f2fs: reuse get_extent_info
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38 #endif
39
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 FAULT_KMALLOC,
43 FAULT_PAGE_ALLOC,
44 FAULT_ALLOC_NID,
45 FAULT_ORPHAN,
46 FAULT_BLOCK,
47 FAULT_DIR_DEPTH,
48 FAULT_MAX,
49 };
50
51 extern u32 f2fs_fault_rate;
52 extern atomic_t f2fs_ops;
53 extern char *fault_name[FAULT_MAX];
54
55 static inline bool time_to_inject(int type)
56 {
57 atomic_inc(&f2fs_ops);
58 if (f2fs_fault_rate && (atomic_read(&f2fs_ops) >= f2fs_fault_rate)) {
59 atomic_set(&f2fs_ops, 0);
60 printk("%sF2FS-fs : inject %s in %pF\n",
61 KERN_INFO,
62 fault_name[type],
63 __builtin_return_address(0));
64 return true;
65 }
66 return false;
67 }
68 #endif
69
70 /*
71 * For mount options
72 */
73 #define F2FS_MOUNT_BG_GC 0x00000001
74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
75 #define F2FS_MOUNT_DISCARD 0x00000004
76 #define F2FS_MOUNT_NOHEAP 0x00000008
77 #define F2FS_MOUNT_XATTR_USER 0x00000010
78 #define F2FS_MOUNT_POSIX_ACL 0x00000020
79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
80 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
81 #define F2FS_MOUNT_INLINE_DATA 0x00000100
82 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
83 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
84 #define F2FS_MOUNT_NOBARRIER 0x00000800
85 #define F2FS_MOUNT_FASTBOOT 0x00001000
86 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
87 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
88 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
90
91 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
92 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
93 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
94
95 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
96 typecheck(unsigned long long, b) && \
97 ((long long)((a) - (b)) > 0))
98
99 typedef u32 block_t; /*
100 * should not change u32, since it is the on-disk block
101 * address format, __le32.
102 */
103 typedef u32 nid_t;
104
105 struct f2fs_mount_info {
106 unsigned int opt;
107 };
108
109 #define F2FS_FEATURE_ENCRYPT 0x0001
110
111 #define F2FS_HAS_FEATURE(sb, mask) \
112 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
113 #define F2FS_SET_FEATURE(sb, mask) \
114 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
115 #define F2FS_CLEAR_FEATURE(sb, mask) \
116 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
117
118 /*
119 * For checkpoint manager
120 */
121 enum {
122 NAT_BITMAP,
123 SIT_BITMAP
124 };
125
126 enum {
127 CP_UMOUNT,
128 CP_FASTBOOT,
129 CP_SYNC,
130 CP_RECOVERY,
131 CP_DISCARD,
132 };
133
134 #define DEF_BATCHED_TRIM_SECTIONS 32
135 #define BATCHED_TRIM_SEGMENTS(sbi) \
136 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
137 #define BATCHED_TRIM_BLOCKS(sbi) \
138 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
139 #define DEF_CP_INTERVAL 60 /* 60 secs */
140 #define DEF_IDLE_INTERVAL 120 /* 2 mins */
141
142 struct cp_control {
143 int reason;
144 __u64 trim_start;
145 __u64 trim_end;
146 __u64 trim_minlen;
147 __u64 trimmed;
148 };
149
150 /*
151 * For CP/NAT/SIT/SSA readahead
152 */
153 enum {
154 META_CP,
155 META_NAT,
156 META_SIT,
157 META_SSA,
158 META_POR,
159 };
160
161 /* for the list of ino */
162 enum {
163 ORPHAN_INO, /* for orphan ino list */
164 APPEND_INO, /* for append ino list */
165 UPDATE_INO, /* for update ino list */
166 MAX_INO_ENTRY, /* max. list */
167 };
168
169 struct ino_entry {
170 struct list_head list; /* list head */
171 nid_t ino; /* inode number */
172 };
173
174 /* for the list of inodes to be GCed */
175 struct inode_entry {
176 struct list_head list; /* list head */
177 struct inode *inode; /* vfs inode pointer */
178 };
179
180 /* for the list of blockaddresses to be discarded */
181 struct discard_entry {
182 struct list_head list; /* list head */
183 block_t blkaddr; /* block address to be discarded */
184 int len; /* # of consecutive blocks of the discard */
185 };
186
187 /* for the list of fsync inodes, used only during recovery */
188 struct fsync_inode_entry {
189 struct list_head list; /* list head */
190 struct inode *inode; /* vfs inode pointer */
191 block_t blkaddr; /* block address locating the last fsync */
192 block_t last_dentry; /* block address locating the last dentry */
193 };
194
195 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
196 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
197
198 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
199 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
200 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
201 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
202
203 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
204 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
205
206 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
207 {
208 int before = nats_in_cursum(journal);
209 journal->n_nats = cpu_to_le16(before + i);
210 return before;
211 }
212
213 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
214 {
215 int before = sits_in_cursum(journal);
216 journal->n_sits = cpu_to_le16(before + i);
217 return before;
218 }
219
220 static inline bool __has_cursum_space(struct f2fs_journal *journal,
221 int size, int type)
222 {
223 if (type == NAT_JOURNAL)
224 return size <= MAX_NAT_JENTRIES(journal);
225 return size <= MAX_SIT_JENTRIES(journal);
226 }
227
228 /*
229 * ioctl commands
230 */
231 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
232 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
233 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
234
235 #define F2FS_IOCTL_MAGIC 0xf5
236 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
237 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
238 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
239 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
240 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
241 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
242 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
243 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
244
245 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
246 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
247 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
248
249 /*
250 * should be same as XFS_IOC_GOINGDOWN.
251 * Flags for going down operation used by FS_IOC_GOINGDOWN
252 */
253 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
254 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
255 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
256 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
257 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
258
259 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
260 /*
261 * ioctl commands in 32 bit emulation
262 */
263 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
264 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
265 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
266 #endif
267
268 struct f2fs_defragment {
269 u64 start;
270 u64 len;
271 };
272
273 /*
274 * For INODE and NODE manager
275 */
276 /* for directory operations */
277 struct f2fs_dentry_ptr {
278 struct inode *inode;
279 const void *bitmap;
280 struct f2fs_dir_entry *dentry;
281 __u8 (*filename)[F2FS_SLOT_LEN];
282 int max;
283 };
284
285 static inline void make_dentry_ptr(struct inode *inode,
286 struct f2fs_dentry_ptr *d, void *src, int type)
287 {
288 d->inode = inode;
289
290 if (type == 1) {
291 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
292 d->max = NR_DENTRY_IN_BLOCK;
293 d->bitmap = &t->dentry_bitmap;
294 d->dentry = t->dentry;
295 d->filename = t->filename;
296 } else {
297 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
298 d->max = NR_INLINE_DENTRY;
299 d->bitmap = &t->dentry_bitmap;
300 d->dentry = t->dentry;
301 d->filename = t->filename;
302 }
303 }
304
305 /*
306 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
307 * as its node offset to distinguish from index node blocks.
308 * But some bits are used to mark the node block.
309 */
310 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
311 >> OFFSET_BIT_SHIFT)
312 enum {
313 ALLOC_NODE, /* allocate a new node page if needed */
314 LOOKUP_NODE, /* look up a node without readahead */
315 LOOKUP_NODE_RA, /*
316 * look up a node with readahead called
317 * by get_data_block.
318 */
319 };
320
321 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
322
323 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
324
325 /* vector size for gang look-up from extent cache that consists of radix tree */
326 #define EXT_TREE_VEC_SIZE 64
327
328 /* for in-memory extent cache entry */
329 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
330
331 /* number of extent info in extent cache we try to shrink */
332 #define EXTENT_CACHE_SHRINK_NUMBER 128
333
334 struct extent_info {
335 unsigned int fofs; /* start offset in a file */
336 u32 blk; /* start block address of the extent */
337 unsigned int len; /* length of the extent */
338 };
339
340 struct extent_node {
341 struct rb_node rb_node; /* rb node located in rb-tree */
342 struct list_head list; /* node in global extent list of sbi */
343 struct extent_info ei; /* extent info */
344 struct extent_tree *et; /* extent tree pointer */
345 };
346
347 struct extent_tree {
348 nid_t ino; /* inode number */
349 struct rb_root root; /* root of extent info rb-tree */
350 struct extent_node *cached_en; /* recently accessed extent node */
351 struct extent_info largest; /* largested extent info */
352 struct list_head list; /* to be used by sbi->zombie_list */
353 rwlock_t lock; /* protect extent info rb-tree */
354 atomic_t node_cnt; /* # of extent node in rb-tree*/
355 };
356
357 /*
358 * This structure is taken from ext4_map_blocks.
359 *
360 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
361 */
362 #define F2FS_MAP_NEW (1 << BH_New)
363 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
364 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
365 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
366 F2FS_MAP_UNWRITTEN)
367
368 struct f2fs_map_blocks {
369 block_t m_pblk;
370 block_t m_lblk;
371 unsigned int m_len;
372 unsigned int m_flags;
373 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
374 };
375
376 /* for flag in get_data_block */
377 #define F2FS_GET_BLOCK_READ 0
378 #define F2FS_GET_BLOCK_DIO 1
379 #define F2FS_GET_BLOCK_FIEMAP 2
380 #define F2FS_GET_BLOCK_BMAP 3
381 #define F2FS_GET_BLOCK_PRE_DIO 4
382 #define F2FS_GET_BLOCK_PRE_AIO 5
383
384 /*
385 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
386 */
387 #define FADVISE_COLD_BIT 0x01
388 #define FADVISE_LOST_PINO_BIT 0x02
389 #define FADVISE_ENCRYPT_BIT 0x04
390 #define FADVISE_ENC_NAME_BIT 0x08
391
392 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
393 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
394 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
395 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
396 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
397 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
398 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
399 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
400 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
401 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
402 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
403
404 #define DEF_DIR_LEVEL 0
405
406 struct f2fs_inode_info {
407 struct inode vfs_inode; /* serve a vfs inode */
408 unsigned long i_flags; /* keep an inode flags for ioctl */
409 unsigned char i_advise; /* use to give file attribute hints */
410 unsigned char i_dir_level; /* use for dentry level for large dir */
411 unsigned int i_current_depth; /* use only in directory structure */
412 unsigned int i_pino; /* parent inode number */
413 umode_t i_acl_mode; /* keep file acl mode temporarily */
414
415 /* Use below internally in f2fs*/
416 unsigned long flags; /* use to pass per-file flags */
417 struct rw_semaphore i_sem; /* protect fi info */
418 atomic_t dirty_pages; /* # of dirty pages */
419 f2fs_hash_t chash; /* hash value of given file name */
420 unsigned int clevel; /* maximum level of given file name */
421 nid_t i_xattr_nid; /* node id that contains xattrs */
422 unsigned long long xattr_ver; /* cp version of xattr modification */
423
424 struct list_head dirty_list; /* linked in global dirty list */
425 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
426 struct mutex inmem_lock; /* lock for inmemory pages */
427 struct extent_tree *extent_tree; /* cached extent_tree entry */
428 };
429
430 static inline void get_extent_info(struct extent_info *ext,
431 struct f2fs_extent *i_ext)
432 {
433 ext->fofs = le32_to_cpu(i_ext->fofs);
434 ext->blk = le32_to_cpu(i_ext->blk);
435 ext->len = le32_to_cpu(i_ext->len);
436 }
437
438 static inline void set_raw_extent(struct extent_info *ext,
439 struct f2fs_extent *i_ext)
440 {
441 i_ext->fofs = cpu_to_le32(ext->fofs);
442 i_ext->blk = cpu_to_le32(ext->blk);
443 i_ext->len = cpu_to_le32(ext->len);
444 }
445
446 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
447 u32 blk, unsigned int len)
448 {
449 ei->fofs = fofs;
450 ei->blk = blk;
451 ei->len = len;
452 }
453
454 static inline bool __is_extent_same(struct extent_info *ei1,
455 struct extent_info *ei2)
456 {
457 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
458 ei1->len == ei2->len);
459 }
460
461 static inline bool __is_extent_mergeable(struct extent_info *back,
462 struct extent_info *front)
463 {
464 return (back->fofs + back->len == front->fofs &&
465 back->blk + back->len == front->blk);
466 }
467
468 static inline bool __is_back_mergeable(struct extent_info *cur,
469 struct extent_info *back)
470 {
471 return __is_extent_mergeable(back, cur);
472 }
473
474 static inline bool __is_front_mergeable(struct extent_info *cur,
475 struct extent_info *front)
476 {
477 return __is_extent_mergeable(cur, front);
478 }
479
480 static inline void __try_update_largest_extent(struct extent_tree *et,
481 struct extent_node *en)
482 {
483 if (en->ei.len > et->largest.len)
484 et->largest = en->ei;
485 }
486
487 struct f2fs_nm_info {
488 block_t nat_blkaddr; /* base disk address of NAT */
489 nid_t max_nid; /* maximum possible node ids */
490 nid_t available_nids; /* maximum available node ids */
491 nid_t next_scan_nid; /* the next nid to be scanned */
492 unsigned int ram_thresh; /* control the memory footprint */
493 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
494 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
495
496 /* NAT cache management */
497 struct radix_tree_root nat_root;/* root of the nat entry cache */
498 struct radix_tree_root nat_set_root;/* root of the nat set cache */
499 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
500 struct list_head nat_entries; /* cached nat entry list (clean) */
501 unsigned int nat_cnt; /* the # of cached nat entries */
502 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
503
504 /* free node ids management */
505 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
506 struct list_head free_nid_list; /* a list for free nids */
507 spinlock_t free_nid_list_lock; /* protect free nid list */
508 unsigned int fcnt; /* the number of free node id */
509 struct mutex build_lock; /* lock for build free nids */
510
511 /* for checkpoint */
512 char *nat_bitmap; /* NAT bitmap pointer */
513 int bitmap_size; /* bitmap size */
514 };
515
516 /*
517 * this structure is used as one of function parameters.
518 * all the information are dedicated to a given direct node block determined
519 * by the data offset in a file.
520 */
521 struct dnode_of_data {
522 struct inode *inode; /* vfs inode pointer */
523 struct page *inode_page; /* its inode page, NULL is possible */
524 struct page *node_page; /* cached direct node page */
525 nid_t nid; /* node id of the direct node block */
526 unsigned int ofs_in_node; /* data offset in the node page */
527 bool inode_page_locked; /* inode page is locked or not */
528 bool node_changed; /* is node block changed */
529 char cur_level; /* level of hole node page */
530 char max_level; /* level of current page located */
531 block_t data_blkaddr; /* block address of the node block */
532 };
533
534 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
535 struct page *ipage, struct page *npage, nid_t nid)
536 {
537 memset(dn, 0, sizeof(*dn));
538 dn->inode = inode;
539 dn->inode_page = ipage;
540 dn->node_page = npage;
541 dn->nid = nid;
542 }
543
544 /*
545 * For SIT manager
546 *
547 * By default, there are 6 active log areas across the whole main area.
548 * When considering hot and cold data separation to reduce cleaning overhead,
549 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
550 * respectively.
551 * In the current design, you should not change the numbers intentionally.
552 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
553 * logs individually according to the underlying devices. (default: 6)
554 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
555 * data and 8 for node logs.
556 */
557 #define NR_CURSEG_DATA_TYPE (3)
558 #define NR_CURSEG_NODE_TYPE (3)
559 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
560
561 enum {
562 CURSEG_HOT_DATA = 0, /* directory entry blocks */
563 CURSEG_WARM_DATA, /* data blocks */
564 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
565 CURSEG_HOT_NODE, /* direct node blocks of directory files */
566 CURSEG_WARM_NODE, /* direct node blocks of normal files */
567 CURSEG_COLD_NODE, /* indirect node blocks */
568 NO_CHECK_TYPE,
569 CURSEG_DIRECT_IO, /* to use for the direct IO path */
570 };
571
572 struct flush_cmd {
573 struct completion wait;
574 struct llist_node llnode;
575 int ret;
576 };
577
578 struct flush_cmd_control {
579 struct task_struct *f2fs_issue_flush; /* flush thread */
580 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
581 struct llist_head issue_list; /* list for command issue */
582 struct llist_node *dispatch_list; /* list for command dispatch */
583 };
584
585 struct f2fs_sm_info {
586 struct sit_info *sit_info; /* whole segment information */
587 struct free_segmap_info *free_info; /* free segment information */
588 struct dirty_seglist_info *dirty_info; /* dirty segment information */
589 struct curseg_info *curseg_array; /* active segment information */
590
591 block_t seg0_blkaddr; /* block address of 0'th segment */
592 block_t main_blkaddr; /* start block address of main area */
593 block_t ssa_blkaddr; /* start block address of SSA area */
594
595 unsigned int segment_count; /* total # of segments */
596 unsigned int main_segments; /* # of segments in main area */
597 unsigned int reserved_segments; /* # of reserved segments */
598 unsigned int ovp_segments; /* # of overprovision segments */
599
600 /* a threshold to reclaim prefree segments */
601 unsigned int rec_prefree_segments;
602
603 /* for small discard management */
604 struct list_head discard_list; /* 4KB discard list */
605 int nr_discards; /* # of discards in the list */
606 int max_discards; /* max. discards to be issued */
607
608 /* for batched trimming */
609 unsigned int trim_sections; /* # of sections to trim */
610
611 struct list_head sit_entry_set; /* sit entry set list */
612
613 unsigned int ipu_policy; /* in-place-update policy */
614 unsigned int min_ipu_util; /* in-place-update threshold */
615 unsigned int min_fsync_blocks; /* threshold for fsync */
616
617 /* for flush command control */
618 struct flush_cmd_control *cmd_control_info;
619
620 };
621
622 /*
623 * For superblock
624 */
625 /*
626 * COUNT_TYPE for monitoring
627 *
628 * f2fs monitors the number of several block types such as on-writeback,
629 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
630 */
631 enum count_type {
632 F2FS_WRITEBACK,
633 F2FS_DIRTY_DENTS,
634 F2FS_DIRTY_DATA,
635 F2FS_DIRTY_NODES,
636 F2FS_DIRTY_META,
637 F2FS_INMEM_PAGES,
638 NR_COUNT_TYPE,
639 };
640
641 /*
642 * The below are the page types of bios used in submit_bio().
643 * The available types are:
644 * DATA User data pages. It operates as async mode.
645 * NODE Node pages. It operates as async mode.
646 * META FS metadata pages such as SIT, NAT, CP.
647 * NR_PAGE_TYPE The number of page types.
648 * META_FLUSH Make sure the previous pages are written
649 * with waiting the bio's completion
650 * ... Only can be used with META.
651 */
652 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
653 enum page_type {
654 DATA,
655 NODE,
656 META,
657 NR_PAGE_TYPE,
658 META_FLUSH,
659 INMEM, /* the below types are used by tracepoints only. */
660 INMEM_DROP,
661 INMEM_REVOKE,
662 IPU,
663 OPU,
664 };
665
666 struct f2fs_io_info {
667 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
668 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
669 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
670 block_t new_blkaddr; /* new block address to be written */
671 block_t old_blkaddr; /* old block address before Cow */
672 struct page *page; /* page to be written */
673 struct page *encrypted_page; /* encrypted page */
674 };
675
676 #define is_read_io(rw) (((rw) & 1) == READ)
677 struct f2fs_bio_info {
678 struct f2fs_sb_info *sbi; /* f2fs superblock */
679 struct bio *bio; /* bios to merge */
680 sector_t last_block_in_bio; /* last block number */
681 struct f2fs_io_info fio; /* store buffered io info. */
682 struct rw_semaphore io_rwsem; /* blocking op for bio */
683 };
684
685 enum inode_type {
686 DIR_INODE, /* for dirty dir inode */
687 FILE_INODE, /* for dirty regular/symlink inode */
688 NR_INODE_TYPE,
689 };
690
691 /* for inner inode cache management */
692 struct inode_management {
693 struct radix_tree_root ino_root; /* ino entry array */
694 spinlock_t ino_lock; /* for ino entry lock */
695 struct list_head ino_list; /* inode list head */
696 unsigned long ino_num; /* number of entries */
697 };
698
699 /* For s_flag in struct f2fs_sb_info */
700 enum {
701 SBI_IS_DIRTY, /* dirty flag for checkpoint */
702 SBI_IS_CLOSE, /* specify unmounting */
703 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
704 SBI_POR_DOING, /* recovery is doing or not */
705 SBI_NEED_SB_WRITE, /* need to recover superblock */
706 };
707
708 enum {
709 CP_TIME,
710 REQ_TIME,
711 MAX_TIME,
712 };
713
714 struct f2fs_sb_info {
715 struct super_block *sb; /* pointer to VFS super block */
716 struct proc_dir_entry *s_proc; /* proc entry */
717 struct f2fs_super_block *raw_super; /* raw super block pointer */
718 int valid_super_block; /* valid super block no */
719 int s_flag; /* flags for sbi */
720
721 /* for node-related operations */
722 struct f2fs_nm_info *nm_info; /* node manager */
723 struct inode *node_inode; /* cache node blocks */
724
725 /* for segment-related operations */
726 struct f2fs_sm_info *sm_info; /* segment manager */
727
728 /* for bio operations */
729 struct f2fs_bio_info read_io; /* for read bios */
730 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
731
732 /* for checkpoint */
733 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
734 struct inode *meta_inode; /* cache meta blocks */
735 struct mutex cp_mutex; /* checkpoint procedure lock */
736 struct rw_semaphore cp_rwsem; /* blocking FS operations */
737 struct rw_semaphore node_write; /* locking node writes */
738 struct mutex writepages; /* mutex for writepages() */
739 wait_queue_head_t cp_wait;
740 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
741 long interval_time[MAX_TIME]; /* to store thresholds */
742
743 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
744
745 /* for orphan inode, use 0'th array */
746 unsigned int max_orphans; /* max orphan inodes */
747
748 /* for inode management */
749 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
750 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
751
752 /* for extent tree cache */
753 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
754 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
755 struct list_head extent_list; /* lru list for shrinker */
756 spinlock_t extent_lock; /* locking extent lru list */
757 atomic_t total_ext_tree; /* extent tree count */
758 struct list_head zombie_list; /* extent zombie tree list */
759 atomic_t total_zombie_tree; /* extent zombie tree count */
760 atomic_t total_ext_node; /* extent info count */
761
762 /* basic filesystem units */
763 unsigned int log_sectors_per_block; /* log2 sectors per block */
764 unsigned int log_blocksize; /* log2 block size */
765 unsigned int blocksize; /* block size */
766 unsigned int root_ino_num; /* root inode number*/
767 unsigned int node_ino_num; /* node inode number*/
768 unsigned int meta_ino_num; /* meta inode number*/
769 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
770 unsigned int blocks_per_seg; /* blocks per segment */
771 unsigned int segs_per_sec; /* segments per section */
772 unsigned int secs_per_zone; /* sections per zone */
773 unsigned int total_sections; /* total section count */
774 unsigned int total_node_count; /* total node block count */
775 unsigned int total_valid_node_count; /* valid node block count */
776 unsigned int total_valid_inode_count; /* valid inode count */
777 loff_t max_file_blocks; /* max block index of file */
778 int active_logs; /* # of active logs */
779 int dir_level; /* directory level */
780
781 block_t user_block_count; /* # of user blocks */
782 block_t total_valid_block_count; /* # of valid blocks */
783 block_t alloc_valid_block_count; /* # of allocated blocks */
784 block_t discard_blks; /* discard command candidats */
785 block_t last_valid_block_count; /* for recovery */
786 u32 s_next_generation; /* for NFS support */
787 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
788
789 struct f2fs_mount_info mount_opt; /* mount options */
790
791 /* for cleaning operations */
792 struct mutex gc_mutex; /* mutex for GC */
793 struct f2fs_gc_kthread *gc_thread; /* GC thread */
794 unsigned int cur_victim_sec; /* current victim section num */
795
796 /* maximum # of trials to find a victim segment for SSR and GC */
797 unsigned int max_victim_search;
798
799 /*
800 * for stat information.
801 * one is for the LFS mode, and the other is for the SSR mode.
802 */
803 #ifdef CONFIG_F2FS_STAT_FS
804 struct f2fs_stat_info *stat_info; /* FS status information */
805 unsigned int segment_count[2]; /* # of allocated segments */
806 unsigned int block_count[2]; /* # of allocated blocks */
807 atomic_t inplace_count; /* # of inplace update */
808 atomic64_t total_hit_ext; /* # of lookup extent cache */
809 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
810 atomic64_t read_hit_largest; /* # of hit largest extent node */
811 atomic64_t read_hit_cached; /* # of hit cached extent node */
812 atomic_t inline_xattr; /* # of inline_xattr inodes */
813 atomic_t inline_inode; /* # of inline_data inodes */
814 atomic_t inline_dir; /* # of inline_dentry inodes */
815 int bg_gc; /* background gc calls */
816 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
817 #endif
818 unsigned int last_victim[2]; /* last victim segment # */
819 spinlock_t stat_lock; /* lock for stat operations */
820
821 /* For sysfs suppport */
822 struct kobject s_kobj;
823 struct completion s_kobj_unregister;
824
825 /* For shrinker support */
826 struct list_head s_list;
827 struct mutex umount_mutex;
828 unsigned int shrinker_run_no;
829
830 /* For write statistics */
831 u64 sectors_written_start;
832 u64 kbytes_written;
833
834 /* Reference to checksum algorithm driver via cryptoapi */
835 struct crypto_shash *s_chksum_driver;
836 };
837
838 /* For write statistics. Suppose sector size is 512 bytes,
839 * and the return value is in kbytes. s is of struct f2fs_sb_info.
840 */
841 #define BD_PART_WRITTEN(s) \
842 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
843 s->sectors_written_start) >> 1)
844
845 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
846 {
847 sbi->last_time[type] = jiffies;
848 }
849
850 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
851 {
852 struct timespec ts = {sbi->interval_time[type], 0};
853 unsigned long interval = timespec_to_jiffies(&ts);
854
855 return time_after(jiffies, sbi->last_time[type] + interval);
856 }
857
858 static inline bool is_idle(struct f2fs_sb_info *sbi)
859 {
860 struct block_device *bdev = sbi->sb->s_bdev;
861 struct request_queue *q = bdev_get_queue(bdev);
862 struct request_list *rl = &q->root_rl;
863
864 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
865 return 0;
866
867 return f2fs_time_over(sbi, REQ_TIME);
868 }
869
870 /*
871 * Inline functions
872 */
873 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
874 unsigned int length)
875 {
876 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
877 u32 *ctx = (u32 *)shash_desc_ctx(shash);
878 int err;
879
880 shash->tfm = sbi->s_chksum_driver;
881 shash->flags = 0;
882 *ctx = F2FS_SUPER_MAGIC;
883
884 err = crypto_shash_update(shash, address, length);
885 BUG_ON(err);
886
887 return *ctx;
888 }
889
890 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
891 void *buf, size_t buf_size)
892 {
893 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
894 }
895
896 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
897 {
898 return container_of(inode, struct f2fs_inode_info, vfs_inode);
899 }
900
901 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
902 {
903 return sb->s_fs_info;
904 }
905
906 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
907 {
908 return F2FS_SB(inode->i_sb);
909 }
910
911 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
912 {
913 return F2FS_I_SB(mapping->host);
914 }
915
916 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
917 {
918 return F2FS_M_SB(page->mapping);
919 }
920
921 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
922 {
923 return (struct f2fs_super_block *)(sbi->raw_super);
924 }
925
926 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
927 {
928 return (struct f2fs_checkpoint *)(sbi->ckpt);
929 }
930
931 static inline struct f2fs_node *F2FS_NODE(struct page *page)
932 {
933 return (struct f2fs_node *)page_address(page);
934 }
935
936 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
937 {
938 return &((struct f2fs_node *)page_address(page))->i;
939 }
940
941 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
942 {
943 return (struct f2fs_nm_info *)(sbi->nm_info);
944 }
945
946 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
947 {
948 return (struct f2fs_sm_info *)(sbi->sm_info);
949 }
950
951 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
952 {
953 return (struct sit_info *)(SM_I(sbi)->sit_info);
954 }
955
956 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
957 {
958 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
959 }
960
961 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
962 {
963 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
964 }
965
966 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
967 {
968 return sbi->meta_inode->i_mapping;
969 }
970
971 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
972 {
973 return sbi->node_inode->i_mapping;
974 }
975
976 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
977 {
978 return sbi->s_flag & (0x01 << type);
979 }
980
981 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
982 {
983 sbi->s_flag |= (0x01 << type);
984 }
985
986 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
987 {
988 sbi->s_flag &= ~(0x01 << type);
989 }
990
991 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
992 {
993 return le64_to_cpu(cp->checkpoint_ver);
994 }
995
996 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
997 {
998 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
999 return ckpt_flags & f;
1000 }
1001
1002 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1003 {
1004 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1005 ckpt_flags |= f;
1006 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1007 }
1008
1009 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1010 {
1011 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1012 ckpt_flags &= (~f);
1013 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1014 }
1015
1016 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1017 {
1018 down_read(&sbi->cp_rwsem);
1019 }
1020
1021 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1022 {
1023 up_read(&sbi->cp_rwsem);
1024 }
1025
1026 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1027 {
1028 down_write(&sbi->cp_rwsem);
1029 }
1030
1031 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1032 {
1033 up_write(&sbi->cp_rwsem);
1034 }
1035
1036 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1037 {
1038 int reason = CP_SYNC;
1039
1040 if (test_opt(sbi, FASTBOOT))
1041 reason = CP_FASTBOOT;
1042 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1043 reason = CP_UMOUNT;
1044 return reason;
1045 }
1046
1047 static inline bool __remain_node_summaries(int reason)
1048 {
1049 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1050 }
1051
1052 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1053 {
1054 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1055 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1056 }
1057
1058 /*
1059 * Check whether the given nid is within node id range.
1060 */
1061 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1062 {
1063 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1064 return -EINVAL;
1065 if (unlikely(nid >= NM_I(sbi)->max_nid))
1066 return -EINVAL;
1067 return 0;
1068 }
1069
1070 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1071
1072 /*
1073 * Check whether the inode has blocks or not
1074 */
1075 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1076 {
1077 if (F2FS_I(inode)->i_xattr_nid)
1078 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1079 else
1080 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1081 }
1082
1083 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1084 {
1085 return ofs == XATTR_NODE_OFFSET;
1086 }
1087
1088 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1089 struct inode *inode, blkcnt_t count)
1090 {
1091 block_t valid_block_count;
1092
1093 spin_lock(&sbi->stat_lock);
1094 #ifdef CONFIG_F2FS_FAULT_INJECTION
1095 if (time_to_inject(FAULT_BLOCK)) {
1096 spin_unlock(&sbi->stat_lock);
1097 return false;
1098 }
1099 #endif
1100 valid_block_count =
1101 sbi->total_valid_block_count + (block_t)count;
1102 if (unlikely(valid_block_count > sbi->user_block_count)) {
1103 spin_unlock(&sbi->stat_lock);
1104 return false;
1105 }
1106 inode->i_blocks += count;
1107 sbi->total_valid_block_count = valid_block_count;
1108 sbi->alloc_valid_block_count += (block_t)count;
1109 spin_unlock(&sbi->stat_lock);
1110 return true;
1111 }
1112
1113 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1114 struct inode *inode,
1115 blkcnt_t count)
1116 {
1117 spin_lock(&sbi->stat_lock);
1118 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1119 f2fs_bug_on(sbi, inode->i_blocks < count);
1120 inode->i_blocks -= count;
1121 sbi->total_valid_block_count -= (block_t)count;
1122 spin_unlock(&sbi->stat_lock);
1123 }
1124
1125 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1126 {
1127 atomic_inc(&sbi->nr_pages[count_type]);
1128 set_sbi_flag(sbi, SBI_IS_DIRTY);
1129 }
1130
1131 static inline void inode_inc_dirty_pages(struct inode *inode)
1132 {
1133 atomic_inc(&F2FS_I(inode)->dirty_pages);
1134 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1135 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1136 }
1137
1138 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1139 {
1140 atomic_dec(&sbi->nr_pages[count_type]);
1141 }
1142
1143 static inline void inode_dec_dirty_pages(struct inode *inode)
1144 {
1145 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1146 !S_ISLNK(inode->i_mode))
1147 return;
1148
1149 atomic_dec(&F2FS_I(inode)->dirty_pages);
1150 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1151 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1152 }
1153
1154 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1155 {
1156 return atomic_read(&sbi->nr_pages[count_type]);
1157 }
1158
1159 static inline int get_dirty_pages(struct inode *inode)
1160 {
1161 return atomic_read(&F2FS_I(inode)->dirty_pages);
1162 }
1163
1164 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1165 {
1166 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1167 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1168 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1169 }
1170
1171 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1172 {
1173 return sbi->total_valid_block_count;
1174 }
1175
1176 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1177 {
1178 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1179
1180 /* return NAT or SIT bitmap */
1181 if (flag == NAT_BITMAP)
1182 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1183 else if (flag == SIT_BITMAP)
1184 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1185
1186 return 0;
1187 }
1188
1189 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1190 {
1191 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1192 }
1193
1194 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1195 {
1196 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1197 int offset;
1198
1199 if (__cp_payload(sbi) > 0) {
1200 if (flag == NAT_BITMAP)
1201 return &ckpt->sit_nat_version_bitmap;
1202 else
1203 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1204 } else {
1205 offset = (flag == NAT_BITMAP) ?
1206 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1207 return &ckpt->sit_nat_version_bitmap + offset;
1208 }
1209 }
1210
1211 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1212 {
1213 block_t start_addr;
1214 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1215 unsigned long long ckpt_version = cur_cp_version(ckpt);
1216
1217 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1218
1219 /*
1220 * odd numbered checkpoint should at cp segment 0
1221 * and even segment must be at cp segment 1
1222 */
1223 if (!(ckpt_version & 1))
1224 start_addr += sbi->blocks_per_seg;
1225
1226 return start_addr;
1227 }
1228
1229 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1230 {
1231 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1232 }
1233
1234 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1235 struct inode *inode)
1236 {
1237 block_t valid_block_count;
1238 unsigned int valid_node_count;
1239
1240 spin_lock(&sbi->stat_lock);
1241
1242 valid_block_count = sbi->total_valid_block_count + 1;
1243 if (unlikely(valid_block_count > sbi->user_block_count)) {
1244 spin_unlock(&sbi->stat_lock);
1245 return false;
1246 }
1247
1248 valid_node_count = sbi->total_valid_node_count + 1;
1249 if (unlikely(valid_node_count > sbi->total_node_count)) {
1250 spin_unlock(&sbi->stat_lock);
1251 return false;
1252 }
1253
1254 if (inode)
1255 inode->i_blocks++;
1256
1257 sbi->alloc_valid_block_count++;
1258 sbi->total_valid_node_count++;
1259 sbi->total_valid_block_count++;
1260 spin_unlock(&sbi->stat_lock);
1261
1262 return true;
1263 }
1264
1265 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1266 struct inode *inode)
1267 {
1268 spin_lock(&sbi->stat_lock);
1269
1270 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1271 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1272 f2fs_bug_on(sbi, !inode->i_blocks);
1273
1274 inode->i_blocks--;
1275 sbi->total_valid_node_count--;
1276 sbi->total_valid_block_count--;
1277
1278 spin_unlock(&sbi->stat_lock);
1279 }
1280
1281 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1282 {
1283 return sbi->total_valid_node_count;
1284 }
1285
1286 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1287 {
1288 spin_lock(&sbi->stat_lock);
1289 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1290 sbi->total_valid_inode_count++;
1291 spin_unlock(&sbi->stat_lock);
1292 }
1293
1294 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1295 {
1296 spin_lock(&sbi->stat_lock);
1297 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1298 sbi->total_valid_inode_count--;
1299 spin_unlock(&sbi->stat_lock);
1300 }
1301
1302 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1303 {
1304 return sbi->total_valid_inode_count;
1305 }
1306
1307 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1308 pgoff_t index, bool for_write)
1309 {
1310 #ifdef CONFIG_F2FS_FAULT_INJECTION
1311 struct page *page = find_lock_page(mapping, index);
1312 if (page)
1313 return page;
1314
1315 if (time_to_inject(FAULT_PAGE_ALLOC))
1316 return NULL;
1317 #endif
1318 if (!for_write)
1319 return grab_cache_page(mapping, index);
1320 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1321 }
1322
1323 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1324 {
1325 char *src_kaddr = kmap(src);
1326 char *dst_kaddr = kmap(dst);
1327
1328 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1329 kunmap(dst);
1330 kunmap(src);
1331 }
1332
1333 static inline void f2fs_put_page(struct page *page, int unlock)
1334 {
1335 if (!page)
1336 return;
1337
1338 if (unlock) {
1339 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1340 unlock_page(page);
1341 }
1342 put_page(page);
1343 }
1344
1345 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1346 {
1347 if (dn->node_page)
1348 f2fs_put_page(dn->node_page, 1);
1349 if (dn->inode_page && dn->node_page != dn->inode_page)
1350 f2fs_put_page(dn->inode_page, 0);
1351 dn->node_page = NULL;
1352 dn->inode_page = NULL;
1353 }
1354
1355 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1356 size_t size)
1357 {
1358 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1359 }
1360
1361 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1362 gfp_t flags)
1363 {
1364 void *entry;
1365
1366 entry = kmem_cache_alloc(cachep, flags);
1367 if (!entry)
1368 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1369 return entry;
1370 }
1371
1372 static inline struct bio *f2fs_bio_alloc(int npages)
1373 {
1374 struct bio *bio;
1375
1376 /* No failure on bio allocation */
1377 bio = bio_alloc(GFP_NOIO, npages);
1378 if (!bio)
1379 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1380 return bio;
1381 }
1382
1383 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1384 unsigned long index, void *item)
1385 {
1386 while (radix_tree_insert(root, index, item))
1387 cond_resched();
1388 }
1389
1390 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1391
1392 static inline bool IS_INODE(struct page *page)
1393 {
1394 struct f2fs_node *p = F2FS_NODE(page);
1395 return RAW_IS_INODE(p);
1396 }
1397
1398 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1399 {
1400 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1401 }
1402
1403 static inline block_t datablock_addr(struct page *node_page,
1404 unsigned int offset)
1405 {
1406 struct f2fs_node *raw_node;
1407 __le32 *addr_array;
1408 raw_node = F2FS_NODE(node_page);
1409 addr_array = blkaddr_in_node(raw_node);
1410 return le32_to_cpu(addr_array[offset]);
1411 }
1412
1413 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1414 {
1415 int mask;
1416
1417 addr += (nr >> 3);
1418 mask = 1 << (7 - (nr & 0x07));
1419 return mask & *addr;
1420 }
1421
1422 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1423 {
1424 int mask;
1425
1426 addr += (nr >> 3);
1427 mask = 1 << (7 - (nr & 0x07));
1428 *addr |= mask;
1429 }
1430
1431 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1432 {
1433 int mask;
1434
1435 addr += (nr >> 3);
1436 mask = 1 << (7 - (nr & 0x07));
1437 *addr &= ~mask;
1438 }
1439
1440 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1441 {
1442 int mask;
1443 int ret;
1444
1445 addr += (nr >> 3);
1446 mask = 1 << (7 - (nr & 0x07));
1447 ret = mask & *addr;
1448 *addr |= mask;
1449 return ret;
1450 }
1451
1452 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1453 {
1454 int mask;
1455 int ret;
1456
1457 addr += (nr >> 3);
1458 mask = 1 << (7 - (nr & 0x07));
1459 ret = mask & *addr;
1460 *addr &= ~mask;
1461 return ret;
1462 }
1463
1464 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1465 {
1466 int mask;
1467
1468 addr += (nr >> 3);
1469 mask = 1 << (7 - (nr & 0x07));
1470 *addr ^= mask;
1471 }
1472
1473 /* used for f2fs_inode_info->flags */
1474 enum {
1475 FI_NEW_INODE, /* indicate newly allocated inode */
1476 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1477 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1478 FI_INC_LINK, /* need to increment i_nlink */
1479 FI_ACL_MODE, /* indicate acl mode */
1480 FI_NO_ALLOC, /* should not allocate any blocks */
1481 FI_FREE_NID, /* free allocated nide */
1482 FI_UPDATE_DIR, /* should update inode block for consistency */
1483 FI_DELAY_IPUT, /* used for the recovery */
1484 FI_NO_EXTENT, /* not to use the extent cache */
1485 FI_INLINE_XATTR, /* used for inline xattr */
1486 FI_INLINE_DATA, /* used for inline data*/
1487 FI_INLINE_DENTRY, /* used for inline dentry */
1488 FI_APPEND_WRITE, /* inode has appended data */
1489 FI_UPDATE_WRITE, /* inode has in-place-update data */
1490 FI_NEED_IPU, /* used for ipu per file */
1491 FI_ATOMIC_FILE, /* indicate atomic file */
1492 FI_VOLATILE_FILE, /* indicate volatile file */
1493 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1494 FI_DROP_CACHE, /* drop dirty page cache */
1495 FI_DATA_EXIST, /* indicate data exists */
1496 FI_INLINE_DOTS, /* indicate inline dot dentries */
1497 FI_DO_DEFRAG, /* indicate defragment is running */
1498 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1499 };
1500
1501 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1502 {
1503 if (!test_bit(flag, &fi->flags))
1504 set_bit(flag, &fi->flags);
1505 }
1506
1507 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1508 {
1509 return test_bit(flag, &fi->flags);
1510 }
1511
1512 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1513 {
1514 if (test_bit(flag, &fi->flags))
1515 clear_bit(flag, &fi->flags);
1516 }
1517
1518 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1519 {
1520 fi->i_acl_mode = mode;
1521 set_inode_flag(fi, FI_ACL_MODE);
1522 }
1523
1524 static inline void get_inline_info(struct f2fs_inode_info *fi,
1525 struct f2fs_inode *ri)
1526 {
1527 if (ri->i_inline & F2FS_INLINE_XATTR)
1528 set_inode_flag(fi, FI_INLINE_XATTR);
1529 if (ri->i_inline & F2FS_INLINE_DATA)
1530 set_inode_flag(fi, FI_INLINE_DATA);
1531 if (ri->i_inline & F2FS_INLINE_DENTRY)
1532 set_inode_flag(fi, FI_INLINE_DENTRY);
1533 if (ri->i_inline & F2FS_DATA_EXIST)
1534 set_inode_flag(fi, FI_DATA_EXIST);
1535 if (ri->i_inline & F2FS_INLINE_DOTS)
1536 set_inode_flag(fi, FI_INLINE_DOTS);
1537 }
1538
1539 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1540 struct f2fs_inode *ri)
1541 {
1542 ri->i_inline = 0;
1543
1544 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1545 ri->i_inline |= F2FS_INLINE_XATTR;
1546 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1547 ri->i_inline |= F2FS_INLINE_DATA;
1548 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1549 ri->i_inline |= F2FS_INLINE_DENTRY;
1550 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1551 ri->i_inline |= F2FS_DATA_EXIST;
1552 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1553 ri->i_inline |= F2FS_INLINE_DOTS;
1554 }
1555
1556 static inline int f2fs_has_inline_xattr(struct inode *inode)
1557 {
1558 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1559 }
1560
1561 static inline unsigned int addrs_per_inode(struct inode *inode)
1562 {
1563 if (f2fs_has_inline_xattr(inode))
1564 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1565 return DEF_ADDRS_PER_INODE;
1566 }
1567
1568 static inline void *inline_xattr_addr(struct page *page)
1569 {
1570 struct f2fs_inode *ri = F2FS_INODE(page);
1571 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1572 F2FS_INLINE_XATTR_ADDRS]);
1573 }
1574
1575 static inline int inline_xattr_size(struct inode *inode)
1576 {
1577 if (f2fs_has_inline_xattr(inode))
1578 return F2FS_INLINE_XATTR_ADDRS << 2;
1579 else
1580 return 0;
1581 }
1582
1583 static inline int f2fs_has_inline_data(struct inode *inode)
1584 {
1585 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1586 }
1587
1588 static inline void f2fs_clear_inline_inode(struct inode *inode)
1589 {
1590 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1591 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1592 }
1593
1594 static inline int f2fs_exist_data(struct inode *inode)
1595 {
1596 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1597 }
1598
1599 static inline int f2fs_has_inline_dots(struct inode *inode)
1600 {
1601 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1602 }
1603
1604 static inline bool f2fs_is_atomic_file(struct inode *inode)
1605 {
1606 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1607 }
1608
1609 static inline bool f2fs_is_volatile_file(struct inode *inode)
1610 {
1611 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1612 }
1613
1614 static inline bool f2fs_is_first_block_written(struct inode *inode)
1615 {
1616 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1617 }
1618
1619 static inline bool f2fs_is_drop_cache(struct inode *inode)
1620 {
1621 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1622 }
1623
1624 static inline void *inline_data_addr(struct page *page)
1625 {
1626 struct f2fs_inode *ri = F2FS_INODE(page);
1627 return (void *)&(ri->i_addr[1]);
1628 }
1629
1630 static inline int f2fs_has_inline_dentry(struct inode *inode)
1631 {
1632 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1633 }
1634
1635 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1636 {
1637 if (!f2fs_has_inline_dentry(dir))
1638 kunmap(page);
1639 }
1640
1641 static inline int is_file(struct inode *inode, int type)
1642 {
1643 return F2FS_I(inode)->i_advise & type;
1644 }
1645
1646 static inline void set_file(struct inode *inode, int type)
1647 {
1648 F2FS_I(inode)->i_advise |= type;
1649 }
1650
1651 static inline void clear_file(struct inode *inode, int type)
1652 {
1653 F2FS_I(inode)->i_advise &= ~type;
1654 }
1655
1656 static inline int f2fs_readonly(struct super_block *sb)
1657 {
1658 return sb->s_flags & MS_RDONLY;
1659 }
1660
1661 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1662 {
1663 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1664 }
1665
1666 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1667 {
1668 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1669 sbi->sb->s_flags |= MS_RDONLY;
1670 }
1671
1672 static inline bool is_dot_dotdot(const struct qstr *str)
1673 {
1674 if (str->len == 1 && str->name[0] == '.')
1675 return true;
1676
1677 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1678 return true;
1679
1680 return false;
1681 }
1682
1683 static inline bool f2fs_may_extent_tree(struct inode *inode)
1684 {
1685 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1686 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1687 return false;
1688
1689 return S_ISREG(inode->i_mode);
1690 }
1691
1692 static inline void *f2fs_kmalloc(size_t size, gfp_t flags)
1693 {
1694 #ifdef CONFIG_F2FS_FAULT_INJECTION
1695 if (time_to_inject(FAULT_KMALLOC))
1696 return NULL;
1697 #endif
1698 return kmalloc(size, flags);
1699 }
1700
1701 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1702 {
1703 void *ret;
1704
1705 ret = kmalloc(size, flags | __GFP_NOWARN);
1706 if (!ret)
1707 ret = __vmalloc(size, flags, PAGE_KERNEL);
1708 return ret;
1709 }
1710
1711 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1712 {
1713 void *ret;
1714
1715 ret = kzalloc(size, flags | __GFP_NOWARN);
1716 if (!ret)
1717 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1718 return ret;
1719 }
1720
1721 #define get_inode_mode(i) \
1722 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1723 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1724
1725 /* get offset of first page in next direct node */
1726 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1727 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1728 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1729 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1730
1731 /*
1732 * file.c
1733 */
1734 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1735 void truncate_data_blocks(struct dnode_of_data *);
1736 int truncate_blocks(struct inode *, u64, bool);
1737 int f2fs_truncate(struct inode *, bool);
1738 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1739 int f2fs_setattr(struct dentry *, struct iattr *);
1740 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1741 int truncate_data_blocks_range(struct dnode_of_data *, int);
1742 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1743 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1744
1745 /*
1746 * inode.c
1747 */
1748 void f2fs_set_inode_flags(struct inode *);
1749 struct inode *f2fs_iget(struct super_block *, unsigned long);
1750 int try_to_free_nats(struct f2fs_sb_info *, int);
1751 int update_inode(struct inode *, struct page *);
1752 int update_inode_page(struct inode *);
1753 int f2fs_write_inode(struct inode *, struct writeback_control *);
1754 void f2fs_evict_inode(struct inode *);
1755 void handle_failed_inode(struct inode *);
1756
1757 /*
1758 * namei.c
1759 */
1760 struct dentry *f2fs_get_parent(struct dentry *child);
1761
1762 /*
1763 * dir.c
1764 */
1765 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1766 void set_de_type(struct f2fs_dir_entry *, umode_t);
1767 unsigned char get_de_type(struct f2fs_dir_entry *);
1768 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1769 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1770 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1771 unsigned int, struct fscrypt_str *);
1772 void do_make_empty_dir(struct inode *, struct inode *,
1773 struct f2fs_dentry_ptr *);
1774 struct page *init_inode_metadata(struct inode *, struct inode *,
1775 const struct qstr *, struct page *);
1776 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1777 int room_for_filename(const void *, int, int);
1778 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1779 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1780 struct page **);
1781 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1782 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1783 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1784 struct page *, struct inode *);
1785 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1786 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1787 const struct qstr *, f2fs_hash_t , unsigned int);
1788 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1789 struct inode *, nid_t, umode_t);
1790 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1791 umode_t);
1792 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1793 struct inode *);
1794 int f2fs_do_tmpfile(struct inode *, struct inode *);
1795 bool f2fs_empty_dir(struct inode *);
1796
1797 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1798 {
1799 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1800 inode, inode->i_ino, inode->i_mode);
1801 }
1802
1803 /*
1804 * super.c
1805 */
1806 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1807 int f2fs_sync_fs(struct super_block *, int);
1808 extern __printf(3, 4)
1809 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1810 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1811
1812 /*
1813 * hash.c
1814 */
1815 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1816
1817 /*
1818 * node.c
1819 */
1820 struct dnode_of_data;
1821 struct node_info;
1822
1823 bool available_free_memory(struct f2fs_sb_info *, int);
1824 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1825 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1826 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1827 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1828 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1829 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1830 int truncate_inode_blocks(struct inode *, pgoff_t);
1831 int truncate_xattr_node(struct inode *, struct page *);
1832 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1833 int remove_inode_page(struct inode *);
1834 struct page *new_inode_page(struct inode *);
1835 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1836 void ra_node_page(struct f2fs_sb_info *, nid_t);
1837 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1838 struct page *get_node_page_ra(struct page *, int);
1839 void sync_inode_page(struct dnode_of_data *);
1840 void move_node_page(struct page *, int);
1841 int fsync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *,
1842 bool);
1843 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
1844 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1845 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1846 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1847 int try_to_free_nids(struct f2fs_sb_info *, int);
1848 void recover_inline_xattr(struct inode *, struct page *);
1849 void recover_xattr_data(struct inode *, struct page *, block_t);
1850 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1851 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1852 struct f2fs_summary_block *);
1853 void flush_nat_entries(struct f2fs_sb_info *);
1854 int build_node_manager(struct f2fs_sb_info *);
1855 void destroy_node_manager(struct f2fs_sb_info *);
1856 int __init create_node_manager_caches(void);
1857 void destroy_node_manager_caches(void);
1858
1859 /*
1860 * segment.c
1861 */
1862 void register_inmem_page(struct inode *, struct page *);
1863 void drop_inmem_pages(struct inode *);
1864 int commit_inmem_pages(struct inode *);
1865 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1866 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1867 int f2fs_issue_flush(struct f2fs_sb_info *);
1868 int create_flush_cmd_control(struct f2fs_sb_info *);
1869 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1870 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1871 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1872 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1873 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1874 void release_discard_addrs(struct f2fs_sb_info *);
1875 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1876 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1877 void allocate_new_segments(struct f2fs_sb_info *);
1878 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1879 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1880 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1881 void write_meta_page(struct f2fs_sb_info *, struct page *);
1882 void write_node_page(unsigned int, struct f2fs_io_info *);
1883 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1884 void rewrite_data_page(struct f2fs_io_info *);
1885 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
1886 block_t, block_t, bool, bool);
1887 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1888 block_t, block_t, unsigned char, bool, bool);
1889 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1890 block_t, block_t *, struct f2fs_summary *, int);
1891 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
1892 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1893 void write_data_summaries(struct f2fs_sb_info *, block_t);
1894 void write_node_summaries(struct f2fs_sb_info *, block_t);
1895 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
1896 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1897 int build_segment_manager(struct f2fs_sb_info *);
1898 void destroy_segment_manager(struct f2fs_sb_info *);
1899 int __init create_segment_manager_caches(void);
1900 void destroy_segment_manager_caches(void);
1901
1902 /*
1903 * checkpoint.c
1904 */
1905 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1906 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1907 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1908 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1909 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1910 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1911 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1912 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1913 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1914 void release_ino_entry(struct f2fs_sb_info *, bool);
1915 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1916 int acquire_orphan_inode(struct f2fs_sb_info *);
1917 void release_orphan_inode(struct f2fs_sb_info *);
1918 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1919 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1920 int recover_orphan_inodes(struct f2fs_sb_info *);
1921 int get_valid_checkpoint(struct f2fs_sb_info *);
1922 void update_dirty_page(struct inode *, struct page *);
1923 void add_dirty_dir_inode(struct inode *);
1924 void remove_dirty_inode(struct inode *);
1925 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1926 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1927 void init_ino_entry_info(struct f2fs_sb_info *);
1928 int __init create_checkpoint_caches(void);
1929 void destroy_checkpoint_caches(void);
1930
1931 /*
1932 * data.c
1933 */
1934 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1935 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
1936 struct page *, nid_t, enum page_type, int);
1937 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
1938 int f2fs_submit_page_bio(struct f2fs_io_info *);
1939 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1940 void set_data_blkaddr(struct dnode_of_data *);
1941 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
1942 int reserve_new_block(struct dnode_of_data *);
1943 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1944 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
1945 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1946 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1947 struct page *find_data_page(struct inode *, pgoff_t);
1948 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1949 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1950 int do_write_data_page(struct f2fs_io_info *);
1951 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1952 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1953 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1954 int f2fs_release_page(struct page *, gfp_t);
1955
1956 /*
1957 * gc.c
1958 */
1959 int start_gc_thread(struct f2fs_sb_info *);
1960 void stop_gc_thread(struct f2fs_sb_info *);
1961 block_t start_bidx_of_node(unsigned int, struct inode *);
1962 int f2fs_gc(struct f2fs_sb_info *, bool);
1963 void build_gc_manager(struct f2fs_sb_info *);
1964
1965 /*
1966 * recovery.c
1967 */
1968 int recover_fsync_data(struct f2fs_sb_info *, bool);
1969 bool space_for_roll_forward(struct f2fs_sb_info *);
1970
1971 /*
1972 * debug.c
1973 */
1974 #ifdef CONFIG_F2FS_STAT_FS
1975 struct f2fs_stat_info {
1976 struct list_head stat_list;
1977 struct f2fs_sb_info *sbi;
1978 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1979 int main_area_segs, main_area_sections, main_area_zones;
1980 unsigned long long hit_largest, hit_cached, hit_rbtree;
1981 unsigned long long hit_total, total_ext;
1982 int ext_tree, zombie_tree, ext_node;
1983 int ndirty_node, ndirty_meta;
1984 int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files;
1985 int nats, dirty_nats, sits, dirty_sits, fnids;
1986 int total_count, utilization;
1987 int bg_gc, inmem_pages, wb_pages;
1988 int inline_xattr, inline_inode, inline_dir;
1989 unsigned int valid_count, valid_node_count, valid_inode_count;
1990 unsigned int bimodal, avg_vblocks;
1991 int util_free, util_valid, util_invalid;
1992 int rsvd_segs, overp_segs;
1993 int dirty_count, node_pages, meta_pages;
1994 int prefree_count, call_count, cp_count, bg_cp_count;
1995 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1996 int bg_node_segs, bg_data_segs;
1997 int tot_blks, data_blks, node_blks;
1998 int bg_data_blks, bg_node_blks;
1999 int curseg[NR_CURSEG_TYPE];
2000 int cursec[NR_CURSEG_TYPE];
2001 int curzone[NR_CURSEG_TYPE];
2002
2003 unsigned int segment_count[2];
2004 unsigned int block_count[2];
2005 unsigned int inplace_count;
2006 unsigned long long base_mem, cache_mem, page_mem;
2007 };
2008
2009 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2010 {
2011 return (struct f2fs_stat_info *)sbi->stat_info;
2012 }
2013
2014 #define stat_inc_cp_count(si) ((si)->cp_count++)
2015 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2016 #define stat_inc_call_count(si) ((si)->call_count++)
2017 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2018 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2019 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2020 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2021 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2022 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2023 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2024 #define stat_inc_inline_xattr(inode) \
2025 do { \
2026 if (f2fs_has_inline_xattr(inode)) \
2027 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2028 } while (0)
2029 #define stat_dec_inline_xattr(inode) \
2030 do { \
2031 if (f2fs_has_inline_xattr(inode)) \
2032 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2033 } while (0)
2034 #define stat_inc_inline_inode(inode) \
2035 do { \
2036 if (f2fs_has_inline_data(inode)) \
2037 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2038 } while (0)
2039 #define stat_dec_inline_inode(inode) \
2040 do { \
2041 if (f2fs_has_inline_data(inode)) \
2042 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2043 } while (0)
2044 #define stat_inc_inline_dir(inode) \
2045 do { \
2046 if (f2fs_has_inline_dentry(inode)) \
2047 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2048 } while (0)
2049 #define stat_dec_inline_dir(inode) \
2050 do { \
2051 if (f2fs_has_inline_dentry(inode)) \
2052 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2053 } while (0)
2054 #define stat_inc_seg_type(sbi, curseg) \
2055 ((sbi)->segment_count[(curseg)->alloc_type]++)
2056 #define stat_inc_block_count(sbi, curseg) \
2057 ((sbi)->block_count[(curseg)->alloc_type]++)
2058 #define stat_inc_inplace_blocks(sbi) \
2059 (atomic_inc(&(sbi)->inplace_count))
2060 #define stat_inc_seg_count(sbi, type, gc_type) \
2061 do { \
2062 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2063 (si)->tot_segs++; \
2064 if (type == SUM_TYPE_DATA) { \
2065 si->data_segs++; \
2066 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2067 } else { \
2068 si->node_segs++; \
2069 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2070 } \
2071 } while (0)
2072
2073 #define stat_inc_tot_blk_count(si, blks) \
2074 (si->tot_blks += (blks))
2075
2076 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2077 do { \
2078 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2079 stat_inc_tot_blk_count(si, blks); \
2080 si->data_blks += (blks); \
2081 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2082 } while (0)
2083
2084 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2085 do { \
2086 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2087 stat_inc_tot_blk_count(si, blks); \
2088 si->node_blks += (blks); \
2089 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2090 } while (0)
2091
2092 int f2fs_build_stats(struct f2fs_sb_info *);
2093 void f2fs_destroy_stats(struct f2fs_sb_info *);
2094 int __init f2fs_create_root_stats(void);
2095 void f2fs_destroy_root_stats(void);
2096 #else
2097 #define stat_inc_cp_count(si)
2098 #define stat_inc_bg_cp_count(si)
2099 #define stat_inc_call_count(si)
2100 #define stat_inc_bggc_count(si)
2101 #define stat_inc_dirty_inode(sbi, type)
2102 #define stat_dec_dirty_inode(sbi, type)
2103 #define stat_inc_total_hit(sb)
2104 #define stat_inc_rbtree_node_hit(sb)
2105 #define stat_inc_largest_node_hit(sbi)
2106 #define stat_inc_cached_node_hit(sbi)
2107 #define stat_inc_inline_xattr(inode)
2108 #define stat_dec_inline_xattr(inode)
2109 #define stat_inc_inline_inode(inode)
2110 #define stat_dec_inline_inode(inode)
2111 #define stat_inc_inline_dir(inode)
2112 #define stat_dec_inline_dir(inode)
2113 #define stat_inc_seg_type(sbi, curseg)
2114 #define stat_inc_block_count(sbi, curseg)
2115 #define stat_inc_inplace_blocks(sbi)
2116 #define stat_inc_seg_count(sbi, type, gc_type)
2117 #define stat_inc_tot_blk_count(si, blks)
2118 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2119 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2120
2121 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2122 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2123 static inline int __init f2fs_create_root_stats(void) { return 0; }
2124 static inline void f2fs_destroy_root_stats(void) { }
2125 #endif
2126
2127 extern const struct file_operations f2fs_dir_operations;
2128 extern const struct file_operations f2fs_file_operations;
2129 extern const struct inode_operations f2fs_file_inode_operations;
2130 extern const struct address_space_operations f2fs_dblock_aops;
2131 extern const struct address_space_operations f2fs_node_aops;
2132 extern const struct address_space_operations f2fs_meta_aops;
2133 extern const struct inode_operations f2fs_dir_inode_operations;
2134 extern const struct inode_operations f2fs_symlink_inode_operations;
2135 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2136 extern const struct inode_operations f2fs_special_inode_operations;
2137 extern struct kmem_cache *inode_entry_slab;
2138
2139 /*
2140 * inline.c
2141 */
2142 bool f2fs_may_inline_data(struct inode *);
2143 bool f2fs_may_inline_dentry(struct inode *);
2144 void read_inline_data(struct page *, struct page *);
2145 bool truncate_inline_inode(struct page *, u64);
2146 int f2fs_read_inline_data(struct inode *, struct page *);
2147 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2148 int f2fs_convert_inline_inode(struct inode *);
2149 int f2fs_write_inline_data(struct inode *, struct page *);
2150 bool recover_inline_data(struct inode *, struct page *);
2151 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2152 struct fscrypt_name *, struct page **);
2153 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2154 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2155 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2156 nid_t, umode_t);
2157 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2158 struct inode *, struct inode *);
2159 bool f2fs_empty_inline_dir(struct inode *);
2160 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2161 struct fscrypt_str *);
2162 int f2fs_inline_data_fiemap(struct inode *,
2163 struct fiemap_extent_info *, __u64, __u64);
2164
2165 /*
2166 * shrinker.c
2167 */
2168 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2169 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2170 void f2fs_join_shrinker(struct f2fs_sb_info *);
2171 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2172
2173 /*
2174 * extent_cache.c
2175 */
2176 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2177 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2178 unsigned int f2fs_destroy_extent_node(struct inode *);
2179 void f2fs_destroy_extent_tree(struct inode *);
2180 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2181 void f2fs_update_extent_cache(struct dnode_of_data *);
2182 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2183 pgoff_t, block_t, unsigned int);
2184 void init_extent_cache_info(struct f2fs_sb_info *);
2185 int __init create_extent_cache(void);
2186 void destroy_extent_cache(void);
2187
2188 /*
2189 * crypto support
2190 */
2191 static inline bool f2fs_encrypted_inode(struct inode *inode)
2192 {
2193 return file_is_encrypt(inode);
2194 }
2195
2196 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2197 {
2198 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2199 file_set_encrypt(inode);
2200 #endif
2201 }
2202
2203 static inline bool f2fs_bio_encrypted(struct bio *bio)
2204 {
2205 return bio->bi_private != NULL;
2206 }
2207
2208 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2209 {
2210 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2211 }
2212
2213 static inline bool f2fs_may_encrypt(struct inode *inode)
2214 {
2215 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2216 umode_t mode = inode->i_mode;
2217
2218 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2219 #else
2220 return 0;
2221 #endif
2222 }
2223
2224 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2225 #define fscrypt_set_d_op(i)
2226 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2227 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2228 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2229 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2230 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2231 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2232 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2233 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2234 #define fscrypt_process_policy fscrypt_notsupp_process_policy
2235 #define fscrypt_get_policy fscrypt_notsupp_get_policy
2236 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2237 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2238 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2239 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2240 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2241 #define fscrypt_free_filename fscrypt_notsupp_free_filename
2242 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2243 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2244 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2245 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2246 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2247 #endif
2248 #endif
This page took 0.076269 seconds and 5 git commands to generate.