f2fs: introduce ra_meta_pages to readahead CP/NAT/SIT pages
[deliverable/linux.git] / fs / f2fs / checkpoint.c
1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29 * We guarantee no failure on the returned page.
30 */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33 struct address_space *mapping = META_MAPPING(sbi);
34 struct page *page = NULL;
35 repeat:
36 page = grab_cache_page(mapping, index);
37 if (!page) {
38 cond_resched();
39 goto repeat;
40 }
41
42 /* We wait writeback only inside grab_meta_page() */
43 wait_on_page_writeback(page);
44 SetPageUptodate(page);
45 return page;
46 }
47
48 /*
49 * We guarantee no failure on the returned page.
50 */
51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
52 {
53 struct address_space *mapping = META_MAPPING(sbi);
54 struct page *page;
55 repeat:
56 page = grab_cache_page(mapping, index);
57 if (!page) {
58 cond_resched();
59 goto repeat;
60 }
61 if (PageUptodate(page))
62 goto out;
63
64 if (f2fs_submit_page_bio(sbi, page, index,
65 READ_SYNC | REQ_META | REQ_PRIO))
66 goto repeat;
67
68 lock_page(page);
69 if (unlikely(page->mapping != mapping)) {
70 f2fs_put_page(page, 1);
71 goto repeat;
72 }
73 out:
74 mark_page_accessed(page);
75 return page;
76 }
77
78 inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
79 {
80 switch (type) {
81 case META_NAT:
82 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
83 case META_SIT:
84 return SIT_BLK_CNT(sbi);
85 case META_CP:
86 return 0;
87 default:
88 BUG();
89 }
90 }
91
92 /*
93 * Readahead CP/NAT/SIT pages
94 */
95 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
96 {
97 block_t prev_blk_addr = 0;
98 struct page *page;
99 int blkno = start;
100 int max_blks = get_max_meta_blks(sbi, type);
101
102 struct f2fs_io_info fio = {
103 .type = META,
104 .rw = READ_SYNC | REQ_META | REQ_PRIO
105 };
106
107 for (; nrpages-- > 0; blkno++) {
108 block_t blk_addr;
109
110 switch (type) {
111 case META_NAT:
112 /* get nat block addr */
113 if (unlikely(blkno >= max_blks))
114 blkno = 0;
115 blk_addr = current_nat_addr(sbi,
116 blkno * NAT_ENTRY_PER_BLOCK);
117 break;
118 case META_SIT:
119 /* get sit block addr */
120 if (unlikely(blkno >= max_blks))
121 goto out;
122 blk_addr = current_sit_addr(sbi,
123 blkno * SIT_ENTRY_PER_BLOCK);
124 if (blkno != start && prev_blk_addr + 1 != blk_addr)
125 goto out;
126 prev_blk_addr = blk_addr;
127 break;
128 case META_CP:
129 /* get cp block addr */
130 blk_addr = blkno;
131 break;
132 default:
133 BUG();
134 }
135
136 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
137 if (!page)
138 continue;
139 if (PageUptodate(page)) {
140 mark_page_accessed(page);
141 f2fs_put_page(page, 1);
142 continue;
143 }
144
145 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
146 mark_page_accessed(page);
147 f2fs_put_page(page, 0);
148 }
149 out:
150 f2fs_submit_merged_bio(sbi, META, READ);
151 return blkno - start;
152 }
153
154 static int f2fs_write_meta_page(struct page *page,
155 struct writeback_control *wbc)
156 {
157 struct inode *inode = page->mapping->host;
158 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
159
160 if (unlikely(sbi->por_doing))
161 goto redirty_out;
162 if (wbc->for_reclaim)
163 goto redirty_out;
164
165 /* Should not write any meta pages, if any IO error was occurred */
166 if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
167 goto no_write;
168
169 wait_on_page_writeback(page);
170 write_meta_page(sbi, page);
171 no_write:
172 dec_page_count(sbi, F2FS_DIRTY_META);
173 unlock_page(page);
174 return 0;
175
176 redirty_out:
177 dec_page_count(sbi, F2FS_DIRTY_META);
178 wbc->pages_skipped++;
179 set_page_dirty(page);
180 return AOP_WRITEPAGE_ACTIVATE;
181 }
182
183 static int f2fs_write_meta_pages(struct address_space *mapping,
184 struct writeback_control *wbc)
185 {
186 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
187 int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
188 long written;
189
190 if (wbc->for_kupdate)
191 return 0;
192
193 /* collect a number of dirty meta pages and write together */
194 if (get_pages(sbi, F2FS_DIRTY_META) < nrpages)
195 return 0;
196
197 /* if mounting is failed, skip writing node pages */
198 mutex_lock(&sbi->cp_mutex);
199 written = sync_meta_pages(sbi, META, nrpages);
200 mutex_unlock(&sbi->cp_mutex);
201 wbc->nr_to_write -= written;
202 return 0;
203 }
204
205 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
206 long nr_to_write)
207 {
208 struct address_space *mapping = META_MAPPING(sbi);
209 pgoff_t index = 0, end = LONG_MAX;
210 struct pagevec pvec;
211 long nwritten = 0;
212 struct writeback_control wbc = {
213 .for_reclaim = 0,
214 };
215
216 pagevec_init(&pvec, 0);
217
218 while (index <= end) {
219 int i, nr_pages;
220 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
221 PAGECACHE_TAG_DIRTY,
222 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
223 if (unlikely(nr_pages == 0))
224 break;
225
226 for (i = 0; i < nr_pages; i++) {
227 struct page *page = pvec.pages[i];
228
229 lock_page(page);
230
231 if (unlikely(page->mapping != mapping)) {
232 continue_unlock:
233 unlock_page(page);
234 continue;
235 }
236 if (!PageDirty(page)) {
237 /* someone wrote it for us */
238 goto continue_unlock;
239 }
240
241 if (!clear_page_dirty_for_io(page))
242 goto continue_unlock;
243
244 if (f2fs_write_meta_page(page, &wbc)) {
245 unlock_page(page);
246 break;
247 }
248 nwritten++;
249 if (unlikely(nwritten >= nr_to_write))
250 break;
251 }
252 pagevec_release(&pvec);
253 cond_resched();
254 }
255
256 if (nwritten)
257 f2fs_submit_merged_bio(sbi, type, WRITE);
258
259 return nwritten;
260 }
261
262 static int f2fs_set_meta_page_dirty(struct page *page)
263 {
264 struct address_space *mapping = page->mapping;
265 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
266
267 trace_f2fs_set_page_dirty(page, META);
268
269 SetPageUptodate(page);
270 if (!PageDirty(page)) {
271 __set_page_dirty_nobuffers(page);
272 inc_page_count(sbi, F2FS_DIRTY_META);
273 return 1;
274 }
275 return 0;
276 }
277
278 const struct address_space_operations f2fs_meta_aops = {
279 .writepage = f2fs_write_meta_page,
280 .writepages = f2fs_write_meta_pages,
281 .set_page_dirty = f2fs_set_meta_page_dirty,
282 };
283
284 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
285 {
286 int err = 0;
287
288 spin_lock(&sbi->orphan_inode_lock);
289 if (unlikely(sbi->n_orphans >= sbi->max_orphans))
290 err = -ENOSPC;
291 else
292 sbi->n_orphans++;
293 spin_unlock(&sbi->orphan_inode_lock);
294
295 return err;
296 }
297
298 void release_orphan_inode(struct f2fs_sb_info *sbi)
299 {
300 spin_lock(&sbi->orphan_inode_lock);
301 f2fs_bug_on(sbi->n_orphans == 0);
302 sbi->n_orphans--;
303 spin_unlock(&sbi->orphan_inode_lock);
304 }
305
306 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
307 {
308 struct list_head *head, *this;
309 struct orphan_inode_entry *new = NULL, *orphan = NULL;
310
311 new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
312 new->ino = ino;
313
314 spin_lock(&sbi->orphan_inode_lock);
315 head = &sbi->orphan_inode_list;
316 list_for_each(this, head) {
317 orphan = list_entry(this, struct orphan_inode_entry, list);
318 if (orphan->ino == ino) {
319 spin_unlock(&sbi->orphan_inode_lock);
320 kmem_cache_free(orphan_entry_slab, new);
321 return;
322 }
323
324 if (orphan->ino > ino)
325 break;
326 orphan = NULL;
327 }
328
329 /* add new_oentry into list which is sorted by inode number */
330 if (orphan)
331 list_add(&new->list, this->prev);
332 else
333 list_add_tail(&new->list, head);
334 spin_unlock(&sbi->orphan_inode_lock);
335 }
336
337 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
338 {
339 struct list_head *head;
340 struct orphan_inode_entry *orphan;
341
342 spin_lock(&sbi->orphan_inode_lock);
343 head = &sbi->orphan_inode_list;
344 list_for_each_entry(orphan, head, list) {
345 if (orphan->ino == ino) {
346 list_del(&orphan->list);
347 kmem_cache_free(orphan_entry_slab, orphan);
348 f2fs_bug_on(sbi->n_orphans == 0);
349 sbi->n_orphans--;
350 break;
351 }
352 }
353 spin_unlock(&sbi->orphan_inode_lock);
354 }
355
356 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
357 {
358 struct inode *inode = f2fs_iget(sbi->sb, ino);
359 f2fs_bug_on(IS_ERR(inode));
360 clear_nlink(inode);
361
362 /* truncate all the data during iput */
363 iput(inode);
364 }
365
366 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
367 {
368 block_t start_blk, orphan_blkaddr, i, j;
369
370 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
371 return;
372
373 sbi->por_doing = true;
374 start_blk = __start_cp_addr(sbi) + 1;
375 orphan_blkaddr = __start_sum_addr(sbi) - 1;
376
377 ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
378
379 for (i = 0; i < orphan_blkaddr; i++) {
380 struct page *page = get_meta_page(sbi, start_blk + i);
381 struct f2fs_orphan_block *orphan_blk;
382
383 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
384 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
385 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
386 recover_orphan_inode(sbi, ino);
387 }
388 f2fs_put_page(page, 1);
389 }
390 /* clear Orphan Flag */
391 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
392 sbi->por_doing = false;
393 return;
394 }
395
396 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
397 {
398 struct list_head *head;
399 struct f2fs_orphan_block *orphan_blk = NULL;
400 unsigned int nentries = 0;
401 unsigned short index;
402 unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
403 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
404 struct page *page = NULL;
405 struct orphan_inode_entry *orphan = NULL;
406
407 for (index = 0; index < orphan_blocks; index++)
408 grab_meta_page(sbi, start_blk + index);
409
410 index = 1;
411 spin_lock(&sbi->orphan_inode_lock);
412 head = &sbi->orphan_inode_list;
413
414 /* loop for each orphan inode entry and write them in Jornal block */
415 list_for_each_entry(orphan, head, list) {
416 if (!page) {
417 page = find_get_page(META_MAPPING(sbi), start_blk++);
418 f2fs_bug_on(!page);
419 orphan_blk =
420 (struct f2fs_orphan_block *)page_address(page);
421 memset(orphan_blk, 0, sizeof(*orphan_blk));
422 f2fs_put_page(page, 0);
423 }
424
425 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
426
427 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
428 /*
429 * an orphan block is full of 1020 entries,
430 * then we need to flush current orphan blocks
431 * and bring another one in memory
432 */
433 orphan_blk->blk_addr = cpu_to_le16(index);
434 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
435 orphan_blk->entry_count = cpu_to_le32(nentries);
436 set_page_dirty(page);
437 f2fs_put_page(page, 1);
438 index++;
439 nentries = 0;
440 page = NULL;
441 }
442 }
443
444 if (page) {
445 orphan_blk->blk_addr = cpu_to_le16(index);
446 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
447 orphan_blk->entry_count = cpu_to_le32(nentries);
448 set_page_dirty(page);
449 f2fs_put_page(page, 1);
450 }
451
452 spin_unlock(&sbi->orphan_inode_lock);
453 }
454
455 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
456 block_t cp_addr, unsigned long long *version)
457 {
458 struct page *cp_page_1, *cp_page_2 = NULL;
459 unsigned long blk_size = sbi->blocksize;
460 struct f2fs_checkpoint *cp_block;
461 unsigned long long cur_version = 0, pre_version = 0;
462 size_t crc_offset;
463 __u32 crc = 0;
464
465 /* Read the 1st cp block in this CP pack */
466 cp_page_1 = get_meta_page(sbi, cp_addr);
467
468 /* get the version number */
469 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
470 crc_offset = le32_to_cpu(cp_block->checksum_offset);
471 if (crc_offset >= blk_size)
472 goto invalid_cp1;
473
474 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
475 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
476 goto invalid_cp1;
477
478 pre_version = cur_cp_version(cp_block);
479
480 /* Read the 2nd cp block in this CP pack */
481 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
482 cp_page_2 = get_meta_page(sbi, cp_addr);
483
484 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
485 crc_offset = le32_to_cpu(cp_block->checksum_offset);
486 if (crc_offset >= blk_size)
487 goto invalid_cp2;
488
489 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
490 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
491 goto invalid_cp2;
492
493 cur_version = cur_cp_version(cp_block);
494
495 if (cur_version == pre_version) {
496 *version = cur_version;
497 f2fs_put_page(cp_page_2, 1);
498 return cp_page_1;
499 }
500 invalid_cp2:
501 f2fs_put_page(cp_page_2, 1);
502 invalid_cp1:
503 f2fs_put_page(cp_page_1, 1);
504 return NULL;
505 }
506
507 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
508 {
509 struct f2fs_checkpoint *cp_block;
510 struct f2fs_super_block *fsb = sbi->raw_super;
511 struct page *cp1, *cp2, *cur_page;
512 unsigned long blk_size = sbi->blocksize;
513 unsigned long long cp1_version = 0, cp2_version = 0;
514 unsigned long long cp_start_blk_no;
515
516 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
517 if (!sbi->ckpt)
518 return -ENOMEM;
519 /*
520 * Finding out valid cp block involves read both
521 * sets( cp pack1 and cp pack 2)
522 */
523 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
524 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
525
526 /* The second checkpoint pack should start at the next segment */
527 cp_start_blk_no += ((unsigned long long)1) <<
528 le32_to_cpu(fsb->log_blocks_per_seg);
529 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
530
531 if (cp1 && cp2) {
532 if (ver_after(cp2_version, cp1_version))
533 cur_page = cp2;
534 else
535 cur_page = cp1;
536 } else if (cp1) {
537 cur_page = cp1;
538 } else if (cp2) {
539 cur_page = cp2;
540 } else {
541 goto fail_no_cp;
542 }
543
544 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
545 memcpy(sbi->ckpt, cp_block, blk_size);
546
547 f2fs_put_page(cp1, 1);
548 f2fs_put_page(cp2, 1);
549 return 0;
550
551 fail_no_cp:
552 kfree(sbi->ckpt);
553 return -EINVAL;
554 }
555
556 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
557 {
558 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
559 struct list_head *head = &sbi->dir_inode_list;
560 struct list_head *this;
561
562 list_for_each(this, head) {
563 struct dir_inode_entry *entry;
564 entry = list_entry(this, struct dir_inode_entry, list);
565 if (unlikely(entry->inode == inode))
566 return -EEXIST;
567 }
568 list_add_tail(&new->list, head);
569 stat_inc_dirty_dir(sbi);
570 return 0;
571 }
572
573 void set_dirty_dir_page(struct inode *inode, struct page *page)
574 {
575 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
576 struct dir_inode_entry *new;
577
578 if (!S_ISDIR(inode->i_mode))
579 return;
580
581 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
582 new->inode = inode;
583 INIT_LIST_HEAD(&new->list);
584
585 spin_lock(&sbi->dir_inode_lock);
586 if (__add_dirty_inode(inode, new))
587 kmem_cache_free(inode_entry_slab, new);
588
589 inode_inc_dirty_dents(inode);
590 SetPagePrivate(page);
591 spin_unlock(&sbi->dir_inode_lock);
592 }
593
594 void add_dirty_dir_inode(struct inode *inode)
595 {
596 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
597 struct dir_inode_entry *new =
598 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
599
600 new->inode = inode;
601 INIT_LIST_HEAD(&new->list);
602
603 spin_lock(&sbi->dir_inode_lock);
604 if (__add_dirty_inode(inode, new))
605 kmem_cache_free(inode_entry_slab, new);
606 spin_unlock(&sbi->dir_inode_lock);
607 }
608
609 void remove_dirty_dir_inode(struct inode *inode)
610 {
611 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
612
613 struct list_head *this, *head;
614
615 if (!S_ISDIR(inode->i_mode))
616 return;
617
618 spin_lock(&sbi->dir_inode_lock);
619 if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
620 spin_unlock(&sbi->dir_inode_lock);
621 return;
622 }
623
624 head = &sbi->dir_inode_list;
625 list_for_each(this, head) {
626 struct dir_inode_entry *entry;
627 entry = list_entry(this, struct dir_inode_entry, list);
628 if (entry->inode == inode) {
629 list_del(&entry->list);
630 kmem_cache_free(inode_entry_slab, entry);
631 stat_dec_dirty_dir(sbi);
632 break;
633 }
634 }
635 spin_unlock(&sbi->dir_inode_lock);
636
637 /* Only from the recovery routine */
638 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
639 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
640 iput(inode);
641 }
642 }
643
644 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
645 {
646
647 struct list_head *this, *head;
648 struct inode *inode = NULL;
649
650 spin_lock(&sbi->dir_inode_lock);
651
652 head = &sbi->dir_inode_list;
653 list_for_each(this, head) {
654 struct dir_inode_entry *entry;
655 entry = list_entry(this, struct dir_inode_entry, list);
656 if (entry->inode->i_ino == ino) {
657 inode = entry->inode;
658 break;
659 }
660 }
661 spin_unlock(&sbi->dir_inode_lock);
662 return inode;
663 }
664
665 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
666 {
667 struct list_head *head;
668 struct dir_inode_entry *entry;
669 struct inode *inode;
670 retry:
671 spin_lock(&sbi->dir_inode_lock);
672
673 head = &sbi->dir_inode_list;
674 if (list_empty(head)) {
675 spin_unlock(&sbi->dir_inode_lock);
676 return;
677 }
678 entry = list_entry(head->next, struct dir_inode_entry, list);
679 inode = igrab(entry->inode);
680 spin_unlock(&sbi->dir_inode_lock);
681 if (inode) {
682 filemap_flush(inode->i_mapping);
683 iput(inode);
684 } else {
685 /*
686 * We should submit bio, since it exists several
687 * wribacking dentry pages in the freeing inode.
688 */
689 f2fs_submit_merged_bio(sbi, DATA, WRITE);
690 }
691 goto retry;
692 }
693
694 /*
695 * Freeze all the FS-operations for checkpoint.
696 */
697 static void block_operations(struct f2fs_sb_info *sbi)
698 {
699 struct writeback_control wbc = {
700 .sync_mode = WB_SYNC_ALL,
701 .nr_to_write = LONG_MAX,
702 .for_reclaim = 0,
703 };
704 struct blk_plug plug;
705
706 blk_start_plug(&plug);
707
708 retry_flush_dents:
709 f2fs_lock_all(sbi);
710 /* write all the dirty dentry pages */
711 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
712 f2fs_unlock_all(sbi);
713 sync_dirty_dir_inodes(sbi);
714 goto retry_flush_dents;
715 }
716
717 /*
718 * POR: we should ensure that there is no dirty node pages
719 * until finishing nat/sit flush.
720 */
721 retry_flush_nodes:
722 mutex_lock(&sbi->node_write);
723
724 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
725 mutex_unlock(&sbi->node_write);
726 sync_node_pages(sbi, 0, &wbc);
727 goto retry_flush_nodes;
728 }
729 blk_finish_plug(&plug);
730 }
731
732 static void unblock_operations(struct f2fs_sb_info *sbi)
733 {
734 mutex_unlock(&sbi->node_write);
735 f2fs_unlock_all(sbi);
736 }
737
738 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
739 {
740 DEFINE_WAIT(wait);
741
742 for (;;) {
743 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
744
745 if (!get_pages(sbi, F2FS_WRITEBACK))
746 break;
747
748 io_schedule();
749 }
750 finish_wait(&sbi->cp_wait, &wait);
751 }
752
753 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
754 {
755 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
756 nid_t last_nid = 0;
757 block_t start_blk;
758 struct page *cp_page;
759 unsigned int data_sum_blocks, orphan_blocks;
760 __u32 crc32 = 0;
761 void *kaddr;
762 int i;
763
764 /* Flush all the NAT/SIT pages */
765 while (get_pages(sbi, F2FS_DIRTY_META))
766 sync_meta_pages(sbi, META, LONG_MAX);
767
768 next_free_nid(sbi, &last_nid);
769
770 /*
771 * modify checkpoint
772 * version number is already updated
773 */
774 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
775 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
776 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
777 for (i = 0; i < 3; i++) {
778 ckpt->cur_node_segno[i] =
779 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
780 ckpt->cur_node_blkoff[i] =
781 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
782 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
783 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
784 }
785 for (i = 0; i < 3; i++) {
786 ckpt->cur_data_segno[i] =
787 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
788 ckpt->cur_data_blkoff[i] =
789 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
790 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
791 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
792 }
793
794 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
795 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
796 ckpt->next_free_nid = cpu_to_le32(last_nid);
797
798 /* 2 cp + n data seg summary + orphan inode blocks */
799 data_sum_blocks = npages_for_summary_flush(sbi);
800 if (data_sum_blocks < 3)
801 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
802 else
803 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
804
805 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
806 / F2FS_ORPHANS_PER_BLOCK;
807 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
808
809 if (is_umount) {
810 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
811 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
812 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
813 } else {
814 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
815 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
816 data_sum_blocks + orphan_blocks);
817 }
818
819 if (sbi->n_orphans)
820 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
821 else
822 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
823
824 /* update SIT/NAT bitmap */
825 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
826 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
827
828 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
829 *((__le32 *)((unsigned char *)ckpt +
830 le32_to_cpu(ckpt->checksum_offset)))
831 = cpu_to_le32(crc32);
832
833 start_blk = __start_cp_addr(sbi);
834
835 /* write out checkpoint buffer at block 0 */
836 cp_page = grab_meta_page(sbi, start_blk++);
837 kaddr = page_address(cp_page);
838 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
839 set_page_dirty(cp_page);
840 f2fs_put_page(cp_page, 1);
841
842 if (sbi->n_orphans) {
843 write_orphan_inodes(sbi, start_blk);
844 start_blk += orphan_blocks;
845 }
846
847 write_data_summaries(sbi, start_blk);
848 start_blk += data_sum_blocks;
849 if (is_umount) {
850 write_node_summaries(sbi, start_blk);
851 start_blk += NR_CURSEG_NODE_TYPE;
852 }
853
854 /* writeout checkpoint block */
855 cp_page = grab_meta_page(sbi, start_blk);
856 kaddr = page_address(cp_page);
857 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
858 set_page_dirty(cp_page);
859 f2fs_put_page(cp_page, 1);
860
861 /* wait for previous submitted node/meta pages writeback */
862 wait_on_all_pages_writeback(sbi);
863
864 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
865 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
866
867 /* update user_block_counts */
868 sbi->last_valid_block_count = sbi->total_valid_block_count;
869 sbi->alloc_valid_block_count = 0;
870
871 /* Here, we only have one bio having CP pack */
872 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
873
874 if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
875 clear_prefree_segments(sbi);
876 F2FS_RESET_SB_DIRT(sbi);
877 }
878 }
879
880 /*
881 * We guarantee that this checkpoint procedure should not fail.
882 */
883 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
884 {
885 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
886 unsigned long long ckpt_ver;
887
888 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
889
890 mutex_lock(&sbi->cp_mutex);
891 block_operations(sbi);
892
893 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
894
895 f2fs_submit_merged_bio(sbi, DATA, WRITE);
896 f2fs_submit_merged_bio(sbi, NODE, WRITE);
897 f2fs_submit_merged_bio(sbi, META, WRITE);
898
899 /*
900 * update checkpoint pack index
901 * Increase the version number so that
902 * SIT entries and seg summaries are written at correct place
903 */
904 ckpt_ver = cur_cp_version(ckpt);
905 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
906
907 /* write cached NAT/SIT entries to NAT/SIT area */
908 flush_nat_entries(sbi);
909 flush_sit_entries(sbi);
910
911 /* unlock all the fs_lock[] in do_checkpoint() */
912 do_checkpoint(sbi, is_umount);
913
914 unblock_operations(sbi);
915 mutex_unlock(&sbi->cp_mutex);
916
917 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
918 }
919
920 void init_orphan_info(struct f2fs_sb_info *sbi)
921 {
922 spin_lock_init(&sbi->orphan_inode_lock);
923 INIT_LIST_HEAD(&sbi->orphan_inode_list);
924 sbi->n_orphans = 0;
925 /*
926 * considering 512 blocks in a segment 8 blocks are needed for cp
927 * and log segment summaries. Remaining blocks are used to keep
928 * orphan entries with the limitation one reserved segment
929 * for cp pack we can have max 1020*504 orphan entries
930 */
931 sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
932 * F2FS_ORPHANS_PER_BLOCK;
933 }
934
935 int __init create_checkpoint_caches(void)
936 {
937 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
938 sizeof(struct orphan_inode_entry), NULL);
939 if (!orphan_entry_slab)
940 return -ENOMEM;
941 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
942 sizeof(struct dir_inode_entry), NULL);
943 if (!inode_entry_slab) {
944 kmem_cache_destroy(orphan_entry_slab);
945 return -ENOMEM;
946 }
947 return 0;
948 }
949
950 void destroy_checkpoint_caches(void)
951 {
952 kmem_cache_destroy(orphan_entry_slab);
953 kmem_cache_destroy(inode_entry_slab);
954 }
This page took 0.053505 seconds and 6 git commands to generate.