f2fs: handle error of f2fs_iget correctly
[deliverable/linux.git] / fs / f2fs / checkpoint.c
1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 /*
30 * We guarantee no failure on the returned page.
31 */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34 struct address_space *mapping = META_MAPPING(sbi);
35 struct page *page = NULL;
36 repeat:
37 page = grab_cache_page(mapping, index);
38 if (!page) {
39 cond_resched();
40 goto repeat;
41 }
42 f2fs_wait_on_page_writeback(page, META);
43 SetPageUptodate(page);
44 return page;
45 }
46
47 /*
48 * We guarantee no failure on the returned page.
49 */
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 {
52 struct address_space *mapping = META_MAPPING(sbi);
53 struct page *page;
54 struct f2fs_io_info fio = {
55 .sbi = sbi,
56 .type = META,
57 .rw = READ_SYNC | REQ_META | REQ_PRIO,
58 .blk_addr = index,
59 .encrypted_page = NULL,
60 };
61 repeat:
62 page = grab_cache_page(mapping, index);
63 if (!page) {
64 cond_resched();
65 goto repeat;
66 }
67 if (PageUptodate(page))
68 goto out;
69
70 fio.page = page;
71
72 if (f2fs_submit_page_bio(&fio)) {
73 f2fs_put_page(page, 1);
74 goto repeat;
75 }
76
77 lock_page(page);
78 if (unlikely(page->mapping != mapping)) {
79 f2fs_put_page(page, 1);
80 goto repeat;
81 }
82
83 /*
84 * if there is any IO error when accessing device, make our filesystem
85 * readonly and make sure do not write checkpoint with non-uptodate
86 * meta page.
87 */
88 if (unlikely(!PageUptodate(page)))
89 f2fs_stop_checkpoint(sbi);
90 out:
91 return page;
92 }
93
94 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
95 {
96 switch (type) {
97 case META_NAT:
98 break;
99 case META_SIT:
100 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
101 return false;
102 break;
103 case META_SSA:
104 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
105 blkaddr < SM_I(sbi)->ssa_blkaddr))
106 return false;
107 break;
108 case META_CP:
109 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
110 blkaddr < __start_cp_addr(sbi)))
111 return false;
112 break;
113 case META_POR:
114 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
115 blkaddr < MAIN_BLKADDR(sbi)))
116 return false;
117 break;
118 default:
119 BUG();
120 }
121
122 return true;
123 }
124
125 /*
126 * Readahead CP/NAT/SIT/SSA pages
127 */
128 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
129 {
130 block_t prev_blk_addr = 0;
131 struct page *page;
132 block_t blkno = start;
133 struct f2fs_io_info fio = {
134 .sbi = sbi,
135 .type = META,
136 .rw = READ_SYNC | REQ_META | REQ_PRIO,
137 .encrypted_page = NULL,
138 };
139
140 for (; nrpages-- > 0; blkno++) {
141
142 if (!is_valid_blkaddr(sbi, blkno, type))
143 goto out;
144
145 switch (type) {
146 case META_NAT:
147 if (unlikely(blkno >=
148 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
149 blkno = 0;
150 /* get nat block addr */
151 fio.blk_addr = current_nat_addr(sbi,
152 blkno * NAT_ENTRY_PER_BLOCK);
153 break;
154 case META_SIT:
155 /* get sit block addr */
156 fio.blk_addr = current_sit_addr(sbi,
157 blkno * SIT_ENTRY_PER_BLOCK);
158 if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
159 goto out;
160 prev_blk_addr = fio.blk_addr;
161 break;
162 case META_SSA:
163 case META_CP:
164 case META_POR:
165 fio.blk_addr = blkno;
166 break;
167 default:
168 BUG();
169 }
170
171 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
172 if (!page)
173 continue;
174 if (PageUptodate(page)) {
175 f2fs_put_page(page, 1);
176 continue;
177 }
178
179 fio.page = page;
180 f2fs_submit_page_mbio(&fio);
181 f2fs_put_page(page, 0);
182 }
183 out:
184 f2fs_submit_merged_bio(sbi, META, READ);
185 return blkno - start;
186 }
187
188 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
189 {
190 struct page *page;
191 bool readahead = false;
192
193 page = find_get_page(META_MAPPING(sbi), index);
194 if (!page || (page && !PageUptodate(page)))
195 readahead = true;
196 f2fs_put_page(page, 0);
197
198 if (readahead)
199 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
200 }
201
202 static int f2fs_write_meta_page(struct page *page,
203 struct writeback_control *wbc)
204 {
205 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
206
207 trace_f2fs_writepage(page, META);
208
209 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
210 goto redirty_out;
211 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
212 goto redirty_out;
213 if (unlikely(f2fs_cp_error(sbi)))
214 goto redirty_out;
215
216 f2fs_wait_on_page_writeback(page, META);
217 write_meta_page(sbi, page);
218 dec_page_count(sbi, F2FS_DIRTY_META);
219 unlock_page(page);
220
221 if (wbc->for_reclaim)
222 f2fs_submit_merged_bio(sbi, META, WRITE);
223 return 0;
224
225 redirty_out:
226 redirty_page_for_writepage(wbc, page);
227 return AOP_WRITEPAGE_ACTIVATE;
228 }
229
230 static int f2fs_write_meta_pages(struct address_space *mapping,
231 struct writeback_control *wbc)
232 {
233 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
234 long diff, written;
235
236 trace_f2fs_writepages(mapping->host, wbc, META);
237
238 /* collect a number of dirty meta pages and write together */
239 if (wbc->for_kupdate ||
240 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
241 goto skip_write;
242
243 /* if mounting is failed, skip writing node pages */
244 mutex_lock(&sbi->cp_mutex);
245 diff = nr_pages_to_write(sbi, META, wbc);
246 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
247 mutex_unlock(&sbi->cp_mutex);
248 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
249 return 0;
250
251 skip_write:
252 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
253 return 0;
254 }
255
256 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
257 long nr_to_write)
258 {
259 struct address_space *mapping = META_MAPPING(sbi);
260 pgoff_t index = 0, end = LONG_MAX;
261 struct pagevec pvec;
262 long nwritten = 0;
263 struct writeback_control wbc = {
264 .for_reclaim = 0,
265 };
266
267 pagevec_init(&pvec, 0);
268
269 while (index <= end) {
270 int i, nr_pages;
271 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
272 PAGECACHE_TAG_DIRTY,
273 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
274 if (unlikely(nr_pages == 0))
275 break;
276
277 for (i = 0; i < nr_pages; i++) {
278 struct page *page = pvec.pages[i];
279
280 lock_page(page);
281
282 if (unlikely(page->mapping != mapping)) {
283 continue_unlock:
284 unlock_page(page);
285 continue;
286 }
287 if (!PageDirty(page)) {
288 /* someone wrote it for us */
289 goto continue_unlock;
290 }
291
292 if (!clear_page_dirty_for_io(page))
293 goto continue_unlock;
294
295 if (mapping->a_ops->writepage(page, &wbc)) {
296 unlock_page(page);
297 break;
298 }
299 nwritten++;
300 if (unlikely(nwritten >= nr_to_write))
301 break;
302 }
303 pagevec_release(&pvec);
304 cond_resched();
305 }
306
307 if (nwritten)
308 f2fs_submit_merged_bio(sbi, type, WRITE);
309
310 return nwritten;
311 }
312
313 static int f2fs_set_meta_page_dirty(struct page *page)
314 {
315 trace_f2fs_set_page_dirty(page, META);
316
317 SetPageUptodate(page);
318 if (!PageDirty(page)) {
319 __set_page_dirty_nobuffers(page);
320 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
321 SetPagePrivate(page);
322 f2fs_trace_pid(page);
323 return 1;
324 }
325 return 0;
326 }
327
328 const struct address_space_operations f2fs_meta_aops = {
329 .writepage = f2fs_write_meta_page,
330 .writepages = f2fs_write_meta_pages,
331 .set_page_dirty = f2fs_set_meta_page_dirty,
332 .invalidatepage = f2fs_invalidate_page,
333 .releasepage = f2fs_release_page,
334 };
335
336 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
337 {
338 struct inode_management *im = &sbi->im[type];
339 struct ino_entry *e;
340 retry:
341 if (radix_tree_preload(GFP_NOFS)) {
342 cond_resched();
343 goto retry;
344 }
345
346 spin_lock(&im->ino_lock);
347
348 e = radix_tree_lookup(&im->ino_root, ino);
349 if (!e) {
350 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
351 if (!e) {
352 spin_unlock(&im->ino_lock);
353 radix_tree_preload_end();
354 goto retry;
355 }
356 if (radix_tree_insert(&im->ino_root, ino, e)) {
357 spin_unlock(&im->ino_lock);
358 kmem_cache_free(ino_entry_slab, e);
359 radix_tree_preload_end();
360 goto retry;
361 }
362 memset(e, 0, sizeof(struct ino_entry));
363 e->ino = ino;
364
365 list_add_tail(&e->list, &im->ino_list);
366 if (type != ORPHAN_INO)
367 im->ino_num++;
368 }
369 spin_unlock(&im->ino_lock);
370 radix_tree_preload_end();
371 }
372
373 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
374 {
375 struct inode_management *im = &sbi->im[type];
376 struct ino_entry *e;
377
378 spin_lock(&im->ino_lock);
379 e = radix_tree_lookup(&im->ino_root, ino);
380 if (e) {
381 list_del(&e->list);
382 radix_tree_delete(&im->ino_root, ino);
383 im->ino_num--;
384 spin_unlock(&im->ino_lock);
385 kmem_cache_free(ino_entry_slab, e);
386 return;
387 }
388 spin_unlock(&im->ino_lock);
389 }
390
391 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
392 {
393 /* add new dirty ino entry into list */
394 __add_ino_entry(sbi, ino, type);
395 }
396
397 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
398 {
399 /* remove dirty ino entry from list */
400 __remove_ino_entry(sbi, ino, type);
401 }
402
403 /* mode should be APPEND_INO or UPDATE_INO */
404 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
405 {
406 struct inode_management *im = &sbi->im[mode];
407 struct ino_entry *e;
408
409 spin_lock(&im->ino_lock);
410 e = radix_tree_lookup(&im->ino_root, ino);
411 spin_unlock(&im->ino_lock);
412 return e ? true : false;
413 }
414
415 void release_dirty_inode(struct f2fs_sb_info *sbi)
416 {
417 struct ino_entry *e, *tmp;
418 int i;
419
420 for (i = APPEND_INO; i <= UPDATE_INO; i++) {
421 struct inode_management *im = &sbi->im[i];
422
423 spin_lock(&im->ino_lock);
424 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
425 list_del(&e->list);
426 radix_tree_delete(&im->ino_root, e->ino);
427 kmem_cache_free(ino_entry_slab, e);
428 im->ino_num--;
429 }
430 spin_unlock(&im->ino_lock);
431 }
432 }
433
434 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
435 {
436 struct inode_management *im = &sbi->im[ORPHAN_INO];
437 int err = 0;
438
439 spin_lock(&im->ino_lock);
440 if (unlikely(im->ino_num >= sbi->max_orphans))
441 err = -ENOSPC;
442 else
443 im->ino_num++;
444 spin_unlock(&im->ino_lock);
445
446 return err;
447 }
448
449 void release_orphan_inode(struct f2fs_sb_info *sbi)
450 {
451 struct inode_management *im = &sbi->im[ORPHAN_INO];
452
453 spin_lock(&im->ino_lock);
454 f2fs_bug_on(sbi, im->ino_num == 0);
455 im->ino_num--;
456 spin_unlock(&im->ino_lock);
457 }
458
459 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
460 {
461 /* add new orphan ino entry into list */
462 __add_ino_entry(sbi, ino, ORPHAN_INO);
463 }
464
465 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
466 {
467 /* remove orphan entry from orphan list */
468 __remove_ino_entry(sbi, ino, ORPHAN_INO);
469 }
470
471 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
472 {
473 struct inode *inode;
474
475 inode = f2fs_iget(sbi->sb, ino);
476 if (IS_ERR(inode)) {
477 /*
478 * there should be a bug that we can't find the entry
479 * to orphan inode.
480 */
481 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
482 return PTR_ERR(inode);
483 }
484
485 clear_nlink(inode);
486
487 /* truncate all the data during iput */
488 iput(inode);
489 return 0;
490 }
491
492 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
493 {
494 block_t start_blk, orphan_blocks, i, j;
495 int err;
496
497 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
498 return 0;
499
500 set_sbi_flag(sbi, SBI_POR_DOING);
501
502 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
503 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
504
505 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP);
506
507 for (i = 0; i < orphan_blocks; i++) {
508 struct page *page = get_meta_page(sbi, start_blk + i);
509 struct f2fs_orphan_block *orphan_blk;
510
511 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
512 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
513 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
514 err = recover_orphan_inode(sbi, ino);
515 if (err) {
516 f2fs_put_page(page, 1);
517 clear_sbi_flag(sbi, SBI_POR_DOING);
518 return err;
519 }
520 }
521 f2fs_put_page(page, 1);
522 }
523 /* clear Orphan Flag */
524 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
525 clear_sbi_flag(sbi, SBI_POR_DOING);
526 return 0;
527 }
528
529 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
530 {
531 struct list_head *head;
532 struct f2fs_orphan_block *orphan_blk = NULL;
533 unsigned int nentries = 0;
534 unsigned short index = 1;
535 unsigned short orphan_blocks;
536 struct page *page = NULL;
537 struct ino_entry *orphan = NULL;
538 struct inode_management *im = &sbi->im[ORPHAN_INO];
539
540 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
541
542 /*
543 * we don't need to do spin_lock(&im->ino_lock) here, since all the
544 * orphan inode operations are covered under f2fs_lock_op().
545 * And, spin_lock should be avoided due to page operations below.
546 */
547 head = &im->ino_list;
548
549 /* loop for each orphan inode entry and write them in Jornal block */
550 list_for_each_entry(orphan, head, list) {
551 if (!page) {
552 page = grab_meta_page(sbi, start_blk++);
553 orphan_blk =
554 (struct f2fs_orphan_block *)page_address(page);
555 memset(orphan_blk, 0, sizeof(*orphan_blk));
556 }
557
558 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
559
560 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
561 /*
562 * an orphan block is full of 1020 entries,
563 * then we need to flush current orphan blocks
564 * and bring another one in memory
565 */
566 orphan_blk->blk_addr = cpu_to_le16(index);
567 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
568 orphan_blk->entry_count = cpu_to_le32(nentries);
569 set_page_dirty(page);
570 f2fs_put_page(page, 1);
571 index++;
572 nentries = 0;
573 page = NULL;
574 }
575 }
576
577 if (page) {
578 orphan_blk->blk_addr = cpu_to_le16(index);
579 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
580 orphan_blk->entry_count = cpu_to_le32(nentries);
581 set_page_dirty(page);
582 f2fs_put_page(page, 1);
583 }
584 }
585
586 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
587 block_t cp_addr, unsigned long long *version)
588 {
589 struct page *cp_page_1, *cp_page_2 = NULL;
590 unsigned long blk_size = sbi->blocksize;
591 struct f2fs_checkpoint *cp_block;
592 unsigned long long cur_version = 0, pre_version = 0;
593 size_t crc_offset;
594 __u32 crc = 0;
595
596 /* Read the 1st cp block in this CP pack */
597 cp_page_1 = get_meta_page(sbi, cp_addr);
598
599 /* get the version number */
600 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
601 crc_offset = le32_to_cpu(cp_block->checksum_offset);
602 if (crc_offset >= blk_size)
603 goto invalid_cp1;
604
605 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
606 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
607 goto invalid_cp1;
608
609 pre_version = cur_cp_version(cp_block);
610
611 /* Read the 2nd cp block in this CP pack */
612 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
613 cp_page_2 = get_meta_page(sbi, cp_addr);
614
615 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
616 crc_offset = le32_to_cpu(cp_block->checksum_offset);
617 if (crc_offset >= blk_size)
618 goto invalid_cp2;
619
620 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
621 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
622 goto invalid_cp2;
623
624 cur_version = cur_cp_version(cp_block);
625
626 if (cur_version == pre_version) {
627 *version = cur_version;
628 f2fs_put_page(cp_page_2, 1);
629 return cp_page_1;
630 }
631 invalid_cp2:
632 f2fs_put_page(cp_page_2, 1);
633 invalid_cp1:
634 f2fs_put_page(cp_page_1, 1);
635 return NULL;
636 }
637
638 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
639 {
640 struct f2fs_checkpoint *cp_block;
641 struct f2fs_super_block *fsb = sbi->raw_super;
642 struct page *cp1, *cp2, *cur_page;
643 unsigned long blk_size = sbi->blocksize;
644 unsigned long long cp1_version = 0, cp2_version = 0;
645 unsigned long long cp_start_blk_no;
646 unsigned int cp_blks = 1 + __cp_payload(sbi);
647 block_t cp_blk_no;
648 int i;
649
650 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
651 if (!sbi->ckpt)
652 return -ENOMEM;
653 /*
654 * Finding out valid cp block involves read both
655 * sets( cp pack1 and cp pack 2)
656 */
657 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
658 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
659
660 /* The second checkpoint pack should start at the next segment */
661 cp_start_blk_no += ((unsigned long long)1) <<
662 le32_to_cpu(fsb->log_blocks_per_seg);
663 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
664
665 if (cp1 && cp2) {
666 if (ver_after(cp2_version, cp1_version))
667 cur_page = cp2;
668 else
669 cur_page = cp1;
670 } else if (cp1) {
671 cur_page = cp1;
672 } else if (cp2) {
673 cur_page = cp2;
674 } else {
675 goto fail_no_cp;
676 }
677
678 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
679 memcpy(sbi->ckpt, cp_block, blk_size);
680
681 if (cp_blks <= 1)
682 goto done;
683
684 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
685 if (cur_page == cp2)
686 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
687
688 for (i = 1; i < cp_blks; i++) {
689 void *sit_bitmap_ptr;
690 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
691
692 cur_page = get_meta_page(sbi, cp_blk_no + i);
693 sit_bitmap_ptr = page_address(cur_page);
694 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
695 f2fs_put_page(cur_page, 1);
696 }
697 done:
698 f2fs_put_page(cp1, 1);
699 f2fs_put_page(cp2, 1);
700 return 0;
701
702 fail_no_cp:
703 kfree(sbi->ckpt);
704 return -EINVAL;
705 }
706
707 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
708 {
709 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
710
711 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
712 return -EEXIST;
713
714 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
715 F2FS_I(inode)->dirty_dir = new;
716 list_add_tail(&new->list, &sbi->dir_inode_list);
717 stat_inc_dirty_dir(sbi);
718 return 0;
719 }
720
721 void update_dirty_page(struct inode *inode, struct page *page)
722 {
723 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
724 struct inode_entry *new;
725 int ret = 0;
726
727 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
728 !S_ISLNK(inode->i_mode))
729 return;
730
731 if (!S_ISDIR(inode->i_mode)) {
732 inode_inc_dirty_pages(inode);
733 goto out;
734 }
735
736 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
737 new->inode = inode;
738 INIT_LIST_HEAD(&new->list);
739
740 spin_lock(&sbi->dir_inode_lock);
741 ret = __add_dirty_inode(inode, new);
742 inode_inc_dirty_pages(inode);
743 spin_unlock(&sbi->dir_inode_lock);
744
745 if (ret)
746 kmem_cache_free(inode_entry_slab, new);
747 out:
748 SetPagePrivate(page);
749 f2fs_trace_pid(page);
750 }
751
752 void add_dirty_dir_inode(struct inode *inode)
753 {
754 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
755 struct inode_entry *new =
756 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
757 int ret = 0;
758
759 new->inode = inode;
760 INIT_LIST_HEAD(&new->list);
761
762 spin_lock(&sbi->dir_inode_lock);
763 ret = __add_dirty_inode(inode, new);
764 spin_unlock(&sbi->dir_inode_lock);
765
766 if (ret)
767 kmem_cache_free(inode_entry_slab, new);
768 }
769
770 void remove_dirty_dir_inode(struct inode *inode)
771 {
772 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
773 struct inode_entry *entry;
774
775 if (!S_ISDIR(inode->i_mode))
776 return;
777
778 spin_lock(&sbi->dir_inode_lock);
779 if (get_dirty_pages(inode) ||
780 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
781 spin_unlock(&sbi->dir_inode_lock);
782 return;
783 }
784
785 entry = F2FS_I(inode)->dirty_dir;
786 list_del(&entry->list);
787 F2FS_I(inode)->dirty_dir = NULL;
788 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
789 stat_dec_dirty_dir(sbi);
790 spin_unlock(&sbi->dir_inode_lock);
791 kmem_cache_free(inode_entry_slab, entry);
792
793 /* Only from the recovery routine */
794 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
795 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
796 iput(inode);
797 }
798 }
799
800 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
801 {
802 struct list_head *head;
803 struct inode_entry *entry;
804 struct inode *inode;
805 retry:
806 if (unlikely(f2fs_cp_error(sbi)))
807 return;
808
809 spin_lock(&sbi->dir_inode_lock);
810
811 head = &sbi->dir_inode_list;
812 if (list_empty(head)) {
813 spin_unlock(&sbi->dir_inode_lock);
814 return;
815 }
816 entry = list_entry(head->next, struct inode_entry, list);
817 inode = igrab(entry->inode);
818 spin_unlock(&sbi->dir_inode_lock);
819 if (inode) {
820 filemap_fdatawrite(inode->i_mapping);
821 iput(inode);
822 } else {
823 /*
824 * We should submit bio, since it exists several
825 * wribacking dentry pages in the freeing inode.
826 */
827 f2fs_submit_merged_bio(sbi, DATA, WRITE);
828 cond_resched();
829 }
830 goto retry;
831 }
832
833 /*
834 * Freeze all the FS-operations for checkpoint.
835 */
836 static int block_operations(struct f2fs_sb_info *sbi)
837 {
838 struct writeback_control wbc = {
839 .sync_mode = WB_SYNC_ALL,
840 .nr_to_write = LONG_MAX,
841 .for_reclaim = 0,
842 };
843 struct blk_plug plug;
844 int err = 0;
845
846 blk_start_plug(&plug);
847
848 retry_flush_dents:
849 f2fs_lock_all(sbi);
850 /* write all the dirty dentry pages */
851 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
852 f2fs_unlock_all(sbi);
853 sync_dirty_dir_inodes(sbi);
854 if (unlikely(f2fs_cp_error(sbi))) {
855 err = -EIO;
856 goto out;
857 }
858 goto retry_flush_dents;
859 }
860
861 /*
862 * POR: we should ensure that there are no dirty node pages
863 * until finishing nat/sit flush.
864 */
865 retry_flush_nodes:
866 down_write(&sbi->node_write);
867
868 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
869 up_write(&sbi->node_write);
870 sync_node_pages(sbi, 0, &wbc);
871 if (unlikely(f2fs_cp_error(sbi))) {
872 f2fs_unlock_all(sbi);
873 err = -EIO;
874 goto out;
875 }
876 goto retry_flush_nodes;
877 }
878 out:
879 blk_finish_plug(&plug);
880 return err;
881 }
882
883 static void unblock_operations(struct f2fs_sb_info *sbi)
884 {
885 up_write(&sbi->node_write);
886 f2fs_unlock_all(sbi);
887 }
888
889 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
890 {
891 DEFINE_WAIT(wait);
892
893 for (;;) {
894 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
895
896 if (!get_pages(sbi, F2FS_WRITEBACK))
897 break;
898
899 io_schedule();
900 }
901 finish_wait(&sbi->cp_wait, &wait);
902 }
903
904 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
905 {
906 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
907 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
908 struct f2fs_nm_info *nm_i = NM_I(sbi);
909 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
910 nid_t last_nid = nm_i->next_scan_nid;
911 block_t start_blk;
912 unsigned int data_sum_blocks, orphan_blocks;
913 __u32 crc32 = 0;
914 int i;
915 int cp_payload_blks = __cp_payload(sbi);
916 block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
917 bool invalidate = false;
918
919 /*
920 * This avoids to conduct wrong roll-forward operations and uses
921 * metapages, so should be called prior to sync_meta_pages below.
922 */
923 if (discard_next_dnode(sbi, discard_blk))
924 invalidate = true;
925
926 /* Flush all the NAT/SIT pages */
927 while (get_pages(sbi, F2FS_DIRTY_META)) {
928 sync_meta_pages(sbi, META, LONG_MAX);
929 if (unlikely(f2fs_cp_error(sbi)))
930 return;
931 }
932
933 next_free_nid(sbi, &last_nid);
934
935 /*
936 * modify checkpoint
937 * version number is already updated
938 */
939 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
940 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
941 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
942 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
943 ckpt->cur_node_segno[i] =
944 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
945 ckpt->cur_node_blkoff[i] =
946 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
947 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
948 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
949 }
950 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
951 ckpt->cur_data_segno[i] =
952 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
953 ckpt->cur_data_blkoff[i] =
954 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
955 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
956 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
957 }
958
959 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
960 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
961 ckpt->next_free_nid = cpu_to_le32(last_nid);
962
963 /* 2 cp + n data seg summary + orphan inode blocks */
964 data_sum_blocks = npages_for_summary_flush(sbi, false);
965 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
966 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
967 else
968 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
969
970 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
971 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
972 orphan_blocks);
973
974 if (__remain_node_summaries(cpc->reason))
975 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
976 cp_payload_blks + data_sum_blocks +
977 orphan_blocks + NR_CURSEG_NODE_TYPE);
978 else
979 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
980 cp_payload_blks + data_sum_blocks +
981 orphan_blocks);
982
983 if (cpc->reason == CP_UMOUNT)
984 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
985 else
986 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
987
988 if (cpc->reason == CP_FASTBOOT)
989 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
990 else
991 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
992
993 if (orphan_num)
994 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
995 else
996 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
997
998 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
999 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1000
1001 /* update SIT/NAT bitmap */
1002 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1003 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1004
1005 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
1006 *((__le32 *)((unsigned char *)ckpt +
1007 le32_to_cpu(ckpt->checksum_offset)))
1008 = cpu_to_le32(crc32);
1009
1010 start_blk = __start_cp_addr(sbi);
1011
1012 /* write out checkpoint buffer at block 0 */
1013 update_meta_page(sbi, ckpt, start_blk++);
1014
1015 for (i = 1; i < 1 + cp_payload_blks; i++)
1016 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1017 start_blk++);
1018
1019 if (orphan_num) {
1020 write_orphan_inodes(sbi, start_blk);
1021 start_blk += orphan_blocks;
1022 }
1023
1024 write_data_summaries(sbi, start_blk);
1025 start_blk += data_sum_blocks;
1026 if (__remain_node_summaries(cpc->reason)) {
1027 write_node_summaries(sbi, start_blk);
1028 start_blk += NR_CURSEG_NODE_TYPE;
1029 }
1030
1031 /* writeout checkpoint block */
1032 update_meta_page(sbi, ckpt, start_blk);
1033
1034 /* wait for previous submitted node/meta pages writeback */
1035 wait_on_all_pages_writeback(sbi);
1036
1037 if (unlikely(f2fs_cp_error(sbi)))
1038 return;
1039
1040 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1041 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1042
1043 /* update user_block_counts */
1044 sbi->last_valid_block_count = sbi->total_valid_block_count;
1045 sbi->alloc_valid_block_count = 0;
1046
1047 /* Here, we only have one bio having CP pack */
1048 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1049
1050 /* wait for previous submitted meta pages writeback */
1051 wait_on_all_pages_writeback(sbi);
1052
1053 /*
1054 * invalidate meta page which is used temporarily for zeroing out
1055 * block at the end of warm node chain.
1056 */
1057 if (invalidate)
1058 invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1059 discard_blk);
1060
1061 release_dirty_inode(sbi);
1062
1063 if (unlikely(f2fs_cp_error(sbi)))
1064 return;
1065
1066 clear_prefree_segments(sbi, cpc);
1067 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1068 }
1069
1070 /*
1071 * We guarantee that this checkpoint procedure will not fail.
1072 */
1073 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1074 {
1075 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1076 unsigned long long ckpt_ver;
1077
1078 mutex_lock(&sbi->cp_mutex);
1079
1080 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1081 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1082 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1083 goto out;
1084 if (unlikely(f2fs_cp_error(sbi)))
1085 goto out;
1086 if (f2fs_readonly(sbi->sb))
1087 goto out;
1088
1089 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1090
1091 if (block_operations(sbi))
1092 goto out;
1093
1094 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1095
1096 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1097 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1098 f2fs_submit_merged_bio(sbi, META, WRITE);
1099
1100 /*
1101 * update checkpoint pack index
1102 * Increase the version number so that
1103 * SIT entries and seg summaries are written at correct place
1104 */
1105 ckpt_ver = cur_cp_version(ckpt);
1106 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1107
1108 /* write cached NAT/SIT entries to NAT/SIT area */
1109 flush_nat_entries(sbi);
1110 flush_sit_entries(sbi, cpc);
1111
1112 /* unlock all the fs_lock[] in do_checkpoint() */
1113 do_checkpoint(sbi, cpc);
1114
1115 unblock_operations(sbi);
1116 stat_inc_cp_count(sbi->stat_info);
1117
1118 if (cpc->reason == CP_RECOVERY)
1119 f2fs_msg(sbi->sb, KERN_NOTICE,
1120 "checkpoint: version = %llx", ckpt_ver);
1121 out:
1122 mutex_unlock(&sbi->cp_mutex);
1123 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1124 }
1125
1126 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1127 {
1128 int i;
1129
1130 for (i = 0; i < MAX_INO_ENTRY; i++) {
1131 struct inode_management *im = &sbi->im[i];
1132
1133 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1134 spin_lock_init(&im->ino_lock);
1135 INIT_LIST_HEAD(&im->ino_list);
1136 im->ino_num = 0;
1137 }
1138
1139 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1140 NR_CURSEG_TYPE - __cp_payload(sbi)) *
1141 F2FS_ORPHANS_PER_BLOCK;
1142 }
1143
1144 int __init create_checkpoint_caches(void)
1145 {
1146 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1147 sizeof(struct ino_entry));
1148 if (!ino_entry_slab)
1149 return -ENOMEM;
1150 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1151 sizeof(struct inode_entry));
1152 if (!inode_entry_slab) {
1153 kmem_cache_destroy(ino_entry_slab);
1154 return -ENOMEM;
1155 }
1156 return 0;
1157 }
1158
1159 void destroy_checkpoint_caches(void)
1160 {
1161 kmem_cache_destroy(ino_entry_slab);
1162 kmem_cache_destroy(inode_entry_slab);
1163 }
This page took 0.054202 seconds and 5 git commands to generate.