2861 printk(": block %llu", (unsigned long long)
2862 le64_to_cpu(es->s_last_error_block));
2863 printk("\n");
2864 }
2865 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2866 }
2867
2868 /* Find next suitable group and run ext4_init_inode_table */
2869 static int ext4_run_li_request(struct ext4_li_request *elr)
2870 {
2871 struct ext4_group_desc *gdp = NULL;
2872 ext4_group_t group, ngroups;
2873 struct super_block *sb;
2874 unsigned long timeout = 0;
2875 int ret = 0;
2876
2877 sb = elr->lr_super;
2878 ngroups = EXT4_SB(sb)->s_groups_count;
2879
2880 sb_start_write(sb);
2881 for (group = elr->lr_next_group; group < ngroups; group++) {
2882 gdp = ext4_get_group_desc(sb, group, NULL);
2883 if (!gdp) {
2884 ret = 1;
2885 break;
2886 }
2887
2888 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2889 break;
2890 }
2891
2892 if (group >= ngroups)
2893 ret = 1;
2894
2895 if (!ret) {
2896 timeout = jiffies;
2897 ret = ext4_init_inode_table(sb, group,
2898 elr->lr_timeout ? 0 : 1);
2899 if (elr->lr_timeout == 0) {
2900 timeout = (jiffies - timeout) *
2901 elr->lr_sbi->s_li_wait_mult;
2902 elr->lr_timeout = timeout;
2903 }
2904 elr->lr_next_sched = jiffies + elr->lr_timeout;
2905 elr->lr_next_group = group + 1;
2906 }
2907 sb_end_write(sb);
2908
2909 return ret;
2910 }
2911
2912 /*
2913 * Remove lr_request from the list_request and free the
2914 * request structure. Should be called with li_list_mtx held
2915 */
2916 static void ext4_remove_li_request(struct ext4_li_request *elr)
2917 {
2918 struct ext4_sb_info *sbi;
2919
2920 if (!elr)
2921 return;
2922
2923 sbi = elr->lr_sbi;
2924
2925 list_del(&elr->lr_request);
2926 sbi->s_li_request = NULL;
2927 kfree(elr);
2928 }
2929
2930 static void ext4_unregister_li_request(struct super_block *sb)
2931 {
2932 mutex_lock(&ext4_li_mtx);
2933 if (!ext4_li_info) {
2934 mutex_unlock(&ext4_li_mtx);
2935 return;
2936 }
2937
2938 mutex_lock(&ext4_li_info->li_list_mtx);
2939 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2940 mutex_unlock(&ext4_li_info->li_list_mtx);
2941 mutex_unlock(&ext4_li_mtx);
2942 }
2943
2944 static struct task_struct *ext4_lazyinit_task;
2945
2946 /*
2947 * This is the function where ext4lazyinit thread lives. It walks
2948 * through the request list searching for next scheduled filesystem.
2949 * When such a fs is found, run the lazy initialization request
2950 * (ext4_rn_li_request) and keep track of the time spend in this
2951 * function. Based on that time we compute next schedule time of
2952 * the request. When walking through the list is complete, compute
2953 * next waking time and put itself into sleep.
2954 */
2955 static int ext4_lazyinit_thread(void *arg)
2956 {
2957 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2958 struct list_head *pos, *n;
2959 struct ext4_li_request *elr;
2960 unsigned long next_wakeup, cur;
2961
2962 BUG_ON(NULL == eli);
2963
2964 cont_thread:
2965 while (true) {
2966 next_wakeup = MAX_JIFFY_OFFSET;
2967
2968 mutex_lock(&eli->li_list_mtx);
2969 if (list_empty(&eli->li_request_list)) {
2970 mutex_unlock(&eli->li_list_mtx);
2971 goto exit_thread;
2972 }
2973
2974 list_for_each_safe(pos, n, &eli->li_request_list) {
2975 elr = list_entry(pos, struct ext4_li_request,
2976 lr_request);
2977
2978 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2979 if (ext4_run_li_request(elr) != 0) {
2980 /* error, remove the lazy_init job */
2981 ext4_remove_li_request(elr);
2982 continue;
2983 }
2984 }
2985
2986 if (time_before(elr->lr_next_sched, next_wakeup))
2987 next_wakeup = elr->lr_next_sched;
2988 }
2989 mutex_unlock(&eli->li_list_mtx);
2990
2991 try_to_freeze();
2992
2993 cur = jiffies;
2994 if ((time_after_eq(cur, next_wakeup)) ||
2995 (MAX_JIFFY_OFFSET == next_wakeup)) {
2996 cond_resched();
2997 continue;
2998 }
2999
3000 schedule_timeout_interruptible(next_wakeup - cur);
3001
3002 if (kthread_should_stop()) {
3003 ext4_clear_request_list();
3004 goto exit_thread;
3005 }
3006 }
3007
3008 exit_thread:
3009 /*
3010 * It looks like the request list is empty, but we need
3011 * to check it under the li_list_mtx lock, to prevent any
3012 * additions into it, and of course we should lock ext4_li_mtx
3013 * to atomically free the list and ext4_li_info, because at
3014 * this point another ext4 filesystem could be registering
3015 * new one.
3016 */
3017 mutex_lock(&ext4_li_mtx);
3018 mutex_lock(&eli->li_list_mtx);
3019 if (!list_empty(&eli->li_request_list)) {
3020 mutex_unlock(&eli->li_list_mtx);
3021 mutex_unlock(&ext4_li_mtx);
3022 goto cont_thread;
3023 }
3024 mutex_unlock(&eli->li_list_mtx);
3025 kfree(ext4_li_info);
3026 ext4_li_info = NULL;
3027 mutex_unlock(&ext4_li_mtx);
3028
3029 return 0;
3030 }
3031
3032 static void ext4_clear_request_list(void)
3033 {
3034 struct list_head *pos, *n;
3035 struct ext4_li_request *elr;
3036
3037 mutex_lock(&ext4_li_info->li_list_mtx);
3038 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3039 elr = list_entry(pos, struct ext4_li_request,
3040 lr_request);
3041 ext4_remove_li_request(elr);
3042 }
3043 mutex_unlock(&ext4_li_info->li_list_mtx);
3044 }
3045
3046 static int ext4_run_lazyinit_thread(void)
3047 {
3048 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3049 ext4_li_info, "ext4lazyinit");
3050 if (IS_ERR(ext4_lazyinit_task)) {
3051 int err = PTR_ERR(ext4_lazyinit_task);
3052 ext4_clear_request_list();
3053 kfree(ext4_li_info);
3054 ext4_li_info = NULL;
3055 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3056 "initialization thread\n",
3057 err);
3058 return err;
3059 }
3060 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3061 return 0;
3062 }
3063
3064 /*
3065 * Check whether it make sense to run itable init. thread or not.
3066 * If there is at least one uninitialized inode table, return
3067 * corresponding group number, else the loop goes through all
3068 * groups and return total number of groups.
3069 */
3070 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3071 {
3072 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3073 struct ext4_group_desc *gdp = NULL;
3074
3075 for (group = 0; group < ngroups; group++) {
3076 gdp = ext4_get_group_desc(sb, group, NULL);
3077 if (!gdp)
3078 continue;
3079
3080 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3081 break;
3082 }
3083
3084 return group;
3085 }
3086
3087 static int ext4_li_info_new(void)
3088 {
3089 struct ext4_lazy_init *eli = NULL;
3090
3091 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3092 if (!eli)
3093 return -ENOMEM;
3094
3095 INIT_LIST_HEAD(&eli->li_request_list);
3096 mutex_init(&eli->li_list_mtx);
3097
3098 eli->li_state |= EXT4_LAZYINIT_QUIT;
3099
3100 ext4_li_info = eli;
3101
3102 return 0;
3103 }
3104
3105 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3106 ext4_group_t start)
3107 {
3108 struct ext4_sb_info *sbi = EXT4_SB(sb);
3109 struct ext4_li_request *elr;
3110
3111 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3112 if (!elr)
3113 return NULL;
3114
3115 elr->lr_super = sb;
3116 elr->lr_sbi = sbi;
3117 elr->lr_next_group = start;
3118
3119 /*
3120 * Randomize first schedule time of the request to
3121 * spread the inode table initialization requests
3122 * better.
3123 */
3124 elr->lr_next_sched = jiffies + (prandom_u32() %
3125 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3126 return elr;
3127 }
3128
3129 int ext4_register_li_request(struct super_block *sb,
3130 ext4_group_t first_not_zeroed)
3131 {
3132 struct ext4_sb_info *sbi = EXT4_SB(sb);
3133 struct ext4_li_request *elr = NULL;
3134 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3135 int ret = 0;
3136
3137 mutex_lock(&ext4_li_mtx);
3138 if (sbi->s_li_request != NULL) {
3139 /*
3140 * Reset timeout so it can be computed again, because
3141 * s_li_wait_mult might have changed.
3142 */
3143 sbi->s_li_request->lr_timeout = 0;
3144 goto out;
3145 }
3146
3147 if (first_not_zeroed == ngroups ||
3148 (sb->s_flags & MS_RDONLY) ||
3149 !test_opt(sb, INIT_INODE_TABLE))
3150 goto out;
3151
3152 elr = ext4_li_request_new(sb, first_not_zeroed);
3153 if (!elr) {
3154 ret = -ENOMEM;
3155 goto out;
3156 }
3157
3158 if (NULL == ext4_li_info) {
3159 ret = ext4_li_info_new();
3160 if (ret)
3161 goto out;
3162 }
3163
3164 mutex_lock(&ext4_li_info->li_list_mtx);
3165 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3166 mutex_unlock(&ext4_li_info->li_list_mtx);
3167
3168 sbi->s_li_request = elr;
3169 /*
3170 * set elr to NULL here since it has been inserted to
3171 * the request_list and the removal and free of it is
3172 * handled by ext4_clear_request_list from now on.
3173 */
3174 elr = NULL;
3175
3176 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3177 ret = ext4_run_lazyinit_thread();
3178 if (ret)
3179 goto out;
3180 }
3181 out:
3182 mutex_unlock(&ext4_li_mtx);
3183 if (ret)
3184 kfree(elr);
3185 return ret;
3186 }
3187
3188 /*
3189 * We do not need to lock anything since this is called on
3190 * module unload.
3191 */
3192 static void ext4_destroy_lazyinit_thread(void)
3193 {
3194 /*
3195 * If thread exited earlier
3196 * there's nothing to be done.
3197 */
3198 if (!ext4_li_info || !ext4_lazyinit_task)
3199 return;
3200
3201 kthread_stop(ext4_lazyinit_task);
3202 }
3203
3204 static int set_journal_csum_feature_set(struct super_block *sb)
3205 {
3206 int ret = 1;
3207 int compat, incompat;
3208 struct ext4_sb_info *sbi = EXT4_SB(sb);
3209
3210 if (ext4_has_metadata_csum(sb)) {
3211 /* journal checksum v3 */
3212 compat = 0;
3213 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3214 } else {
3215 /* journal checksum v1 */
3216 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3217 incompat = 0;
3218 }
3219
3220 jbd2_journal_clear_features(sbi->s_journal,
3221 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3222 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3223 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3224 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3225 ret = jbd2_journal_set_features(sbi->s_journal,
3226 compat, 0,
3227 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3228 incompat);
3229 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3230 ret = jbd2_journal_set_features(sbi->s_journal,
3231 compat, 0,
3232 incompat);
3233 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3234 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3235 } else {
3236 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3237 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3238 }
3239
3240 return ret;
3241 }
3242
3243 /*
3244 * Note: calculating the overhead so we can be compatible with
3245 * historical BSD practice is quite difficult in the face of
3246 * clusters/bigalloc. This is because multiple metadata blocks from
3247 * different block group can end up in the same allocation cluster.
3248 * Calculating the exact overhead in the face of clustered allocation
3249 * requires either O(all block bitmaps) in memory or O(number of block
3250 * groups**2) in time. We will still calculate the superblock for
3251 * older file systems --- and if we come across with a bigalloc file
3252 * system with zero in s_overhead_clusters the estimate will be close to
3253 * correct especially for very large cluster sizes --- but for newer
3254 * file systems, it's better to calculate this figure once at mkfs
3255 * time, and store it in the superblock. If the superblock value is
3256 * present (even for non-bigalloc file systems), we will use it.
3257 */
3258 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3259 char *buf)
3260 {
3261 struct ext4_sb_info *sbi = EXT4_SB(sb);
3262 struct ext4_group_desc *gdp;
3263 ext4_fsblk_t first_block, last_block, b;
3264 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3265 int s, j, count = 0;
3266
3267 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3268 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3269 sbi->s_itb_per_group + 2);
3270
3271 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3272 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3273 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3274 for (i = 0; i < ngroups; i++) {
3275 gdp = ext4_get_group_desc(sb, i, NULL);
3276 b = ext4_block_bitmap(sb, gdp);
3277 if (b >= first_block && b <= last_block) {
3278 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3279 count++;
3280 }
3281 b = ext4_inode_bitmap(sb, gdp);
3282 if (b >= first_block && b <= last_block) {
3283 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3284 count++;
3285 }
3286 b = ext4_inode_table(sb, gdp);
3287 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3288 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3289 int c = EXT4_B2C(sbi, b - first_block);
3290 ext4_set_bit(c, buf);
3291 count++;
3292 }
3293 if (i != grp)
3294 continue;
3295 s = 0;
3296 if (ext4_bg_has_super(sb, grp)) {
3297 ext4_set_bit(s++, buf);
3298 count++;
3299 }
3300 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3301 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3302 count++;
3303 }
3304 }
3305 if (!count)
3306 return 0;
3307 return EXT4_CLUSTERS_PER_GROUP(sb) -
3308 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3309 }
3310
3311 /*
3312 * Compute the overhead and stash it in sbi->s_overhead
3313 */
3314 int ext4_calculate_overhead(struct super_block *sb)
3315 {
3316 struct ext4_sb_info *sbi = EXT4_SB(sb);
3317 struct ext4_super_block *es = sbi->s_es;
3318 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3319 ext4_fsblk_t overhead = 0;
3320 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3321
3322 if (!buf)
3323 return -ENOMEM;
3324
3325 /*
3326 * Compute the overhead (FS structures). This is constant
3327 * for a given filesystem unless the number of block groups
3328 * changes so we cache the previous value until it does.
3329 */
3330
3331 /*
3332 * All of the blocks before first_data_block are overhead
3333 */
3334 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3335
3336 /*
3337 * Add the overhead found in each block group
3338 */
3339 for (i = 0; i < ngroups; i++) {
3340 int blks;
3341
3342 blks = count_overhead(sb, i, buf);
3343 overhead += blks;
3344 if (blks)
3345 memset(buf, 0, PAGE_SIZE);
3346 cond_resched();
3347 }
3348 /* Add the journal blocks as well */
3349 if (sbi->s_journal)
3350 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3351
3352 sbi->s_overhead = overhead;
3353 smp_wmb();
3354 free_page((unsigned long) buf);
3355 return 0;
3356 }
3357
3358
3359 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3360 {
3361 ext4_fsblk_t resv_clusters;
3362
3363 /*
3364 * There's no need to reserve anything when we aren't using extents.
3365 * The space estimates are exact, there are no unwritten extents,
3366 * hole punching doesn't need new metadata... This is needed especially
3367 * to keep ext2/3 backward compatibility.
3368 */
3369 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3370 return 0;
3371 /*
3372 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3373 * This should cover the situations where we can not afford to run
3374 * out of space like for example punch hole, or converting
3375 * unwritten extents in delalloc path. In most cases such
3376 * allocation would require 1, or 2 blocks, higher numbers are
3377 * very rare.
3378 */
3379 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3380 EXT4_SB(sb)->s_cluster_bits;
3381
3382 do_div(resv_clusters, 50);
3383 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3384
3385 return resv_clusters;
3386 }
3387
3388
3389 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3390 {
3391 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3392 sbi->s_cluster_bits;
3393
3394 if (count >= clusters)
3395 return -EINVAL;
3396
3397 atomic64_set(&sbi->s_resv_clusters, count);
3398 return 0;
3399 }
3400
3401 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3402 {
3403 char *orig_data = kstrdup(data, GFP_KERNEL);
3404 struct buffer_head *bh;
3405 struct ext4_super_block *es = NULL;
3406 struct ext4_sb_info *sbi;
3407 ext4_fsblk_t block;
3408 ext4_fsblk_t sb_block = get_sb_block(&data);
3409 ext4_fsblk_t logical_sb_block;
3410 unsigned long offset = 0;
3411 unsigned long journal_devnum = 0;
3412 unsigned long def_mount_opts;
3413 struct inode *root;
3414 char *cp;
3415 const char *descr;
3416 int ret = -ENOMEM;
3417 int blocksize, clustersize;
3418 unsigned int db_count;
3419 unsigned int i;
3420 int needs_recovery, has_huge_files, has_bigalloc;
3421 __u64 blocks_count;
3422 int err = 0;
3423 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3424 ext4_group_t first_not_zeroed;
3425
3426 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3427 if (!sbi)
3428 goto out_free_orig;
3429
3430 sbi->s_blockgroup_lock =
3431 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3432 if (!sbi->s_blockgroup_lock) {
3433 kfree(sbi);
3434 goto out_free_orig;
3435 }
3436 sb->s_fs_info = sbi;
3437 sbi->s_sb = sb;
3438 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3439 sbi->s_sb_block = sb_block;
3440 if (sb->s_bdev->bd_part)
3441 sbi->s_sectors_written_start =
3442 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3443
3444 /* Cleanup superblock name */
3445 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3446 *cp = '!';
3447
3448 /* -EINVAL is default */
3449 ret = -EINVAL;
3450 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3451 if (!blocksize) {
3452 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3453 goto out_fail;
3454 }
3455
3456 /*
3457 * The ext4 superblock will not be buffer aligned for other than 1kB
3458 * block sizes. We need to calculate the offset from buffer start.
3459 */
3460 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3461 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3462 offset = do_div(logical_sb_block, blocksize);
3463 } else {
3464 logical_sb_block = sb_block;
3465 }
3466
3467 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3468 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3469 goto out_fail;
3470 }
3471 /*
3472 * Note: s_es must be initialized as soon as possible because
3473 * some ext4 macro-instructions depend on its value
3474 */
3475 es = (struct ext4_super_block *) (bh->b_data + offset);
3476 sbi->s_es = es;
3477 sb->s_magic = le16_to_cpu(es->s_magic);
3478 if (sb->s_magic != EXT4_SUPER_MAGIC)
3479 goto cantfind_ext4;
3480 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3481
3482 /* Warn if metadata_csum and gdt_csum are both set. */
3483 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3484 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3485 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3486 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3487 "redundant flags; please run fsck.");
3488
3489 /* Check for a known checksum algorithm */
3490 if (!ext4_verify_csum_type(sb, es)) {
3491 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3492 "unknown checksum algorithm.");
3493 silent = 1;
3494 goto cantfind_ext4;
3495 }
3496
3497 /* Load the checksum driver */
3498 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3499 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3500 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3501 if (IS_ERR(sbi->s_chksum_driver)) {
3502 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3503 ret = PTR_ERR(sbi->s_chksum_driver);
3504 sbi->s_chksum_driver = NULL;
3505 goto failed_mount;
3506 }
3507 }
3508
3509 /* Check superblock checksum */
3510 if (!ext4_superblock_csum_verify(sb, es)) {
3511 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3512 "invalid superblock checksum. Run e2fsck?");
3513 silent = 1;
3514 goto cantfind_ext4;
3515 }
3516
3517 /* Precompute checksum seed for all metadata */
3518 if (ext4_has_metadata_csum(sb))
3519 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3520 sizeof(es->s_uuid));
3521
3522 /* Set defaults before we parse the mount options */
3523 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3524 set_opt(sb, INIT_INODE_TABLE);
3525 if (def_mount_opts & EXT4_DEFM_DEBUG)
3526 set_opt(sb, DEBUG);
3527 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3528 set_opt(sb, GRPID);
3529 if (def_mount_opts & EXT4_DEFM_UID16)
3530 set_opt(sb, NO_UID32);
3531 /* xattr user namespace & acls are now defaulted on */
3532 set_opt(sb, XATTR_USER);
3533 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3534 set_opt(sb, POSIX_ACL);
3535 #endif
3536 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3537 if (ext4_has_metadata_csum(sb))
3538 set_opt(sb, JOURNAL_CHECKSUM);
3539
3540 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3541 set_opt(sb, JOURNAL_DATA);
3542 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3543 set_opt(sb, ORDERED_DATA);
3544 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3545 set_opt(sb, WRITEBACK_DATA);
3546
3547 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3548 set_opt(sb, ERRORS_PANIC);
3549 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3550 set_opt(sb, ERRORS_CONT);
3551 else
3552 set_opt(sb, ERRORS_RO);
3553 /* block_validity enabled by default; disable with noblock_validity */
3554 set_opt(sb, BLOCK_VALIDITY);
3555 if (def_mount_opts & EXT4_DEFM_DISCARD)
3556 set_opt(sb, DISCARD);
3557
3558 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3559 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3560 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3561 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3562 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3563
3564 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3565 set_opt(sb, BARRIER);
3566
3567 /*
3568 * enable delayed allocation by default
3569 * Use -o nodelalloc to turn it off
3570 */
3571 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3572 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3573 set_opt(sb, DELALLOC);
3574
3575 /*
3576 * set default s_li_wait_mult for lazyinit, for the case there is
3577 * no mount option specified.
3578 */
3579 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3580
3581 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3582 &journal_devnum, &journal_ioprio, 0)) {
3583 ext4_msg(sb, KERN_WARNING,
3584 "failed to parse options in superblock: %s",
3585 sbi->s_es->s_mount_opts);
3586 }
3587 sbi->s_def_mount_opt = sbi->s_mount_opt;
3588 if (!parse_options((char *) data, sb, &journal_devnum,
3589 &journal_ioprio, 0))
3590 goto failed_mount;
3591
3592 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3593 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3594 "with data=journal disables delayed "
3595 "allocation and O_DIRECT support!\n");
3596 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3597 ext4_msg(sb, KERN_ERR, "can't mount with "
3598 "both data=journal and delalloc");
3599 goto failed_mount;
3600 }
3601 if (test_opt(sb, DIOREAD_NOLOCK)) {
3602 ext4_msg(sb, KERN_ERR, "can't mount with "
3603 "both data=journal and dioread_nolock");
3604 goto failed_mount;
3605 }
3606 if (test_opt(sb, DELALLOC))
3607 clear_opt(sb, DELALLOC);
3608 }
3609
3610 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3611 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3612
3613 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3614 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3615 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3616 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3617 ext4_msg(sb, KERN_WARNING,
3618 "feature flags set on rev 0 fs, "
3619 "running e2fsck is recommended");
3620
3621 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3622 set_opt2(sb, HURD_COMPAT);
3623 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
3624 EXT4_FEATURE_INCOMPAT_64BIT)) {
3625 ext4_msg(sb, KERN_ERR,
3626 "The Hurd can't support 64-bit file systems");
3627 goto failed_mount;
3628 }
3629 }
3630
3631 if (IS_EXT2_SB(sb)) {
3632 if (ext2_feature_set_ok(sb))
3633 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3634 "using the ext4 subsystem");
3635 else {
3636 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3637 "to feature incompatibilities");
3638 goto failed_mount;
3639 }
3640 }
3641
3642 if (IS_EXT3_SB(sb)) {
3643 if (ext3_feature_set_ok(sb))
3644 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3645 "using the ext4 subsystem");
3646 else {
3647 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3648 "to feature incompatibilities");
3649 goto failed_mount;
3650 }
3651 }
3652
3653 /*
3654 * Check feature flags regardless of the revision level, since we
3655 * previously didn't change the revision level when setting the flags,
3656 * so there is a chance incompat flags are set on a rev 0 filesystem.
3657 */
3658 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3659 goto failed_mount;
3660
3661 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3662 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3663 blocksize > EXT4_MAX_BLOCK_SIZE) {
3664 ext4_msg(sb, KERN_ERR,
3665 "Unsupported filesystem blocksize %d", blocksize);
3666 goto failed_mount;
3667 }
3668
3669 if (sb->s_blocksize != blocksize) {
3670 /* Validate the filesystem blocksize */
3671 if (!sb_set_blocksize(sb, blocksize)) {
3672 ext4_msg(sb, KERN_ERR, "bad block size %d",
3673 blocksize);
3674 goto failed_mount;
3675 }
3676
3677 brelse(bh);
3678 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3679 offset = do_div(logical_sb_block, blocksize);
3680 bh = sb_bread_unmovable(sb, logical_sb_block);
3681 if (!bh) {
3682 ext4_msg(sb, KERN_ERR,
3683 "Can't read superblock on 2nd try");
3684 goto failed_mount;
3685 }
3686 es = (struct ext4_super_block *)(bh->b_data + offset);
3687 sbi->s_es = es;
3688 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3689 ext4_msg(sb, KERN_ERR,
3690 "Magic mismatch, very weird!");
3691 goto failed_mount;
3692 }
3693 }
3694
3695 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3696 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3697 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3698 has_huge_files);
3699 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3700
3701 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3702 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3703 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3704 } else {
3705 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3706 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3707 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3708 (!is_power_of_2(sbi->s_inode_size)) ||
3709 (sbi->s_inode_size > blocksize)) {
3710 ext4_msg(sb, KERN_ERR,
3711 "unsupported inode size: %d",
3712 sbi->s_inode_size);
3713 goto failed_mount;
3714 }
3715 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3716 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3717 }
3718
3719 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3720 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3721 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3722 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3723 !is_power_of_2(sbi->s_desc_size)) {
3724 ext4_msg(sb, KERN_ERR,
3725 "unsupported descriptor size %lu",
3726 sbi->s_desc_size);
3727 goto failed_mount;
3728 }
3729 } else
3730 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3731
3732 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3733 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3734 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3735 goto cantfind_ext4;
3736
3737 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3738 if (sbi->s_inodes_per_block == 0)
3739 goto cantfind_ext4;
3740 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3741 sbi->s_inodes_per_block;
3742 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3743 sbi->s_sbh = bh;
3744 sbi->s_mount_state = le16_to_cpu(es->s_state);
3745 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3746 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3747
3748 for (i = 0; i < 4; i++)
3749 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3750 sbi->s_def_hash_version = es->s_def_hash_version;
3751 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3752 i = le32_to_cpu(es->s_flags);
3753 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3754 sbi->s_hash_unsigned = 3;
3755 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3756 #ifdef __CHAR_UNSIGNED__
3757 if (!(sb->s_flags & MS_RDONLY))
3758 es->s_flags |=
3759 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3760 sbi->s_hash_unsigned = 3;
3761 #else
3762 if (!(sb->s_flags & MS_RDONLY))
3763 es->s_flags |=
3764 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3765 #endif
3766 }
3767 }
3768
3769 /* Handle clustersize */
3770 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3771 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3772 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3773 if (has_bigalloc) {
3774 if (clustersize < blocksize) {
3775 ext4_msg(sb, KERN_ERR,
3776 "cluster size (%d) smaller than "
3777 "block size (%d)", clustersize, blocksize);
3778 goto failed_mount;
3779 }
3780 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3781 le32_to_cpu(es->s_log_block_size);
3782 sbi->s_clusters_per_group =
3783 le32_to_cpu(es->s_clusters_per_group);
3784 if (sbi->s_clusters_per_group > blocksize * 8) {
3785 ext4_msg(sb, KERN_ERR,
3786 "#clusters per group too big: %lu",
3787 sbi->s_clusters_per_group);
3788 goto failed_mount;
3789 }
3790 if (sbi->s_blocks_per_group !=
3791 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3792 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3793 "clusters per group (%lu) inconsistent",
3794 sbi->s_blocks_per_group,
3795 sbi->s_clusters_per_group);
3796 goto failed_mount;
3797 }
3798 } else {
3799 if (clustersize != blocksize) {
3800 ext4_warning(sb, "fragment/cluster size (%d) != "
3801 "block size (%d)", clustersize,
3802 blocksize);
3803 clustersize = blocksize;
3804 }
3805 if (sbi->s_blocks_per_group > blocksize * 8) {
3806 ext4_msg(sb, KERN_ERR,
3807 "#blocks per group too big: %lu",
3808 sbi->s_blocks_per_group);
3809 goto failed_mount;
3810 }
3811 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3812 sbi->s_cluster_bits = 0;
3813 }
3814 sbi->s_cluster_ratio = clustersize / blocksize;
3815
3816 if (sbi->s_inodes_per_group > blocksize * 8) {
3817 ext4_msg(sb, KERN_ERR,
3818 "#inodes per group too big: %lu",
3819 sbi->s_inodes_per_group);
3820 goto failed_mount;
3821 }
3822
3823 /* Do we have standard group size of clustersize * 8 blocks ? */
3824 if (sbi->s_blocks_per_group == clustersize << 3)
3825 set_opt2(sb, STD_GROUP_SIZE);
3826
3827 /*
3828 * Test whether we have more sectors than will fit in sector_t,
3829 * and whether the max offset is addressable by the page cache.
3830 */
3831 err = generic_check_addressable(sb->s_blocksize_bits,
3832 ext4_blocks_count(es));
3833 if (err) {
3834 ext4_msg(sb, KERN_ERR, "filesystem"
3835 " too large to mount safely on this system");
3836 if (sizeof(sector_t) < 8)
3837 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3838 goto failed_mount;
3839 }
3840
3841 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3842 goto cantfind_ext4;
3843
3844 /* check blocks count against device size */
3845 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3846 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3847 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3848 "exceeds size of device (%llu blocks)",
3849 ext4_blocks_count(es), blocks_count);
3850 goto failed_mount;
3851 }
3852
3853 /*
3854 * It makes no sense for the first data block to be beyond the end
3855 * of the filesystem.
3856 */
3857 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3858 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3859 "block %u is beyond end of filesystem (%llu)",
3860 le32_to_cpu(es->s_first_data_block),
3861 ext4_blocks_count(es));
3862 goto failed_mount;
3863 }
3864 blocks_count = (ext4_blocks_count(es) -
3865 le32_to_cpu(es->s_first_data_block) +
3866 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3867 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3868 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3869 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3870 "(block count %llu, first data block %u, "
3871 "blocks per group %lu)", sbi->s_groups_count,
3872 ext4_blocks_count(es),
3873 le32_to_cpu(es->s_first_data_block),
3874 EXT4_BLOCKS_PER_GROUP(sb));
3875 goto failed_mount;
3876 }
3877 sbi->s_groups_count = blocks_count;
3878 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3879 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3880 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3881 EXT4_DESC_PER_BLOCK(sb);
3882 sbi->s_group_desc = ext4_kvmalloc(db_count *
3883 sizeof(struct buffer_head *),
3884 GFP_KERNEL);
3885 if (sbi->s_group_desc == NULL) {
3886 ext4_msg(sb, KERN_ERR, "not enough memory");
3887 ret = -ENOMEM;
3888 goto failed_mount;
3889 }
3890
3891 if (ext4_proc_root)
3892 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3893
3894 if (sbi->s_proc)
3895 proc_create_data("options", S_IRUGO, sbi->s_proc,
3896 &ext4_seq_options_fops, sb);
3897
3898 bgl_lock_init(sbi->s_blockgroup_lock);
3899
3900 for (i = 0; i < db_count; i++) {
3901 block = descriptor_loc(sb, logical_sb_block, i);
3902 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3903 if (!sbi->s_group_desc[i]) {
3904 ext4_msg(sb, KERN_ERR,
3905 "can't read group descriptor %d", i);
3906 db_count = i;
3907 goto failed_mount2;
3908 }
3909 }
3910 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3911 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3912 goto failed_mount2;
3913 }
3914
3915 sbi->s_gdb_count = db_count;
3916 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3917 spin_lock_init(&sbi->s_next_gen_lock);
3918
3919 init_timer(&sbi->s_err_report);
3920 sbi->s_err_report.function = print_daily_error_info;
3921 sbi->s_err_report.data = (unsigned long) sb;
3922
3923 /* Register extent status tree shrinker */
3924 if (ext4_es_register_shrinker(sbi))
3925 goto failed_mount3;
3926
3927 sbi->s_stripe = ext4_get_stripe_size(sbi);
3928 sbi->s_extent_max_zeroout_kb = 32;
3929
3930 /*
3931 * set up enough so that it can read an inode
3932 */
3933 sb->s_op = &ext4_sops;
3934 sb->s_export_op = &ext4_export_ops;
3935 sb->s_xattr = ext4_xattr_handlers;
3936 #ifdef CONFIG_QUOTA
3937 sb->dq_op = &ext4_quota_operations;
3938 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3939 sb->s_qcop = &ext4_qctl_sysfile_operations;
3940 else
3941 sb->s_qcop = &ext4_qctl_operations;
3942 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
3943 #endif
3944 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3945
3946 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3947 mutex_init(&sbi->s_orphan_lock);
3948
3949 sb->s_root = NULL;
3950
3951 needs_recovery = (es->s_last_orphan != 0 ||
3952 EXT4_HAS_INCOMPAT_FEATURE(sb,
3953 EXT4_FEATURE_INCOMPAT_RECOVER));
3954
3955 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3956 !(sb->s_flags & MS_RDONLY))
3957 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3958 goto failed_mount3a;
3959
3960 /*
3961 * The first inode we look at is the journal inode. Don't try
3962 * root first: it may be modified in the journal!
3963 */
3964 if (!test_opt(sb, NOLOAD) &&
3965 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3966 if (ext4_load_journal(sb, es, journal_devnum))
3967 goto failed_mount3a;
3968 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3969 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3970 ext4_msg(sb, KERN_ERR, "required journal recovery "
3971 "suppressed and not mounted read-only");
3972 goto failed_mount_wq;
3973 } else {
3974 clear_opt(sb, DATA_FLAGS);
3975 sbi->s_journal = NULL;
3976 needs_recovery = 0;
3977 goto no_journal;
3978 }
3979
3980 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3981 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3982 JBD2_FEATURE_INCOMPAT_64BIT)) {
3983 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3984 goto failed_mount_wq;
3985 }
3986
3987 if (!set_journal_csum_feature_set(sb)) {
3988 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3989 "feature set");
3990 goto failed_mount_wq;
3991 }
3992
3993 /* We have now updated the journal if required, so we can
3994 * validate the data journaling mode. */
3995 switch (test_opt(sb, DATA_FLAGS)) {
3996 case 0:
3997 /* No mode set, assume a default based on the journal
3998 * capabilities: ORDERED_DATA if the journal can
3999 * cope, else JOURNAL_DATA
4000 */
4001 if (jbd2_journal_check_available_features
4002 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4003 set_opt(sb, ORDERED_DATA);
4004 else
4005 set_opt(sb, JOURNAL_DATA);
4006 break;
4007
4008 case EXT4_MOUNT_ORDERED_DATA:
4009 case EXT4_MOUNT_WRITEBACK_DATA:
4010 if (!jbd2_journal_check_available_features
4011 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4012 ext4_msg(sb, KERN_ERR, "Journal does not support "
4013 "requested data journaling mode");
4014 goto failed_mount_wq;
4015 }
4016 default:
4017 break;
4018 }
4019 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4020
4021 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4022
4023 no_journal:
4024 if (ext4_mballoc_ready) {
4025 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
4026 if (!sbi->s_mb_cache) {
4027 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4028 goto failed_mount_wq;
4029 }
4030 }
4031
4032 /*
4033 * Get the # of file system overhead blocks from the
4034 * superblock if present.
4035 */
4036 if (es->s_overhead_clusters)
4037 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4038 else {
4039 err = ext4_calculate_overhead(sb);
4040 if (err)
4041 goto failed_mount_wq;
4042 }
4043
4044 /*
4045 * The maximum number of concurrent works can be high and
4046 * concurrency isn't really necessary. Limit it to 1.
4047 */
4048 EXT4_SB(sb)->rsv_conversion_wq =
4049 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4050 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4051 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4052 ret = -ENOMEM;
4053 goto failed_mount4;
4054 }
4055
4056 /*
4057 * The jbd2_journal_load will have done any necessary log recovery,
4058 * so we can safely mount the rest of the filesystem now.
4059 */
4060
4061 root = ext4_iget(sb, EXT4_ROOT_INO);
4062 if (IS_ERR(root)) {
4063 ext4_msg(sb, KERN_ERR, "get root inode failed");
4064 ret = PTR_ERR(root);
4065 root = NULL;
4066 goto failed_mount4;
4067 }
4068 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4069 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4070 iput(root);
4071 goto failed_mount4;
4072 }
4073 sb->s_root = d_make_root(root);
4074 if (!sb->s_root) {
4075 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4076 ret = -ENOMEM;
4077 goto failed_mount4;
4078 }
4079
4080 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4081 sb->s_flags |= MS_RDONLY;
4082
4083 /* determine the minimum size of new large inodes, if present */
4084 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4085 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4086 EXT4_GOOD_OLD_INODE_SIZE;
4087 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4088 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
4089 if (sbi->s_want_extra_isize <
4090 le16_to_cpu(es->s_want_extra_isize))
4091 sbi->s_want_extra_isize =
4092 le16_to_cpu(es->s_want_extra_isize);
4093 if (sbi->s_want_extra_isize <
4094 le16_to_cpu(es->s_min_extra_isize))
4095 sbi->s_want_extra_isize =
4096 le16_to_cpu(es->s_min_extra_isize);
4097 }
4098 }
4099 /* Check if enough inode space is available */
4100 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4101 sbi->s_inode_size) {
4102 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4103 EXT4_GOOD_OLD_INODE_SIZE;
4104 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4105 "available");
4106 }
4107
4108 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
4109 if (err) {
4110 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4111 "reserved pool", ext4_calculate_resv_clusters(sb));
4112 goto failed_mount4a;
4113 }
4114
4115 err = ext4_setup_system_zone(sb);
4116 if (err) {
4117 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4118 "zone (%d)", err);
4119 goto failed_mount4a;
4120 }
4121
4122 ext4_ext_init(sb);
4123 err = ext4_mb_init(sb);
4124 if (err) {
4125 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4126 err);
4127 goto failed_mount5;
4128 }
4129
4130 block = ext4_count_free_clusters(sb);
4131 ext4_free_blocks_count_set(sbi->s_es,
4132 EXT4_C2B(sbi, block));
4133 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4134 GFP_KERNEL);
4135 if (!err) {
4136 unsigned long freei = ext4_count_free_inodes(sb);
4137 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4138 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4139 GFP_KERNEL);
4140 }
4141 if (!err)
4142 err = percpu_counter_init(&sbi->s_dirs_counter,
4143 ext4_count_dirs(sb), GFP_KERNEL);
4144 if (!err)
4145 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4146 GFP_KERNEL);
4147 if (err) {
4148 ext4_msg(sb, KERN_ERR, "insufficient memory");
4149 goto failed_mount6;
4150 }
4151
4152 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
4153 if (!ext4_fill_flex_info(sb)) {
4154 ext4_msg(sb, KERN_ERR,
4155 "unable to initialize "
4156 "flex_bg meta info!");
4157 goto failed_mount6;
4158 }
4159
4160 err = ext4_register_li_request(sb, first_not_zeroed);
4161 if (err)
4162 goto failed_mount6;
4163
4164 sbi->s_kobj.kset = ext4_kset;
4165 init_completion(&sbi->s_kobj_unregister);
4166 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4167 "%s", sb->s_id);
4168 if (err)
4169 goto failed_mount7;
4170
4171 #ifdef CONFIG_QUOTA
4172 /* Enable quota usage during mount. */
4173 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4174 !(sb->s_flags & MS_RDONLY)) {
4175 err = ext4_enable_quotas(sb);
4176 if (err)
4177 goto failed_mount8;
4178 }
4179 #endif /* CONFIG_QUOTA */
4180
4181 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4182 ext4_orphan_cleanup(sb, es);
4183 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4184 if (needs_recovery) {
4185 ext4_msg(sb, KERN_INFO, "recovery complete");
4186 ext4_mark_recovery_complete(sb, es);
4187 }
4188 if (EXT4_SB(sb)->s_journal) {
4189 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4190 descr = " journalled data mode";
4191 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4192 descr = " ordered data mode";
4193 else
4194 descr = " writeback data mode";
4195 } else
4196 descr = "out journal";
4197
4198 if (test_opt(sb, DISCARD)) {
4199 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4200 if (!blk_queue_discard(q))
4201 ext4_msg(sb, KERN_WARNING,
4202 "mounting with \"discard\" option, but "
4203 "the device does not support discard");
4204 }
4205
4206 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4207 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4208 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4209
4210 if (es->s_error_count)
4211 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4212
4213 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4214 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4215 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4216 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4217
4218 kfree(orig_data);
4219 return 0;
4220
4221 cantfind_ext4:
4222 if (!silent)
4223 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4224 goto failed_mount;
4225
4226 #ifdef CONFIG_QUOTA
4227 failed_mount8:
4228 kobject_del(&sbi->s_kobj);
4229 #endif
4230 failed_mount7:
4231 ext4_unregister_li_request(sb);
4232 failed_mount6:
4233 ext4_mb_release(sb);
4234 if (sbi->s_flex_groups)
4235 ext4_kvfree(sbi->s_flex_groups);
4236 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4237 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4238 percpu_counter_destroy(&sbi->s_dirs_counter);
4239 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4240 failed_mount5:
4241 ext4_ext_release(sb);
4242 ext4_release_system_zone(sb);
4243 failed_mount4a:
4244 dput(sb->s_root);
4245 sb->s_root = NULL;
4246 failed_mount4:
4247 ext4_msg(sb, KERN_ERR, "mount failed");
4248 if (EXT4_SB(sb)->rsv_conversion_wq)
4249 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4250 failed_mount_wq:
4251 if (sbi->s_journal) {
4252 jbd2_journal_destroy(sbi->s_journal);
4253 sbi->s_journal = NULL;
4254 }
4255 failed_mount3a:
4256 ext4_es_unregister_shrinker(sbi);
4257 failed_mount3:
4258 del_timer_sync(&sbi->s_err_report);
4259 if (sbi->s_mmp_tsk)
4260 kthread_stop(sbi->s_mmp_tsk);
4261 failed_mount2:
4262 for (i = 0; i < db_count; i++)
4263 brelse(sbi->s_group_desc[i]);
4264 ext4_kvfree(sbi->s_group_desc);
4265 failed_mount:
4266 if (sbi->s_chksum_driver)
4267 crypto_free_shash(sbi->s_chksum_driver);
4268 if (sbi->s_proc) {
4269 remove_proc_entry("options", sbi->s_proc);
4270 remove_proc_entry(sb->s_id, ext4_proc_root);
4271 }
4272 #ifdef CONFIG_QUOTA
4273 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4274 kfree(sbi->s_qf_names[i]);
4275 #endif
4276 ext4_blkdev_remove(sbi);
4277 brelse(bh);
4278 out_fail:
4279 sb->s_fs_info = NULL;
4280 kfree(sbi->s_blockgroup_lock);
4281 kfree(sbi);
4282 out_free_orig:
4283 kfree(orig_data);
4284 return err ? err : ret;
4285 }
4286
4287 /*
4288 * Setup any per-fs journal parameters now. We'll do this both on
4289 * initial mount, once the journal has been initialised but before we've
4290 * done any recovery; and again on any subsequent remount.
4291 */
4292 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4293 {
4294 struct ext4_sb_info *sbi = EXT4_SB(sb);
4295
4296 journal->j_commit_interval = sbi->s_commit_interval;
4297 journal->j_min_batch_time = sbi->s_min_batch_time;
4298 journal->j_max_batch_time = sbi->s_max_batch_time;
4299
4300 write_lock(&journal->j_state_lock);
4301 if (test_opt(sb, BARRIER))
4302 journal->j_flags |= JBD2_BARRIER;
4303 else
4304 journal->j_flags &= ~JBD2_BARRIER;
4305 if (test_opt(sb, DATA_ERR_ABORT))
4306 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4307 else
4308 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4309 write_unlock(&journal->j_state_lock);
4310 }
4311
4312 static journal_t *ext4_get_journal(struct super_block *sb,
4313 unsigned int journal_inum)
4314 {
4315 struct inode *journal_inode;
4316 journal_t *journal;
4317
4318 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4319
4320 /* First, test for the existence of a valid inode on disk. Bad
4321 * things happen if we iget() an unused inode, as the subsequent
4322 * iput() will try to delete it. */
4323
4324 journal_inode = ext4_iget(sb, journal_inum);
4325 if (IS_ERR(journal_inode)) {
4326 ext4_msg(sb, KERN_ERR, "no journal found");
4327 return NULL;
4328 }
4329 if (!journal_inode->i_nlink) {
4330 make_bad_inode(journal_inode);
4331 iput(journal_inode);
4332 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4333 return NULL;
4334 }
4335
4336 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4337 journal_inode, journal_inode->i_size);
4338 if (!S_ISREG(journal_inode->i_mode)) {
4339 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4340 iput(journal_inode);
4341 return NULL;
4342 }
4343
4344 journal = jbd2_journal_init_inode(journal_inode);
4345 if (!journal) {
4346 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4347 iput(journal_inode);
4348 return NULL;
4349 }
4350 journal->j_private = sb;
4351 ext4_init_journal_params(sb, journal);
4352 return journal;
4353 }
4354
4355 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4356 dev_t j_dev)
4357 {
4358 struct buffer_head *bh;
4359 journal_t *journal;
4360 ext4_fsblk_t start;
4361 ext4_fsblk_t len;
4362 int hblock, blocksize;
4363 ext4_fsblk_t sb_block;
4364 unsigned long offset;
4365 struct ext4_super_block *es;
4366 struct block_device *bdev;
4367
4368 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4369
4370 bdev = ext4_blkdev_get(j_dev, sb);
4371 if (bdev == NULL)
4372 return NULL;
4373
4374 blocksize = sb->s_blocksize;
4375 hblock = bdev_logical_block_size(bdev);
4376 if (blocksize < hblock) {
4377 ext4_msg(sb, KERN_ERR,
4378 "blocksize too small for journal device");
4379 goto out_bdev;
4380 }
4381
4382 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4383 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4384 set_blocksize(bdev, blocksize);
4385 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4386 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4387 "external journal");
4388 goto out_bdev;
4389 }
4390
4391 es = (struct ext4_super_block *) (bh->b_data + offset);
4392 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4393 !(le32_to_cpu(es->s_feature_incompat) &
4394 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4395 ext4_msg(sb, KERN_ERR, "external journal has "
4396 "bad superblock");
4397 brelse(bh);
4398 goto out_bdev;
4399 }
4400
4401 if ((le32_to_cpu(es->s_feature_ro_compat) &
4402 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4403 es->s_checksum != ext4_superblock_csum(sb, es)) {
4404 ext4_msg(sb, KERN_ERR, "external journal has "
4405 "corrupt superblock");
4406 brelse(bh);
4407 goto out_bdev;
4408 }
4409
4410 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4411 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4412 brelse(bh);
4413 goto out_bdev;
4414 }
4415
4416 len = ext4_blocks_count(es);
4417 start = sb_block + 1;
4418 brelse(bh); /* we're done with the superblock */
4419
4420 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4421 start, len, blocksize);
4422 if (!journal) {
4423 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4424 goto out_bdev;
4425 }
4426 journal->j_private = sb;
4427 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4428 wait_on_buffer(journal->j_sb_buffer);
4429 if (!buffer_uptodate(journal->j_sb_buffer)) {
4430 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4431 goto out_journal;
4432 }
4433 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4434 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4435 "user (unsupported) - %d",
4436 be32_to_cpu(journal->j_superblock->s_nr_users));
4437 goto out_journal;
4438 }
4439 EXT4_SB(sb)->journal_bdev = bdev;
4440 ext4_init_journal_params(sb, journal);
4441 return journal;
4442
4443 out_journal:
4444 jbd2_journal_destroy(journal);
4445 out_bdev:
4446 ext4_blkdev_put(bdev);
4447 return NULL;
4448 }
4449
4450 static int ext4_load_journal(struct super_block *sb,
4451 struct ext4_super_block *es,
4452 unsigned long journal_devnum)
4453 {
4454 journal_t *journal;
4455 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4456 dev_t journal_dev;
4457 int err = 0;
4458 int really_read_only;
4459
4460 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4461
4462 if (journal_devnum &&
4463 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4464 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4465 "numbers have changed");
4466 journal_dev = new_decode_dev(journal_devnum);
4467 } else
4468 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4469
4470 really_read_only = bdev_read_only(sb->s_bdev);
4471
4472 /*
4473 * Are we loading a blank journal or performing recovery after a
4474 * crash? For recovery, we need to check in advance whether we
4475 * can get read-write access to the device.
4476 */
4477 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4478 if (sb->s_flags & MS_RDONLY) {
4479 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4480 "required on readonly filesystem");
4481 if (really_read_only) {
4482 ext4_msg(sb, KERN_ERR, "write access "
4483 "unavailable, cannot proceed");
4484 return -EROFS;
4485 }
4486 ext4_msg(sb, KERN_INFO, "write access will "
4487 "be enabled during recovery");
4488 }
4489 }
4490
4491 if (journal_inum && journal_dev) {
4492 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4493 "and inode journals!");
4494 return -EINVAL;
4495 }
4496
4497 if (journal_inum) {
4498 if (!(journal = ext4_get_journal(sb, journal_inum)))
4499 return -EINVAL;
4500 } else {
4501 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4502 return -EINVAL;
4503 }
4504
4505 if (!(journal->j_flags & JBD2_BARRIER))
4506 ext4_msg(sb, KERN_INFO, "barriers disabled");
4507
4508 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4509 err = jbd2_journal_wipe(journal, !really_read_only);
4510 if (!err) {
4511 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4512 if (save)
4513 memcpy(save, ((char *) es) +
4514 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4515 err = jbd2_journal_load(journal);
4516 if (save)
4517 memcpy(((char *) es) + EXT4_S_ERR_START,
4518 save, EXT4_S_ERR_LEN);
4519 kfree(save);
4520 }
4521
4522 if (err) {
4523 ext4_msg(sb, KERN_ERR, "error loading journal");
4524 jbd2_journal_destroy(journal);
4525 return err;
4526 }
4527
4528 EXT4_SB(sb)->s_journal = journal;
4529 ext4_clear_journal_err(sb, es);
4530
4531 if (!really_read_only && journal_devnum &&
4532 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4533 es->s_journal_dev = cpu_to_le32(journal_devnum);
4534
4535 /* Make sure we flush the recovery flag to disk. */
4536 ext4_commit_super(sb, 1);
4537 }
4538
4539 return 0;
4540 }
4541
4542 static int ext4_commit_super(struct super_block *sb, int sync)
4543 {
4544 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4545 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4546 int error = 0;
4547
4548 if (!sbh || block_device_ejected(sb))
4549 return error;
4550 if (buffer_write_io_error(sbh)) {
4551 /*
4552 * Oh, dear. A previous attempt to write the
4553 * superblock failed. This could happen because the
4554 * USB device was yanked out. Or it could happen to
4555 * be a transient write error and maybe the block will
4556 * be remapped. Nothing we can do but to retry the
4557 * write and hope for the best.
4558 */
4559 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4560 "superblock detected");
4561 clear_buffer_write_io_error(sbh);
4562 set_buffer_uptodate(sbh);
4563 }
4564 /*
4565 * If the file system is mounted read-only, don't update the
4566 * superblock write time. This avoids updating the superblock
4567 * write time when we are mounting the root file system
4568 * read/only but we need to replay the journal; at that point,
4569 * for people who are east of GMT and who make their clock
4570 * tick in localtime for Windows bug-for-bug compatibility,
4571 * the clock is set in the future, and this will cause e2fsck
4572 * to complain and force a full file system check.
4573 */
4574 if (!(sb->s_flags & MS_RDONLY))
4575 es->s_wtime = cpu_to_le32(get_seconds());
4576 if (sb->s_bdev->bd_part)
4577 es->s_kbytes_written =
4578 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4579 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4580 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4581 else
4582 es->s_kbytes_written =
4583 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4584 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4585 ext4_free_blocks_count_set(es,
4586 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4587 &EXT4_SB(sb)->s_freeclusters_counter)));
4588 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4589 es->s_free_inodes_count =
4590 cpu_to_le32(percpu_counter_sum_positive(
4591 &EXT4_SB(sb)->s_freeinodes_counter));
4592 BUFFER_TRACE(sbh, "marking dirty");
4593 ext4_superblock_csum_set(sb);
4594 mark_buffer_dirty(sbh);
4595 if (sync) {
4596 error = sync_dirty_buffer(sbh);
4597 if (error)
4598 return error;
4599
4600 error = buffer_write_io_error(sbh);
4601 if (error) {
4602 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4603 "superblock");
4604 clear_buffer_write_io_error(sbh);
4605 set_buffer_uptodate(sbh);
4606 }
4607 }
4608 return error;
4609 }
4610
4611 /*
4612 * Have we just finished recovery? If so, and if we are mounting (or
4613 * remounting) the filesystem readonly, then we will end up with a
4614 * consistent fs on disk. Record that fact.
4615 */
4616 static void ext4_mark_recovery_complete(struct super_block *sb,
4617 struct ext4_super_block *es)
4618 {
4619 journal_t *journal = EXT4_SB(sb)->s_journal;
4620
4621 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4622 BUG_ON(journal != NULL);
4623 return;
4624 }
4625 jbd2_journal_lock_updates(journal);
4626 if (jbd2_journal_flush(journal) < 0)
4627 goto out;
4628
4629 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4630 sb->s_flags & MS_RDONLY) {
4631 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4632 ext4_commit_super(sb, 1);
4633 }
4634
4635 out:
4636 jbd2_journal_unlock_updates(journal);
4637 }
4638
4639 /*
4640 * If we are mounting (or read-write remounting) a filesystem whose journal
4641 * has recorded an error from a previous lifetime, move that error to the
4642 * main filesystem now.
4643 */
4644 static void ext4_clear_journal_err(struct super_block *sb,
4645 struct ext4_super_block *es)
4646 {
4647 journal_t *journal;
4648 int j_errno;
4649 const char *errstr;
4650
4651 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4652
4653 journal = EXT4_SB(sb)->s_journal;
4654
4655 /*
4656 * Now check for any error status which may have been recorded in the
4657 * journal by a prior ext4_error() or ext4_abort()
4658 */
4659
4660 j_errno = jbd2_journal_errno(journal);
4661 if (j_errno) {
4662 char nbuf[16];
4663
4664 errstr = ext4_decode_error(sb, j_errno, nbuf);
4665 ext4_warning(sb, "Filesystem error recorded "
4666 "from previous mount: %s", errstr);
4667 ext4_warning(sb, "Marking fs in need of filesystem check.");
4668
4669 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4670 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4671 ext4_commit_super(sb, 1);
4672
4673 jbd2_journal_clear_err(journal);
4674 jbd2_journal_update_sb_errno(journal);
4675 }
4676 }
4677
4678 /*
4679 * Force the running and committing transactions to commit,
4680 * and wait on the commit.
4681 */
4682 int ext4_force_commit(struct super_block *sb)
4683 {
4684 journal_t *journal;
4685
4686 if (sb->s_flags & MS_RDONLY)
4687 return 0;
4688
4689 journal = EXT4_SB(sb)->s_journal;
4690 return ext4_journal_force_commit(journal);
4691 }
4692
4693 static int ext4_sync_fs(struct super_block *sb, int wait)
4694 {
4695 int ret = 0;
4696 tid_t target;
4697 bool needs_barrier = false;
4698 struct ext4_sb_info *sbi = EXT4_SB(sb);
4699
4700 trace_ext4_sync_fs(sb, wait);
4701 flush_workqueue(sbi->rsv_conversion_wq);
4702 /*
4703 * Writeback quota in non-journalled quota case - journalled quota has
4704 * no dirty dquots
4705 */
4706 dquot_writeback_dquots(sb, -1);
4707 /*
4708 * Data writeback is possible w/o journal transaction, so barrier must
4709 * being sent at the end of the function. But we can skip it if
4710 * transaction_commit will do it for us.
4711 */
4712 if (sbi->s_journal) {
4713 target = jbd2_get_latest_transaction(sbi->s_journal);
4714 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4715 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4716 needs_barrier = true;
4717
4718 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4719 if (wait)
4720 ret = jbd2_log_wait_commit(sbi->s_journal,
4721 target);
4722 }
4723 } else if (wait && test_opt(sb, BARRIER))
4724 needs_barrier = true;
4725 if (needs_barrier) {
4726 int err;
4727 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4728 if (!ret)
4729 ret = err;
4730 }
4731
4732 return ret;
4733 }
4734
4735 /*
4736 * LVM calls this function before a (read-only) snapshot is created. This
4737 * gives us a chance to flush the journal completely and mark the fs clean.
4738 *
4739 * Note that only this function cannot bring a filesystem to be in a clean
4740 * state independently. It relies on upper layer to stop all data & metadata
4741 * modifications.
4742 */
4743 static int ext4_freeze(struct super_block *sb)
4744 {
4745 int error = 0;
4746 journal_t *journal;
4747
4748 if (sb->s_flags & MS_RDONLY)
4749 return 0;
4750
4751 journal = EXT4_SB(sb)->s_journal;
4752
4753 if (journal) {
4754 /* Now we set up the journal barrier. */
4755 jbd2_journal_lock_updates(journal);
4756
4757 /*
4758 * Don't clear the needs_recovery flag if we failed to
4759 * flush the journal.
4760 */
4761 error = jbd2_journal_flush(journal);
4762 if (error < 0)
4763 goto out;
4764 }
4765
4766 /* Journal blocked and flushed, clear needs_recovery flag. */
4767 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4768 error = ext4_commit_super(sb, 1);
4769 out:
4770 if (journal)
4771 /* we rely on upper layer to stop further updates */
4772 jbd2_journal_unlock_updates(journal);
4773 return error;
4774 }
4775
4776 /*
4777 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4778 * flag here, even though the filesystem is not technically dirty yet.
4779 */
4780 static int ext4_unfreeze(struct super_block *sb)
4781 {
4782 if (sb->s_flags & MS_RDONLY)
4783 return 0;
4784
4785 /* Reset the needs_recovery flag before the fs is unlocked. */
4786 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4787 ext4_commit_super(sb, 1);
4788 return 0;
4789 }
4790
4791 /*
4792 * Structure to save mount options for ext4_remount's benefit
4793 */
4794 struct ext4_mount_options {
4795 unsigned long s_mount_opt;
4796 unsigned long s_mount_opt2;
4797 kuid_t s_resuid;
4798 kgid_t s_resgid;
4799 unsigned long s_commit_interval;
4800 u32 s_min_batch_time, s_max_batch_time;
4801 #ifdef CONFIG_QUOTA
4802 int s_jquota_fmt;
4803 char *s_qf_names[EXT4_MAXQUOTAS];
4804 #endif
4805 };
4806
4807 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4808 {
4809 struct ext4_super_block *es;
4810 struct ext4_sb_info *sbi = EXT4_SB(sb);
4811 unsigned long old_sb_flags;
4812 struct ext4_mount_options old_opts;
4813 int enable_quota = 0;
4814 ext4_group_t g;
4815 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4816 int err = 0;
4817 #ifdef CONFIG_QUOTA
4818 int i, j;
4819 #endif
4820 char *orig_data = kstrdup(data, GFP_KERNEL);
4821
4822 /* Store the original options */
4823 old_sb_flags = sb->s_flags;
4824 old_opts.s_mount_opt = sbi->s_mount_opt;
4825 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4826 old_opts.s_resuid = sbi->s_resuid;
4827 old_opts.s_resgid = sbi->s_resgid;
4828 old_opts.s_commit_interval = sbi->s_commit_interval;
4829 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4830 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4831 #ifdef CONFIG_QUOTA
4832 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4833 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4834 if (sbi->s_qf_names[i]) {
4835 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4836 GFP_KERNEL);
4837 if (!old_opts.s_qf_names[i]) {
4838 for (j = 0; j < i; j++)
4839 kfree(old_opts.s_qf_names[j]);
4840 kfree(orig_data);
4841 return -ENOMEM;
4842 }
4843 } else
4844 old_opts.s_qf_names[i] = NULL;
4845 #endif
4846 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4847 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4848
4849 /*
4850 * Allow the "check" option to be passed as a remount option.
4851 */
4852 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4853 err = -EINVAL;
4854 goto restore_opts;
4855 }
4856
4857 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4858 test_opt(sb, JOURNAL_CHECKSUM)) {
4859 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4860 "during remount not supported");
4861 err = -EINVAL;
4862 goto restore_opts;
4863 }
4864
4865 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4866 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4867 ext4_msg(sb, KERN_ERR, "can't mount with "
4868 "both data=journal and delalloc");
4869 err = -EINVAL;
4870 goto restore_opts;
4871 }
4872 if (test_opt(sb, DIOREAD_NOLOCK)) {
4873 ext4_msg(sb, KERN_ERR, "can't mount with "
4874 "both data=journal and dioread_nolock");
4875 err = -EINVAL;
4876 goto restore_opts;
4877 }
4878 }
4879
4880 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4881 ext4_abort(sb, "Abort forced by user");
4882
4883 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4884 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4885
4886 es = sbi->s_es;
4887
4888 if (sbi->s_journal) {
4889 ext4_init_journal_params(sb, sbi->s_journal);
4890 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4891 }
4892
4893 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4894 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4895 err = -EROFS;
4896 goto restore_opts;
4897 }
4898
4899 if (*flags & MS_RDONLY) {
4900 err = sync_filesystem(sb);
4901 if (err < 0)
4902 goto restore_opts;
4903 err = dquot_suspend(sb, -1);
4904 if (err < 0)
4905 goto restore_opts;
4906
4907 /*
4908 * First of all, the unconditional stuff we have to do
4909 * to disable replay of the journal when we next remount
4910 */
4911 sb->s_flags |= MS_RDONLY;
4912
4913 /*
4914 * OK, test if we are remounting a valid rw partition
4915 * readonly, and if so set the rdonly flag and then
4916 * mark the partition as valid again.
4917 */
4918 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4919 (sbi->s_mount_state & EXT4_VALID_FS))
4920 es->s_state = cpu_to_le16(sbi->s_mount_state);
4921
4922 if (sbi->s_journal)
4923 ext4_mark_recovery_complete(sb, es);
4924 } else {
4925 /* Make sure we can mount this feature set readwrite */
4926 if (!ext4_feature_set_ok(sb, 0)) {
4927 err = -EROFS;
4928 goto restore_opts;
4929 }
4930 /*
4931 * Make sure the group descriptor checksums
4932 * are sane. If they aren't, refuse to remount r/w.
4933 */
4934 for (g = 0; g < sbi->s_groups_count; g++) {
4935 struct ext4_group_desc *gdp =
4936 ext4_get_group_desc(sb, g, NULL);
4937
4938 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4939 ext4_msg(sb, KERN_ERR,
4940 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4941 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4942 le16_to_cpu(gdp->bg_checksum));
4943 err = -EINVAL;
4944 goto restore_opts;
4945 }
4946 }
4947
4948 /*
4949 * If we have an unprocessed orphan list hanging
4950 * around from a previously readonly bdev mount,
4951 * require a full umount/remount for now.
4952 */
4953 if (es->s_last_orphan) {
4954 ext4_msg(sb, KERN_WARNING, "Couldn't "
4955 "remount RDWR because of unprocessed "
4956 "orphan inode list. Please "
4957 "umount/remount instead");
4958 err = -EINVAL;
4959 goto restore_opts;
4960 }
4961
4962 /*
4963 * Mounting a RDONLY partition read-write, so reread
4964 * and store the current valid flag. (It may have
4965 * been changed by e2fsck since we originally mounted
4966 * the partition.)
4967 */
4968 if (sbi->s_journal)
4969 ext4_clear_journal_err(sb, es);
4970 sbi->s_mount_state = le16_to_cpu(es->s_state);
4971 if (!ext4_setup_super(sb, es, 0))
4972 sb->s_flags &= ~MS_RDONLY;
4973 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4974 EXT4_FEATURE_INCOMPAT_MMP))
4975 if (ext4_multi_mount_protect(sb,
4976 le64_to_cpu(es->s_mmp_block))) {
4977 err = -EROFS;
4978 goto restore_opts;
4979 }
4980 enable_quota = 1;
4981 }
4982 }
4983
4984 /*
4985 * Reinitialize lazy itable initialization thread based on
4986 * current settings
4987 */
4988 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4989 ext4_unregister_li_request(sb);
4990 else {
4991 ext4_group_t first_not_zeroed;
4992 first_not_zeroed = ext4_has_uninit_itable(sb);
4993 ext4_register_li_request(sb, first_not_zeroed);
4994 }
4995
4996 ext4_setup_system_zone(sb);
4997 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4998 ext4_commit_super(sb, 1);
4999
5000 #ifdef CONFIG_QUOTA
5001 /* Release old quota file names */
5002 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5003 kfree(old_opts.s_qf_names[i]);
5004 if (enable_quota) {
5005 if (sb_any_quota_suspended(sb))
5006 dquot_resume(sb, -1);
5007 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5008 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
5009 err = ext4_enable_quotas(sb);
5010 if (err)
5011 goto restore_opts;
5012 }
5013 }
5014 #endif
5015
5016 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5017 kfree(orig_data);
5018 return 0;
5019
5020 restore_opts:
5021 sb->s_flags = old_sb_flags;
5022 sbi->s_mount_opt = old_opts.s_mount_opt;
5023 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5024 sbi->s_resuid = old_opts.s_resuid;
5025 sbi->s_resgid = old_opts.s_resgid;
5026 sbi->s_commit_interval = old_opts.s_commit_interval;
5027 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5028 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5029 #ifdef CONFIG_QUOTA
5030 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5031 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5032 kfree(sbi->s_qf_names[i]);
5033 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5034 }
5035 #endif
5036 kfree(orig_data);
5037 return err;
5038 }
5039
5040 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5041 {
5042 struct super_block *sb = dentry->d_sb;
5043 struct ext4_sb_info *sbi = EXT4_SB(sb);
5044 struct ext4_super_block *es = sbi->s_es;
5045 ext4_fsblk_t overhead = 0, resv_blocks;
5046 u64 fsid;
5047 s64 bfree;
5048 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5049
5050 if (!test_opt(sb, MINIX_DF))
5051 overhead = sbi->s_overhead;
5052
5053 buf->f_type = EXT4_SUPER_MAGIC;
5054 buf->f_bsize = sb->s_blocksize;
5055 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5056 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5057 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5058 /* prevent underflow in case that few free space is available */
5059 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5060 buf->f_bavail = buf->f_bfree -
5061 (ext4_r_blocks_count(es) + resv_blocks);
5062 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5063 buf->f_bavail = 0;
5064 buf->f_files = le32_to_cpu(es->s_inodes_count);
5065 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5066 buf->f_namelen = EXT4_NAME_LEN;
5067 fsid = le64_to_cpup((void *)es->s_uuid) ^
5068 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5069 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5070 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5071
5072 return 0;
5073 }
5074
5075 /* Helper function for writing quotas on sync - we need to start transaction
5076 * before quota file is locked for write. Otherwise the are possible deadlocks:
5077 * Process 1 Process 2
5078 * ext4_create() quota_sync()
5079 * jbd2_journal_start() write_dquot()
5080 * dquot_initialize() down(dqio_mutex)
5081 * down(dqio_mutex) jbd2_journal_start()
5082 *
5083 */
5084
5085 #ifdef CONFIG_QUOTA
5086
5087 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5088 {
5089 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5090 }
5091
5092 static int ext4_write_dquot(struct dquot *dquot)
5093 {
5094 int ret, err;
5095 handle_t *handle;
5096 struct inode *inode;
5097
5098 inode = dquot_to_inode(dquot);
5099 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5100 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5101 if (IS_ERR(handle))
5102 return PTR_ERR(handle);
5103 ret = dquot_commit(dquot);
5104 err = ext4_journal_stop(handle);
5105 if (!ret)
5106 ret = err;
5107 return ret;
5108 }
5109
5110 static int ext4_acquire_dquot(struct dquot *dquot)
5111 {
5112 int ret, err;
5113 handle_t *handle;
5114
5115 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5116 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5117 if (IS_ERR(handle))
5118 return PTR_ERR(handle);
5119 ret = dquot_acquire(dquot);
5120 err = ext4_journal_stop(handle);
5121 if (!ret)
5122 ret = err;
5123 return ret;
5124 }
5125
5126 static int ext4_release_dquot(struct dquot *dquot)
5127 {
5128 int ret, err;
5129 handle_t *handle;
5130
5131 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5132 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5133 if (IS_ERR(handle)) {
5134 /* Release dquot anyway to avoid endless cycle in dqput() */
5135 dquot_release(dquot);
5136 return PTR_ERR(handle);
5137 }
5138 ret = dquot_release(dquot);
5139 err = ext4_journal_stop(handle);
5140 if (!ret)
5141 ret = err;
5142 return ret;
5143 }
5144
5145 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5146 {
5147 struct super_block *sb = dquot->dq_sb;
5148 struct ext4_sb_info *sbi = EXT4_SB(sb);
5149
5150 /* Are we journaling quotas? */
5151 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5152 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5153 dquot_mark_dquot_dirty(dquot);
5154 return ext4_write_dquot(dquot);
5155 } else {
5156 return dquot_mark_dquot_dirty(dquot);
5157 }
5158 }
5159
5160 static int ext4_write_info(struct super_block *sb, int type)
5161 {
5162 int ret, err;
5163 handle_t *handle;
5164
5165 /* Data block + inode block */
5166 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
5167 if (IS_ERR(handle))
5168 return PTR_ERR(handle);
5169 ret = dquot_commit_info(sb, type);
5170 err = ext4_journal_stop(handle);
5171 if (!ret)
5172 ret = err;
5173 return ret;
5174 }
5175
5176 /*
5177 * Turn on quotas during mount time - we need to find
5178 * the quota file and such...
5179 */
5180 static int ext4_quota_on_mount(struct super_block *sb, int type)
5181 {
5182 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5183 EXT4_SB(sb)->s_jquota_fmt, type);
5184 }
5185
5186 /*
5187 * Standard function to be called on quota_on
5188 */
5189 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5190 struct path *path)
5191 {
5192 int err;
5193
5194 if (!test_opt(sb, QUOTA))
5195 return -EINVAL;
5196
5197 /* Quotafile not on the same filesystem? */
5198 if (path->dentry->d_sb != sb)
5199 return -EXDEV;
5200 /* Journaling quota? */
5201 if (EXT4_SB(sb)->s_qf_names[type]) {
5202 /* Quotafile not in fs root? */
5203 if (path->dentry->d_parent != sb->s_root)
5204 ext4_msg(sb, KERN_WARNING,
5205 "Quota file not on filesystem root. "
5206 "Journaled quota will not work");
5207 }
5208
5209 /*
5210 * When we journal data on quota file, we have to flush journal to see
5211 * all updates to the file when we bypass pagecache...
5212 */
5213 if (EXT4_SB(sb)->s_journal &&
5214 ext4_should_journal_data(path->dentry->d_inode)) {
5215 /*
5216 * We don't need to lock updates but journal_flush() could
5217 * otherwise be livelocked...
5218 */
5219 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5220 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5221 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5222 if (err)
5223 return err;
5224 }
5225
5226 return dquot_quota_on(sb, type, format_id, path);
5227 }
5228
5229 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5230 unsigned int flags)
5231 {
5232 int err;
5233 struct inode *qf_inode;
5234 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5235 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5236 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5237 };
5238
5239 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5240
5241 if (!qf_inums[type])
5242 return -EPERM;
5243
5244 qf_inode = ext4_iget(sb, qf_inums[type]);
5245 if (IS_ERR(qf_inode)) {
5246 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5247 return PTR_ERR(qf_inode);
5248 }
5249
5250 /* Don't account quota for quota files to avoid recursion */
5251 qf_inode->i_flags |= S_NOQUOTA;
5252 err = dquot_enable(qf_inode, type, format_id, flags);
5253 iput(qf_inode);
5254
5255 return err;
5256 }
5257
5258 /* Enable usage tracking for all quota types. */
5259 static int ext4_enable_quotas(struct super_block *sb)
5260 {
5261 int type, err = 0;
5262 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5263 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5264 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5265 };
5266
5267 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5268 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5269 if (qf_inums[type]) {
5270 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5271 DQUOT_USAGE_ENABLED);
5272 if (err) {
5273 ext4_warning(sb,
5274 "Failed to enable quota tracking "
5275 "(type=%d, err=%d). Please run "
5276 "e2fsck to fix.", type, err);
5277 return err;
5278 }
5279 }
5280 }
5281 return 0;
5282 }
5283
5284 /*
5285 * quota_on function that is used when QUOTA feature is set.
5286 */
5287 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5288 int format_id)
5289 {
5290 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5291 return -EINVAL;
5292
5293 /*
5294 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5295 */
5296 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5297 }
5298
5299 static int ext4_quota_off(struct super_block *sb, int type)
5300 {
5301 struct inode *inode = sb_dqopt(sb)->files[type];
5302 handle_t *handle;
5303
5304 /* Force all delayed allocation blocks to be allocated.
5305 * Caller already holds s_umount sem */
5306 if (test_opt(sb, DELALLOC))
5307 sync_filesystem(sb);
5308
5309 if (!inode)
5310 goto out;
5311
5312 /* Update modification times of quota files when userspace can
5313 * start looking at them */
5314 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5315 if (IS_ERR(handle))
5316 goto out;
5317 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5318 ext4_mark_inode_dirty(handle, inode);
5319 ext4_journal_stop(handle);
5320
5321 out:
5322 return dquot_quota_off(sb, type);
5323 }
5324
5325 /*
5326 * quota_off function that is used when QUOTA feature is set.
5327 */
5328 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5329 {
5330 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5331 return -EINVAL;
5332
5333 /* Disable only the limits. */
5334 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5335 }
5336
5337 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5338 * acquiring the locks... As quota files are never truncated and quota code
5339 * itself serializes the operations (and no one else should touch the files)
5340 * we don't have to be afraid of races */
5341 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5342 size_t len, loff_t off)
5343 {
5344 struct inode *inode = sb_dqopt(sb)->files[type];
5345 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5346 int offset = off & (sb->s_blocksize - 1);
5347 int tocopy;
5348 size_t toread;
5349 struct buffer_head *bh;
5350 loff_t i_size = i_size_read(inode);
5351
5352 if (off > i_size)
5353 return 0;
5354 if (off+len > i_size)
5355 len = i_size-off;
5356 toread = len;
5357 while (toread > 0) {
5358 tocopy = sb->s_blocksize - offset < toread ?
5359 sb->s_blocksize - offset : toread;
5360 bh = ext4_bread(NULL, inode, blk, 0);
5361 if (IS_ERR(bh))
5362 return PTR_ERR(bh);
5363 if (!bh) /* A hole? */
5364 memset(data, 0, tocopy);
5365 else
5366 memcpy(data, bh->b_data+offset, tocopy);
5367 brelse(bh);
5368 offset = 0;
5369 toread -= tocopy;
5370 data += tocopy;
5371 blk++;
5372 }
5373 return len;
5374 }
5375
5376 /* Write to quotafile (we know the transaction is already started and has
5377 * enough credits) */
5378 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5379 const char *data, size_t len, loff_t off)
5380 {
5381 struct inode *inode = sb_dqopt(sb)->files[type];
5382 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5383 int err, offset = off & (sb->s_blocksize - 1);
5384 struct buffer_head *bh;
5385 handle_t *handle = journal_current_handle();
5386
5387 if (EXT4_SB(sb)->s_journal && !handle) {
5388 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5389 " cancelled because transaction is not started",
5390 (unsigned long long)off, (unsigned long long)len);
5391 return -EIO;
5392 }
5393 /*
5394 * Since we account only one data block in transaction credits,
5395 * then it is impossible to cross a block boundary.
5396 */
5397 if (sb->s_blocksize - offset < len) {
5398 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5399 " cancelled because not block aligned",
5400 (unsigned long long)off, (unsigned long long)len);
5401 return -EIO;
5402 }
5403
5404 bh = ext4_bread(handle, inode, blk, 1);
5405 if (IS_ERR(bh))
5406 return PTR_ERR(bh);
5407 if (!bh)
5408 goto out;
5409 BUFFER_TRACE(bh, "get write access");
5410 err = ext4_journal_get_write_access(handle, bh);
5411 if (err) {
5412 brelse(bh);
5413 return err;
5414 }
5415 lock_buffer(bh);
5416 memcpy(bh->b_data+offset, data, len);
5417 flush_dcache_page(bh->b_page);
5418 unlock_buffer(bh);
5419 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5420 brelse(bh);
5421 out:
5422 if (inode->i_size < off + len) {
5423 i_size_write(inode, off + len);
5424 EXT4_I(inode)->i_disksize = inode->i_size;
5425 ext4_mark_inode_dirty(handle, inode);
5426 }
5427 return len;
5428 }
5429
5430 #endif
5431
5432 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5433 const char *dev_name, void *data)
5434 {
5435 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5436 }
5437
5438 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5439 static inline void register_as_ext2(void)
5440 {
5441 int err = register_filesystem(&ext2_fs_type);
5442 if (err)
5443 printk(KERN_WARNING
5444 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5445 }
5446
5447 static inline void unregister_as_ext2(void)
5448 {
5449 unregister_filesystem(&ext2_fs_type);
5450 }
5451
5452 static inline int ext2_feature_set_ok(struct super_block *sb)
5453 {
5454 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5455 return 0;
5456 if (sb->s_flags & MS_RDONLY)
5457 return 1;
5458 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5459 return 0;
5460 return 1;
5461 }
5462 #else
5463 static inline void register_as_ext2(void) { }
5464 static inline void unregister_as_ext2(void) { }
5465 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5466 #endif
5467
5468 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5469 static inline void register_as_ext3(void)
5470 {
5471 int err = register_filesystem(&ext3_fs_type);
5472 if (err)
5473 printk(KERN_WARNING
5474 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5475 }
5476
5477 static inline void unregister_as_ext3(void)
5478 {
5479 unregister_filesystem(&ext3_fs_type);
5480 }
5481
5482 static inline int ext3_feature_set_ok(struct super_block *sb)
5483 {
5484 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5485 return 0;
5486 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5487 return 0;
5488 if (sb->s_flags & MS_RDONLY)
5489 return 1;
5490 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5491 return 0;
5492 return 1;
5493 }
5494 #else
5495 static inline void register_as_ext3(void) { }
5496 static inline void unregister_as_ext3(void) { }
5497 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5498 #endif
5499
5500 static struct file_system_type ext4_fs_type = {
5501 .owner = THIS_MODULE,
5502 .name = "ext4",
5503 .mount = ext4_mount,
5504 .kill_sb = kill_block_super,
5505 .fs_flags = FS_REQUIRES_DEV,
5506 };
5507 MODULE_ALIAS_FS("ext4");
5508
5509 static int __init ext4_init_feat_adverts(void)
5510 {
5511 struct ext4_features *ef;
5512 int ret = -ENOMEM;
5513
5514 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5515 if (!ef)
5516 goto out;
5517
5518 ef->f_kobj.kset = ext4_kset;
5519 init_completion(&ef->f_kobj_unregister);
5520 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5521 "features");
5522 if (ret) {
5523 kfree(ef);
5524 goto out;
5525 }
5526
5527 ext4_feat = ef;
5528 ret = 0;
5529 out:
5530 return ret;
5531 }
5532
5533 static void ext4_exit_feat_adverts(void)
5534 {
5535 kobject_put(&ext4_feat->f_kobj);
5536 wait_for_completion(&ext4_feat->f_kobj_unregister);
5537 kfree(ext4_feat);
5538 }
5539
5540 /* Shared across all ext4 file systems */
5541 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5542 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5543
5544 static int __init ext4_init_fs(void)
5545 {
5546 int i, err;
5547
5548 ext4_li_info = NULL;
5549 mutex_init(&ext4_li_mtx);
5550
5551 /* Build-time check for flags consistency */
5552 ext4_check_flag_values();
5553
5554 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5555 mutex_init(&ext4__aio_mutex[i]);
5556 init_waitqueue_head(&ext4__ioend_wq[i]);
5557 }
5558
5559 err = ext4_init_es();
5560 if (err)
5561 return err;
5562
5563 err = ext4_init_pageio();
5564 if (err)
5565 goto out7;
5566
5567 err = ext4_init_system_zone();
5568 if (err)
5569 goto out6;
5570 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5571 if (!ext4_kset) {
5572 err = -ENOMEM;
5573 goto out5;
5574 }
5575 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5576
5577 err = ext4_init_feat_adverts();
5578 if (err)
5579 goto out4;
5580
5581 err = ext4_init_mballoc();
5582 if (err)
5583 goto out2;
5584 else
5585 ext4_mballoc_ready = 1;
5586 err = init_inodecache();
5587 if (err)
5588 goto out1;
5589 register_as_ext3();
5590 register_as_ext2();
5591 err = register_filesystem(&ext4_fs_type);
5592 if (err)
5593 goto out;
5594
5595 return 0;
5596 out:
5597 unregister_as_ext2();
5598 unregister_as_ext3();
5599 destroy_inodecache();
5600 out1:
5601 ext4_mballoc_ready = 0;
5602 ext4_exit_mballoc();
5603 out2:
5604 ext4_exit_feat_adverts();
5605 out4:
5606 if (ext4_proc_root)
5607 remove_proc_entry("fs/ext4", NULL);
5608 kset_unregister(ext4_kset);
5609 out5:
5610 ext4_exit_system_zone();
5611 out6:
5612 ext4_exit_pageio();
5613 out7:
5614 ext4_exit_es();
5615
5616 return err;
5617 }
5618
5619 static void __exit ext4_exit_fs(void)
5620 {
5621 ext4_destroy_lazyinit_thread();
5622 unregister_as_ext2();
5623 unregister_as_ext3();
5624 unregister_filesystem(&ext4_fs_type);
5625 destroy_inodecache();
5626 ext4_exit_mballoc();
5627 ext4_exit_feat_adverts();
5628 remove_proc_entry("fs/ext4", NULL);
5629 kset_unregister(ext4_kset);
5630 ext4_exit_system_zone();
5631 ext4_exit_pageio();
5632 ext4_exit_es();
5633 }
5634
5635 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5636 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5637 MODULE_LICENSE("GPL");
5638 module_init(ext4_init_fs)
5639 module_exit(ext4_exit_fs)
This page took 0.22504 seconds and 6 git commands to generate.