1f52b70ff9d19575b18d8ea24f80ec9023490e43
[deliverable/linux.git] / fs / f2fs / checkpoint.c
1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29 * We guarantee no failure on the returned page.
30 */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33 struct address_space *mapping = META_MAPPING(sbi);
34 struct page *page = NULL;
35 repeat:
36 page = grab_cache_page(mapping, index);
37 if (!page) {
38 cond_resched();
39 goto repeat;
40 }
41
42 /* We wait writeback only inside grab_meta_page() */
43 wait_on_page_writeback(page);
44 SetPageUptodate(page);
45 return page;
46 }
47
48 /*
49 * We guarantee no failure on the returned page.
50 */
51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
52 {
53 struct address_space *mapping = META_MAPPING(sbi);
54 struct page *page;
55 repeat:
56 page = grab_cache_page(mapping, index);
57 if (!page) {
58 cond_resched();
59 goto repeat;
60 }
61 if (PageUptodate(page))
62 goto out;
63
64 if (f2fs_submit_page_bio(sbi, page, index,
65 READ_SYNC | REQ_META | REQ_PRIO))
66 goto repeat;
67
68 lock_page(page);
69 if (unlikely(page->mapping != mapping)) {
70 f2fs_put_page(page, 1);
71 goto repeat;
72 }
73 out:
74 mark_page_accessed(page);
75 return page;
76 }
77
78 inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
79 {
80 switch (type) {
81 case META_NAT:
82 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
83 case META_SIT:
84 return SIT_BLK_CNT(sbi);
85 case META_SSA:
86 case META_CP:
87 return 0;
88 default:
89 BUG();
90 }
91 }
92
93 /*
94 * Readahead CP/NAT/SIT/SSA pages
95 */
96 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
97 {
98 block_t prev_blk_addr = 0;
99 struct page *page;
100 int blkno = start;
101 int max_blks = get_max_meta_blks(sbi, type);
102
103 struct f2fs_io_info fio = {
104 .type = META,
105 .rw = READ_SYNC | REQ_META | REQ_PRIO
106 };
107
108 for (; nrpages-- > 0; blkno++) {
109 block_t blk_addr;
110
111 switch (type) {
112 case META_NAT:
113 /* get nat block addr */
114 if (unlikely(blkno >= max_blks))
115 blkno = 0;
116 blk_addr = current_nat_addr(sbi,
117 blkno * NAT_ENTRY_PER_BLOCK);
118 break;
119 case META_SIT:
120 /* get sit block addr */
121 if (unlikely(blkno >= max_blks))
122 goto out;
123 blk_addr = current_sit_addr(sbi,
124 blkno * SIT_ENTRY_PER_BLOCK);
125 if (blkno != start && prev_blk_addr + 1 != blk_addr)
126 goto out;
127 prev_blk_addr = blk_addr;
128 break;
129 case META_SSA:
130 case META_CP:
131 /* get ssa/cp block addr */
132 blk_addr = blkno;
133 break;
134 default:
135 BUG();
136 }
137
138 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
139 if (!page)
140 continue;
141 if (PageUptodate(page)) {
142 mark_page_accessed(page);
143 f2fs_put_page(page, 1);
144 continue;
145 }
146
147 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
148 mark_page_accessed(page);
149 f2fs_put_page(page, 0);
150 }
151 out:
152 f2fs_submit_merged_bio(sbi, META, READ);
153 return blkno - start;
154 }
155
156 static int f2fs_write_meta_page(struct page *page,
157 struct writeback_control *wbc)
158 {
159 struct inode *inode = page->mapping->host;
160 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
161
162 if (unlikely(sbi->por_doing))
163 goto redirty_out;
164 if (wbc->for_reclaim)
165 goto redirty_out;
166
167 /* Should not write any meta pages, if any IO error was occurred */
168 if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
169 goto no_write;
170
171 wait_on_page_writeback(page);
172 write_meta_page(sbi, page);
173 no_write:
174 dec_page_count(sbi, F2FS_DIRTY_META);
175 unlock_page(page);
176 return 0;
177
178 redirty_out:
179 dec_page_count(sbi, F2FS_DIRTY_META);
180 wbc->pages_skipped++;
181 account_page_redirty(page);
182 set_page_dirty(page);
183 return AOP_WRITEPAGE_ACTIVATE;
184 }
185
186 static int f2fs_write_meta_pages(struct address_space *mapping,
187 struct writeback_control *wbc)
188 {
189 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
190 int nrpages = nr_pages_to_skip(sbi, META);
191 long written;
192
193 if (wbc->for_kupdate)
194 return 0;
195
196 /* collect a number of dirty meta pages and write together */
197 if (get_pages(sbi, F2FS_DIRTY_META) < nrpages)
198 return 0;
199
200 /* if mounting is failed, skip writing node pages */
201 mutex_lock(&sbi->cp_mutex);
202 written = sync_meta_pages(sbi, META, nrpages);
203 mutex_unlock(&sbi->cp_mutex);
204 wbc->nr_to_write -= written;
205 return 0;
206 }
207
208 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
209 long nr_to_write)
210 {
211 struct address_space *mapping = META_MAPPING(sbi);
212 pgoff_t index = 0, end = LONG_MAX;
213 struct pagevec pvec;
214 long nwritten = 0;
215 struct writeback_control wbc = {
216 .for_reclaim = 0,
217 };
218
219 pagevec_init(&pvec, 0);
220
221 while (index <= end) {
222 int i, nr_pages;
223 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
224 PAGECACHE_TAG_DIRTY,
225 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
226 if (unlikely(nr_pages == 0))
227 break;
228
229 for (i = 0; i < nr_pages; i++) {
230 struct page *page = pvec.pages[i];
231
232 lock_page(page);
233
234 if (unlikely(page->mapping != mapping)) {
235 continue_unlock:
236 unlock_page(page);
237 continue;
238 }
239 if (!PageDirty(page)) {
240 /* someone wrote it for us */
241 goto continue_unlock;
242 }
243
244 if (!clear_page_dirty_for_io(page))
245 goto continue_unlock;
246
247 if (f2fs_write_meta_page(page, &wbc)) {
248 unlock_page(page);
249 break;
250 }
251 nwritten++;
252 if (unlikely(nwritten >= nr_to_write))
253 break;
254 }
255 pagevec_release(&pvec);
256 cond_resched();
257 }
258
259 if (nwritten)
260 f2fs_submit_merged_bio(sbi, type, WRITE);
261
262 return nwritten;
263 }
264
265 static int f2fs_set_meta_page_dirty(struct page *page)
266 {
267 struct address_space *mapping = page->mapping;
268 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
269
270 trace_f2fs_set_page_dirty(page, META);
271
272 SetPageUptodate(page);
273 if (!PageDirty(page)) {
274 __set_page_dirty_nobuffers(page);
275 inc_page_count(sbi, F2FS_DIRTY_META);
276 return 1;
277 }
278 return 0;
279 }
280
281 const struct address_space_operations f2fs_meta_aops = {
282 .writepage = f2fs_write_meta_page,
283 .writepages = f2fs_write_meta_pages,
284 .set_page_dirty = f2fs_set_meta_page_dirty,
285 };
286
287 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
288 {
289 int err = 0;
290
291 spin_lock(&sbi->orphan_inode_lock);
292 if (unlikely(sbi->n_orphans >= sbi->max_orphans))
293 err = -ENOSPC;
294 else
295 sbi->n_orphans++;
296 spin_unlock(&sbi->orphan_inode_lock);
297
298 return err;
299 }
300
301 void release_orphan_inode(struct f2fs_sb_info *sbi)
302 {
303 spin_lock(&sbi->orphan_inode_lock);
304 f2fs_bug_on(sbi->n_orphans == 0);
305 sbi->n_orphans--;
306 spin_unlock(&sbi->orphan_inode_lock);
307 }
308
309 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
310 {
311 struct list_head *head, *this;
312 struct orphan_inode_entry *new = NULL, *orphan = NULL;
313
314 new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
315 new->ino = ino;
316
317 spin_lock(&sbi->orphan_inode_lock);
318 head = &sbi->orphan_inode_list;
319 list_for_each(this, head) {
320 orphan = list_entry(this, struct orphan_inode_entry, list);
321 if (orphan->ino == ino) {
322 spin_unlock(&sbi->orphan_inode_lock);
323 kmem_cache_free(orphan_entry_slab, new);
324 return;
325 }
326
327 if (orphan->ino > ino)
328 break;
329 orphan = NULL;
330 }
331
332 /* add new_oentry into list which is sorted by inode number */
333 if (orphan)
334 list_add(&new->list, this->prev);
335 else
336 list_add_tail(&new->list, head);
337 spin_unlock(&sbi->orphan_inode_lock);
338 }
339
340 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
341 {
342 struct list_head *head;
343 struct orphan_inode_entry *orphan;
344
345 spin_lock(&sbi->orphan_inode_lock);
346 head = &sbi->orphan_inode_list;
347 list_for_each_entry(orphan, head, list) {
348 if (orphan->ino == ino) {
349 list_del(&orphan->list);
350 kmem_cache_free(orphan_entry_slab, orphan);
351 f2fs_bug_on(sbi->n_orphans == 0);
352 sbi->n_orphans--;
353 break;
354 }
355 }
356 spin_unlock(&sbi->orphan_inode_lock);
357 }
358
359 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
360 {
361 struct inode *inode = f2fs_iget(sbi->sb, ino);
362 f2fs_bug_on(IS_ERR(inode));
363 clear_nlink(inode);
364
365 /* truncate all the data during iput */
366 iput(inode);
367 }
368
369 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
370 {
371 block_t start_blk, orphan_blkaddr, i, j;
372
373 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
374 return;
375
376 sbi->por_doing = true;
377 start_blk = __start_cp_addr(sbi) + 1;
378 orphan_blkaddr = __start_sum_addr(sbi) - 1;
379
380 ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
381
382 for (i = 0; i < orphan_blkaddr; i++) {
383 struct page *page = get_meta_page(sbi, start_blk + i);
384 struct f2fs_orphan_block *orphan_blk;
385
386 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
387 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
388 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
389 recover_orphan_inode(sbi, ino);
390 }
391 f2fs_put_page(page, 1);
392 }
393 /* clear Orphan Flag */
394 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
395 sbi->por_doing = false;
396 return;
397 }
398
399 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
400 {
401 struct list_head *head;
402 struct f2fs_orphan_block *orphan_blk = NULL;
403 unsigned int nentries = 0;
404 unsigned short index;
405 unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
406 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
407 struct page *page = NULL;
408 struct orphan_inode_entry *orphan = NULL;
409
410 for (index = 0; index < orphan_blocks; index++)
411 grab_meta_page(sbi, start_blk + index);
412
413 index = 1;
414 spin_lock(&sbi->orphan_inode_lock);
415 head = &sbi->orphan_inode_list;
416
417 /* loop for each orphan inode entry and write them in Jornal block */
418 list_for_each_entry(orphan, head, list) {
419 if (!page) {
420 page = find_get_page(META_MAPPING(sbi), start_blk++);
421 f2fs_bug_on(!page);
422 orphan_blk =
423 (struct f2fs_orphan_block *)page_address(page);
424 memset(orphan_blk, 0, sizeof(*orphan_blk));
425 f2fs_put_page(page, 0);
426 }
427
428 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
429
430 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
431 /*
432 * an orphan block is full of 1020 entries,
433 * then we need to flush current orphan blocks
434 * and bring another one in memory
435 */
436 orphan_blk->blk_addr = cpu_to_le16(index);
437 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
438 orphan_blk->entry_count = cpu_to_le32(nentries);
439 set_page_dirty(page);
440 f2fs_put_page(page, 1);
441 index++;
442 nentries = 0;
443 page = NULL;
444 }
445 }
446
447 if (page) {
448 orphan_blk->blk_addr = cpu_to_le16(index);
449 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
450 orphan_blk->entry_count = cpu_to_le32(nentries);
451 set_page_dirty(page);
452 f2fs_put_page(page, 1);
453 }
454
455 spin_unlock(&sbi->orphan_inode_lock);
456 }
457
458 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
459 block_t cp_addr, unsigned long long *version)
460 {
461 struct page *cp_page_1, *cp_page_2 = NULL;
462 unsigned long blk_size = sbi->blocksize;
463 struct f2fs_checkpoint *cp_block;
464 unsigned long long cur_version = 0, pre_version = 0;
465 size_t crc_offset;
466 __u32 crc = 0;
467
468 /* Read the 1st cp block in this CP pack */
469 cp_page_1 = get_meta_page(sbi, cp_addr);
470
471 /* get the version number */
472 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
473 crc_offset = le32_to_cpu(cp_block->checksum_offset);
474 if (crc_offset >= blk_size)
475 goto invalid_cp1;
476
477 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
478 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
479 goto invalid_cp1;
480
481 pre_version = cur_cp_version(cp_block);
482
483 /* Read the 2nd cp block in this CP pack */
484 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
485 cp_page_2 = get_meta_page(sbi, cp_addr);
486
487 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
488 crc_offset = le32_to_cpu(cp_block->checksum_offset);
489 if (crc_offset >= blk_size)
490 goto invalid_cp2;
491
492 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
493 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
494 goto invalid_cp2;
495
496 cur_version = cur_cp_version(cp_block);
497
498 if (cur_version == pre_version) {
499 *version = cur_version;
500 f2fs_put_page(cp_page_2, 1);
501 return cp_page_1;
502 }
503 invalid_cp2:
504 f2fs_put_page(cp_page_2, 1);
505 invalid_cp1:
506 f2fs_put_page(cp_page_1, 1);
507 return NULL;
508 }
509
510 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
511 {
512 struct f2fs_checkpoint *cp_block;
513 struct f2fs_super_block *fsb = sbi->raw_super;
514 struct page *cp1, *cp2, *cur_page;
515 unsigned long blk_size = sbi->blocksize;
516 unsigned long long cp1_version = 0, cp2_version = 0;
517 unsigned long long cp_start_blk_no;
518
519 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
520 if (!sbi->ckpt)
521 return -ENOMEM;
522 /*
523 * Finding out valid cp block involves read both
524 * sets( cp pack1 and cp pack 2)
525 */
526 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
527 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
528
529 /* The second checkpoint pack should start at the next segment */
530 cp_start_blk_no += ((unsigned long long)1) <<
531 le32_to_cpu(fsb->log_blocks_per_seg);
532 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
533
534 if (cp1 && cp2) {
535 if (ver_after(cp2_version, cp1_version))
536 cur_page = cp2;
537 else
538 cur_page = cp1;
539 } else if (cp1) {
540 cur_page = cp1;
541 } else if (cp2) {
542 cur_page = cp2;
543 } else {
544 goto fail_no_cp;
545 }
546
547 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
548 memcpy(sbi->ckpt, cp_block, blk_size);
549
550 f2fs_put_page(cp1, 1);
551 f2fs_put_page(cp2, 1);
552 return 0;
553
554 fail_no_cp:
555 kfree(sbi->ckpt);
556 return -EINVAL;
557 }
558
559 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
560 {
561 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
562 struct list_head *head = &sbi->dir_inode_list;
563 struct list_head *this;
564
565 list_for_each(this, head) {
566 struct dir_inode_entry *entry;
567 entry = list_entry(this, struct dir_inode_entry, list);
568 if (unlikely(entry->inode == inode))
569 return -EEXIST;
570 }
571 list_add_tail(&new->list, head);
572 stat_inc_dirty_dir(sbi);
573 return 0;
574 }
575
576 void set_dirty_dir_page(struct inode *inode, struct page *page)
577 {
578 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
579 struct dir_inode_entry *new;
580
581 if (!S_ISDIR(inode->i_mode))
582 return;
583
584 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
585 new->inode = inode;
586 INIT_LIST_HEAD(&new->list);
587
588 spin_lock(&sbi->dir_inode_lock);
589 if (__add_dirty_inode(inode, new))
590 kmem_cache_free(inode_entry_slab, new);
591
592 inode_inc_dirty_dents(inode);
593 SetPagePrivate(page);
594 spin_unlock(&sbi->dir_inode_lock);
595 }
596
597 void add_dirty_dir_inode(struct inode *inode)
598 {
599 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
600 struct dir_inode_entry *new =
601 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
602
603 new->inode = inode;
604 INIT_LIST_HEAD(&new->list);
605
606 spin_lock(&sbi->dir_inode_lock);
607 if (__add_dirty_inode(inode, new))
608 kmem_cache_free(inode_entry_slab, new);
609 spin_unlock(&sbi->dir_inode_lock);
610 }
611
612 void remove_dirty_dir_inode(struct inode *inode)
613 {
614 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
615
616 struct list_head *this, *head;
617
618 if (!S_ISDIR(inode->i_mode))
619 return;
620
621 spin_lock(&sbi->dir_inode_lock);
622 if (get_dirty_dents(inode)) {
623 spin_unlock(&sbi->dir_inode_lock);
624 return;
625 }
626
627 head = &sbi->dir_inode_list;
628 list_for_each(this, head) {
629 struct dir_inode_entry *entry;
630 entry = list_entry(this, struct dir_inode_entry, list);
631 if (entry->inode == inode) {
632 list_del(&entry->list);
633 kmem_cache_free(inode_entry_slab, entry);
634 stat_dec_dirty_dir(sbi);
635 break;
636 }
637 }
638 spin_unlock(&sbi->dir_inode_lock);
639
640 /* Only from the recovery routine */
641 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
642 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
643 iput(inode);
644 }
645 }
646
647 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
648 {
649
650 struct list_head *this, *head;
651 struct inode *inode = NULL;
652
653 spin_lock(&sbi->dir_inode_lock);
654
655 head = &sbi->dir_inode_list;
656 list_for_each(this, head) {
657 struct dir_inode_entry *entry;
658 entry = list_entry(this, struct dir_inode_entry, list);
659 if (entry->inode->i_ino == ino) {
660 inode = entry->inode;
661 break;
662 }
663 }
664 spin_unlock(&sbi->dir_inode_lock);
665 return inode;
666 }
667
668 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
669 {
670 struct list_head *head;
671 struct dir_inode_entry *entry;
672 struct inode *inode;
673 retry:
674 spin_lock(&sbi->dir_inode_lock);
675
676 head = &sbi->dir_inode_list;
677 if (list_empty(head)) {
678 spin_unlock(&sbi->dir_inode_lock);
679 return;
680 }
681 entry = list_entry(head->next, struct dir_inode_entry, list);
682 inode = igrab(entry->inode);
683 spin_unlock(&sbi->dir_inode_lock);
684 if (inode) {
685 filemap_fdatawrite(inode->i_mapping);
686 iput(inode);
687 } else {
688 /*
689 * We should submit bio, since it exists several
690 * wribacking dentry pages in the freeing inode.
691 */
692 f2fs_submit_merged_bio(sbi, DATA, WRITE);
693 }
694 goto retry;
695 }
696
697 /*
698 * Freeze all the FS-operations for checkpoint.
699 */
700 static void block_operations(struct f2fs_sb_info *sbi)
701 {
702 struct writeback_control wbc = {
703 .sync_mode = WB_SYNC_ALL,
704 .nr_to_write = LONG_MAX,
705 .for_reclaim = 0,
706 };
707 struct blk_plug plug;
708
709 blk_start_plug(&plug);
710
711 retry_flush_dents:
712 f2fs_lock_all(sbi);
713 /* write all the dirty dentry pages */
714 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
715 f2fs_unlock_all(sbi);
716 sync_dirty_dir_inodes(sbi);
717 goto retry_flush_dents;
718 }
719
720 /*
721 * POR: we should ensure that there is no dirty node pages
722 * until finishing nat/sit flush.
723 */
724 retry_flush_nodes:
725 mutex_lock(&sbi->node_write);
726
727 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
728 mutex_unlock(&sbi->node_write);
729 sync_node_pages(sbi, 0, &wbc);
730 goto retry_flush_nodes;
731 }
732 blk_finish_plug(&plug);
733 }
734
735 static void unblock_operations(struct f2fs_sb_info *sbi)
736 {
737 mutex_unlock(&sbi->node_write);
738 f2fs_unlock_all(sbi);
739 }
740
741 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
742 {
743 DEFINE_WAIT(wait);
744
745 for (;;) {
746 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
747
748 if (!get_pages(sbi, F2FS_WRITEBACK))
749 break;
750
751 io_schedule();
752 }
753 finish_wait(&sbi->cp_wait, &wait);
754 }
755
756 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
757 {
758 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
759 nid_t last_nid = 0;
760 block_t start_blk;
761 struct page *cp_page;
762 unsigned int data_sum_blocks, orphan_blocks;
763 __u32 crc32 = 0;
764 void *kaddr;
765 int i;
766
767 /* Flush all the NAT/SIT pages */
768 while (get_pages(sbi, F2FS_DIRTY_META))
769 sync_meta_pages(sbi, META, LONG_MAX);
770
771 next_free_nid(sbi, &last_nid);
772
773 /*
774 * modify checkpoint
775 * version number is already updated
776 */
777 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
778 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
779 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
780 for (i = 0; i < 3; i++) {
781 ckpt->cur_node_segno[i] =
782 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
783 ckpt->cur_node_blkoff[i] =
784 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
785 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
786 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
787 }
788 for (i = 0; i < 3; i++) {
789 ckpt->cur_data_segno[i] =
790 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
791 ckpt->cur_data_blkoff[i] =
792 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
793 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
794 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
795 }
796
797 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
798 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
799 ckpt->next_free_nid = cpu_to_le32(last_nid);
800
801 /* 2 cp + n data seg summary + orphan inode blocks */
802 data_sum_blocks = npages_for_summary_flush(sbi);
803 if (data_sum_blocks < 3)
804 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
805 else
806 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
807
808 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
809 / F2FS_ORPHANS_PER_BLOCK;
810 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
811
812 if (is_umount) {
813 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
814 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
815 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
816 } else {
817 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
818 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
819 data_sum_blocks + orphan_blocks);
820 }
821
822 if (sbi->n_orphans)
823 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
824 else
825 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
826
827 /* update SIT/NAT bitmap */
828 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
829 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
830
831 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
832 *((__le32 *)((unsigned char *)ckpt +
833 le32_to_cpu(ckpt->checksum_offset)))
834 = cpu_to_le32(crc32);
835
836 start_blk = __start_cp_addr(sbi);
837
838 /* write out checkpoint buffer at block 0 */
839 cp_page = grab_meta_page(sbi, start_blk++);
840 kaddr = page_address(cp_page);
841 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
842 set_page_dirty(cp_page);
843 f2fs_put_page(cp_page, 1);
844
845 if (sbi->n_orphans) {
846 write_orphan_inodes(sbi, start_blk);
847 start_blk += orphan_blocks;
848 }
849
850 write_data_summaries(sbi, start_blk);
851 start_blk += data_sum_blocks;
852 if (is_umount) {
853 write_node_summaries(sbi, start_blk);
854 start_blk += NR_CURSEG_NODE_TYPE;
855 }
856
857 /* writeout checkpoint block */
858 cp_page = grab_meta_page(sbi, start_blk);
859 kaddr = page_address(cp_page);
860 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
861 set_page_dirty(cp_page);
862 f2fs_put_page(cp_page, 1);
863
864 /* wait for previous submitted node/meta pages writeback */
865 wait_on_all_pages_writeback(sbi);
866
867 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
868 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
869
870 /* update user_block_counts */
871 sbi->last_valid_block_count = sbi->total_valid_block_count;
872 sbi->alloc_valid_block_count = 0;
873
874 /* Here, we only have one bio having CP pack */
875 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
876
877 if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
878 clear_prefree_segments(sbi);
879 F2FS_RESET_SB_DIRT(sbi);
880 }
881 }
882
883 /*
884 * We guarantee that this checkpoint procedure should not fail.
885 */
886 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
887 {
888 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
889 unsigned long long ckpt_ver;
890
891 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
892
893 mutex_lock(&sbi->cp_mutex);
894 block_operations(sbi);
895
896 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
897
898 f2fs_submit_merged_bio(sbi, DATA, WRITE);
899 f2fs_submit_merged_bio(sbi, NODE, WRITE);
900 f2fs_submit_merged_bio(sbi, META, WRITE);
901
902 /*
903 * update checkpoint pack index
904 * Increase the version number so that
905 * SIT entries and seg summaries are written at correct place
906 */
907 ckpt_ver = cur_cp_version(ckpt);
908 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
909
910 /* write cached NAT/SIT entries to NAT/SIT area */
911 flush_nat_entries(sbi);
912 flush_sit_entries(sbi);
913
914 /* unlock all the fs_lock[] in do_checkpoint() */
915 do_checkpoint(sbi, is_umount);
916
917 unblock_operations(sbi);
918 mutex_unlock(&sbi->cp_mutex);
919
920 stat_inc_cp_count(sbi->stat_info);
921 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
922 }
923
924 void init_orphan_info(struct f2fs_sb_info *sbi)
925 {
926 spin_lock_init(&sbi->orphan_inode_lock);
927 INIT_LIST_HEAD(&sbi->orphan_inode_list);
928 sbi->n_orphans = 0;
929 /*
930 * considering 512 blocks in a segment 8 blocks are needed for cp
931 * and log segment summaries. Remaining blocks are used to keep
932 * orphan entries with the limitation one reserved segment
933 * for cp pack we can have max 1020*504 orphan entries
934 */
935 sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
936 * F2FS_ORPHANS_PER_BLOCK;
937 }
938
939 int __init create_checkpoint_caches(void)
940 {
941 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
942 sizeof(struct orphan_inode_entry));
943 if (!orphan_entry_slab)
944 return -ENOMEM;
945 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
946 sizeof(struct dir_inode_entry));
947 if (!inode_entry_slab) {
948 kmem_cache_destroy(orphan_entry_slab);
949 return -ENOMEM;
950 }
951 return 0;
952 }
953
954 void destroy_checkpoint_caches(void)
955 {
956 kmem_cache_destroy(orphan_entry_slab);
957 kmem_cache_destroy(inode_entry_slab);
958 }
This page took 0.056115 seconds and 4 git commands to generate.