f2fs: call update_inode_page for orphan inodes
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38 #endif
39
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 FAULT_KMALLOC,
43 FAULT_PAGE_ALLOC,
44 FAULT_ALLOC_NID,
45 FAULT_ORPHAN,
46 FAULT_BLOCK,
47 FAULT_DIR_DEPTH,
48 FAULT_EVICT_INODE,
49 FAULT_MAX,
50 };
51
52 struct f2fs_fault_info {
53 atomic_t inject_ops;
54 unsigned int inject_rate;
55 unsigned int inject_type;
56 };
57
58 extern struct f2fs_fault_info f2fs_fault;
59 extern char *fault_name[FAULT_MAX];
60 #define IS_FAULT_SET(type) (f2fs_fault.inject_type & (1 << (type)))
61
62 static inline bool time_to_inject(int type)
63 {
64 if (!f2fs_fault.inject_rate)
65 return false;
66 if (type == FAULT_KMALLOC && !IS_FAULT_SET(type))
67 return false;
68 else if (type == FAULT_PAGE_ALLOC && !IS_FAULT_SET(type))
69 return false;
70 else if (type == FAULT_ALLOC_NID && !IS_FAULT_SET(type))
71 return false;
72 else if (type == FAULT_ORPHAN && !IS_FAULT_SET(type))
73 return false;
74 else if (type == FAULT_BLOCK && !IS_FAULT_SET(type))
75 return false;
76 else if (type == FAULT_DIR_DEPTH && !IS_FAULT_SET(type))
77 return false;
78 else if (type == FAULT_EVICT_INODE && !IS_FAULT_SET(type))
79 return false;
80
81 atomic_inc(&f2fs_fault.inject_ops);
82 if (atomic_read(&f2fs_fault.inject_ops) >= f2fs_fault.inject_rate) {
83 atomic_set(&f2fs_fault.inject_ops, 0);
84 printk("%sF2FS-fs : inject %s in %pF\n",
85 KERN_INFO,
86 fault_name[type],
87 __builtin_return_address(0));
88 return true;
89 }
90 return false;
91 }
92 #endif
93
94 /*
95 * For mount options
96 */
97 #define F2FS_MOUNT_BG_GC 0x00000001
98 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
99 #define F2FS_MOUNT_DISCARD 0x00000004
100 #define F2FS_MOUNT_NOHEAP 0x00000008
101 #define F2FS_MOUNT_XATTR_USER 0x00000010
102 #define F2FS_MOUNT_POSIX_ACL 0x00000020
103 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
104 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
105 #define F2FS_MOUNT_INLINE_DATA 0x00000100
106 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
107 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
108 #define F2FS_MOUNT_NOBARRIER 0x00000800
109 #define F2FS_MOUNT_FASTBOOT 0x00001000
110 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
111 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
112 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
113 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
114 #define F2FS_MOUNT_ADAPTIVE 0x00020000
115 #define F2FS_MOUNT_LFS 0x00040000
116
117 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
118 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
119 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
120
121 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
122 typecheck(unsigned long long, b) && \
123 ((long long)((a) - (b)) > 0))
124
125 typedef u32 block_t; /*
126 * should not change u32, since it is the on-disk block
127 * address format, __le32.
128 */
129 typedef u32 nid_t;
130
131 struct f2fs_mount_info {
132 unsigned int opt;
133 };
134
135 #define F2FS_FEATURE_ENCRYPT 0x0001
136
137 #define F2FS_HAS_FEATURE(sb, mask) \
138 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
139 #define F2FS_SET_FEATURE(sb, mask) \
140 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
141 #define F2FS_CLEAR_FEATURE(sb, mask) \
142 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
143
144 /*
145 * For checkpoint manager
146 */
147 enum {
148 NAT_BITMAP,
149 SIT_BITMAP
150 };
151
152 enum {
153 CP_UMOUNT,
154 CP_FASTBOOT,
155 CP_SYNC,
156 CP_RECOVERY,
157 CP_DISCARD,
158 };
159
160 #define DEF_BATCHED_TRIM_SECTIONS 32
161 #define BATCHED_TRIM_SEGMENTS(sbi) \
162 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
163 #define BATCHED_TRIM_BLOCKS(sbi) \
164 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
165 #define DEF_CP_INTERVAL 60 /* 60 secs */
166 #define DEF_IDLE_INTERVAL 120 /* 2 mins */
167
168 struct cp_control {
169 int reason;
170 __u64 trim_start;
171 __u64 trim_end;
172 __u64 trim_minlen;
173 __u64 trimmed;
174 };
175
176 /*
177 * For CP/NAT/SIT/SSA readahead
178 */
179 enum {
180 META_CP,
181 META_NAT,
182 META_SIT,
183 META_SSA,
184 META_POR,
185 };
186
187 /* for the list of ino */
188 enum {
189 ORPHAN_INO, /* for orphan ino list */
190 APPEND_INO, /* for append ino list */
191 UPDATE_INO, /* for update ino list */
192 MAX_INO_ENTRY, /* max. list */
193 };
194
195 struct ino_entry {
196 struct list_head list; /* list head */
197 nid_t ino; /* inode number */
198 };
199
200 /* for the list of inodes to be GCed */
201 struct inode_entry {
202 struct list_head list; /* list head */
203 struct inode *inode; /* vfs inode pointer */
204 };
205
206 /* for the list of blockaddresses to be discarded */
207 struct discard_entry {
208 struct list_head list; /* list head */
209 block_t blkaddr; /* block address to be discarded */
210 int len; /* # of consecutive blocks of the discard */
211 };
212
213 /* for the list of fsync inodes, used only during recovery */
214 struct fsync_inode_entry {
215 struct list_head list; /* list head */
216 struct inode *inode; /* vfs inode pointer */
217 block_t blkaddr; /* block address locating the last fsync */
218 block_t last_dentry; /* block address locating the last dentry */
219 };
220
221 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
222 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
223
224 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
225 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
226 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
227 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
228
229 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
230 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
231
232 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
233 {
234 int before = nats_in_cursum(journal);
235 journal->n_nats = cpu_to_le16(before + i);
236 return before;
237 }
238
239 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
240 {
241 int before = sits_in_cursum(journal);
242 journal->n_sits = cpu_to_le16(before + i);
243 return before;
244 }
245
246 static inline bool __has_cursum_space(struct f2fs_journal *journal,
247 int size, int type)
248 {
249 if (type == NAT_JOURNAL)
250 return size <= MAX_NAT_JENTRIES(journal);
251 return size <= MAX_SIT_JENTRIES(journal);
252 }
253
254 /*
255 * ioctl commands
256 */
257 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
258 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
259 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
260
261 #define F2FS_IOCTL_MAGIC 0xf5
262 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
263 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
264 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
265 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
266 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
267 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
268 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
269 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
270
271 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
272 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
273 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
274
275 /*
276 * should be same as XFS_IOC_GOINGDOWN.
277 * Flags for going down operation used by FS_IOC_GOINGDOWN
278 */
279 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
280 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
281 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
282 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
283 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
284
285 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
286 /*
287 * ioctl commands in 32 bit emulation
288 */
289 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
290 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
291 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
292 #endif
293
294 struct f2fs_defragment {
295 u64 start;
296 u64 len;
297 };
298
299 /*
300 * For INODE and NODE manager
301 */
302 /* for directory operations */
303 struct f2fs_dentry_ptr {
304 struct inode *inode;
305 const void *bitmap;
306 struct f2fs_dir_entry *dentry;
307 __u8 (*filename)[F2FS_SLOT_LEN];
308 int max;
309 };
310
311 static inline void make_dentry_ptr(struct inode *inode,
312 struct f2fs_dentry_ptr *d, void *src, int type)
313 {
314 d->inode = inode;
315
316 if (type == 1) {
317 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
318 d->max = NR_DENTRY_IN_BLOCK;
319 d->bitmap = &t->dentry_bitmap;
320 d->dentry = t->dentry;
321 d->filename = t->filename;
322 } else {
323 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
324 d->max = NR_INLINE_DENTRY;
325 d->bitmap = &t->dentry_bitmap;
326 d->dentry = t->dentry;
327 d->filename = t->filename;
328 }
329 }
330
331 /*
332 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
333 * as its node offset to distinguish from index node blocks.
334 * But some bits are used to mark the node block.
335 */
336 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
337 >> OFFSET_BIT_SHIFT)
338 enum {
339 ALLOC_NODE, /* allocate a new node page if needed */
340 LOOKUP_NODE, /* look up a node without readahead */
341 LOOKUP_NODE_RA, /*
342 * look up a node with readahead called
343 * by get_data_block.
344 */
345 };
346
347 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
348
349 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
350
351 /* vector size for gang look-up from extent cache that consists of radix tree */
352 #define EXT_TREE_VEC_SIZE 64
353
354 /* for in-memory extent cache entry */
355 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
356
357 /* number of extent info in extent cache we try to shrink */
358 #define EXTENT_CACHE_SHRINK_NUMBER 128
359
360 struct extent_info {
361 unsigned int fofs; /* start offset in a file */
362 u32 blk; /* start block address of the extent */
363 unsigned int len; /* length of the extent */
364 };
365
366 struct extent_node {
367 struct rb_node rb_node; /* rb node located in rb-tree */
368 struct list_head list; /* node in global extent list of sbi */
369 struct extent_info ei; /* extent info */
370 struct extent_tree *et; /* extent tree pointer */
371 };
372
373 struct extent_tree {
374 nid_t ino; /* inode number */
375 struct rb_root root; /* root of extent info rb-tree */
376 struct extent_node *cached_en; /* recently accessed extent node */
377 struct extent_info largest; /* largested extent info */
378 struct list_head list; /* to be used by sbi->zombie_list */
379 rwlock_t lock; /* protect extent info rb-tree */
380 atomic_t node_cnt; /* # of extent node in rb-tree*/
381 };
382
383 /*
384 * This structure is taken from ext4_map_blocks.
385 *
386 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
387 */
388 #define F2FS_MAP_NEW (1 << BH_New)
389 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
390 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
391 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
392 F2FS_MAP_UNWRITTEN)
393
394 struct f2fs_map_blocks {
395 block_t m_pblk;
396 block_t m_lblk;
397 unsigned int m_len;
398 unsigned int m_flags;
399 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
400 };
401
402 /* for flag in get_data_block */
403 #define F2FS_GET_BLOCK_READ 0
404 #define F2FS_GET_BLOCK_DIO 1
405 #define F2FS_GET_BLOCK_FIEMAP 2
406 #define F2FS_GET_BLOCK_BMAP 3
407 #define F2FS_GET_BLOCK_PRE_DIO 4
408 #define F2FS_GET_BLOCK_PRE_AIO 5
409
410 /*
411 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
412 */
413 #define FADVISE_COLD_BIT 0x01
414 #define FADVISE_LOST_PINO_BIT 0x02
415 #define FADVISE_ENCRYPT_BIT 0x04
416 #define FADVISE_ENC_NAME_BIT 0x08
417
418 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
419 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
420 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
421 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
422 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
423 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
424 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
425 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
426 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
427 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
428 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
429
430 #define DEF_DIR_LEVEL 0
431
432 struct f2fs_inode_info {
433 struct inode vfs_inode; /* serve a vfs inode */
434 unsigned long i_flags; /* keep an inode flags for ioctl */
435 unsigned char i_advise; /* use to give file attribute hints */
436 unsigned char i_dir_level; /* use for dentry level for large dir */
437 unsigned int i_current_depth; /* use only in directory structure */
438 unsigned int i_pino; /* parent inode number */
439 umode_t i_acl_mode; /* keep file acl mode temporarily */
440
441 /* Use below internally in f2fs*/
442 unsigned long flags; /* use to pass per-file flags */
443 struct rw_semaphore i_sem; /* protect fi info */
444 struct percpu_counter dirty_pages; /* # of dirty pages */
445 f2fs_hash_t chash; /* hash value of given file name */
446 unsigned int clevel; /* maximum level of given file name */
447 nid_t i_xattr_nid; /* node id that contains xattrs */
448 unsigned long long xattr_ver; /* cp version of xattr modification */
449 loff_t last_disk_size; /* lastly written file size */
450
451 struct list_head dirty_list; /* dirty list for dirs and files */
452 struct list_head gdirty_list; /* linked in global dirty list */
453 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
454 struct mutex inmem_lock; /* lock for inmemory pages */
455 struct extent_tree *extent_tree; /* cached extent_tree entry */
456 };
457
458 static inline void get_extent_info(struct extent_info *ext,
459 struct f2fs_extent *i_ext)
460 {
461 ext->fofs = le32_to_cpu(i_ext->fofs);
462 ext->blk = le32_to_cpu(i_ext->blk);
463 ext->len = le32_to_cpu(i_ext->len);
464 }
465
466 static inline void set_raw_extent(struct extent_info *ext,
467 struct f2fs_extent *i_ext)
468 {
469 i_ext->fofs = cpu_to_le32(ext->fofs);
470 i_ext->blk = cpu_to_le32(ext->blk);
471 i_ext->len = cpu_to_le32(ext->len);
472 }
473
474 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
475 u32 blk, unsigned int len)
476 {
477 ei->fofs = fofs;
478 ei->blk = blk;
479 ei->len = len;
480 }
481
482 static inline bool __is_extent_same(struct extent_info *ei1,
483 struct extent_info *ei2)
484 {
485 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
486 ei1->len == ei2->len);
487 }
488
489 static inline bool __is_extent_mergeable(struct extent_info *back,
490 struct extent_info *front)
491 {
492 return (back->fofs + back->len == front->fofs &&
493 back->blk + back->len == front->blk);
494 }
495
496 static inline bool __is_back_mergeable(struct extent_info *cur,
497 struct extent_info *back)
498 {
499 return __is_extent_mergeable(back, cur);
500 }
501
502 static inline bool __is_front_mergeable(struct extent_info *cur,
503 struct extent_info *front)
504 {
505 return __is_extent_mergeable(cur, front);
506 }
507
508 static inline void __try_update_largest_extent(struct inode *inode,
509 struct extent_tree *et, struct extent_node *en)
510 {
511 if (en->ei.len > et->largest.len) {
512 et->largest = en->ei;
513 mark_inode_dirty_sync(inode);
514 }
515 }
516
517 struct f2fs_nm_info {
518 block_t nat_blkaddr; /* base disk address of NAT */
519 nid_t max_nid; /* maximum possible node ids */
520 nid_t available_nids; /* maximum available node ids */
521 nid_t next_scan_nid; /* the next nid to be scanned */
522 unsigned int ram_thresh; /* control the memory footprint */
523 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
524 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
525
526 /* NAT cache management */
527 struct radix_tree_root nat_root;/* root of the nat entry cache */
528 struct radix_tree_root nat_set_root;/* root of the nat set cache */
529 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
530 struct list_head nat_entries; /* cached nat entry list (clean) */
531 unsigned int nat_cnt; /* the # of cached nat entries */
532 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
533
534 /* free node ids management */
535 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
536 struct list_head free_nid_list; /* a list for free nids */
537 spinlock_t free_nid_list_lock; /* protect free nid list */
538 unsigned int fcnt; /* the number of free node id */
539 struct mutex build_lock; /* lock for build free nids */
540
541 /* for checkpoint */
542 char *nat_bitmap; /* NAT bitmap pointer */
543 int bitmap_size; /* bitmap size */
544 };
545
546 /*
547 * this structure is used as one of function parameters.
548 * all the information are dedicated to a given direct node block determined
549 * by the data offset in a file.
550 */
551 struct dnode_of_data {
552 struct inode *inode; /* vfs inode pointer */
553 struct page *inode_page; /* its inode page, NULL is possible */
554 struct page *node_page; /* cached direct node page */
555 nid_t nid; /* node id of the direct node block */
556 unsigned int ofs_in_node; /* data offset in the node page */
557 bool inode_page_locked; /* inode page is locked or not */
558 bool node_changed; /* is node block changed */
559 char cur_level; /* level of hole node page */
560 char max_level; /* level of current page located */
561 block_t data_blkaddr; /* block address of the node block */
562 };
563
564 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
565 struct page *ipage, struct page *npage, nid_t nid)
566 {
567 memset(dn, 0, sizeof(*dn));
568 dn->inode = inode;
569 dn->inode_page = ipage;
570 dn->node_page = npage;
571 dn->nid = nid;
572 }
573
574 /*
575 * For SIT manager
576 *
577 * By default, there are 6 active log areas across the whole main area.
578 * When considering hot and cold data separation to reduce cleaning overhead,
579 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
580 * respectively.
581 * In the current design, you should not change the numbers intentionally.
582 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
583 * logs individually according to the underlying devices. (default: 6)
584 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
585 * data and 8 for node logs.
586 */
587 #define NR_CURSEG_DATA_TYPE (3)
588 #define NR_CURSEG_NODE_TYPE (3)
589 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
590
591 enum {
592 CURSEG_HOT_DATA = 0, /* directory entry blocks */
593 CURSEG_WARM_DATA, /* data blocks */
594 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
595 CURSEG_HOT_NODE, /* direct node blocks of directory files */
596 CURSEG_WARM_NODE, /* direct node blocks of normal files */
597 CURSEG_COLD_NODE, /* indirect node blocks */
598 NO_CHECK_TYPE,
599 CURSEG_DIRECT_IO, /* to use for the direct IO path */
600 };
601
602 struct flush_cmd {
603 struct completion wait;
604 struct llist_node llnode;
605 int ret;
606 };
607
608 struct flush_cmd_control {
609 struct task_struct *f2fs_issue_flush; /* flush thread */
610 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
611 atomic_t submit_flush; /* # of issued flushes */
612 struct llist_head issue_list; /* list for command issue */
613 struct llist_node *dispatch_list; /* list for command dispatch */
614 };
615
616 struct f2fs_sm_info {
617 struct sit_info *sit_info; /* whole segment information */
618 struct free_segmap_info *free_info; /* free segment information */
619 struct dirty_seglist_info *dirty_info; /* dirty segment information */
620 struct curseg_info *curseg_array; /* active segment information */
621
622 block_t seg0_blkaddr; /* block address of 0'th segment */
623 block_t main_blkaddr; /* start block address of main area */
624 block_t ssa_blkaddr; /* start block address of SSA area */
625
626 unsigned int segment_count; /* total # of segments */
627 unsigned int main_segments; /* # of segments in main area */
628 unsigned int reserved_segments; /* # of reserved segments */
629 unsigned int ovp_segments; /* # of overprovision segments */
630
631 /* a threshold to reclaim prefree segments */
632 unsigned int rec_prefree_segments;
633
634 /* for small discard management */
635 struct list_head discard_list; /* 4KB discard list */
636 int nr_discards; /* # of discards in the list */
637 int max_discards; /* max. discards to be issued */
638
639 /* for batched trimming */
640 unsigned int trim_sections; /* # of sections to trim */
641
642 struct list_head sit_entry_set; /* sit entry set list */
643
644 unsigned int ipu_policy; /* in-place-update policy */
645 unsigned int min_ipu_util; /* in-place-update threshold */
646 unsigned int min_fsync_blocks; /* threshold for fsync */
647
648 /* for flush command control */
649 struct flush_cmd_control *cmd_control_info;
650
651 };
652
653 /*
654 * For superblock
655 */
656 /*
657 * COUNT_TYPE for monitoring
658 *
659 * f2fs monitors the number of several block types such as on-writeback,
660 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
661 */
662 enum count_type {
663 F2FS_DIRTY_DENTS,
664 F2FS_DIRTY_DATA,
665 F2FS_DIRTY_NODES,
666 F2FS_DIRTY_META,
667 F2FS_INMEM_PAGES,
668 F2FS_DIRTY_IMETA,
669 NR_COUNT_TYPE,
670 };
671
672 /*
673 * The below are the page types of bios used in submit_bio().
674 * The available types are:
675 * DATA User data pages. It operates as async mode.
676 * NODE Node pages. It operates as async mode.
677 * META FS metadata pages such as SIT, NAT, CP.
678 * NR_PAGE_TYPE The number of page types.
679 * META_FLUSH Make sure the previous pages are written
680 * with waiting the bio's completion
681 * ... Only can be used with META.
682 */
683 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
684 enum page_type {
685 DATA,
686 NODE,
687 META,
688 NR_PAGE_TYPE,
689 META_FLUSH,
690 INMEM, /* the below types are used by tracepoints only. */
691 INMEM_DROP,
692 INMEM_REVOKE,
693 IPU,
694 OPU,
695 };
696
697 struct f2fs_io_info {
698 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
699 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
700 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
701 block_t new_blkaddr; /* new block address to be written */
702 block_t old_blkaddr; /* old block address before Cow */
703 struct page *page; /* page to be written */
704 struct page *encrypted_page; /* encrypted page */
705 };
706
707 #define is_read_io(rw) (((rw) & 1) == READ)
708 struct f2fs_bio_info {
709 struct f2fs_sb_info *sbi; /* f2fs superblock */
710 struct bio *bio; /* bios to merge */
711 sector_t last_block_in_bio; /* last block number */
712 struct f2fs_io_info fio; /* store buffered io info. */
713 struct rw_semaphore io_rwsem; /* blocking op for bio */
714 };
715
716 enum inode_type {
717 DIR_INODE, /* for dirty dir inode */
718 FILE_INODE, /* for dirty regular/symlink inode */
719 DIRTY_META, /* for all dirtied inode metadata */
720 NR_INODE_TYPE,
721 };
722
723 /* for inner inode cache management */
724 struct inode_management {
725 struct radix_tree_root ino_root; /* ino entry array */
726 spinlock_t ino_lock; /* for ino entry lock */
727 struct list_head ino_list; /* inode list head */
728 unsigned long ino_num; /* number of entries */
729 };
730
731 /* For s_flag in struct f2fs_sb_info */
732 enum {
733 SBI_IS_DIRTY, /* dirty flag for checkpoint */
734 SBI_IS_CLOSE, /* specify unmounting */
735 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
736 SBI_POR_DOING, /* recovery is doing or not */
737 SBI_NEED_SB_WRITE, /* need to recover superblock */
738 };
739
740 enum {
741 CP_TIME,
742 REQ_TIME,
743 MAX_TIME,
744 };
745
746 #ifdef CONFIG_F2FS_FS_ENCRYPTION
747 #define F2FS_KEY_DESC_PREFIX "f2fs:"
748 #define F2FS_KEY_DESC_PREFIX_SIZE 5
749 #endif
750 struct f2fs_sb_info {
751 struct super_block *sb; /* pointer to VFS super block */
752 struct proc_dir_entry *s_proc; /* proc entry */
753 struct f2fs_super_block *raw_super; /* raw super block pointer */
754 int valid_super_block; /* valid super block no */
755 int s_flag; /* flags for sbi */
756
757 #ifdef CONFIG_F2FS_FS_ENCRYPTION
758 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
759 u8 key_prefix_size;
760 #endif
761 /* for node-related operations */
762 struct f2fs_nm_info *nm_info; /* node manager */
763 struct inode *node_inode; /* cache node blocks */
764
765 /* for segment-related operations */
766 struct f2fs_sm_info *sm_info; /* segment manager */
767
768 /* for bio operations */
769 struct f2fs_bio_info read_io; /* for read bios */
770 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
771 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */
772
773 /* for checkpoint */
774 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
775 struct inode *meta_inode; /* cache meta blocks */
776 struct mutex cp_mutex; /* checkpoint procedure lock */
777 struct rw_semaphore cp_rwsem; /* blocking FS operations */
778 struct rw_semaphore node_write; /* locking node writes */
779 wait_queue_head_t cp_wait;
780 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
781 long interval_time[MAX_TIME]; /* to store thresholds */
782
783 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
784
785 /* for orphan inode, use 0'th array */
786 unsigned int max_orphans; /* max orphan inodes */
787
788 /* for inode management */
789 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
790 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
791
792 /* for extent tree cache */
793 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
794 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
795 struct list_head extent_list; /* lru list for shrinker */
796 spinlock_t extent_lock; /* locking extent lru list */
797 atomic_t total_ext_tree; /* extent tree count */
798 struct list_head zombie_list; /* extent zombie tree list */
799 atomic_t total_zombie_tree; /* extent zombie tree count */
800 atomic_t total_ext_node; /* extent info count */
801
802 /* basic filesystem units */
803 unsigned int log_sectors_per_block; /* log2 sectors per block */
804 unsigned int log_blocksize; /* log2 block size */
805 unsigned int blocksize; /* block size */
806 unsigned int root_ino_num; /* root inode number*/
807 unsigned int node_ino_num; /* node inode number*/
808 unsigned int meta_ino_num; /* meta inode number*/
809 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
810 unsigned int blocks_per_seg; /* blocks per segment */
811 unsigned int segs_per_sec; /* segments per section */
812 unsigned int secs_per_zone; /* sections per zone */
813 unsigned int total_sections; /* total section count */
814 unsigned int total_node_count; /* total node block count */
815 unsigned int total_valid_node_count; /* valid node block count */
816 loff_t max_file_blocks; /* max block index of file */
817 int active_logs; /* # of active logs */
818 int dir_level; /* directory level */
819
820 block_t user_block_count; /* # of user blocks */
821 block_t total_valid_block_count; /* # of valid blocks */
822 block_t discard_blks; /* discard command candidats */
823 block_t last_valid_block_count; /* for recovery */
824 u32 s_next_generation; /* for NFS support */
825 atomic_t nr_wb_bios; /* # of writeback bios */
826
827 /* # of pages, see count_type */
828 struct percpu_counter nr_pages[NR_COUNT_TYPE];
829 /* # of allocated blocks */
830 struct percpu_counter alloc_valid_block_count;
831
832 /* valid inode count */
833 struct percpu_counter total_valid_inode_count;
834
835 struct f2fs_mount_info mount_opt; /* mount options */
836
837 /* for cleaning operations */
838 struct mutex gc_mutex; /* mutex for GC */
839 struct f2fs_gc_kthread *gc_thread; /* GC thread */
840 unsigned int cur_victim_sec; /* current victim section num */
841
842 /* maximum # of trials to find a victim segment for SSR and GC */
843 unsigned int max_victim_search;
844
845 /*
846 * for stat information.
847 * one is for the LFS mode, and the other is for the SSR mode.
848 */
849 #ifdef CONFIG_F2FS_STAT_FS
850 struct f2fs_stat_info *stat_info; /* FS status information */
851 unsigned int segment_count[2]; /* # of allocated segments */
852 unsigned int block_count[2]; /* # of allocated blocks */
853 atomic_t inplace_count; /* # of inplace update */
854 atomic64_t total_hit_ext; /* # of lookup extent cache */
855 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
856 atomic64_t read_hit_largest; /* # of hit largest extent node */
857 atomic64_t read_hit_cached; /* # of hit cached extent node */
858 atomic_t inline_xattr; /* # of inline_xattr inodes */
859 atomic_t inline_inode; /* # of inline_data inodes */
860 atomic_t inline_dir; /* # of inline_dentry inodes */
861 int bg_gc; /* background gc calls */
862 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
863 #endif
864 unsigned int last_victim[2]; /* last victim segment # */
865 spinlock_t stat_lock; /* lock for stat operations */
866
867 /* For sysfs suppport */
868 struct kobject s_kobj;
869 struct completion s_kobj_unregister;
870
871 /* For shrinker support */
872 struct list_head s_list;
873 struct mutex umount_mutex;
874 unsigned int shrinker_run_no;
875
876 /* For write statistics */
877 u64 sectors_written_start;
878 u64 kbytes_written;
879
880 /* Reference to checksum algorithm driver via cryptoapi */
881 struct crypto_shash *s_chksum_driver;
882 };
883
884 /* For write statistics. Suppose sector size is 512 bytes,
885 * and the return value is in kbytes. s is of struct f2fs_sb_info.
886 */
887 #define BD_PART_WRITTEN(s) \
888 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
889 s->sectors_written_start) >> 1)
890
891 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
892 {
893 sbi->last_time[type] = jiffies;
894 }
895
896 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
897 {
898 struct timespec ts = {sbi->interval_time[type], 0};
899 unsigned long interval = timespec_to_jiffies(&ts);
900
901 return time_after(jiffies, sbi->last_time[type] + interval);
902 }
903
904 static inline bool is_idle(struct f2fs_sb_info *sbi)
905 {
906 struct block_device *bdev = sbi->sb->s_bdev;
907 struct request_queue *q = bdev_get_queue(bdev);
908 struct request_list *rl = &q->root_rl;
909
910 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
911 return 0;
912
913 return f2fs_time_over(sbi, REQ_TIME);
914 }
915
916 /*
917 * Inline functions
918 */
919 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
920 unsigned int length)
921 {
922 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
923 u32 *ctx = (u32 *)shash_desc_ctx(shash);
924 int err;
925
926 shash->tfm = sbi->s_chksum_driver;
927 shash->flags = 0;
928 *ctx = F2FS_SUPER_MAGIC;
929
930 err = crypto_shash_update(shash, address, length);
931 BUG_ON(err);
932
933 return *ctx;
934 }
935
936 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
937 void *buf, size_t buf_size)
938 {
939 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
940 }
941
942 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
943 {
944 return container_of(inode, struct f2fs_inode_info, vfs_inode);
945 }
946
947 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
948 {
949 return sb->s_fs_info;
950 }
951
952 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
953 {
954 return F2FS_SB(inode->i_sb);
955 }
956
957 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
958 {
959 return F2FS_I_SB(mapping->host);
960 }
961
962 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
963 {
964 return F2FS_M_SB(page->mapping);
965 }
966
967 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
968 {
969 return (struct f2fs_super_block *)(sbi->raw_super);
970 }
971
972 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
973 {
974 return (struct f2fs_checkpoint *)(sbi->ckpt);
975 }
976
977 static inline struct f2fs_node *F2FS_NODE(struct page *page)
978 {
979 return (struct f2fs_node *)page_address(page);
980 }
981
982 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
983 {
984 return &((struct f2fs_node *)page_address(page))->i;
985 }
986
987 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
988 {
989 return (struct f2fs_nm_info *)(sbi->nm_info);
990 }
991
992 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
993 {
994 return (struct f2fs_sm_info *)(sbi->sm_info);
995 }
996
997 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
998 {
999 return (struct sit_info *)(SM_I(sbi)->sit_info);
1000 }
1001
1002 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1003 {
1004 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1005 }
1006
1007 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1008 {
1009 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1010 }
1011
1012 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1013 {
1014 return sbi->meta_inode->i_mapping;
1015 }
1016
1017 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1018 {
1019 return sbi->node_inode->i_mapping;
1020 }
1021
1022 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1023 {
1024 return sbi->s_flag & (0x01 << type);
1025 }
1026
1027 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1028 {
1029 sbi->s_flag |= (0x01 << type);
1030 }
1031
1032 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1033 {
1034 sbi->s_flag &= ~(0x01 << type);
1035 }
1036
1037 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1038 {
1039 return le64_to_cpu(cp->checkpoint_ver);
1040 }
1041
1042 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1043 {
1044 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1045 return ckpt_flags & f;
1046 }
1047
1048 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1049 {
1050 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1051 ckpt_flags |= f;
1052 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1053 }
1054
1055 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1056 {
1057 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1058 ckpt_flags &= (~f);
1059 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1060 }
1061
1062 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1063 {
1064 down_read(&sbi->cp_rwsem);
1065 }
1066
1067 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1068 {
1069 up_read(&sbi->cp_rwsem);
1070 }
1071
1072 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1073 {
1074 down_write(&sbi->cp_rwsem);
1075 }
1076
1077 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1078 {
1079 up_write(&sbi->cp_rwsem);
1080 }
1081
1082 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1083 {
1084 int reason = CP_SYNC;
1085
1086 if (test_opt(sbi, FASTBOOT))
1087 reason = CP_FASTBOOT;
1088 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1089 reason = CP_UMOUNT;
1090 return reason;
1091 }
1092
1093 static inline bool __remain_node_summaries(int reason)
1094 {
1095 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1096 }
1097
1098 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1099 {
1100 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1101 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1102 }
1103
1104 /*
1105 * Check whether the given nid is within node id range.
1106 */
1107 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1108 {
1109 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1110 return -EINVAL;
1111 if (unlikely(nid >= NM_I(sbi)->max_nid))
1112 return -EINVAL;
1113 return 0;
1114 }
1115
1116 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1117
1118 /*
1119 * Check whether the inode has blocks or not
1120 */
1121 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1122 {
1123 if (F2FS_I(inode)->i_xattr_nid)
1124 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1125 else
1126 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1127 }
1128
1129 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1130 {
1131 return ofs == XATTR_NODE_OFFSET;
1132 }
1133
1134 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1135 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1136 struct inode *inode, blkcnt_t *count)
1137 {
1138 block_t valid_block_count;
1139
1140 spin_lock(&sbi->stat_lock);
1141 #ifdef CONFIG_F2FS_FAULT_INJECTION
1142 if (time_to_inject(FAULT_BLOCK)) {
1143 spin_unlock(&sbi->stat_lock);
1144 return false;
1145 }
1146 #endif
1147 valid_block_count =
1148 sbi->total_valid_block_count + (block_t)(*count);
1149 if (unlikely(valid_block_count > sbi->user_block_count)) {
1150 *count = sbi->user_block_count - sbi->total_valid_block_count;
1151 if (!*count) {
1152 spin_unlock(&sbi->stat_lock);
1153 return false;
1154 }
1155 }
1156 /* *count can be recalculated */
1157 f2fs_i_blocks_write(inode, *count, true);
1158 sbi->total_valid_block_count =
1159 sbi->total_valid_block_count + (block_t)(*count);
1160 spin_unlock(&sbi->stat_lock);
1161
1162 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1163 return true;
1164 }
1165
1166 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1167 struct inode *inode,
1168 blkcnt_t count)
1169 {
1170 spin_lock(&sbi->stat_lock);
1171 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1172 f2fs_bug_on(sbi, inode->i_blocks < count);
1173 f2fs_i_blocks_write(inode, count, false);
1174 sbi->total_valid_block_count -= (block_t)count;
1175 spin_unlock(&sbi->stat_lock);
1176 }
1177
1178 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1179 {
1180 percpu_counter_inc(&sbi->nr_pages[count_type]);
1181 set_sbi_flag(sbi, SBI_IS_DIRTY);
1182 }
1183
1184 static inline void inode_inc_dirty_pages(struct inode *inode)
1185 {
1186 percpu_counter_inc(&F2FS_I(inode)->dirty_pages);
1187 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1188 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1189 }
1190
1191 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1192 {
1193 percpu_counter_dec(&sbi->nr_pages[count_type]);
1194 }
1195
1196 static inline void inode_dec_dirty_pages(struct inode *inode)
1197 {
1198 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1199 !S_ISLNK(inode->i_mode))
1200 return;
1201
1202 percpu_counter_dec(&F2FS_I(inode)->dirty_pages);
1203 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1204 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1205 }
1206
1207 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1208 {
1209 return percpu_counter_sum_positive(&sbi->nr_pages[count_type]);
1210 }
1211
1212 static inline s64 get_dirty_pages(struct inode *inode)
1213 {
1214 return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages);
1215 }
1216
1217 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1218 {
1219 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1220 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1221 sbi->log_blocks_per_seg;
1222
1223 return segs / sbi->segs_per_sec;
1224 }
1225
1226 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1227 {
1228 return sbi->total_valid_block_count;
1229 }
1230
1231 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1232 {
1233 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1234
1235 /* return NAT or SIT bitmap */
1236 if (flag == NAT_BITMAP)
1237 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1238 else if (flag == SIT_BITMAP)
1239 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1240
1241 return 0;
1242 }
1243
1244 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1245 {
1246 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1247 }
1248
1249 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1250 {
1251 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1252 int offset;
1253
1254 if (__cp_payload(sbi) > 0) {
1255 if (flag == NAT_BITMAP)
1256 return &ckpt->sit_nat_version_bitmap;
1257 else
1258 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1259 } else {
1260 offset = (flag == NAT_BITMAP) ?
1261 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1262 return &ckpt->sit_nat_version_bitmap + offset;
1263 }
1264 }
1265
1266 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1267 {
1268 block_t start_addr;
1269 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1270 unsigned long long ckpt_version = cur_cp_version(ckpt);
1271
1272 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1273
1274 /*
1275 * odd numbered checkpoint should at cp segment 0
1276 * and even segment must be at cp segment 1
1277 */
1278 if (!(ckpt_version & 1))
1279 start_addr += sbi->blocks_per_seg;
1280
1281 return start_addr;
1282 }
1283
1284 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1285 {
1286 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1287 }
1288
1289 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1290 struct inode *inode)
1291 {
1292 block_t valid_block_count;
1293 unsigned int valid_node_count;
1294
1295 spin_lock(&sbi->stat_lock);
1296
1297 valid_block_count = sbi->total_valid_block_count + 1;
1298 if (unlikely(valid_block_count > sbi->user_block_count)) {
1299 spin_unlock(&sbi->stat_lock);
1300 return false;
1301 }
1302
1303 valid_node_count = sbi->total_valid_node_count + 1;
1304 if (unlikely(valid_node_count > sbi->total_node_count)) {
1305 spin_unlock(&sbi->stat_lock);
1306 return false;
1307 }
1308
1309 if (inode)
1310 f2fs_i_blocks_write(inode, 1, true);
1311
1312 sbi->total_valid_node_count++;
1313 sbi->total_valid_block_count++;
1314 spin_unlock(&sbi->stat_lock);
1315
1316 percpu_counter_inc(&sbi->alloc_valid_block_count);
1317 return true;
1318 }
1319
1320 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1321 struct inode *inode)
1322 {
1323 spin_lock(&sbi->stat_lock);
1324
1325 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1326 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1327 f2fs_bug_on(sbi, !inode->i_blocks);
1328
1329 f2fs_i_blocks_write(inode, 1, false);
1330 sbi->total_valid_node_count--;
1331 sbi->total_valid_block_count--;
1332
1333 spin_unlock(&sbi->stat_lock);
1334 }
1335
1336 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1337 {
1338 return sbi->total_valid_node_count;
1339 }
1340
1341 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1342 {
1343 percpu_counter_inc(&sbi->total_valid_inode_count);
1344 }
1345
1346 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1347 {
1348 percpu_counter_dec(&sbi->total_valid_inode_count);
1349 }
1350
1351 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1352 {
1353 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1354 }
1355
1356 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1357 pgoff_t index, bool for_write)
1358 {
1359 #ifdef CONFIG_F2FS_FAULT_INJECTION
1360 struct page *page = find_lock_page(mapping, index);
1361 if (page)
1362 return page;
1363
1364 if (time_to_inject(FAULT_PAGE_ALLOC))
1365 return NULL;
1366 #endif
1367 if (!for_write)
1368 return grab_cache_page(mapping, index);
1369 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1370 }
1371
1372 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1373 {
1374 char *src_kaddr = kmap(src);
1375 char *dst_kaddr = kmap(dst);
1376
1377 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1378 kunmap(dst);
1379 kunmap(src);
1380 }
1381
1382 static inline void f2fs_put_page(struct page *page, int unlock)
1383 {
1384 if (!page)
1385 return;
1386
1387 if (unlock) {
1388 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1389 unlock_page(page);
1390 }
1391 put_page(page);
1392 }
1393
1394 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1395 {
1396 if (dn->node_page)
1397 f2fs_put_page(dn->node_page, 1);
1398 if (dn->inode_page && dn->node_page != dn->inode_page)
1399 f2fs_put_page(dn->inode_page, 0);
1400 dn->node_page = NULL;
1401 dn->inode_page = NULL;
1402 }
1403
1404 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1405 size_t size)
1406 {
1407 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1408 }
1409
1410 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1411 gfp_t flags)
1412 {
1413 void *entry;
1414
1415 entry = kmem_cache_alloc(cachep, flags);
1416 if (!entry)
1417 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1418 return entry;
1419 }
1420
1421 static inline struct bio *f2fs_bio_alloc(int npages)
1422 {
1423 struct bio *bio;
1424
1425 /* No failure on bio allocation */
1426 bio = bio_alloc(GFP_NOIO, npages);
1427 if (!bio)
1428 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1429 return bio;
1430 }
1431
1432 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1433 unsigned long index, void *item)
1434 {
1435 while (radix_tree_insert(root, index, item))
1436 cond_resched();
1437 }
1438
1439 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1440
1441 static inline bool IS_INODE(struct page *page)
1442 {
1443 struct f2fs_node *p = F2FS_NODE(page);
1444 return RAW_IS_INODE(p);
1445 }
1446
1447 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1448 {
1449 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1450 }
1451
1452 static inline block_t datablock_addr(struct page *node_page,
1453 unsigned int offset)
1454 {
1455 struct f2fs_node *raw_node;
1456 __le32 *addr_array;
1457 raw_node = F2FS_NODE(node_page);
1458 addr_array = blkaddr_in_node(raw_node);
1459 return le32_to_cpu(addr_array[offset]);
1460 }
1461
1462 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1463 {
1464 int mask;
1465
1466 addr += (nr >> 3);
1467 mask = 1 << (7 - (nr & 0x07));
1468 return mask & *addr;
1469 }
1470
1471 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1472 {
1473 int mask;
1474
1475 addr += (nr >> 3);
1476 mask = 1 << (7 - (nr & 0x07));
1477 *addr |= mask;
1478 }
1479
1480 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1481 {
1482 int mask;
1483
1484 addr += (nr >> 3);
1485 mask = 1 << (7 - (nr & 0x07));
1486 *addr &= ~mask;
1487 }
1488
1489 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1490 {
1491 int mask;
1492 int ret;
1493
1494 addr += (nr >> 3);
1495 mask = 1 << (7 - (nr & 0x07));
1496 ret = mask & *addr;
1497 *addr |= mask;
1498 return ret;
1499 }
1500
1501 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1502 {
1503 int mask;
1504 int ret;
1505
1506 addr += (nr >> 3);
1507 mask = 1 << (7 - (nr & 0x07));
1508 ret = mask & *addr;
1509 *addr &= ~mask;
1510 return ret;
1511 }
1512
1513 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1514 {
1515 int mask;
1516
1517 addr += (nr >> 3);
1518 mask = 1 << (7 - (nr & 0x07));
1519 *addr ^= mask;
1520 }
1521
1522 /* used for f2fs_inode_info->flags */
1523 enum {
1524 FI_NEW_INODE, /* indicate newly allocated inode */
1525 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1526 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1527 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1528 FI_INC_LINK, /* need to increment i_nlink */
1529 FI_ACL_MODE, /* indicate acl mode */
1530 FI_NO_ALLOC, /* should not allocate any blocks */
1531 FI_FREE_NID, /* free allocated nide */
1532 FI_NO_EXTENT, /* not to use the extent cache */
1533 FI_INLINE_XATTR, /* used for inline xattr */
1534 FI_INLINE_DATA, /* used for inline data*/
1535 FI_INLINE_DENTRY, /* used for inline dentry */
1536 FI_APPEND_WRITE, /* inode has appended data */
1537 FI_UPDATE_WRITE, /* inode has in-place-update data */
1538 FI_NEED_IPU, /* used for ipu per file */
1539 FI_ATOMIC_FILE, /* indicate atomic file */
1540 FI_VOLATILE_FILE, /* indicate volatile file */
1541 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1542 FI_DROP_CACHE, /* drop dirty page cache */
1543 FI_DATA_EXIST, /* indicate data exists */
1544 FI_INLINE_DOTS, /* indicate inline dot dentries */
1545 FI_DO_DEFRAG, /* indicate defragment is running */
1546 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1547 };
1548
1549 static inline void __mark_inode_dirty_flag(struct inode *inode,
1550 int flag, bool set)
1551 {
1552 switch (flag) {
1553 case FI_INLINE_XATTR:
1554 case FI_INLINE_DATA:
1555 case FI_INLINE_DENTRY:
1556 if (set)
1557 return;
1558 case FI_DATA_EXIST:
1559 case FI_INLINE_DOTS:
1560 mark_inode_dirty_sync(inode);
1561 }
1562 }
1563
1564 static inline void set_inode_flag(struct inode *inode, int flag)
1565 {
1566 if (!test_bit(flag, &F2FS_I(inode)->flags))
1567 set_bit(flag, &F2FS_I(inode)->flags);
1568 __mark_inode_dirty_flag(inode, flag, true);
1569 }
1570
1571 static inline int is_inode_flag_set(struct inode *inode, int flag)
1572 {
1573 return test_bit(flag, &F2FS_I(inode)->flags);
1574 }
1575
1576 static inline void clear_inode_flag(struct inode *inode, int flag)
1577 {
1578 if (test_bit(flag, &F2FS_I(inode)->flags))
1579 clear_bit(flag, &F2FS_I(inode)->flags);
1580 __mark_inode_dirty_flag(inode, flag, false);
1581 }
1582
1583 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1584 {
1585 F2FS_I(inode)->i_acl_mode = mode;
1586 set_inode_flag(inode, FI_ACL_MODE);
1587 mark_inode_dirty_sync(inode);
1588 }
1589
1590 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1591 {
1592 if (inc)
1593 inc_nlink(inode);
1594 else
1595 drop_nlink(inode);
1596 mark_inode_dirty_sync(inode);
1597 }
1598
1599 static inline void f2fs_i_blocks_write(struct inode *inode,
1600 blkcnt_t diff, bool add)
1601 {
1602 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1603 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1604
1605 inode->i_blocks = add ? inode->i_blocks + diff :
1606 inode->i_blocks - diff;
1607 mark_inode_dirty_sync(inode);
1608 if (clean || recover)
1609 set_inode_flag(inode, FI_AUTO_RECOVER);
1610 }
1611
1612 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1613 {
1614 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1615 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1616
1617 if (i_size_read(inode) == i_size)
1618 return;
1619
1620 i_size_write(inode, i_size);
1621 mark_inode_dirty_sync(inode);
1622 if (clean || recover)
1623 set_inode_flag(inode, FI_AUTO_RECOVER);
1624 }
1625
1626 static inline bool f2fs_skip_inode_update(struct inode *inode)
1627 {
1628 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER))
1629 return false;
1630 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1631 }
1632
1633 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1634 {
1635 F2FS_I(inode)->i_current_depth = depth;
1636 mark_inode_dirty_sync(inode);
1637 }
1638
1639 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1640 {
1641 F2FS_I(inode)->i_xattr_nid = xnid;
1642 mark_inode_dirty_sync(inode);
1643 }
1644
1645 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1646 {
1647 F2FS_I(inode)->i_pino = pino;
1648 mark_inode_dirty_sync(inode);
1649 }
1650
1651 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1652 {
1653 struct f2fs_inode_info *fi = F2FS_I(inode);
1654
1655 if (ri->i_inline & F2FS_INLINE_XATTR)
1656 set_bit(FI_INLINE_XATTR, &fi->flags);
1657 if (ri->i_inline & F2FS_INLINE_DATA)
1658 set_bit(FI_INLINE_DATA, &fi->flags);
1659 if (ri->i_inline & F2FS_INLINE_DENTRY)
1660 set_bit(FI_INLINE_DENTRY, &fi->flags);
1661 if (ri->i_inline & F2FS_DATA_EXIST)
1662 set_bit(FI_DATA_EXIST, &fi->flags);
1663 if (ri->i_inline & F2FS_INLINE_DOTS)
1664 set_bit(FI_INLINE_DOTS, &fi->flags);
1665 }
1666
1667 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1668 {
1669 ri->i_inline = 0;
1670
1671 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1672 ri->i_inline |= F2FS_INLINE_XATTR;
1673 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1674 ri->i_inline |= F2FS_INLINE_DATA;
1675 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1676 ri->i_inline |= F2FS_INLINE_DENTRY;
1677 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1678 ri->i_inline |= F2FS_DATA_EXIST;
1679 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1680 ri->i_inline |= F2FS_INLINE_DOTS;
1681 }
1682
1683 static inline int f2fs_has_inline_xattr(struct inode *inode)
1684 {
1685 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1686 }
1687
1688 static inline unsigned int addrs_per_inode(struct inode *inode)
1689 {
1690 if (f2fs_has_inline_xattr(inode))
1691 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1692 return DEF_ADDRS_PER_INODE;
1693 }
1694
1695 static inline void *inline_xattr_addr(struct page *page)
1696 {
1697 struct f2fs_inode *ri = F2FS_INODE(page);
1698 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1699 F2FS_INLINE_XATTR_ADDRS]);
1700 }
1701
1702 static inline int inline_xattr_size(struct inode *inode)
1703 {
1704 if (f2fs_has_inline_xattr(inode))
1705 return F2FS_INLINE_XATTR_ADDRS << 2;
1706 else
1707 return 0;
1708 }
1709
1710 static inline int f2fs_has_inline_data(struct inode *inode)
1711 {
1712 return is_inode_flag_set(inode, FI_INLINE_DATA);
1713 }
1714
1715 static inline void f2fs_clear_inline_inode(struct inode *inode)
1716 {
1717 clear_inode_flag(inode, FI_INLINE_DATA);
1718 clear_inode_flag(inode, FI_DATA_EXIST);
1719 }
1720
1721 static inline int f2fs_exist_data(struct inode *inode)
1722 {
1723 return is_inode_flag_set(inode, FI_DATA_EXIST);
1724 }
1725
1726 static inline int f2fs_has_inline_dots(struct inode *inode)
1727 {
1728 return is_inode_flag_set(inode, FI_INLINE_DOTS);
1729 }
1730
1731 static inline bool f2fs_is_atomic_file(struct inode *inode)
1732 {
1733 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1734 }
1735
1736 static inline bool f2fs_is_volatile_file(struct inode *inode)
1737 {
1738 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1739 }
1740
1741 static inline bool f2fs_is_first_block_written(struct inode *inode)
1742 {
1743 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1744 }
1745
1746 static inline bool f2fs_is_drop_cache(struct inode *inode)
1747 {
1748 return is_inode_flag_set(inode, FI_DROP_CACHE);
1749 }
1750
1751 static inline void *inline_data_addr(struct page *page)
1752 {
1753 struct f2fs_inode *ri = F2FS_INODE(page);
1754 return (void *)&(ri->i_addr[1]);
1755 }
1756
1757 static inline int f2fs_has_inline_dentry(struct inode *inode)
1758 {
1759 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1760 }
1761
1762 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1763 {
1764 if (!f2fs_has_inline_dentry(dir))
1765 kunmap(page);
1766 }
1767
1768 static inline int is_file(struct inode *inode, int type)
1769 {
1770 return F2FS_I(inode)->i_advise & type;
1771 }
1772
1773 static inline void set_file(struct inode *inode, int type)
1774 {
1775 F2FS_I(inode)->i_advise |= type;
1776 mark_inode_dirty_sync(inode);
1777 }
1778
1779 static inline void clear_file(struct inode *inode, int type)
1780 {
1781 F2FS_I(inode)->i_advise &= ~type;
1782 mark_inode_dirty_sync(inode);
1783 }
1784
1785 static inline int f2fs_readonly(struct super_block *sb)
1786 {
1787 return sb->s_flags & MS_RDONLY;
1788 }
1789
1790 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1791 {
1792 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1793 }
1794
1795 static inline bool is_dot_dotdot(const struct qstr *str)
1796 {
1797 if (str->len == 1 && str->name[0] == '.')
1798 return true;
1799
1800 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1801 return true;
1802
1803 return false;
1804 }
1805
1806 static inline bool f2fs_may_extent_tree(struct inode *inode)
1807 {
1808 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1809 is_inode_flag_set(inode, FI_NO_EXTENT))
1810 return false;
1811
1812 return S_ISREG(inode->i_mode);
1813 }
1814
1815 static inline void *f2fs_kmalloc(size_t size, gfp_t flags)
1816 {
1817 #ifdef CONFIG_F2FS_FAULT_INJECTION
1818 if (time_to_inject(FAULT_KMALLOC))
1819 return NULL;
1820 #endif
1821 return kmalloc(size, flags);
1822 }
1823
1824 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1825 {
1826 void *ret;
1827
1828 ret = kmalloc(size, flags | __GFP_NOWARN);
1829 if (!ret)
1830 ret = __vmalloc(size, flags, PAGE_KERNEL);
1831 return ret;
1832 }
1833
1834 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1835 {
1836 void *ret;
1837
1838 ret = kzalloc(size, flags | __GFP_NOWARN);
1839 if (!ret)
1840 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1841 return ret;
1842 }
1843
1844 #define get_inode_mode(i) \
1845 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
1846 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1847
1848 /* get offset of first page in next direct node */
1849 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1850 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1851 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1852 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1853
1854 /*
1855 * file.c
1856 */
1857 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1858 void truncate_data_blocks(struct dnode_of_data *);
1859 int truncate_blocks(struct inode *, u64, bool);
1860 int f2fs_truncate(struct inode *);
1861 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1862 int f2fs_setattr(struct dentry *, struct iattr *);
1863 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1864 int truncate_data_blocks_range(struct dnode_of_data *, int);
1865 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1866 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1867
1868 /*
1869 * inode.c
1870 */
1871 void f2fs_set_inode_flags(struct inode *);
1872 struct inode *f2fs_iget(struct super_block *, unsigned long);
1873 int try_to_free_nats(struct f2fs_sb_info *, int);
1874 int update_inode(struct inode *, struct page *);
1875 int update_inode_page(struct inode *);
1876 int f2fs_write_inode(struct inode *, struct writeback_control *);
1877 void f2fs_evict_inode(struct inode *);
1878 void handle_failed_inode(struct inode *);
1879
1880 /*
1881 * namei.c
1882 */
1883 struct dentry *f2fs_get_parent(struct dentry *child);
1884
1885 /*
1886 * dir.c
1887 */
1888 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1889 void set_de_type(struct f2fs_dir_entry *, umode_t);
1890 unsigned char get_de_type(struct f2fs_dir_entry *);
1891 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1892 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1893 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1894 unsigned int, struct fscrypt_str *);
1895 void do_make_empty_dir(struct inode *, struct inode *,
1896 struct f2fs_dentry_ptr *);
1897 struct page *init_inode_metadata(struct inode *, struct inode *,
1898 const struct qstr *, struct page *);
1899 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1900 int room_for_filename(const void *, int, int);
1901 void f2fs_drop_nlink(struct inode *, struct inode *);
1902 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1903 struct page **);
1904 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1905 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1906 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1907 struct page *, struct inode *);
1908 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1909 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1910 const struct qstr *, f2fs_hash_t , unsigned int);
1911 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1912 struct inode *, nid_t, umode_t);
1913 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1914 umode_t);
1915 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1916 struct inode *);
1917 int f2fs_do_tmpfile(struct inode *, struct inode *);
1918 bool f2fs_empty_dir(struct inode *);
1919
1920 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1921 {
1922 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1923 inode, inode->i_ino, inode->i_mode);
1924 }
1925
1926 /*
1927 * super.c
1928 */
1929 void f2fs_inode_synced(struct inode *);
1930 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1931 int f2fs_sync_fs(struct super_block *, int);
1932 extern __printf(3, 4)
1933 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1934 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1935
1936 /*
1937 * hash.c
1938 */
1939 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1940
1941 /*
1942 * node.c
1943 */
1944 struct dnode_of_data;
1945 struct node_info;
1946
1947 bool available_free_memory(struct f2fs_sb_info *, int);
1948 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1949 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1950 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1951 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1952 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1953 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1954 int truncate_inode_blocks(struct inode *, pgoff_t);
1955 int truncate_xattr_node(struct inode *, struct page *);
1956 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1957 int remove_inode_page(struct inode *);
1958 struct page *new_inode_page(struct inode *);
1959 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1960 void ra_node_page(struct f2fs_sb_info *, nid_t);
1961 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1962 struct page *get_node_page_ra(struct page *, int);
1963 void move_node_page(struct page *, int);
1964 int fsync_node_pages(struct f2fs_sb_info *, struct inode *,
1965 struct writeback_control *, bool);
1966 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
1967 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1968 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1969 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1970 int try_to_free_nids(struct f2fs_sb_info *, int);
1971 void recover_inline_xattr(struct inode *, struct page *);
1972 void recover_xattr_data(struct inode *, struct page *, block_t);
1973 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1974 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1975 struct f2fs_summary_block *);
1976 void flush_nat_entries(struct f2fs_sb_info *);
1977 int build_node_manager(struct f2fs_sb_info *);
1978 void destroy_node_manager(struct f2fs_sb_info *);
1979 int __init create_node_manager_caches(void);
1980 void destroy_node_manager_caches(void);
1981
1982 /*
1983 * segment.c
1984 */
1985 void register_inmem_page(struct inode *, struct page *);
1986 void drop_inmem_pages(struct inode *);
1987 int commit_inmem_pages(struct inode *);
1988 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1989 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1990 int f2fs_issue_flush(struct f2fs_sb_info *);
1991 int create_flush_cmd_control(struct f2fs_sb_info *);
1992 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1993 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1994 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1995 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1996 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1997 void release_discard_addrs(struct f2fs_sb_info *);
1998 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1999 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
2000 void allocate_new_segments(struct f2fs_sb_info *);
2001 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
2002 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
2003 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
2004 void write_meta_page(struct f2fs_sb_info *, struct page *);
2005 void write_node_page(unsigned int, struct f2fs_io_info *);
2006 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
2007 void rewrite_data_page(struct f2fs_io_info *);
2008 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
2009 block_t, block_t, bool, bool);
2010 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
2011 block_t, block_t, unsigned char, bool, bool);
2012 void allocate_data_block(struct f2fs_sb_info *, struct page *,
2013 block_t, block_t *, struct f2fs_summary *, int);
2014 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
2015 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
2016 void write_data_summaries(struct f2fs_sb_info *, block_t);
2017 void write_node_summaries(struct f2fs_sb_info *, block_t);
2018 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
2019 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
2020 int build_segment_manager(struct f2fs_sb_info *);
2021 void destroy_segment_manager(struct f2fs_sb_info *);
2022 int __init create_segment_manager_caches(void);
2023 void destroy_segment_manager_caches(void);
2024
2025 /*
2026 * checkpoint.c
2027 */
2028 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
2029 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
2030 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
2031 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
2032 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
2033 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
2034 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
2035 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
2036 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2037 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2038 void release_ino_entry(struct f2fs_sb_info *, bool);
2039 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
2040 int f2fs_sync_inode_meta(struct f2fs_sb_info *);
2041 int acquire_orphan_inode(struct f2fs_sb_info *);
2042 void release_orphan_inode(struct f2fs_sb_info *);
2043 void add_orphan_inode(struct inode *);
2044 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
2045 int recover_orphan_inodes(struct f2fs_sb_info *);
2046 int get_valid_checkpoint(struct f2fs_sb_info *);
2047 void update_dirty_page(struct inode *, struct page *);
2048 void remove_dirty_inode(struct inode *);
2049 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
2050 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
2051 void init_ino_entry_info(struct f2fs_sb_info *);
2052 int __init create_checkpoint_caches(void);
2053 void destroy_checkpoint_caches(void);
2054
2055 /*
2056 * data.c
2057 */
2058 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
2059 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
2060 struct page *, nid_t, enum page_type, int);
2061 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
2062 int f2fs_submit_page_bio(struct f2fs_io_info *);
2063 void f2fs_submit_page_mbio(struct f2fs_io_info *);
2064 void set_data_blkaddr(struct dnode_of_data *);
2065 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
2066 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
2067 int reserve_new_block(struct dnode_of_data *);
2068 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
2069 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
2070 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
2071 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
2072 struct page *find_data_page(struct inode *, pgoff_t);
2073 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
2074 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
2075 int do_write_data_page(struct f2fs_io_info *);
2076 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
2077 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
2078 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
2079 int f2fs_release_page(struct page *, gfp_t);
2080
2081 /*
2082 * gc.c
2083 */
2084 int start_gc_thread(struct f2fs_sb_info *);
2085 void stop_gc_thread(struct f2fs_sb_info *);
2086 block_t start_bidx_of_node(unsigned int, struct inode *);
2087 int f2fs_gc(struct f2fs_sb_info *, bool);
2088 void build_gc_manager(struct f2fs_sb_info *);
2089
2090 /*
2091 * recovery.c
2092 */
2093 int recover_fsync_data(struct f2fs_sb_info *, bool);
2094 bool space_for_roll_forward(struct f2fs_sb_info *);
2095
2096 /*
2097 * debug.c
2098 */
2099 #ifdef CONFIG_F2FS_STAT_FS
2100 struct f2fs_stat_info {
2101 struct list_head stat_list;
2102 struct f2fs_sb_info *sbi;
2103 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2104 int main_area_segs, main_area_sections, main_area_zones;
2105 unsigned long long hit_largest, hit_cached, hit_rbtree;
2106 unsigned long long hit_total, total_ext;
2107 int ext_tree, zombie_tree, ext_node;
2108 s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, inmem_pages;
2109 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2110 int nats, dirty_nats, sits, dirty_sits, fnids;
2111 int total_count, utilization;
2112 int bg_gc, wb_bios;
2113 int inline_xattr, inline_inode, inline_dir, orphans;
2114 unsigned int valid_count, valid_node_count, valid_inode_count;
2115 unsigned int bimodal, avg_vblocks;
2116 int util_free, util_valid, util_invalid;
2117 int rsvd_segs, overp_segs;
2118 int dirty_count, node_pages, meta_pages;
2119 int prefree_count, call_count, cp_count, bg_cp_count;
2120 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2121 int bg_node_segs, bg_data_segs;
2122 int tot_blks, data_blks, node_blks;
2123 int bg_data_blks, bg_node_blks;
2124 int curseg[NR_CURSEG_TYPE];
2125 int cursec[NR_CURSEG_TYPE];
2126 int curzone[NR_CURSEG_TYPE];
2127
2128 unsigned int segment_count[2];
2129 unsigned int block_count[2];
2130 unsigned int inplace_count;
2131 unsigned long long base_mem, cache_mem, page_mem;
2132 };
2133
2134 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2135 {
2136 return (struct f2fs_stat_info *)sbi->stat_info;
2137 }
2138
2139 #define stat_inc_cp_count(si) ((si)->cp_count++)
2140 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2141 #define stat_inc_call_count(si) ((si)->call_count++)
2142 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2143 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2144 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2145 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2146 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2147 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2148 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2149 #define stat_inc_inline_xattr(inode) \
2150 do { \
2151 if (f2fs_has_inline_xattr(inode)) \
2152 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2153 } while (0)
2154 #define stat_dec_inline_xattr(inode) \
2155 do { \
2156 if (f2fs_has_inline_xattr(inode)) \
2157 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2158 } while (0)
2159 #define stat_inc_inline_inode(inode) \
2160 do { \
2161 if (f2fs_has_inline_data(inode)) \
2162 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2163 } while (0)
2164 #define stat_dec_inline_inode(inode) \
2165 do { \
2166 if (f2fs_has_inline_data(inode)) \
2167 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2168 } while (0)
2169 #define stat_inc_inline_dir(inode) \
2170 do { \
2171 if (f2fs_has_inline_dentry(inode)) \
2172 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2173 } while (0)
2174 #define stat_dec_inline_dir(inode) \
2175 do { \
2176 if (f2fs_has_inline_dentry(inode)) \
2177 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2178 } while (0)
2179 #define stat_inc_seg_type(sbi, curseg) \
2180 ((sbi)->segment_count[(curseg)->alloc_type]++)
2181 #define stat_inc_block_count(sbi, curseg) \
2182 ((sbi)->block_count[(curseg)->alloc_type]++)
2183 #define stat_inc_inplace_blocks(sbi) \
2184 (atomic_inc(&(sbi)->inplace_count))
2185 #define stat_inc_seg_count(sbi, type, gc_type) \
2186 do { \
2187 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2188 (si)->tot_segs++; \
2189 if (type == SUM_TYPE_DATA) { \
2190 si->data_segs++; \
2191 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2192 } else { \
2193 si->node_segs++; \
2194 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2195 } \
2196 } while (0)
2197
2198 #define stat_inc_tot_blk_count(si, blks) \
2199 (si->tot_blks += (blks))
2200
2201 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2202 do { \
2203 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2204 stat_inc_tot_blk_count(si, blks); \
2205 si->data_blks += (blks); \
2206 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2207 } while (0)
2208
2209 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2210 do { \
2211 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2212 stat_inc_tot_blk_count(si, blks); \
2213 si->node_blks += (blks); \
2214 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2215 } while (0)
2216
2217 int f2fs_build_stats(struct f2fs_sb_info *);
2218 void f2fs_destroy_stats(struct f2fs_sb_info *);
2219 int __init f2fs_create_root_stats(void);
2220 void f2fs_destroy_root_stats(void);
2221 #else
2222 #define stat_inc_cp_count(si)
2223 #define stat_inc_bg_cp_count(si)
2224 #define stat_inc_call_count(si)
2225 #define stat_inc_bggc_count(si)
2226 #define stat_inc_dirty_inode(sbi, type)
2227 #define stat_dec_dirty_inode(sbi, type)
2228 #define stat_inc_total_hit(sb)
2229 #define stat_inc_rbtree_node_hit(sb)
2230 #define stat_inc_largest_node_hit(sbi)
2231 #define stat_inc_cached_node_hit(sbi)
2232 #define stat_inc_inline_xattr(inode)
2233 #define stat_dec_inline_xattr(inode)
2234 #define stat_inc_inline_inode(inode)
2235 #define stat_dec_inline_inode(inode)
2236 #define stat_inc_inline_dir(inode)
2237 #define stat_dec_inline_dir(inode)
2238 #define stat_inc_seg_type(sbi, curseg)
2239 #define stat_inc_block_count(sbi, curseg)
2240 #define stat_inc_inplace_blocks(sbi)
2241 #define stat_inc_seg_count(sbi, type, gc_type)
2242 #define stat_inc_tot_blk_count(si, blks)
2243 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2244 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2245
2246 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2247 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2248 static inline int __init f2fs_create_root_stats(void) { return 0; }
2249 static inline void f2fs_destroy_root_stats(void) { }
2250 #endif
2251
2252 extern const struct file_operations f2fs_dir_operations;
2253 extern const struct file_operations f2fs_file_operations;
2254 extern const struct inode_operations f2fs_file_inode_operations;
2255 extern const struct address_space_operations f2fs_dblock_aops;
2256 extern const struct address_space_operations f2fs_node_aops;
2257 extern const struct address_space_operations f2fs_meta_aops;
2258 extern const struct inode_operations f2fs_dir_inode_operations;
2259 extern const struct inode_operations f2fs_symlink_inode_operations;
2260 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2261 extern const struct inode_operations f2fs_special_inode_operations;
2262 extern struct kmem_cache *inode_entry_slab;
2263
2264 /*
2265 * inline.c
2266 */
2267 bool f2fs_may_inline_data(struct inode *);
2268 bool f2fs_may_inline_dentry(struct inode *);
2269 void read_inline_data(struct page *, struct page *);
2270 bool truncate_inline_inode(struct page *, u64);
2271 int f2fs_read_inline_data(struct inode *, struct page *);
2272 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2273 int f2fs_convert_inline_inode(struct inode *);
2274 int f2fs_write_inline_data(struct inode *, struct page *);
2275 bool recover_inline_data(struct inode *, struct page *);
2276 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2277 struct fscrypt_name *, struct page **);
2278 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2279 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2280 nid_t, umode_t);
2281 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2282 struct inode *, struct inode *);
2283 bool f2fs_empty_inline_dir(struct inode *);
2284 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2285 struct fscrypt_str *);
2286 int f2fs_inline_data_fiemap(struct inode *,
2287 struct fiemap_extent_info *, __u64, __u64);
2288
2289 /*
2290 * shrinker.c
2291 */
2292 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2293 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2294 void f2fs_join_shrinker(struct f2fs_sb_info *);
2295 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2296
2297 /*
2298 * extent_cache.c
2299 */
2300 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2301 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2302 unsigned int f2fs_destroy_extent_node(struct inode *);
2303 void f2fs_destroy_extent_tree(struct inode *);
2304 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2305 void f2fs_update_extent_cache(struct dnode_of_data *);
2306 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2307 pgoff_t, block_t, unsigned int);
2308 void init_extent_cache_info(struct f2fs_sb_info *);
2309 int __init create_extent_cache(void);
2310 void destroy_extent_cache(void);
2311
2312 /*
2313 * crypto support
2314 */
2315 static inline bool f2fs_encrypted_inode(struct inode *inode)
2316 {
2317 return file_is_encrypt(inode);
2318 }
2319
2320 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2321 {
2322 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2323 file_set_encrypt(inode);
2324 #endif
2325 }
2326
2327 static inline bool f2fs_bio_encrypted(struct bio *bio)
2328 {
2329 return bio->bi_private != NULL;
2330 }
2331
2332 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2333 {
2334 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2335 }
2336
2337 static inline bool f2fs_may_encrypt(struct inode *inode)
2338 {
2339 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2340 umode_t mode = inode->i_mode;
2341
2342 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2343 #else
2344 return 0;
2345 #endif
2346 }
2347
2348 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2349 #define fscrypt_set_d_op(i)
2350 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2351 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2352 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2353 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2354 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2355 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2356 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2357 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2358 #define fscrypt_process_policy fscrypt_notsupp_process_policy
2359 #define fscrypt_get_policy fscrypt_notsupp_get_policy
2360 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2361 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2362 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2363 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2364 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2365 #define fscrypt_free_filename fscrypt_notsupp_free_filename
2366 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2367 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2368 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2369 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2370 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2371 #endif
2372 #endif
This page took 0.10758 seconds and 6 git commands to generate.