Merge tag 'ofs-pull-tag-1' of git://git.kernel.org/pub/scm/linux/kernel/git/hubcap...
[deliverable/linux.git] / fs / f2fs / checkpoint.c
1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 /*
30 * We guarantee no failure on the returned page.
31 */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34 struct address_space *mapping = META_MAPPING(sbi);
35 struct page *page = NULL;
36 repeat:
37 page = grab_cache_page(mapping, index);
38 if (!page) {
39 cond_resched();
40 goto repeat;
41 }
42 f2fs_wait_on_page_writeback(page, META, true);
43 SetPageUptodate(page);
44 return page;
45 }
46
47 /*
48 * We guarantee no failure on the returned page.
49 */
50 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
51 bool is_meta)
52 {
53 struct address_space *mapping = META_MAPPING(sbi);
54 struct page *page;
55 struct f2fs_io_info fio = {
56 .sbi = sbi,
57 .type = META,
58 .rw = READ_SYNC | REQ_META | REQ_PRIO,
59 .old_blkaddr = index,
60 .new_blkaddr = index,
61 .encrypted_page = NULL,
62 };
63
64 if (unlikely(!is_meta))
65 fio.rw &= ~REQ_META;
66 repeat:
67 page = grab_cache_page(mapping, index);
68 if (!page) {
69 cond_resched();
70 goto repeat;
71 }
72 if (PageUptodate(page))
73 goto out;
74
75 fio.page = page;
76
77 if (f2fs_submit_page_bio(&fio)) {
78 f2fs_put_page(page, 1);
79 goto repeat;
80 }
81
82 lock_page(page);
83 if (unlikely(page->mapping != mapping)) {
84 f2fs_put_page(page, 1);
85 goto repeat;
86 }
87
88 /*
89 * if there is any IO error when accessing device, make our filesystem
90 * readonly and make sure do not write checkpoint with non-uptodate
91 * meta page.
92 */
93 if (unlikely(!PageUptodate(page)))
94 f2fs_stop_checkpoint(sbi);
95 out:
96 return page;
97 }
98
99 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
100 {
101 return __get_meta_page(sbi, index, true);
102 }
103
104 /* for POR only */
105 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
106 {
107 return __get_meta_page(sbi, index, false);
108 }
109
110 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
111 {
112 switch (type) {
113 case META_NAT:
114 break;
115 case META_SIT:
116 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
117 return false;
118 break;
119 case META_SSA:
120 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
121 blkaddr < SM_I(sbi)->ssa_blkaddr))
122 return false;
123 break;
124 case META_CP:
125 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
126 blkaddr < __start_cp_addr(sbi)))
127 return false;
128 break;
129 case META_POR:
130 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
131 blkaddr < MAIN_BLKADDR(sbi)))
132 return false;
133 break;
134 default:
135 BUG();
136 }
137
138 return true;
139 }
140
141 /*
142 * Readahead CP/NAT/SIT/SSA pages
143 */
144 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
145 int type, bool sync)
146 {
147 struct page *page;
148 block_t blkno = start;
149 struct f2fs_io_info fio = {
150 .sbi = sbi,
151 .type = META,
152 .rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
153 .encrypted_page = NULL,
154 };
155 struct blk_plug plug;
156
157 if (unlikely(type == META_POR))
158 fio.rw &= ~REQ_META;
159
160 blk_start_plug(&plug);
161 for (; nrpages-- > 0; blkno++) {
162
163 if (!is_valid_blkaddr(sbi, blkno, type))
164 goto out;
165
166 switch (type) {
167 case META_NAT:
168 if (unlikely(blkno >=
169 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
170 blkno = 0;
171 /* get nat block addr */
172 fio.new_blkaddr = current_nat_addr(sbi,
173 blkno * NAT_ENTRY_PER_BLOCK);
174 break;
175 case META_SIT:
176 /* get sit block addr */
177 fio.new_blkaddr = current_sit_addr(sbi,
178 blkno * SIT_ENTRY_PER_BLOCK);
179 break;
180 case META_SSA:
181 case META_CP:
182 case META_POR:
183 fio.new_blkaddr = blkno;
184 break;
185 default:
186 BUG();
187 }
188
189 page = grab_cache_page(META_MAPPING(sbi), fio.new_blkaddr);
190 if (!page)
191 continue;
192 if (PageUptodate(page)) {
193 f2fs_put_page(page, 1);
194 continue;
195 }
196
197 fio.page = page;
198 fio.old_blkaddr = fio.new_blkaddr;
199 f2fs_submit_page_mbio(&fio);
200 f2fs_put_page(page, 0);
201 }
202 out:
203 f2fs_submit_merged_bio(sbi, META, READ);
204 blk_finish_plug(&plug);
205 return blkno - start;
206 }
207
208 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
209 {
210 struct page *page;
211 bool readahead = false;
212
213 page = find_get_page(META_MAPPING(sbi), index);
214 if (!page || (page && !PageUptodate(page)))
215 readahead = true;
216 f2fs_put_page(page, 0);
217
218 if (readahead)
219 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
220 }
221
222 static int f2fs_write_meta_page(struct page *page,
223 struct writeback_control *wbc)
224 {
225 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
226
227 trace_f2fs_writepage(page, META);
228
229 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
230 goto redirty_out;
231 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
232 goto redirty_out;
233 if (unlikely(f2fs_cp_error(sbi)))
234 goto redirty_out;
235
236 write_meta_page(sbi, page);
237 dec_page_count(sbi, F2FS_DIRTY_META);
238
239 if (wbc->for_reclaim)
240 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
241
242 unlock_page(page);
243
244 if (unlikely(f2fs_cp_error(sbi)))
245 f2fs_submit_merged_bio(sbi, META, WRITE);
246
247 return 0;
248
249 redirty_out:
250 redirty_page_for_writepage(wbc, page);
251 return AOP_WRITEPAGE_ACTIVATE;
252 }
253
254 static int f2fs_write_meta_pages(struct address_space *mapping,
255 struct writeback_control *wbc)
256 {
257 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
258 long diff, written;
259
260 /* collect a number of dirty meta pages and write together */
261 if (wbc->for_kupdate ||
262 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
263 goto skip_write;
264
265 trace_f2fs_writepages(mapping->host, wbc, META);
266
267 /* if mounting is failed, skip writing node pages */
268 mutex_lock(&sbi->cp_mutex);
269 diff = nr_pages_to_write(sbi, META, wbc);
270 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
271 mutex_unlock(&sbi->cp_mutex);
272 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
273 return 0;
274
275 skip_write:
276 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
277 trace_f2fs_writepages(mapping->host, wbc, META);
278 return 0;
279 }
280
281 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
282 long nr_to_write)
283 {
284 struct address_space *mapping = META_MAPPING(sbi);
285 pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
286 struct pagevec pvec;
287 long nwritten = 0;
288 struct writeback_control wbc = {
289 .for_reclaim = 0,
290 };
291 struct blk_plug plug;
292
293 pagevec_init(&pvec, 0);
294
295 blk_start_plug(&plug);
296
297 while (index <= end) {
298 int i, nr_pages;
299 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
300 PAGECACHE_TAG_DIRTY,
301 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
302 if (unlikely(nr_pages == 0))
303 break;
304
305 for (i = 0; i < nr_pages; i++) {
306 struct page *page = pvec.pages[i];
307
308 if (prev == ULONG_MAX)
309 prev = page->index - 1;
310 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
311 pagevec_release(&pvec);
312 goto stop;
313 }
314
315 lock_page(page);
316
317 if (unlikely(page->mapping != mapping)) {
318 continue_unlock:
319 unlock_page(page);
320 continue;
321 }
322 if (!PageDirty(page)) {
323 /* someone wrote it for us */
324 goto continue_unlock;
325 }
326
327 f2fs_wait_on_page_writeback(page, META, true);
328
329 BUG_ON(PageWriteback(page));
330 if (!clear_page_dirty_for_io(page))
331 goto continue_unlock;
332
333 if (mapping->a_ops->writepage(page, &wbc)) {
334 unlock_page(page);
335 break;
336 }
337 nwritten++;
338 prev = page->index;
339 if (unlikely(nwritten >= nr_to_write))
340 break;
341 }
342 pagevec_release(&pvec);
343 cond_resched();
344 }
345 stop:
346 if (nwritten)
347 f2fs_submit_merged_bio(sbi, type, WRITE);
348
349 blk_finish_plug(&plug);
350
351 return nwritten;
352 }
353
354 static int f2fs_set_meta_page_dirty(struct page *page)
355 {
356 trace_f2fs_set_page_dirty(page, META);
357
358 SetPageUptodate(page);
359 if (!PageDirty(page)) {
360 __set_page_dirty_nobuffers(page);
361 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
362 SetPagePrivate(page);
363 f2fs_trace_pid(page);
364 return 1;
365 }
366 return 0;
367 }
368
369 const struct address_space_operations f2fs_meta_aops = {
370 .writepage = f2fs_write_meta_page,
371 .writepages = f2fs_write_meta_pages,
372 .set_page_dirty = f2fs_set_meta_page_dirty,
373 .invalidatepage = f2fs_invalidate_page,
374 .releasepage = f2fs_release_page,
375 };
376
377 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
378 {
379 struct inode_management *im = &sbi->im[type];
380 struct ino_entry *e, *tmp;
381
382 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
383 retry:
384 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
385
386 spin_lock(&im->ino_lock);
387 e = radix_tree_lookup(&im->ino_root, ino);
388 if (!e) {
389 e = tmp;
390 if (radix_tree_insert(&im->ino_root, ino, e)) {
391 spin_unlock(&im->ino_lock);
392 radix_tree_preload_end();
393 goto retry;
394 }
395 memset(e, 0, sizeof(struct ino_entry));
396 e->ino = ino;
397
398 list_add_tail(&e->list, &im->ino_list);
399 if (type != ORPHAN_INO)
400 im->ino_num++;
401 }
402 spin_unlock(&im->ino_lock);
403 radix_tree_preload_end();
404
405 if (e != tmp)
406 kmem_cache_free(ino_entry_slab, tmp);
407 }
408
409 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
410 {
411 struct inode_management *im = &sbi->im[type];
412 struct ino_entry *e;
413
414 spin_lock(&im->ino_lock);
415 e = radix_tree_lookup(&im->ino_root, ino);
416 if (e) {
417 list_del(&e->list);
418 radix_tree_delete(&im->ino_root, ino);
419 im->ino_num--;
420 spin_unlock(&im->ino_lock);
421 kmem_cache_free(ino_entry_slab, e);
422 return;
423 }
424 spin_unlock(&im->ino_lock);
425 }
426
427 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
428 {
429 /* add new dirty ino entry into list */
430 __add_ino_entry(sbi, ino, type);
431 }
432
433 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
434 {
435 /* remove dirty ino entry from list */
436 __remove_ino_entry(sbi, ino, type);
437 }
438
439 /* mode should be APPEND_INO or UPDATE_INO */
440 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
441 {
442 struct inode_management *im = &sbi->im[mode];
443 struct ino_entry *e;
444
445 spin_lock(&im->ino_lock);
446 e = radix_tree_lookup(&im->ino_root, ino);
447 spin_unlock(&im->ino_lock);
448 return e ? true : false;
449 }
450
451 void release_ino_entry(struct f2fs_sb_info *sbi)
452 {
453 struct ino_entry *e, *tmp;
454 int i;
455
456 for (i = APPEND_INO; i <= UPDATE_INO; i++) {
457 struct inode_management *im = &sbi->im[i];
458
459 spin_lock(&im->ino_lock);
460 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
461 list_del(&e->list);
462 radix_tree_delete(&im->ino_root, e->ino);
463 kmem_cache_free(ino_entry_slab, e);
464 im->ino_num--;
465 }
466 spin_unlock(&im->ino_lock);
467 }
468 }
469
470 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
471 {
472 struct inode_management *im = &sbi->im[ORPHAN_INO];
473 int err = 0;
474
475 spin_lock(&im->ino_lock);
476 if (unlikely(im->ino_num >= sbi->max_orphans))
477 err = -ENOSPC;
478 else
479 im->ino_num++;
480 spin_unlock(&im->ino_lock);
481
482 return err;
483 }
484
485 void release_orphan_inode(struct f2fs_sb_info *sbi)
486 {
487 struct inode_management *im = &sbi->im[ORPHAN_INO];
488
489 spin_lock(&im->ino_lock);
490 f2fs_bug_on(sbi, im->ino_num == 0);
491 im->ino_num--;
492 spin_unlock(&im->ino_lock);
493 }
494
495 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
496 {
497 /* add new orphan ino entry into list */
498 __add_ino_entry(sbi, ino, ORPHAN_INO);
499 }
500
501 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
502 {
503 /* remove orphan entry from orphan list */
504 __remove_ino_entry(sbi, ino, ORPHAN_INO);
505 }
506
507 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
508 {
509 struct inode *inode;
510
511 inode = f2fs_iget(sbi->sb, ino);
512 if (IS_ERR(inode)) {
513 /*
514 * there should be a bug that we can't find the entry
515 * to orphan inode.
516 */
517 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
518 return PTR_ERR(inode);
519 }
520
521 clear_nlink(inode);
522
523 /* truncate all the data during iput */
524 iput(inode);
525 return 0;
526 }
527
528 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
529 {
530 block_t start_blk, orphan_blocks, i, j;
531 int err;
532
533 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
534 return 0;
535
536 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
537 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
538
539 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
540
541 for (i = 0; i < orphan_blocks; i++) {
542 struct page *page = get_meta_page(sbi, start_blk + i);
543 struct f2fs_orphan_block *orphan_blk;
544
545 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
546 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
547 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
548 err = recover_orphan_inode(sbi, ino);
549 if (err) {
550 f2fs_put_page(page, 1);
551 return err;
552 }
553 }
554 f2fs_put_page(page, 1);
555 }
556 /* clear Orphan Flag */
557 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
558 return 0;
559 }
560
561 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
562 {
563 struct list_head *head;
564 struct f2fs_orphan_block *orphan_blk = NULL;
565 unsigned int nentries = 0;
566 unsigned short index = 1;
567 unsigned short orphan_blocks;
568 struct page *page = NULL;
569 struct ino_entry *orphan = NULL;
570 struct inode_management *im = &sbi->im[ORPHAN_INO];
571
572 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
573
574 /*
575 * we don't need to do spin_lock(&im->ino_lock) here, since all the
576 * orphan inode operations are covered under f2fs_lock_op().
577 * And, spin_lock should be avoided due to page operations below.
578 */
579 head = &im->ino_list;
580
581 /* loop for each orphan inode entry and write them in Jornal block */
582 list_for_each_entry(orphan, head, list) {
583 if (!page) {
584 page = grab_meta_page(sbi, start_blk++);
585 orphan_blk =
586 (struct f2fs_orphan_block *)page_address(page);
587 memset(orphan_blk, 0, sizeof(*orphan_blk));
588 }
589
590 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
591
592 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
593 /*
594 * an orphan block is full of 1020 entries,
595 * then we need to flush current orphan blocks
596 * and bring another one in memory
597 */
598 orphan_blk->blk_addr = cpu_to_le16(index);
599 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
600 orphan_blk->entry_count = cpu_to_le32(nentries);
601 set_page_dirty(page);
602 f2fs_put_page(page, 1);
603 index++;
604 nentries = 0;
605 page = NULL;
606 }
607 }
608
609 if (page) {
610 orphan_blk->blk_addr = cpu_to_le16(index);
611 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
612 orphan_blk->entry_count = cpu_to_le32(nentries);
613 set_page_dirty(page);
614 f2fs_put_page(page, 1);
615 }
616 }
617
618 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
619 block_t cp_addr, unsigned long long *version)
620 {
621 struct page *cp_page_1, *cp_page_2 = NULL;
622 unsigned long blk_size = sbi->blocksize;
623 struct f2fs_checkpoint *cp_block;
624 unsigned long long cur_version = 0, pre_version = 0;
625 size_t crc_offset;
626 __u32 crc = 0;
627
628 /* Read the 1st cp block in this CP pack */
629 cp_page_1 = get_meta_page(sbi, cp_addr);
630
631 /* get the version number */
632 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
633 crc_offset = le32_to_cpu(cp_block->checksum_offset);
634 if (crc_offset >= blk_size)
635 goto invalid_cp1;
636
637 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
638 if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
639 goto invalid_cp1;
640
641 pre_version = cur_cp_version(cp_block);
642
643 /* Read the 2nd cp block in this CP pack */
644 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
645 cp_page_2 = get_meta_page(sbi, cp_addr);
646
647 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
648 crc_offset = le32_to_cpu(cp_block->checksum_offset);
649 if (crc_offset >= blk_size)
650 goto invalid_cp2;
651
652 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
653 if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
654 goto invalid_cp2;
655
656 cur_version = cur_cp_version(cp_block);
657
658 if (cur_version == pre_version) {
659 *version = cur_version;
660 f2fs_put_page(cp_page_2, 1);
661 return cp_page_1;
662 }
663 invalid_cp2:
664 f2fs_put_page(cp_page_2, 1);
665 invalid_cp1:
666 f2fs_put_page(cp_page_1, 1);
667 return NULL;
668 }
669
670 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
671 {
672 struct f2fs_checkpoint *cp_block;
673 struct f2fs_super_block *fsb = sbi->raw_super;
674 struct page *cp1, *cp2, *cur_page;
675 unsigned long blk_size = sbi->blocksize;
676 unsigned long long cp1_version = 0, cp2_version = 0;
677 unsigned long long cp_start_blk_no;
678 unsigned int cp_blks = 1 + __cp_payload(sbi);
679 block_t cp_blk_no;
680 int i;
681
682 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
683 if (!sbi->ckpt)
684 return -ENOMEM;
685 /*
686 * Finding out valid cp block involves read both
687 * sets( cp pack1 and cp pack 2)
688 */
689 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
690 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
691
692 /* The second checkpoint pack should start at the next segment */
693 cp_start_blk_no += ((unsigned long long)1) <<
694 le32_to_cpu(fsb->log_blocks_per_seg);
695 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
696
697 if (cp1 && cp2) {
698 if (ver_after(cp2_version, cp1_version))
699 cur_page = cp2;
700 else
701 cur_page = cp1;
702 } else if (cp1) {
703 cur_page = cp1;
704 } else if (cp2) {
705 cur_page = cp2;
706 } else {
707 goto fail_no_cp;
708 }
709
710 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
711 memcpy(sbi->ckpt, cp_block, blk_size);
712
713 /* Sanity checking of checkpoint */
714 if (sanity_check_ckpt(sbi))
715 goto fail_no_cp;
716
717 if (cp_blks <= 1)
718 goto done;
719
720 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
721 if (cur_page == cp2)
722 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
723
724 for (i = 1; i < cp_blks; i++) {
725 void *sit_bitmap_ptr;
726 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
727
728 cur_page = get_meta_page(sbi, cp_blk_no + i);
729 sit_bitmap_ptr = page_address(cur_page);
730 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
731 f2fs_put_page(cur_page, 1);
732 }
733 done:
734 f2fs_put_page(cp1, 1);
735 f2fs_put_page(cp2, 1);
736 return 0;
737
738 fail_no_cp:
739 kfree(sbi->ckpt);
740 return -EINVAL;
741 }
742
743 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
744 {
745 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
746 struct f2fs_inode_info *fi = F2FS_I(inode);
747 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
748
749 if (is_inode_flag_set(fi, flag))
750 return;
751
752 set_inode_flag(fi, flag);
753 list_add_tail(&fi->dirty_list, &sbi->inode_list[type]);
754 stat_inc_dirty_inode(sbi, type);
755 }
756
757 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
758 {
759 struct f2fs_inode_info *fi = F2FS_I(inode);
760 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
761
762 if (get_dirty_pages(inode) ||
763 !is_inode_flag_set(F2FS_I(inode), flag))
764 return;
765
766 list_del_init(&fi->dirty_list);
767 clear_inode_flag(fi, flag);
768 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
769 }
770
771 void update_dirty_page(struct inode *inode, struct page *page)
772 {
773 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
774 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
775
776 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
777 !S_ISLNK(inode->i_mode))
778 return;
779
780 spin_lock(&sbi->inode_lock[type]);
781 __add_dirty_inode(inode, type);
782 inode_inc_dirty_pages(inode);
783 spin_unlock(&sbi->inode_lock[type]);
784
785 SetPagePrivate(page);
786 f2fs_trace_pid(page);
787 }
788
789 void add_dirty_dir_inode(struct inode *inode)
790 {
791 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
792
793 spin_lock(&sbi->inode_lock[DIR_INODE]);
794 __add_dirty_inode(inode, DIR_INODE);
795 spin_unlock(&sbi->inode_lock[DIR_INODE]);
796 }
797
798 void remove_dirty_inode(struct inode *inode)
799 {
800 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
801 struct f2fs_inode_info *fi = F2FS_I(inode);
802 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
803
804 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
805 !S_ISLNK(inode->i_mode))
806 return;
807
808 spin_lock(&sbi->inode_lock[type]);
809 __remove_dirty_inode(inode, type);
810 spin_unlock(&sbi->inode_lock[type]);
811
812 /* Only from the recovery routine */
813 if (is_inode_flag_set(fi, FI_DELAY_IPUT)) {
814 clear_inode_flag(fi, FI_DELAY_IPUT);
815 iput(inode);
816 }
817 }
818
819 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
820 {
821 struct list_head *head;
822 struct inode *inode;
823 struct f2fs_inode_info *fi;
824 bool is_dir = (type == DIR_INODE);
825
826 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
827 get_pages(sbi, is_dir ?
828 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
829 retry:
830 if (unlikely(f2fs_cp_error(sbi)))
831 return -EIO;
832
833 spin_lock(&sbi->inode_lock[type]);
834
835 head = &sbi->inode_list[type];
836 if (list_empty(head)) {
837 spin_unlock(&sbi->inode_lock[type]);
838 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
839 get_pages(sbi, is_dir ?
840 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
841 return 0;
842 }
843 fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
844 inode = igrab(&fi->vfs_inode);
845 spin_unlock(&sbi->inode_lock[type]);
846 if (inode) {
847 filemap_fdatawrite(inode->i_mapping);
848 iput(inode);
849 } else {
850 /*
851 * We should submit bio, since it exists several
852 * wribacking dentry pages in the freeing inode.
853 */
854 f2fs_submit_merged_bio(sbi, DATA, WRITE);
855 cond_resched();
856 }
857 goto retry;
858 }
859
860 /*
861 * Freeze all the FS-operations for checkpoint.
862 */
863 static int block_operations(struct f2fs_sb_info *sbi)
864 {
865 struct writeback_control wbc = {
866 .sync_mode = WB_SYNC_ALL,
867 .nr_to_write = LONG_MAX,
868 .for_reclaim = 0,
869 };
870 struct blk_plug plug;
871 int err = 0;
872
873 blk_start_plug(&plug);
874
875 retry_flush_dents:
876 f2fs_lock_all(sbi);
877 /* write all the dirty dentry pages */
878 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
879 f2fs_unlock_all(sbi);
880 err = sync_dirty_inodes(sbi, DIR_INODE);
881 if (err)
882 goto out;
883 goto retry_flush_dents;
884 }
885
886 /*
887 * POR: we should ensure that there are no dirty node pages
888 * until finishing nat/sit flush.
889 */
890 retry_flush_nodes:
891 down_write(&sbi->node_write);
892
893 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
894 up_write(&sbi->node_write);
895 err = sync_node_pages(sbi, 0, &wbc);
896 if (err) {
897 f2fs_unlock_all(sbi);
898 goto out;
899 }
900 goto retry_flush_nodes;
901 }
902 out:
903 blk_finish_plug(&plug);
904 return err;
905 }
906
907 static void unblock_operations(struct f2fs_sb_info *sbi)
908 {
909 up_write(&sbi->node_write);
910 f2fs_unlock_all(sbi);
911 }
912
913 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
914 {
915 DEFINE_WAIT(wait);
916
917 for (;;) {
918 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
919
920 if (!get_pages(sbi, F2FS_WRITEBACK))
921 break;
922
923 io_schedule_timeout(5*HZ);
924 }
925 finish_wait(&sbi->cp_wait, &wait);
926 }
927
928 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
929 {
930 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
931 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
932 struct f2fs_nm_info *nm_i = NM_I(sbi);
933 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
934 nid_t last_nid = nm_i->next_scan_nid;
935 block_t start_blk;
936 unsigned int data_sum_blocks, orphan_blocks;
937 __u32 crc32 = 0;
938 int i;
939 int cp_payload_blks = __cp_payload(sbi);
940 block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
941 bool invalidate = false;
942 struct super_block *sb = sbi->sb;
943 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
944 u64 kbytes_written;
945
946 /*
947 * This avoids to conduct wrong roll-forward operations and uses
948 * metapages, so should be called prior to sync_meta_pages below.
949 */
950 if (discard_next_dnode(sbi, discard_blk))
951 invalidate = true;
952
953 /* Flush all the NAT/SIT pages */
954 while (get_pages(sbi, F2FS_DIRTY_META)) {
955 sync_meta_pages(sbi, META, LONG_MAX);
956 if (unlikely(f2fs_cp_error(sbi)))
957 return -EIO;
958 }
959
960 next_free_nid(sbi, &last_nid);
961
962 /*
963 * modify checkpoint
964 * version number is already updated
965 */
966 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
967 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
968 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
969 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
970 ckpt->cur_node_segno[i] =
971 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
972 ckpt->cur_node_blkoff[i] =
973 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
974 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
975 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
976 }
977 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
978 ckpt->cur_data_segno[i] =
979 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
980 ckpt->cur_data_blkoff[i] =
981 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
982 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
983 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
984 }
985
986 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
987 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
988 ckpt->next_free_nid = cpu_to_le32(last_nid);
989
990 /* 2 cp + n data seg summary + orphan inode blocks */
991 data_sum_blocks = npages_for_summary_flush(sbi, false);
992 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
993 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
994 else
995 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
996
997 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
998 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
999 orphan_blocks);
1000
1001 if (__remain_node_summaries(cpc->reason))
1002 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1003 cp_payload_blks + data_sum_blocks +
1004 orphan_blocks + NR_CURSEG_NODE_TYPE);
1005 else
1006 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1007 cp_payload_blks + data_sum_blocks +
1008 orphan_blocks);
1009
1010 if (cpc->reason == CP_UMOUNT)
1011 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1012 else
1013 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1014
1015 if (cpc->reason == CP_FASTBOOT)
1016 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1017 else
1018 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1019
1020 if (orphan_num)
1021 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1022 else
1023 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1024
1025 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1026 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1027
1028 /* update SIT/NAT bitmap */
1029 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1030 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1031
1032 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1033 *((__le32 *)((unsigned char *)ckpt +
1034 le32_to_cpu(ckpt->checksum_offset)))
1035 = cpu_to_le32(crc32);
1036
1037 start_blk = __start_cp_addr(sbi);
1038
1039 /* need to wait for end_io results */
1040 wait_on_all_pages_writeback(sbi);
1041 if (unlikely(f2fs_cp_error(sbi)))
1042 return -EIO;
1043
1044 /* write out checkpoint buffer at block 0 */
1045 update_meta_page(sbi, ckpt, start_blk++);
1046
1047 for (i = 1; i < 1 + cp_payload_blks; i++)
1048 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1049 start_blk++);
1050
1051 if (orphan_num) {
1052 write_orphan_inodes(sbi, start_blk);
1053 start_blk += orphan_blocks;
1054 }
1055
1056 write_data_summaries(sbi, start_blk);
1057 start_blk += data_sum_blocks;
1058
1059 /* Record write statistics in the hot node summary */
1060 kbytes_written = sbi->kbytes_written;
1061 if (sb->s_bdev->bd_part)
1062 kbytes_written += BD_PART_WRITTEN(sbi);
1063
1064 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1065
1066 if (__remain_node_summaries(cpc->reason)) {
1067 write_node_summaries(sbi, start_blk);
1068 start_blk += NR_CURSEG_NODE_TYPE;
1069 }
1070
1071 /* writeout checkpoint block */
1072 update_meta_page(sbi, ckpt, start_blk);
1073
1074 /* wait for previous submitted node/meta pages writeback */
1075 wait_on_all_pages_writeback(sbi);
1076
1077 if (unlikely(f2fs_cp_error(sbi)))
1078 return -EIO;
1079
1080 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1081 filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1082
1083 /* update user_block_counts */
1084 sbi->last_valid_block_count = sbi->total_valid_block_count;
1085 sbi->alloc_valid_block_count = 0;
1086
1087 /* Here, we only have one bio having CP pack */
1088 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1089
1090 /* wait for previous submitted meta pages writeback */
1091 wait_on_all_pages_writeback(sbi);
1092
1093 /*
1094 * invalidate meta page which is used temporarily for zeroing out
1095 * block at the end of warm node chain.
1096 */
1097 if (invalidate)
1098 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1099 discard_blk);
1100
1101 release_ino_entry(sbi);
1102
1103 if (unlikely(f2fs_cp_error(sbi)))
1104 return -EIO;
1105
1106 clear_prefree_segments(sbi, cpc);
1107 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1108
1109 return 0;
1110 }
1111
1112 /*
1113 * We guarantee that this checkpoint procedure will not fail.
1114 */
1115 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1116 {
1117 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1118 unsigned long long ckpt_ver;
1119 int err = 0;
1120
1121 mutex_lock(&sbi->cp_mutex);
1122
1123 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1124 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1125 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1126 goto out;
1127 if (unlikely(f2fs_cp_error(sbi))) {
1128 err = -EIO;
1129 goto out;
1130 }
1131 if (f2fs_readonly(sbi->sb)) {
1132 err = -EROFS;
1133 goto out;
1134 }
1135
1136 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1137
1138 err = block_operations(sbi);
1139 if (err)
1140 goto out;
1141
1142 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1143
1144 f2fs_flush_merged_bios(sbi);
1145
1146 /*
1147 * update checkpoint pack index
1148 * Increase the version number so that
1149 * SIT entries and seg summaries are written at correct place
1150 */
1151 ckpt_ver = cur_cp_version(ckpt);
1152 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1153
1154 /* write cached NAT/SIT entries to NAT/SIT area */
1155 flush_nat_entries(sbi);
1156 flush_sit_entries(sbi, cpc);
1157
1158 /* unlock all the fs_lock[] in do_checkpoint() */
1159 err = do_checkpoint(sbi, cpc);
1160
1161 unblock_operations(sbi);
1162 stat_inc_cp_count(sbi->stat_info);
1163
1164 if (cpc->reason == CP_RECOVERY)
1165 f2fs_msg(sbi->sb, KERN_NOTICE,
1166 "checkpoint: version = %llx", ckpt_ver);
1167
1168 /* do checkpoint periodically */
1169 f2fs_update_time(sbi, CP_TIME);
1170 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1171 out:
1172 mutex_unlock(&sbi->cp_mutex);
1173 return err;
1174 }
1175
1176 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1177 {
1178 int i;
1179
1180 for (i = 0; i < MAX_INO_ENTRY; i++) {
1181 struct inode_management *im = &sbi->im[i];
1182
1183 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1184 spin_lock_init(&im->ino_lock);
1185 INIT_LIST_HEAD(&im->ino_list);
1186 im->ino_num = 0;
1187 }
1188
1189 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1190 NR_CURSEG_TYPE - __cp_payload(sbi)) *
1191 F2FS_ORPHANS_PER_BLOCK;
1192 }
1193
1194 int __init create_checkpoint_caches(void)
1195 {
1196 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1197 sizeof(struct ino_entry));
1198 if (!ino_entry_slab)
1199 return -ENOMEM;
1200 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1201 sizeof(struct inode_entry));
1202 if (!inode_entry_slab) {
1203 kmem_cache_destroy(ino_entry_slab);
1204 return -ENOMEM;
1205 }
1206 return 0;
1207 }
1208
1209 void destroy_checkpoint_caches(void)
1210 {
1211 kmem_cache_destroy(ino_entry_slab);
1212 kmem_cache_destroy(inode_entry_slab);
1213 }
This page took 0.05972 seconds and 5 git commands to generate.