f2fs: add f2fs_map_blocks
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 set_sbi_flag(sbi, SBI_NEED_FSCK); \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52 #define F2FS_MOUNT_FASTBOOT 0x00001000
53 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
54
55 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
56 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
57 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
58
59 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
60 typecheck(unsigned long long, b) && \
61 ((long long)((a) - (b)) > 0))
62
63 typedef u32 block_t; /*
64 * should not change u32, since it is the on-disk block
65 * address format, __le32.
66 */
67 typedef u32 nid_t;
68
69 struct f2fs_mount_info {
70 unsigned int opt;
71 };
72
73 #define F2FS_HAS_FEATURE(sb, mask) \
74 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
75 #define F2FS_SET_FEATURE(sb, mask) \
76 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
77 #define F2FS_CLEAR_FEATURE(sb, mask) \
78 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
79
80 #define CRCPOLY_LE 0xedb88320
81
82 static inline __u32 f2fs_crc32(void *buf, size_t len)
83 {
84 unsigned char *p = (unsigned char *)buf;
85 __u32 crc = F2FS_SUPER_MAGIC;
86 int i;
87
88 while (len--) {
89 crc ^= *p++;
90 for (i = 0; i < 8; i++)
91 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
92 }
93 return crc;
94 }
95
96 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
97 {
98 return f2fs_crc32(buf, buf_size) == blk_crc;
99 }
100
101 /*
102 * For checkpoint manager
103 */
104 enum {
105 NAT_BITMAP,
106 SIT_BITMAP
107 };
108
109 enum {
110 CP_UMOUNT,
111 CP_FASTBOOT,
112 CP_SYNC,
113 CP_RECOVERY,
114 CP_DISCARD,
115 };
116
117 #define DEF_BATCHED_TRIM_SECTIONS 32
118 #define BATCHED_TRIM_SEGMENTS(sbi) \
119 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
120
121 struct cp_control {
122 int reason;
123 __u64 trim_start;
124 __u64 trim_end;
125 __u64 trim_minlen;
126 __u64 trimmed;
127 };
128
129 /*
130 * For CP/NAT/SIT/SSA readahead
131 */
132 enum {
133 META_CP,
134 META_NAT,
135 META_SIT,
136 META_SSA,
137 META_POR,
138 };
139
140 /* for the list of ino */
141 enum {
142 ORPHAN_INO, /* for orphan ino list */
143 APPEND_INO, /* for append ino list */
144 UPDATE_INO, /* for update ino list */
145 MAX_INO_ENTRY, /* max. list */
146 };
147
148 struct ino_entry {
149 struct list_head list; /* list head */
150 nid_t ino; /* inode number */
151 };
152
153 /*
154 * for the list of directory inodes or gc inodes.
155 * NOTE: there are two slab users for this structure, if we add/modify/delete
156 * fields in structure for one of slab users, it may affect fields or size of
157 * other one, in this condition, it's better to split both of slab and related
158 * data structure.
159 */
160 struct inode_entry {
161 struct list_head list; /* list head */
162 struct inode *inode; /* vfs inode pointer */
163 };
164
165 /* for the list of blockaddresses to be discarded */
166 struct discard_entry {
167 struct list_head list; /* list head */
168 block_t blkaddr; /* block address to be discarded */
169 int len; /* # of consecutive blocks of the discard */
170 };
171
172 /* for the list of fsync inodes, used only during recovery */
173 struct fsync_inode_entry {
174 struct list_head list; /* list head */
175 struct inode *inode; /* vfs inode pointer */
176 block_t blkaddr; /* block address locating the last fsync */
177 block_t last_dentry; /* block address locating the last dentry */
178 block_t last_inode; /* block address locating the last inode */
179 };
180
181 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
182 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
183
184 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
185 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
186 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
187 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
188
189 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
190 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
191
192 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
193 {
194 int before = nats_in_cursum(rs);
195 rs->n_nats = cpu_to_le16(before + i);
196 return before;
197 }
198
199 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
200 {
201 int before = sits_in_cursum(rs);
202 rs->n_sits = cpu_to_le16(before + i);
203 return before;
204 }
205
206 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
207 int type)
208 {
209 if (type == NAT_JOURNAL)
210 return size <= MAX_NAT_JENTRIES(sum);
211 return size <= MAX_SIT_JENTRIES(sum);
212 }
213
214 /*
215 * ioctl commands
216 */
217 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
218 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
219 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
220
221 #define F2FS_IOCTL_MAGIC 0xf5
222 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
223 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
224 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
225 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
226 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
227
228 /*
229 * should be same as XFS_IOC_GOINGDOWN.
230 * Flags for going down operation used by FS_IOC_GOINGDOWN
231 */
232 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
233 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
234 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
235 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
236
237 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
238 /*
239 * ioctl commands in 32 bit emulation
240 */
241 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
242 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
243 #endif
244
245 /*
246 * For INODE and NODE manager
247 */
248 /* for directory operations */
249 struct f2fs_dentry_ptr {
250 const void *bitmap;
251 struct f2fs_dir_entry *dentry;
252 __u8 (*filename)[F2FS_SLOT_LEN];
253 int max;
254 };
255
256 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
257 void *src, int type)
258 {
259 if (type == 1) {
260 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
261 d->max = NR_DENTRY_IN_BLOCK;
262 d->bitmap = &t->dentry_bitmap;
263 d->dentry = t->dentry;
264 d->filename = t->filename;
265 } else {
266 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
267 d->max = NR_INLINE_DENTRY;
268 d->bitmap = &t->dentry_bitmap;
269 d->dentry = t->dentry;
270 d->filename = t->filename;
271 }
272 }
273
274 /*
275 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
276 * as its node offset to distinguish from index node blocks.
277 * But some bits are used to mark the node block.
278 */
279 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
280 >> OFFSET_BIT_SHIFT)
281 enum {
282 ALLOC_NODE, /* allocate a new node page if needed */
283 LOOKUP_NODE, /* look up a node without readahead */
284 LOOKUP_NODE_RA, /*
285 * look up a node with readahead called
286 * by get_data_block.
287 */
288 };
289
290 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
291
292 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
293
294 /* vector size for gang look-up from extent cache that consists of radix tree */
295 #define EXT_TREE_VEC_SIZE 64
296
297 /* for in-memory extent cache entry */
298 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
299
300 /* number of extent info in extent cache we try to shrink */
301 #define EXTENT_CACHE_SHRINK_NUMBER 128
302
303 struct extent_info {
304 unsigned int fofs; /* start offset in a file */
305 u32 blk; /* start block address of the extent */
306 unsigned int len; /* length of the extent */
307 };
308
309 struct extent_node {
310 struct rb_node rb_node; /* rb node located in rb-tree */
311 struct list_head list; /* node in global extent list of sbi */
312 struct extent_info ei; /* extent info */
313 };
314
315 struct extent_tree {
316 nid_t ino; /* inode number */
317 struct rb_root root; /* root of extent info rb-tree */
318 struct extent_node *cached_en; /* recently accessed extent node */
319 rwlock_t lock; /* protect extent info rb-tree */
320 atomic_t refcount; /* reference count of rb-tree */
321 unsigned int count; /* # of extent node in rb-tree*/
322 };
323
324 /*
325 * This structure is taken from ext4_map_blocks.
326 *
327 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
328 */
329 #define F2FS_MAP_NEW (1 << BH_New)
330 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
331 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED)
332
333 struct f2fs_map_blocks {
334 block_t m_pblk;
335 block_t m_lblk;
336 unsigned int m_len;
337 unsigned int m_flags;
338 };
339
340 /*
341 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
342 */
343 #define FADVISE_COLD_BIT 0x01
344 #define FADVISE_LOST_PINO_BIT 0x02
345
346 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
347 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
348 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
349 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
350 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
351 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
352
353 #define DEF_DIR_LEVEL 0
354
355 struct f2fs_inode_info {
356 struct inode vfs_inode; /* serve a vfs inode */
357 unsigned long i_flags; /* keep an inode flags for ioctl */
358 unsigned char i_advise; /* use to give file attribute hints */
359 unsigned char i_dir_level; /* use for dentry level for large dir */
360 unsigned int i_current_depth; /* use only in directory structure */
361 unsigned int i_pino; /* parent inode number */
362 umode_t i_acl_mode; /* keep file acl mode temporarily */
363
364 /* Use below internally in f2fs*/
365 unsigned long flags; /* use to pass per-file flags */
366 struct rw_semaphore i_sem; /* protect fi info */
367 atomic_t dirty_pages; /* # of dirty pages */
368 f2fs_hash_t chash; /* hash value of given file name */
369 unsigned int clevel; /* maximum level of given file name */
370 nid_t i_xattr_nid; /* node id that contains xattrs */
371 unsigned long long xattr_ver; /* cp version of xattr modification */
372 struct extent_info ext; /* in-memory extent cache entry */
373 rwlock_t ext_lock; /* rwlock for single extent cache */
374 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
375
376 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
377 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
378 struct mutex inmem_lock; /* lock for inmemory pages */
379 };
380
381 static inline void get_extent_info(struct extent_info *ext,
382 struct f2fs_extent i_ext)
383 {
384 ext->fofs = le32_to_cpu(i_ext.fofs);
385 ext->blk = le32_to_cpu(i_ext.blk);
386 ext->len = le32_to_cpu(i_ext.len);
387 }
388
389 static inline void set_raw_extent(struct extent_info *ext,
390 struct f2fs_extent *i_ext)
391 {
392 i_ext->fofs = cpu_to_le32(ext->fofs);
393 i_ext->blk = cpu_to_le32(ext->blk);
394 i_ext->len = cpu_to_le32(ext->len);
395 }
396
397 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
398 u32 blk, unsigned int len)
399 {
400 ei->fofs = fofs;
401 ei->blk = blk;
402 ei->len = len;
403 }
404
405 static inline bool __is_extent_same(struct extent_info *ei1,
406 struct extent_info *ei2)
407 {
408 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
409 ei1->len == ei2->len);
410 }
411
412 static inline bool __is_extent_mergeable(struct extent_info *back,
413 struct extent_info *front)
414 {
415 return (back->fofs + back->len == front->fofs &&
416 back->blk + back->len == front->blk);
417 }
418
419 static inline bool __is_back_mergeable(struct extent_info *cur,
420 struct extent_info *back)
421 {
422 return __is_extent_mergeable(back, cur);
423 }
424
425 static inline bool __is_front_mergeable(struct extent_info *cur,
426 struct extent_info *front)
427 {
428 return __is_extent_mergeable(cur, front);
429 }
430
431 struct f2fs_nm_info {
432 block_t nat_blkaddr; /* base disk address of NAT */
433 nid_t max_nid; /* maximum possible node ids */
434 nid_t available_nids; /* maximum available node ids */
435 nid_t next_scan_nid; /* the next nid to be scanned */
436 unsigned int ram_thresh; /* control the memory footprint */
437
438 /* NAT cache management */
439 struct radix_tree_root nat_root;/* root of the nat entry cache */
440 struct radix_tree_root nat_set_root;/* root of the nat set cache */
441 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
442 struct list_head nat_entries; /* cached nat entry list (clean) */
443 unsigned int nat_cnt; /* the # of cached nat entries */
444 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
445
446 /* free node ids management */
447 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
448 struct list_head free_nid_list; /* a list for free nids */
449 spinlock_t free_nid_list_lock; /* protect free nid list */
450 unsigned int fcnt; /* the number of free node id */
451 struct mutex build_lock; /* lock for build free nids */
452
453 /* for checkpoint */
454 char *nat_bitmap; /* NAT bitmap pointer */
455 int bitmap_size; /* bitmap size */
456 };
457
458 /*
459 * this structure is used as one of function parameters.
460 * all the information are dedicated to a given direct node block determined
461 * by the data offset in a file.
462 */
463 struct dnode_of_data {
464 struct inode *inode; /* vfs inode pointer */
465 struct page *inode_page; /* its inode page, NULL is possible */
466 struct page *node_page; /* cached direct node page */
467 nid_t nid; /* node id of the direct node block */
468 unsigned int ofs_in_node; /* data offset in the node page */
469 bool inode_page_locked; /* inode page is locked or not */
470 block_t data_blkaddr; /* block address of the node block */
471 };
472
473 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
474 struct page *ipage, struct page *npage, nid_t nid)
475 {
476 memset(dn, 0, sizeof(*dn));
477 dn->inode = inode;
478 dn->inode_page = ipage;
479 dn->node_page = npage;
480 dn->nid = nid;
481 }
482
483 /*
484 * For SIT manager
485 *
486 * By default, there are 6 active log areas across the whole main area.
487 * When considering hot and cold data separation to reduce cleaning overhead,
488 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
489 * respectively.
490 * In the current design, you should not change the numbers intentionally.
491 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
492 * logs individually according to the underlying devices. (default: 6)
493 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
494 * data and 8 for node logs.
495 */
496 #define NR_CURSEG_DATA_TYPE (3)
497 #define NR_CURSEG_NODE_TYPE (3)
498 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
499
500 enum {
501 CURSEG_HOT_DATA = 0, /* directory entry blocks */
502 CURSEG_WARM_DATA, /* data blocks */
503 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
504 CURSEG_HOT_NODE, /* direct node blocks of directory files */
505 CURSEG_WARM_NODE, /* direct node blocks of normal files */
506 CURSEG_COLD_NODE, /* indirect node blocks */
507 NO_CHECK_TYPE,
508 CURSEG_DIRECT_IO, /* to use for the direct IO path */
509 };
510
511 struct flush_cmd {
512 struct completion wait;
513 struct llist_node llnode;
514 int ret;
515 };
516
517 struct flush_cmd_control {
518 struct task_struct *f2fs_issue_flush; /* flush thread */
519 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
520 struct llist_head issue_list; /* list for command issue */
521 struct llist_node *dispatch_list; /* list for command dispatch */
522 };
523
524 struct f2fs_sm_info {
525 struct sit_info *sit_info; /* whole segment information */
526 struct free_segmap_info *free_info; /* free segment information */
527 struct dirty_seglist_info *dirty_info; /* dirty segment information */
528 struct curseg_info *curseg_array; /* active segment information */
529
530 block_t seg0_blkaddr; /* block address of 0'th segment */
531 block_t main_blkaddr; /* start block address of main area */
532 block_t ssa_blkaddr; /* start block address of SSA area */
533
534 unsigned int segment_count; /* total # of segments */
535 unsigned int main_segments; /* # of segments in main area */
536 unsigned int reserved_segments; /* # of reserved segments */
537 unsigned int ovp_segments; /* # of overprovision segments */
538
539 /* a threshold to reclaim prefree segments */
540 unsigned int rec_prefree_segments;
541
542 /* for small discard management */
543 struct list_head discard_list; /* 4KB discard list */
544 int nr_discards; /* # of discards in the list */
545 int max_discards; /* max. discards to be issued */
546
547 /* for batched trimming */
548 unsigned int trim_sections; /* # of sections to trim */
549
550 struct list_head sit_entry_set; /* sit entry set list */
551
552 unsigned int ipu_policy; /* in-place-update policy */
553 unsigned int min_ipu_util; /* in-place-update threshold */
554 unsigned int min_fsync_blocks; /* threshold for fsync */
555
556 /* for flush command control */
557 struct flush_cmd_control *cmd_control_info;
558
559 };
560
561 /*
562 * For superblock
563 */
564 /*
565 * COUNT_TYPE for monitoring
566 *
567 * f2fs monitors the number of several block types such as on-writeback,
568 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
569 */
570 enum count_type {
571 F2FS_WRITEBACK,
572 F2FS_DIRTY_DENTS,
573 F2FS_DIRTY_NODES,
574 F2FS_DIRTY_META,
575 F2FS_INMEM_PAGES,
576 NR_COUNT_TYPE,
577 };
578
579 /*
580 * The below are the page types of bios used in submit_bio().
581 * The available types are:
582 * DATA User data pages. It operates as async mode.
583 * NODE Node pages. It operates as async mode.
584 * META FS metadata pages such as SIT, NAT, CP.
585 * NR_PAGE_TYPE The number of page types.
586 * META_FLUSH Make sure the previous pages are written
587 * with waiting the bio's completion
588 * ... Only can be used with META.
589 */
590 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
591 enum page_type {
592 DATA,
593 NODE,
594 META,
595 NR_PAGE_TYPE,
596 META_FLUSH,
597 INMEM, /* the below types are used by tracepoints only. */
598 INMEM_DROP,
599 IPU,
600 OPU,
601 };
602
603 struct f2fs_io_info {
604 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
605 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
606 block_t blk_addr; /* block address to be written */
607 };
608
609 #define is_read_io(rw) (((rw) & 1) == READ)
610 struct f2fs_bio_info {
611 struct f2fs_sb_info *sbi; /* f2fs superblock */
612 struct bio *bio; /* bios to merge */
613 sector_t last_block_in_bio; /* last block number */
614 struct f2fs_io_info fio; /* store buffered io info. */
615 struct rw_semaphore io_rwsem; /* blocking op for bio */
616 };
617
618 /* for inner inode cache management */
619 struct inode_management {
620 struct radix_tree_root ino_root; /* ino entry array */
621 spinlock_t ino_lock; /* for ino entry lock */
622 struct list_head ino_list; /* inode list head */
623 unsigned long ino_num; /* number of entries */
624 };
625
626 /* For s_flag in struct f2fs_sb_info */
627 enum {
628 SBI_IS_DIRTY, /* dirty flag for checkpoint */
629 SBI_IS_CLOSE, /* specify unmounting */
630 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
631 SBI_POR_DOING, /* recovery is doing or not */
632 };
633
634 struct f2fs_sb_info {
635 struct super_block *sb; /* pointer to VFS super block */
636 struct proc_dir_entry *s_proc; /* proc entry */
637 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
638 struct f2fs_super_block *raw_super; /* raw super block pointer */
639 int s_flag; /* flags for sbi */
640
641 /* for node-related operations */
642 struct f2fs_nm_info *nm_info; /* node manager */
643 struct inode *node_inode; /* cache node blocks */
644
645 /* for segment-related operations */
646 struct f2fs_sm_info *sm_info; /* segment manager */
647
648 /* for bio operations */
649 struct f2fs_bio_info read_io; /* for read bios */
650 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
651
652 /* for checkpoint */
653 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
654 struct inode *meta_inode; /* cache meta blocks */
655 struct mutex cp_mutex; /* checkpoint procedure lock */
656 struct rw_semaphore cp_rwsem; /* blocking FS operations */
657 struct rw_semaphore node_write; /* locking node writes */
658 struct mutex writepages; /* mutex for writepages() */
659 wait_queue_head_t cp_wait;
660
661 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
662
663 /* for orphan inode, use 0'th array */
664 unsigned int max_orphans; /* max orphan inodes */
665
666 /* for directory inode management */
667 struct list_head dir_inode_list; /* dir inode list */
668 spinlock_t dir_inode_lock; /* for dir inode list lock */
669
670 /* for extent tree cache */
671 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
672 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
673 struct list_head extent_list; /* lru list for shrinker */
674 spinlock_t extent_lock; /* locking extent lru list */
675 int total_ext_tree; /* extent tree count */
676 atomic_t total_ext_node; /* extent info count */
677
678 /* basic filesystem units */
679 unsigned int log_sectors_per_block; /* log2 sectors per block */
680 unsigned int log_blocksize; /* log2 block size */
681 unsigned int blocksize; /* block size */
682 unsigned int root_ino_num; /* root inode number*/
683 unsigned int node_ino_num; /* node inode number*/
684 unsigned int meta_ino_num; /* meta inode number*/
685 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
686 unsigned int blocks_per_seg; /* blocks per segment */
687 unsigned int segs_per_sec; /* segments per section */
688 unsigned int secs_per_zone; /* sections per zone */
689 unsigned int total_sections; /* total section count */
690 unsigned int total_node_count; /* total node block count */
691 unsigned int total_valid_node_count; /* valid node block count */
692 unsigned int total_valid_inode_count; /* valid inode count */
693 int active_logs; /* # of active logs */
694 int dir_level; /* directory level */
695
696 block_t user_block_count; /* # of user blocks */
697 block_t total_valid_block_count; /* # of valid blocks */
698 block_t alloc_valid_block_count; /* # of allocated blocks */
699 block_t last_valid_block_count; /* for recovery */
700 u32 s_next_generation; /* for NFS support */
701 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
702
703 struct f2fs_mount_info mount_opt; /* mount options */
704
705 /* for cleaning operations */
706 struct mutex gc_mutex; /* mutex for GC */
707 struct f2fs_gc_kthread *gc_thread; /* GC thread */
708 unsigned int cur_victim_sec; /* current victim section num */
709
710 /* maximum # of trials to find a victim segment for SSR and GC */
711 unsigned int max_victim_search;
712
713 /*
714 * for stat information.
715 * one is for the LFS mode, and the other is for the SSR mode.
716 */
717 #ifdef CONFIG_F2FS_STAT_FS
718 struct f2fs_stat_info *stat_info; /* FS status information */
719 unsigned int segment_count[2]; /* # of allocated segments */
720 unsigned int block_count[2]; /* # of allocated blocks */
721 atomic_t inplace_count; /* # of inplace update */
722 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
723 atomic_t inline_inode; /* # of inline_data inodes */
724 atomic_t inline_dir; /* # of inline_dentry inodes */
725 int bg_gc; /* background gc calls */
726 unsigned int n_dirty_dirs; /* # of dir inodes */
727 #endif
728 unsigned int last_victim[2]; /* last victim segment # */
729 spinlock_t stat_lock; /* lock for stat operations */
730
731 /* For sysfs suppport */
732 struct kobject s_kobj;
733 struct completion s_kobj_unregister;
734 };
735
736 /*
737 * Inline functions
738 */
739 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
740 {
741 return container_of(inode, struct f2fs_inode_info, vfs_inode);
742 }
743
744 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
745 {
746 return sb->s_fs_info;
747 }
748
749 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
750 {
751 return F2FS_SB(inode->i_sb);
752 }
753
754 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
755 {
756 return F2FS_I_SB(mapping->host);
757 }
758
759 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
760 {
761 return F2FS_M_SB(page->mapping);
762 }
763
764 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
765 {
766 return (struct f2fs_super_block *)(sbi->raw_super);
767 }
768
769 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
770 {
771 return (struct f2fs_checkpoint *)(sbi->ckpt);
772 }
773
774 static inline struct f2fs_node *F2FS_NODE(struct page *page)
775 {
776 return (struct f2fs_node *)page_address(page);
777 }
778
779 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
780 {
781 return &((struct f2fs_node *)page_address(page))->i;
782 }
783
784 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
785 {
786 return (struct f2fs_nm_info *)(sbi->nm_info);
787 }
788
789 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
790 {
791 return (struct f2fs_sm_info *)(sbi->sm_info);
792 }
793
794 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
795 {
796 return (struct sit_info *)(SM_I(sbi)->sit_info);
797 }
798
799 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
800 {
801 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
802 }
803
804 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
805 {
806 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
807 }
808
809 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
810 {
811 return sbi->meta_inode->i_mapping;
812 }
813
814 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
815 {
816 return sbi->node_inode->i_mapping;
817 }
818
819 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
820 {
821 return sbi->s_flag & (0x01 << type);
822 }
823
824 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
825 {
826 sbi->s_flag |= (0x01 << type);
827 }
828
829 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
830 {
831 sbi->s_flag &= ~(0x01 << type);
832 }
833
834 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
835 {
836 return le64_to_cpu(cp->checkpoint_ver);
837 }
838
839 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
840 {
841 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
842 return ckpt_flags & f;
843 }
844
845 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
846 {
847 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
848 ckpt_flags |= f;
849 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
850 }
851
852 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
853 {
854 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
855 ckpt_flags &= (~f);
856 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
857 }
858
859 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
860 {
861 down_read(&sbi->cp_rwsem);
862 }
863
864 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
865 {
866 up_read(&sbi->cp_rwsem);
867 }
868
869 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
870 {
871 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
872 }
873
874 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
875 {
876 up_write(&sbi->cp_rwsem);
877 }
878
879 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
880 {
881 int reason = CP_SYNC;
882
883 if (test_opt(sbi, FASTBOOT))
884 reason = CP_FASTBOOT;
885 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
886 reason = CP_UMOUNT;
887 return reason;
888 }
889
890 static inline bool __remain_node_summaries(int reason)
891 {
892 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
893 }
894
895 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
896 {
897 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
898 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
899 }
900
901 /*
902 * Check whether the given nid is within node id range.
903 */
904 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
905 {
906 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
907 return -EINVAL;
908 if (unlikely(nid >= NM_I(sbi)->max_nid))
909 return -EINVAL;
910 return 0;
911 }
912
913 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
914
915 /*
916 * Check whether the inode has blocks or not
917 */
918 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
919 {
920 if (F2FS_I(inode)->i_xattr_nid)
921 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
922 else
923 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
924 }
925
926 static inline bool f2fs_has_xattr_block(unsigned int ofs)
927 {
928 return ofs == XATTR_NODE_OFFSET;
929 }
930
931 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
932 struct inode *inode, blkcnt_t count)
933 {
934 block_t valid_block_count;
935
936 spin_lock(&sbi->stat_lock);
937 valid_block_count =
938 sbi->total_valid_block_count + (block_t)count;
939 if (unlikely(valid_block_count > sbi->user_block_count)) {
940 spin_unlock(&sbi->stat_lock);
941 return false;
942 }
943 inode->i_blocks += count;
944 sbi->total_valid_block_count = valid_block_count;
945 sbi->alloc_valid_block_count += (block_t)count;
946 spin_unlock(&sbi->stat_lock);
947 return true;
948 }
949
950 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
951 struct inode *inode,
952 blkcnt_t count)
953 {
954 spin_lock(&sbi->stat_lock);
955 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
956 f2fs_bug_on(sbi, inode->i_blocks < count);
957 inode->i_blocks -= count;
958 sbi->total_valid_block_count -= (block_t)count;
959 spin_unlock(&sbi->stat_lock);
960 }
961
962 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
963 {
964 atomic_inc(&sbi->nr_pages[count_type]);
965 set_sbi_flag(sbi, SBI_IS_DIRTY);
966 }
967
968 static inline void inode_inc_dirty_pages(struct inode *inode)
969 {
970 atomic_inc(&F2FS_I(inode)->dirty_pages);
971 if (S_ISDIR(inode->i_mode))
972 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
973 }
974
975 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
976 {
977 atomic_dec(&sbi->nr_pages[count_type]);
978 }
979
980 static inline void inode_dec_dirty_pages(struct inode *inode)
981 {
982 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
983 return;
984
985 atomic_dec(&F2FS_I(inode)->dirty_pages);
986
987 if (S_ISDIR(inode->i_mode))
988 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
989 }
990
991 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
992 {
993 return atomic_read(&sbi->nr_pages[count_type]);
994 }
995
996 static inline int get_dirty_pages(struct inode *inode)
997 {
998 return atomic_read(&F2FS_I(inode)->dirty_pages);
999 }
1000
1001 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1002 {
1003 unsigned int pages_per_sec = sbi->segs_per_sec *
1004 (1 << sbi->log_blocks_per_seg);
1005 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1006 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1007 }
1008
1009 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1010 {
1011 return sbi->total_valid_block_count;
1012 }
1013
1014 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1015 {
1016 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1017
1018 /* return NAT or SIT bitmap */
1019 if (flag == NAT_BITMAP)
1020 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1021 else if (flag == SIT_BITMAP)
1022 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1023
1024 return 0;
1025 }
1026
1027 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1028 {
1029 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1030 }
1031
1032 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1033 {
1034 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1035 int offset;
1036
1037 if (__cp_payload(sbi) > 0) {
1038 if (flag == NAT_BITMAP)
1039 return &ckpt->sit_nat_version_bitmap;
1040 else
1041 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1042 } else {
1043 offset = (flag == NAT_BITMAP) ?
1044 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1045 return &ckpt->sit_nat_version_bitmap + offset;
1046 }
1047 }
1048
1049 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1050 {
1051 block_t start_addr;
1052 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1053 unsigned long long ckpt_version = cur_cp_version(ckpt);
1054
1055 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1056
1057 /*
1058 * odd numbered checkpoint should at cp segment 0
1059 * and even segment must be at cp segment 1
1060 */
1061 if (!(ckpt_version & 1))
1062 start_addr += sbi->blocks_per_seg;
1063
1064 return start_addr;
1065 }
1066
1067 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1068 {
1069 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1070 }
1071
1072 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1073 struct inode *inode)
1074 {
1075 block_t valid_block_count;
1076 unsigned int valid_node_count;
1077
1078 spin_lock(&sbi->stat_lock);
1079
1080 valid_block_count = sbi->total_valid_block_count + 1;
1081 if (unlikely(valid_block_count > sbi->user_block_count)) {
1082 spin_unlock(&sbi->stat_lock);
1083 return false;
1084 }
1085
1086 valid_node_count = sbi->total_valid_node_count + 1;
1087 if (unlikely(valid_node_count > sbi->total_node_count)) {
1088 spin_unlock(&sbi->stat_lock);
1089 return false;
1090 }
1091
1092 if (inode)
1093 inode->i_blocks++;
1094
1095 sbi->alloc_valid_block_count++;
1096 sbi->total_valid_node_count++;
1097 sbi->total_valid_block_count++;
1098 spin_unlock(&sbi->stat_lock);
1099
1100 return true;
1101 }
1102
1103 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1104 struct inode *inode)
1105 {
1106 spin_lock(&sbi->stat_lock);
1107
1108 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1109 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1110 f2fs_bug_on(sbi, !inode->i_blocks);
1111
1112 inode->i_blocks--;
1113 sbi->total_valid_node_count--;
1114 sbi->total_valid_block_count--;
1115
1116 spin_unlock(&sbi->stat_lock);
1117 }
1118
1119 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1120 {
1121 return sbi->total_valid_node_count;
1122 }
1123
1124 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1125 {
1126 spin_lock(&sbi->stat_lock);
1127 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1128 sbi->total_valid_inode_count++;
1129 spin_unlock(&sbi->stat_lock);
1130 }
1131
1132 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1133 {
1134 spin_lock(&sbi->stat_lock);
1135 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1136 sbi->total_valid_inode_count--;
1137 spin_unlock(&sbi->stat_lock);
1138 }
1139
1140 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1141 {
1142 return sbi->total_valid_inode_count;
1143 }
1144
1145 static inline void f2fs_put_page(struct page *page, int unlock)
1146 {
1147 if (!page)
1148 return;
1149
1150 if (unlock) {
1151 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1152 unlock_page(page);
1153 }
1154 page_cache_release(page);
1155 }
1156
1157 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1158 {
1159 if (dn->node_page)
1160 f2fs_put_page(dn->node_page, 1);
1161 if (dn->inode_page && dn->node_page != dn->inode_page)
1162 f2fs_put_page(dn->inode_page, 0);
1163 dn->node_page = NULL;
1164 dn->inode_page = NULL;
1165 }
1166
1167 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1168 size_t size)
1169 {
1170 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1171 }
1172
1173 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1174 gfp_t flags)
1175 {
1176 void *entry;
1177 retry:
1178 entry = kmem_cache_alloc(cachep, flags);
1179 if (!entry) {
1180 cond_resched();
1181 goto retry;
1182 }
1183
1184 return entry;
1185 }
1186
1187 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1188 unsigned long index, void *item)
1189 {
1190 while (radix_tree_insert(root, index, item))
1191 cond_resched();
1192 }
1193
1194 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1195
1196 static inline bool IS_INODE(struct page *page)
1197 {
1198 struct f2fs_node *p = F2FS_NODE(page);
1199 return RAW_IS_INODE(p);
1200 }
1201
1202 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1203 {
1204 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1205 }
1206
1207 static inline block_t datablock_addr(struct page *node_page,
1208 unsigned int offset)
1209 {
1210 struct f2fs_node *raw_node;
1211 __le32 *addr_array;
1212 raw_node = F2FS_NODE(node_page);
1213 addr_array = blkaddr_in_node(raw_node);
1214 return le32_to_cpu(addr_array[offset]);
1215 }
1216
1217 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1218 {
1219 int mask;
1220
1221 addr += (nr >> 3);
1222 mask = 1 << (7 - (nr & 0x07));
1223 return mask & *addr;
1224 }
1225
1226 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1227 {
1228 int mask;
1229 int ret;
1230
1231 addr += (nr >> 3);
1232 mask = 1 << (7 - (nr & 0x07));
1233 ret = mask & *addr;
1234 *addr |= mask;
1235 return ret;
1236 }
1237
1238 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1239 {
1240 int mask;
1241 int ret;
1242
1243 addr += (nr >> 3);
1244 mask = 1 << (7 - (nr & 0x07));
1245 ret = mask & *addr;
1246 *addr &= ~mask;
1247 return ret;
1248 }
1249
1250 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1251 {
1252 int mask;
1253
1254 addr += (nr >> 3);
1255 mask = 1 << (7 - (nr & 0x07));
1256 *addr ^= mask;
1257 }
1258
1259 /* used for f2fs_inode_info->flags */
1260 enum {
1261 FI_NEW_INODE, /* indicate newly allocated inode */
1262 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1263 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1264 FI_INC_LINK, /* need to increment i_nlink */
1265 FI_ACL_MODE, /* indicate acl mode */
1266 FI_NO_ALLOC, /* should not allocate any blocks */
1267 FI_UPDATE_DIR, /* should update inode block for consistency */
1268 FI_DELAY_IPUT, /* used for the recovery */
1269 FI_NO_EXTENT, /* not to use the extent cache */
1270 FI_INLINE_XATTR, /* used for inline xattr */
1271 FI_INLINE_DATA, /* used for inline data*/
1272 FI_INLINE_DENTRY, /* used for inline dentry */
1273 FI_APPEND_WRITE, /* inode has appended data */
1274 FI_UPDATE_WRITE, /* inode has in-place-update data */
1275 FI_NEED_IPU, /* used for ipu per file */
1276 FI_ATOMIC_FILE, /* indicate atomic file */
1277 FI_VOLATILE_FILE, /* indicate volatile file */
1278 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1279 FI_DROP_CACHE, /* drop dirty page cache */
1280 FI_DATA_EXIST, /* indicate data exists */
1281 FI_INLINE_DOTS, /* indicate inline dot dentries */
1282 };
1283
1284 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1285 {
1286 if (!test_bit(flag, &fi->flags))
1287 set_bit(flag, &fi->flags);
1288 }
1289
1290 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1291 {
1292 return test_bit(flag, &fi->flags);
1293 }
1294
1295 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1296 {
1297 if (test_bit(flag, &fi->flags))
1298 clear_bit(flag, &fi->flags);
1299 }
1300
1301 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1302 {
1303 fi->i_acl_mode = mode;
1304 set_inode_flag(fi, FI_ACL_MODE);
1305 }
1306
1307 static inline void get_inline_info(struct f2fs_inode_info *fi,
1308 struct f2fs_inode *ri)
1309 {
1310 if (ri->i_inline & F2FS_INLINE_XATTR)
1311 set_inode_flag(fi, FI_INLINE_XATTR);
1312 if (ri->i_inline & F2FS_INLINE_DATA)
1313 set_inode_flag(fi, FI_INLINE_DATA);
1314 if (ri->i_inline & F2FS_INLINE_DENTRY)
1315 set_inode_flag(fi, FI_INLINE_DENTRY);
1316 if (ri->i_inline & F2FS_DATA_EXIST)
1317 set_inode_flag(fi, FI_DATA_EXIST);
1318 if (ri->i_inline & F2FS_INLINE_DOTS)
1319 set_inode_flag(fi, FI_INLINE_DOTS);
1320 }
1321
1322 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1323 struct f2fs_inode *ri)
1324 {
1325 ri->i_inline = 0;
1326
1327 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1328 ri->i_inline |= F2FS_INLINE_XATTR;
1329 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1330 ri->i_inline |= F2FS_INLINE_DATA;
1331 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1332 ri->i_inline |= F2FS_INLINE_DENTRY;
1333 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1334 ri->i_inline |= F2FS_DATA_EXIST;
1335 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1336 ri->i_inline |= F2FS_INLINE_DOTS;
1337 }
1338
1339 static inline int f2fs_has_inline_xattr(struct inode *inode)
1340 {
1341 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1342 }
1343
1344 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1345 {
1346 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1347 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1348 return DEF_ADDRS_PER_INODE;
1349 }
1350
1351 static inline void *inline_xattr_addr(struct page *page)
1352 {
1353 struct f2fs_inode *ri = F2FS_INODE(page);
1354 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1355 F2FS_INLINE_XATTR_ADDRS]);
1356 }
1357
1358 static inline int inline_xattr_size(struct inode *inode)
1359 {
1360 if (f2fs_has_inline_xattr(inode))
1361 return F2FS_INLINE_XATTR_ADDRS << 2;
1362 else
1363 return 0;
1364 }
1365
1366 static inline int f2fs_has_inline_data(struct inode *inode)
1367 {
1368 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1369 }
1370
1371 static inline void f2fs_clear_inline_inode(struct inode *inode)
1372 {
1373 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1374 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1375 }
1376
1377 static inline int f2fs_exist_data(struct inode *inode)
1378 {
1379 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1380 }
1381
1382 static inline int f2fs_has_inline_dots(struct inode *inode)
1383 {
1384 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1385 }
1386
1387 static inline bool f2fs_is_atomic_file(struct inode *inode)
1388 {
1389 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1390 }
1391
1392 static inline bool f2fs_is_volatile_file(struct inode *inode)
1393 {
1394 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1395 }
1396
1397 static inline bool f2fs_is_first_block_written(struct inode *inode)
1398 {
1399 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1400 }
1401
1402 static inline bool f2fs_is_drop_cache(struct inode *inode)
1403 {
1404 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1405 }
1406
1407 static inline void *inline_data_addr(struct page *page)
1408 {
1409 struct f2fs_inode *ri = F2FS_INODE(page);
1410 return (void *)&(ri->i_addr[1]);
1411 }
1412
1413 static inline int f2fs_has_inline_dentry(struct inode *inode)
1414 {
1415 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1416 }
1417
1418 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1419 {
1420 if (!f2fs_has_inline_dentry(dir))
1421 kunmap(page);
1422 }
1423
1424 static inline int is_file(struct inode *inode, int type)
1425 {
1426 return F2FS_I(inode)->i_advise & type;
1427 }
1428
1429 static inline void set_file(struct inode *inode, int type)
1430 {
1431 F2FS_I(inode)->i_advise |= type;
1432 }
1433
1434 static inline void clear_file(struct inode *inode, int type)
1435 {
1436 F2FS_I(inode)->i_advise &= ~type;
1437 }
1438
1439 static inline int f2fs_readonly(struct super_block *sb)
1440 {
1441 return sb->s_flags & MS_RDONLY;
1442 }
1443
1444 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1445 {
1446 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1447 }
1448
1449 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1450 {
1451 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1452 sbi->sb->s_flags |= MS_RDONLY;
1453 }
1454
1455 #define get_inode_mode(i) \
1456 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1457 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1458
1459 /* get offset of first page in next direct node */
1460 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1461 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1462 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1463 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1464
1465 /*
1466 * file.c
1467 */
1468 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1469 void truncate_data_blocks(struct dnode_of_data *);
1470 int truncate_blocks(struct inode *, u64, bool);
1471 void f2fs_truncate(struct inode *);
1472 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1473 int f2fs_setattr(struct dentry *, struct iattr *);
1474 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1475 int truncate_data_blocks_range(struct dnode_of_data *, int);
1476 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1477 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1478
1479 /*
1480 * inode.c
1481 */
1482 void f2fs_set_inode_flags(struct inode *);
1483 struct inode *f2fs_iget(struct super_block *, unsigned long);
1484 int try_to_free_nats(struct f2fs_sb_info *, int);
1485 void update_inode(struct inode *, struct page *);
1486 void update_inode_page(struct inode *);
1487 int f2fs_write_inode(struct inode *, struct writeback_control *);
1488 void f2fs_evict_inode(struct inode *);
1489 void handle_failed_inode(struct inode *);
1490
1491 /*
1492 * namei.c
1493 */
1494 struct dentry *f2fs_get_parent(struct dentry *child);
1495
1496 /*
1497 * dir.c
1498 */
1499 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1500 void set_de_type(struct f2fs_dir_entry *, umode_t);
1501 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1502 struct f2fs_dentry_ptr *);
1503 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1504 unsigned int);
1505 void do_make_empty_dir(struct inode *, struct inode *,
1506 struct f2fs_dentry_ptr *);
1507 struct page *init_inode_metadata(struct inode *, struct inode *,
1508 const struct qstr *, struct page *);
1509 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1510 int room_for_filename(const void *, int, int);
1511 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1512 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1513 struct page **);
1514 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1515 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1516 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1517 struct page *, struct inode *);
1518 int update_dent_inode(struct inode *, const struct qstr *);
1519 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1520 const struct qstr *, f2fs_hash_t , unsigned int);
1521 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1522 umode_t);
1523 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1524 struct inode *);
1525 int f2fs_do_tmpfile(struct inode *, struct inode *);
1526 int f2fs_make_empty(struct inode *, struct inode *);
1527 bool f2fs_empty_dir(struct inode *);
1528
1529 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1530 {
1531 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1532 inode, inode->i_ino, inode->i_mode);
1533 }
1534
1535 /*
1536 * super.c
1537 */
1538 int f2fs_sync_fs(struct super_block *, int);
1539 extern __printf(3, 4)
1540 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1541
1542 /*
1543 * hash.c
1544 */
1545 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1546
1547 /*
1548 * node.c
1549 */
1550 struct dnode_of_data;
1551 struct node_info;
1552
1553 bool available_free_memory(struct f2fs_sb_info *, int);
1554 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1555 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1556 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1557 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1558 int truncate_inode_blocks(struct inode *, pgoff_t);
1559 int truncate_xattr_node(struct inode *, struct page *);
1560 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1561 void remove_inode_page(struct inode *);
1562 struct page *new_inode_page(struct inode *);
1563 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1564 void ra_node_page(struct f2fs_sb_info *, nid_t);
1565 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1566 struct page *get_node_page_ra(struct page *, int);
1567 void sync_inode_page(struct dnode_of_data *);
1568 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1569 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1570 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1571 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1572 void recover_inline_xattr(struct inode *, struct page *);
1573 void recover_xattr_data(struct inode *, struct page *, block_t);
1574 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1575 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1576 struct f2fs_summary_block *);
1577 void flush_nat_entries(struct f2fs_sb_info *);
1578 int build_node_manager(struct f2fs_sb_info *);
1579 void destroy_node_manager(struct f2fs_sb_info *);
1580 int __init create_node_manager_caches(void);
1581 void destroy_node_manager_caches(void);
1582
1583 /*
1584 * segment.c
1585 */
1586 void register_inmem_page(struct inode *, struct page *);
1587 void commit_inmem_pages(struct inode *, bool);
1588 void f2fs_balance_fs(struct f2fs_sb_info *);
1589 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1590 int f2fs_issue_flush(struct f2fs_sb_info *);
1591 int create_flush_cmd_control(struct f2fs_sb_info *);
1592 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1593 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1594 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1595 void clear_prefree_segments(struct f2fs_sb_info *);
1596 void release_discard_addrs(struct f2fs_sb_info *);
1597 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1598 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1599 void allocate_new_segments(struct f2fs_sb_info *);
1600 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1601 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1602 void write_meta_page(struct f2fs_sb_info *, struct page *);
1603 void write_node_page(struct f2fs_sb_info *, struct page *,
1604 unsigned int, struct f2fs_io_info *);
1605 void write_data_page(struct page *, struct dnode_of_data *,
1606 struct f2fs_io_info *);
1607 void rewrite_data_page(struct page *, struct f2fs_io_info *);
1608 void recover_data_page(struct f2fs_sb_info *, struct page *,
1609 struct f2fs_summary *, block_t, block_t);
1610 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1611 block_t, block_t *, struct f2fs_summary *, int);
1612 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1613 void write_data_summaries(struct f2fs_sb_info *, block_t);
1614 void write_node_summaries(struct f2fs_sb_info *, block_t);
1615 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1616 int, unsigned int, int);
1617 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1618 int build_segment_manager(struct f2fs_sb_info *);
1619 void destroy_segment_manager(struct f2fs_sb_info *);
1620 int __init create_segment_manager_caches(void);
1621 void destroy_segment_manager_caches(void);
1622
1623 /*
1624 * checkpoint.c
1625 */
1626 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1627 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1628 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1629 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1630 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1631 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1632 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1633 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1634 void release_dirty_inode(struct f2fs_sb_info *);
1635 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1636 int acquire_orphan_inode(struct f2fs_sb_info *);
1637 void release_orphan_inode(struct f2fs_sb_info *);
1638 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1639 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1640 void recover_orphan_inodes(struct f2fs_sb_info *);
1641 int get_valid_checkpoint(struct f2fs_sb_info *);
1642 void update_dirty_page(struct inode *, struct page *);
1643 void add_dirty_dir_inode(struct inode *);
1644 void remove_dirty_dir_inode(struct inode *);
1645 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1646 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1647 void init_ino_entry_info(struct f2fs_sb_info *);
1648 int __init create_checkpoint_caches(void);
1649 void destroy_checkpoint_caches(void);
1650
1651 /*
1652 * data.c
1653 */
1654 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1655 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *,
1656 struct f2fs_io_info *);
1657 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *,
1658 struct f2fs_io_info *);
1659 void set_data_blkaddr(struct dnode_of_data *);
1660 int reserve_new_block(struct dnode_of_data *);
1661 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1662 void f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
1663 void f2fs_destroy_extent_tree(struct inode *);
1664 void f2fs_init_extent_cache(struct inode *, struct f2fs_extent *);
1665 void f2fs_update_extent_cache(struct dnode_of_data *);
1666 void f2fs_preserve_extent_tree(struct inode *);
1667 struct page *find_data_page(struct inode *, pgoff_t, bool);
1668 struct page *get_lock_data_page(struct inode *, pgoff_t);
1669 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1670 int do_write_data_page(struct page *, struct f2fs_io_info *);
1671 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1672 void init_extent_cache_info(struct f2fs_sb_info *);
1673 int __init create_extent_cache(void);
1674 void destroy_extent_cache(void);
1675 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1676 int f2fs_release_page(struct page *, gfp_t);
1677
1678 /*
1679 * gc.c
1680 */
1681 int start_gc_thread(struct f2fs_sb_info *);
1682 void stop_gc_thread(struct f2fs_sb_info *);
1683 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1684 int f2fs_gc(struct f2fs_sb_info *);
1685 void build_gc_manager(struct f2fs_sb_info *);
1686
1687 /*
1688 * recovery.c
1689 */
1690 int recover_fsync_data(struct f2fs_sb_info *);
1691 bool space_for_roll_forward(struct f2fs_sb_info *);
1692
1693 /*
1694 * debug.c
1695 */
1696 #ifdef CONFIG_F2FS_STAT_FS
1697 struct f2fs_stat_info {
1698 struct list_head stat_list;
1699 struct f2fs_sb_info *sbi;
1700 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1701 int main_area_segs, main_area_sections, main_area_zones;
1702 int hit_ext, total_ext, ext_tree, ext_node;
1703 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1704 int nats, dirty_nats, sits, dirty_sits, fnids;
1705 int total_count, utilization;
1706 int bg_gc, inline_inode, inline_dir, inmem_pages, wb_pages;
1707 unsigned int valid_count, valid_node_count, valid_inode_count;
1708 unsigned int bimodal, avg_vblocks;
1709 int util_free, util_valid, util_invalid;
1710 int rsvd_segs, overp_segs;
1711 int dirty_count, node_pages, meta_pages;
1712 int prefree_count, call_count, cp_count;
1713 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1714 int bg_node_segs, bg_data_segs;
1715 int tot_blks, data_blks, node_blks;
1716 int bg_data_blks, bg_node_blks;
1717 int curseg[NR_CURSEG_TYPE];
1718 int cursec[NR_CURSEG_TYPE];
1719 int curzone[NR_CURSEG_TYPE];
1720
1721 unsigned int segment_count[2];
1722 unsigned int block_count[2];
1723 unsigned int inplace_count;
1724 unsigned base_mem, cache_mem, page_mem;
1725 };
1726
1727 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1728 {
1729 return (struct f2fs_stat_info *)sbi->stat_info;
1730 }
1731
1732 #define stat_inc_cp_count(si) ((si)->cp_count++)
1733 #define stat_inc_call_count(si) ((si)->call_count++)
1734 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1735 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1736 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1737 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1738 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1739 #define stat_inc_inline_inode(inode) \
1740 do { \
1741 if (f2fs_has_inline_data(inode)) \
1742 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1743 } while (0)
1744 #define stat_dec_inline_inode(inode) \
1745 do { \
1746 if (f2fs_has_inline_data(inode)) \
1747 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1748 } while (0)
1749 #define stat_inc_inline_dir(inode) \
1750 do { \
1751 if (f2fs_has_inline_dentry(inode)) \
1752 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1753 } while (0)
1754 #define stat_dec_inline_dir(inode) \
1755 do { \
1756 if (f2fs_has_inline_dentry(inode)) \
1757 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1758 } while (0)
1759 #define stat_inc_seg_type(sbi, curseg) \
1760 ((sbi)->segment_count[(curseg)->alloc_type]++)
1761 #define stat_inc_block_count(sbi, curseg) \
1762 ((sbi)->block_count[(curseg)->alloc_type]++)
1763 #define stat_inc_inplace_blocks(sbi) \
1764 (atomic_inc(&(sbi)->inplace_count))
1765 #define stat_inc_seg_count(sbi, type, gc_type) \
1766 do { \
1767 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1768 (si)->tot_segs++; \
1769 if (type == SUM_TYPE_DATA) { \
1770 si->data_segs++; \
1771 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
1772 } else { \
1773 si->node_segs++; \
1774 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
1775 } \
1776 } while (0)
1777
1778 #define stat_inc_tot_blk_count(si, blks) \
1779 (si->tot_blks += (blks))
1780
1781 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
1782 do { \
1783 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1784 stat_inc_tot_blk_count(si, blks); \
1785 si->data_blks += (blks); \
1786 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
1787 } while (0)
1788
1789 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
1790 do { \
1791 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1792 stat_inc_tot_blk_count(si, blks); \
1793 si->node_blks += (blks); \
1794 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
1795 } while (0)
1796
1797 int f2fs_build_stats(struct f2fs_sb_info *);
1798 void f2fs_destroy_stats(struct f2fs_sb_info *);
1799 void __init f2fs_create_root_stats(void);
1800 void f2fs_destroy_root_stats(void);
1801 #else
1802 #define stat_inc_cp_count(si)
1803 #define stat_inc_call_count(si)
1804 #define stat_inc_bggc_count(si)
1805 #define stat_inc_dirty_dir(sbi)
1806 #define stat_dec_dirty_dir(sbi)
1807 #define stat_inc_total_hit(sb)
1808 #define stat_inc_read_hit(sb)
1809 #define stat_inc_inline_inode(inode)
1810 #define stat_dec_inline_inode(inode)
1811 #define stat_inc_inline_dir(inode)
1812 #define stat_dec_inline_dir(inode)
1813 #define stat_inc_seg_type(sbi, curseg)
1814 #define stat_inc_block_count(sbi, curseg)
1815 #define stat_inc_inplace_blocks(sbi)
1816 #define stat_inc_seg_count(sbi, type, gc_type)
1817 #define stat_inc_tot_blk_count(si, blks)
1818 #define stat_inc_data_blk_count(sbi, blks, gc_type)
1819 #define stat_inc_node_blk_count(sbi, blks, gc_type)
1820
1821 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1822 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1823 static inline void __init f2fs_create_root_stats(void) { }
1824 static inline void f2fs_destroy_root_stats(void) { }
1825 #endif
1826
1827 extern const struct file_operations f2fs_dir_operations;
1828 extern const struct file_operations f2fs_file_operations;
1829 extern const struct inode_operations f2fs_file_inode_operations;
1830 extern const struct address_space_operations f2fs_dblock_aops;
1831 extern const struct address_space_operations f2fs_node_aops;
1832 extern const struct address_space_operations f2fs_meta_aops;
1833 extern const struct inode_operations f2fs_dir_inode_operations;
1834 extern const struct inode_operations f2fs_symlink_inode_operations;
1835 extern const struct inode_operations f2fs_special_inode_operations;
1836 extern struct kmem_cache *inode_entry_slab;
1837
1838 /*
1839 * inline.c
1840 */
1841 bool f2fs_may_inline(struct inode *);
1842 void read_inline_data(struct page *, struct page *);
1843 bool truncate_inline_inode(struct page *, u64);
1844 int f2fs_read_inline_data(struct inode *, struct page *);
1845 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1846 int f2fs_convert_inline_inode(struct inode *);
1847 int f2fs_write_inline_data(struct inode *, struct page *);
1848 bool recover_inline_data(struct inode *, struct page *);
1849 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1850 struct page **);
1851 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1852 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1853 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
1854 nid_t, umode_t);
1855 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1856 struct inode *, struct inode *);
1857 bool f2fs_empty_inline_dir(struct inode *);
1858 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1859 #endif
This page took 0.075114 seconds and 5 git commands to generate.