f2fs: remove deprecated parameter
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38 #endif
39
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 FAULT_KMALLOC,
43 FAULT_PAGE_ALLOC,
44 FAULT_ALLOC_NID,
45 FAULT_ORPHAN,
46 FAULT_BLOCK,
47 FAULT_DIR_DEPTH,
48 FAULT_EVICT_INODE,
49 FAULT_MAX,
50 };
51
52 struct f2fs_fault_info {
53 atomic_t inject_ops;
54 unsigned int inject_rate;
55 unsigned int inject_type;
56 };
57
58 extern struct f2fs_fault_info f2fs_fault;
59 extern char *fault_name[FAULT_MAX];
60 #define IS_FAULT_SET(type) (f2fs_fault.inject_type & (1 << (type)))
61
62 static inline bool time_to_inject(int type)
63 {
64 if (!f2fs_fault.inject_rate)
65 return false;
66 if (type == FAULT_KMALLOC && !IS_FAULT_SET(type))
67 return false;
68 else if (type == FAULT_PAGE_ALLOC && !IS_FAULT_SET(type))
69 return false;
70 else if (type == FAULT_ALLOC_NID && !IS_FAULT_SET(type))
71 return false;
72 else if (type == FAULT_ORPHAN && !IS_FAULT_SET(type))
73 return false;
74 else if (type == FAULT_BLOCK && !IS_FAULT_SET(type))
75 return false;
76 else if (type == FAULT_DIR_DEPTH && !IS_FAULT_SET(type))
77 return false;
78 else if (type == FAULT_EVICT_INODE && !IS_FAULT_SET(type))
79 return false;
80
81 atomic_inc(&f2fs_fault.inject_ops);
82 if (atomic_read(&f2fs_fault.inject_ops) >= f2fs_fault.inject_rate) {
83 atomic_set(&f2fs_fault.inject_ops, 0);
84 printk("%sF2FS-fs : inject %s in %pF\n",
85 KERN_INFO,
86 fault_name[type],
87 __builtin_return_address(0));
88 return true;
89 }
90 return false;
91 }
92 #endif
93
94 /*
95 * For mount options
96 */
97 #define F2FS_MOUNT_BG_GC 0x00000001
98 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
99 #define F2FS_MOUNT_DISCARD 0x00000004
100 #define F2FS_MOUNT_NOHEAP 0x00000008
101 #define F2FS_MOUNT_XATTR_USER 0x00000010
102 #define F2FS_MOUNT_POSIX_ACL 0x00000020
103 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
104 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
105 #define F2FS_MOUNT_INLINE_DATA 0x00000100
106 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
107 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
108 #define F2FS_MOUNT_NOBARRIER 0x00000800
109 #define F2FS_MOUNT_FASTBOOT 0x00001000
110 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
111 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
112 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
113 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
114
115 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
116 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
117 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
118
119 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
120 typecheck(unsigned long long, b) && \
121 ((long long)((a) - (b)) > 0))
122
123 typedef u32 block_t; /*
124 * should not change u32, since it is the on-disk block
125 * address format, __le32.
126 */
127 typedef u32 nid_t;
128
129 struct f2fs_mount_info {
130 unsigned int opt;
131 };
132
133 #define F2FS_FEATURE_ENCRYPT 0x0001
134
135 #define F2FS_HAS_FEATURE(sb, mask) \
136 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
137 #define F2FS_SET_FEATURE(sb, mask) \
138 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
139 #define F2FS_CLEAR_FEATURE(sb, mask) \
140 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
141
142 /*
143 * For checkpoint manager
144 */
145 enum {
146 NAT_BITMAP,
147 SIT_BITMAP
148 };
149
150 enum {
151 CP_UMOUNT,
152 CP_FASTBOOT,
153 CP_SYNC,
154 CP_RECOVERY,
155 CP_DISCARD,
156 };
157
158 #define DEF_BATCHED_TRIM_SECTIONS 32
159 #define BATCHED_TRIM_SEGMENTS(sbi) \
160 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
161 #define BATCHED_TRIM_BLOCKS(sbi) \
162 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
163 #define DEF_CP_INTERVAL 60 /* 60 secs */
164 #define DEF_IDLE_INTERVAL 120 /* 2 mins */
165
166 struct cp_control {
167 int reason;
168 __u64 trim_start;
169 __u64 trim_end;
170 __u64 trim_minlen;
171 __u64 trimmed;
172 };
173
174 /*
175 * For CP/NAT/SIT/SSA readahead
176 */
177 enum {
178 META_CP,
179 META_NAT,
180 META_SIT,
181 META_SSA,
182 META_POR,
183 };
184
185 /* for the list of ino */
186 enum {
187 ORPHAN_INO, /* for orphan ino list */
188 APPEND_INO, /* for append ino list */
189 UPDATE_INO, /* for update ino list */
190 MAX_INO_ENTRY, /* max. list */
191 };
192
193 struct ino_entry {
194 struct list_head list; /* list head */
195 nid_t ino; /* inode number */
196 };
197
198 /* for the list of inodes to be GCed */
199 struct inode_entry {
200 struct list_head list; /* list head */
201 struct inode *inode; /* vfs inode pointer */
202 };
203
204 /* for the list of blockaddresses to be discarded */
205 struct discard_entry {
206 struct list_head list; /* list head */
207 block_t blkaddr; /* block address to be discarded */
208 int len; /* # of consecutive blocks of the discard */
209 };
210
211 /* for the list of fsync inodes, used only during recovery */
212 struct fsync_inode_entry {
213 struct list_head list; /* list head */
214 struct inode *inode; /* vfs inode pointer */
215 block_t blkaddr; /* block address locating the last fsync */
216 block_t last_dentry; /* block address locating the last dentry */
217 };
218
219 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
220 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
221
222 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
223 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
224 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
225 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
226
227 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
228 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
229
230 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
231 {
232 int before = nats_in_cursum(journal);
233 journal->n_nats = cpu_to_le16(before + i);
234 return before;
235 }
236
237 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
238 {
239 int before = sits_in_cursum(journal);
240 journal->n_sits = cpu_to_le16(before + i);
241 return before;
242 }
243
244 static inline bool __has_cursum_space(struct f2fs_journal *journal,
245 int size, int type)
246 {
247 if (type == NAT_JOURNAL)
248 return size <= MAX_NAT_JENTRIES(journal);
249 return size <= MAX_SIT_JENTRIES(journal);
250 }
251
252 /*
253 * ioctl commands
254 */
255 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
256 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
257 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
258
259 #define F2FS_IOCTL_MAGIC 0xf5
260 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
261 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
262 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
263 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
264 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
265 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
266 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
267 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
268
269 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
270 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
271 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
272
273 /*
274 * should be same as XFS_IOC_GOINGDOWN.
275 * Flags for going down operation used by FS_IOC_GOINGDOWN
276 */
277 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
278 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
279 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
280 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
281 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
282
283 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
284 /*
285 * ioctl commands in 32 bit emulation
286 */
287 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
288 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
289 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
290 #endif
291
292 struct f2fs_defragment {
293 u64 start;
294 u64 len;
295 };
296
297 /*
298 * For INODE and NODE manager
299 */
300 /* for directory operations */
301 struct f2fs_dentry_ptr {
302 struct inode *inode;
303 const void *bitmap;
304 struct f2fs_dir_entry *dentry;
305 __u8 (*filename)[F2FS_SLOT_LEN];
306 int max;
307 };
308
309 static inline void make_dentry_ptr(struct inode *inode,
310 struct f2fs_dentry_ptr *d, void *src, int type)
311 {
312 d->inode = inode;
313
314 if (type == 1) {
315 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
316 d->max = NR_DENTRY_IN_BLOCK;
317 d->bitmap = &t->dentry_bitmap;
318 d->dentry = t->dentry;
319 d->filename = t->filename;
320 } else {
321 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
322 d->max = NR_INLINE_DENTRY;
323 d->bitmap = &t->dentry_bitmap;
324 d->dentry = t->dentry;
325 d->filename = t->filename;
326 }
327 }
328
329 /*
330 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
331 * as its node offset to distinguish from index node blocks.
332 * But some bits are used to mark the node block.
333 */
334 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
335 >> OFFSET_BIT_SHIFT)
336 enum {
337 ALLOC_NODE, /* allocate a new node page if needed */
338 LOOKUP_NODE, /* look up a node without readahead */
339 LOOKUP_NODE_RA, /*
340 * look up a node with readahead called
341 * by get_data_block.
342 */
343 };
344
345 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
346
347 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
348
349 /* vector size for gang look-up from extent cache that consists of radix tree */
350 #define EXT_TREE_VEC_SIZE 64
351
352 /* for in-memory extent cache entry */
353 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
354
355 /* number of extent info in extent cache we try to shrink */
356 #define EXTENT_CACHE_SHRINK_NUMBER 128
357
358 struct extent_info {
359 unsigned int fofs; /* start offset in a file */
360 u32 blk; /* start block address of the extent */
361 unsigned int len; /* length of the extent */
362 };
363
364 struct extent_node {
365 struct rb_node rb_node; /* rb node located in rb-tree */
366 struct list_head list; /* node in global extent list of sbi */
367 struct extent_info ei; /* extent info */
368 struct extent_tree *et; /* extent tree pointer */
369 };
370
371 struct extent_tree {
372 nid_t ino; /* inode number */
373 struct rb_root root; /* root of extent info rb-tree */
374 struct extent_node *cached_en; /* recently accessed extent node */
375 struct extent_info largest; /* largested extent info */
376 struct list_head list; /* to be used by sbi->zombie_list */
377 rwlock_t lock; /* protect extent info rb-tree */
378 atomic_t node_cnt; /* # of extent node in rb-tree*/
379 };
380
381 /*
382 * This structure is taken from ext4_map_blocks.
383 *
384 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
385 */
386 #define F2FS_MAP_NEW (1 << BH_New)
387 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
388 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
389 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
390 F2FS_MAP_UNWRITTEN)
391
392 struct f2fs_map_blocks {
393 block_t m_pblk;
394 block_t m_lblk;
395 unsigned int m_len;
396 unsigned int m_flags;
397 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
398 };
399
400 /* for flag in get_data_block */
401 #define F2FS_GET_BLOCK_READ 0
402 #define F2FS_GET_BLOCK_DIO 1
403 #define F2FS_GET_BLOCK_FIEMAP 2
404 #define F2FS_GET_BLOCK_BMAP 3
405 #define F2FS_GET_BLOCK_PRE_DIO 4
406 #define F2FS_GET_BLOCK_PRE_AIO 5
407
408 /*
409 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
410 */
411 #define FADVISE_COLD_BIT 0x01
412 #define FADVISE_LOST_PINO_BIT 0x02
413 #define FADVISE_ENCRYPT_BIT 0x04
414 #define FADVISE_ENC_NAME_BIT 0x08
415
416 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
417 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
418 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
419 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
420 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
421 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
422 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
423 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
424 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
425 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
426 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
427
428 #define DEF_DIR_LEVEL 0
429
430 struct f2fs_inode_info {
431 struct inode vfs_inode; /* serve a vfs inode */
432 unsigned long i_flags; /* keep an inode flags for ioctl */
433 unsigned char i_advise; /* use to give file attribute hints */
434 unsigned char i_dir_level; /* use for dentry level for large dir */
435 unsigned int i_current_depth; /* use only in directory structure */
436 unsigned int i_pino; /* parent inode number */
437 umode_t i_acl_mode; /* keep file acl mode temporarily */
438
439 /* Use below internally in f2fs*/
440 unsigned long flags; /* use to pass per-file flags */
441 struct rw_semaphore i_sem; /* protect fi info */
442 struct percpu_counter dirty_pages; /* # of dirty pages */
443 f2fs_hash_t chash; /* hash value of given file name */
444 unsigned int clevel; /* maximum level of given file name */
445 nid_t i_xattr_nid; /* node id that contains xattrs */
446 unsigned long long xattr_ver; /* cp version of xattr modification */
447 loff_t last_disk_size; /* lastly written file size */
448
449 struct list_head dirty_list; /* dirty list for dirs and files */
450 struct list_head gdirty_list; /* linked in global dirty list */
451 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
452 struct mutex inmem_lock; /* lock for inmemory pages */
453 struct extent_tree *extent_tree; /* cached extent_tree entry */
454 };
455
456 static inline void get_extent_info(struct extent_info *ext,
457 struct f2fs_extent *i_ext)
458 {
459 ext->fofs = le32_to_cpu(i_ext->fofs);
460 ext->blk = le32_to_cpu(i_ext->blk);
461 ext->len = le32_to_cpu(i_ext->len);
462 }
463
464 static inline void set_raw_extent(struct extent_info *ext,
465 struct f2fs_extent *i_ext)
466 {
467 i_ext->fofs = cpu_to_le32(ext->fofs);
468 i_ext->blk = cpu_to_le32(ext->blk);
469 i_ext->len = cpu_to_le32(ext->len);
470 }
471
472 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
473 u32 blk, unsigned int len)
474 {
475 ei->fofs = fofs;
476 ei->blk = blk;
477 ei->len = len;
478 }
479
480 static inline bool __is_extent_same(struct extent_info *ei1,
481 struct extent_info *ei2)
482 {
483 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
484 ei1->len == ei2->len);
485 }
486
487 static inline bool __is_extent_mergeable(struct extent_info *back,
488 struct extent_info *front)
489 {
490 return (back->fofs + back->len == front->fofs &&
491 back->blk + back->len == front->blk);
492 }
493
494 static inline bool __is_back_mergeable(struct extent_info *cur,
495 struct extent_info *back)
496 {
497 return __is_extent_mergeable(back, cur);
498 }
499
500 static inline bool __is_front_mergeable(struct extent_info *cur,
501 struct extent_info *front)
502 {
503 return __is_extent_mergeable(cur, front);
504 }
505
506 static inline void __try_update_largest_extent(struct inode *inode,
507 struct extent_tree *et, struct extent_node *en)
508 {
509 if (en->ei.len > et->largest.len) {
510 et->largest = en->ei;
511 mark_inode_dirty_sync(inode);
512 }
513 }
514
515 struct f2fs_nm_info {
516 block_t nat_blkaddr; /* base disk address of NAT */
517 nid_t max_nid; /* maximum possible node ids */
518 nid_t available_nids; /* maximum available node ids */
519 nid_t next_scan_nid; /* the next nid to be scanned */
520 unsigned int ram_thresh; /* control the memory footprint */
521 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
522 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
523
524 /* NAT cache management */
525 struct radix_tree_root nat_root;/* root of the nat entry cache */
526 struct radix_tree_root nat_set_root;/* root of the nat set cache */
527 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
528 struct list_head nat_entries; /* cached nat entry list (clean) */
529 unsigned int nat_cnt; /* the # of cached nat entries */
530 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
531
532 /* free node ids management */
533 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
534 struct list_head free_nid_list; /* a list for free nids */
535 spinlock_t free_nid_list_lock; /* protect free nid list */
536 unsigned int fcnt; /* the number of free node id */
537 struct mutex build_lock; /* lock for build free nids */
538
539 /* for checkpoint */
540 char *nat_bitmap; /* NAT bitmap pointer */
541 int bitmap_size; /* bitmap size */
542 };
543
544 /*
545 * this structure is used as one of function parameters.
546 * all the information are dedicated to a given direct node block determined
547 * by the data offset in a file.
548 */
549 struct dnode_of_data {
550 struct inode *inode; /* vfs inode pointer */
551 struct page *inode_page; /* its inode page, NULL is possible */
552 struct page *node_page; /* cached direct node page */
553 nid_t nid; /* node id of the direct node block */
554 unsigned int ofs_in_node; /* data offset in the node page */
555 bool inode_page_locked; /* inode page is locked or not */
556 bool node_changed; /* is node block changed */
557 char cur_level; /* level of hole node page */
558 char max_level; /* level of current page located */
559 block_t data_blkaddr; /* block address of the node block */
560 };
561
562 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
563 struct page *ipage, struct page *npage, nid_t nid)
564 {
565 memset(dn, 0, sizeof(*dn));
566 dn->inode = inode;
567 dn->inode_page = ipage;
568 dn->node_page = npage;
569 dn->nid = nid;
570 }
571
572 /*
573 * For SIT manager
574 *
575 * By default, there are 6 active log areas across the whole main area.
576 * When considering hot and cold data separation to reduce cleaning overhead,
577 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
578 * respectively.
579 * In the current design, you should not change the numbers intentionally.
580 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
581 * logs individually according to the underlying devices. (default: 6)
582 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
583 * data and 8 for node logs.
584 */
585 #define NR_CURSEG_DATA_TYPE (3)
586 #define NR_CURSEG_NODE_TYPE (3)
587 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
588
589 enum {
590 CURSEG_HOT_DATA = 0, /* directory entry blocks */
591 CURSEG_WARM_DATA, /* data blocks */
592 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
593 CURSEG_HOT_NODE, /* direct node blocks of directory files */
594 CURSEG_WARM_NODE, /* direct node blocks of normal files */
595 CURSEG_COLD_NODE, /* indirect node blocks */
596 NO_CHECK_TYPE,
597 CURSEG_DIRECT_IO, /* to use for the direct IO path */
598 };
599
600 struct flush_cmd {
601 struct completion wait;
602 struct llist_node llnode;
603 int ret;
604 };
605
606 struct flush_cmd_control {
607 struct task_struct *f2fs_issue_flush; /* flush thread */
608 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
609 atomic_t submit_flush; /* # of issued flushes */
610 struct llist_head issue_list; /* list for command issue */
611 struct llist_node *dispatch_list; /* list for command dispatch */
612 };
613
614 struct f2fs_sm_info {
615 struct sit_info *sit_info; /* whole segment information */
616 struct free_segmap_info *free_info; /* free segment information */
617 struct dirty_seglist_info *dirty_info; /* dirty segment information */
618 struct curseg_info *curseg_array; /* active segment information */
619
620 block_t seg0_blkaddr; /* block address of 0'th segment */
621 block_t main_blkaddr; /* start block address of main area */
622 block_t ssa_blkaddr; /* start block address of SSA area */
623
624 unsigned int segment_count; /* total # of segments */
625 unsigned int main_segments; /* # of segments in main area */
626 unsigned int reserved_segments; /* # of reserved segments */
627 unsigned int ovp_segments; /* # of overprovision segments */
628
629 /* a threshold to reclaim prefree segments */
630 unsigned int rec_prefree_segments;
631
632 /* for small discard management */
633 struct list_head discard_list; /* 4KB discard list */
634 int nr_discards; /* # of discards in the list */
635 int max_discards; /* max. discards to be issued */
636
637 /* for batched trimming */
638 unsigned int trim_sections; /* # of sections to trim */
639
640 struct list_head sit_entry_set; /* sit entry set list */
641
642 unsigned int ipu_policy; /* in-place-update policy */
643 unsigned int min_ipu_util; /* in-place-update threshold */
644 unsigned int min_fsync_blocks; /* threshold for fsync */
645
646 /* for flush command control */
647 struct flush_cmd_control *cmd_control_info;
648
649 };
650
651 /*
652 * For superblock
653 */
654 /*
655 * COUNT_TYPE for monitoring
656 *
657 * f2fs monitors the number of several block types such as on-writeback,
658 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
659 */
660 enum count_type {
661 F2FS_DIRTY_DENTS,
662 F2FS_DIRTY_DATA,
663 F2FS_DIRTY_NODES,
664 F2FS_DIRTY_META,
665 F2FS_INMEM_PAGES,
666 F2FS_DIRTY_IMETA,
667 NR_COUNT_TYPE,
668 };
669
670 /*
671 * The below are the page types of bios used in submit_bio().
672 * The available types are:
673 * DATA User data pages. It operates as async mode.
674 * NODE Node pages. It operates as async mode.
675 * META FS metadata pages such as SIT, NAT, CP.
676 * NR_PAGE_TYPE The number of page types.
677 * META_FLUSH Make sure the previous pages are written
678 * with waiting the bio's completion
679 * ... Only can be used with META.
680 */
681 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
682 enum page_type {
683 DATA,
684 NODE,
685 META,
686 NR_PAGE_TYPE,
687 META_FLUSH,
688 INMEM, /* the below types are used by tracepoints only. */
689 INMEM_DROP,
690 INMEM_REVOKE,
691 IPU,
692 OPU,
693 };
694
695 struct f2fs_io_info {
696 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
697 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
698 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
699 block_t new_blkaddr; /* new block address to be written */
700 block_t old_blkaddr; /* old block address before Cow */
701 struct page *page; /* page to be written */
702 struct page *encrypted_page; /* encrypted page */
703 };
704
705 #define is_read_io(rw) (((rw) & 1) == READ)
706 struct f2fs_bio_info {
707 struct f2fs_sb_info *sbi; /* f2fs superblock */
708 struct bio *bio; /* bios to merge */
709 sector_t last_block_in_bio; /* last block number */
710 struct f2fs_io_info fio; /* store buffered io info. */
711 struct rw_semaphore io_rwsem; /* blocking op for bio */
712 };
713
714 enum inode_type {
715 DIR_INODE, /* for dirty dir inode */
716 FILE_INODE, /* for dirty regular/symlink inode */
717 DIRTY_META, /* for all dirtied inode metadata */
718 NR_INODE_TYPE,
719 };
720
721 /* for inner inode cache management */
722 struct inode_management {
723 struct radix_tree_root ino_root; /* ino entry array */
724 spinlock_t ino_lock; /* for ino entry lock */
725 struct list_head ino_list; /* inode list head */
726 unsigned long ino_num; /* number of entries */
727 };
728
729 /* For s_flag in struct f2fs_sb_info */
730 enum {
731 SBI_IS_DIRTY, /* dirty flag for checkpoint */
732 SBI_IS_CLOSE, /* specify unmounting */
733 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
734 SBI_POR_DOING, /* recovery is doing or not */
735 SBI_NEED_SB_WRITE, /* need to recover superblock */
736 };
737
738 enum {
739 CP_TIME,
740 REQ_TIME,
741 MAX_TIME,
742 };
743
744 #ifdef CONFIG_F2FS_FS_ENCRYPTION
745 #define F2FS_KEY_DESC_PREFIX "f2fs:"
746 #define F2FS_KEY_DESC_PREFIX_SIZE 5
747 #endif
748 struct f2fs_sb_info {
749 struct super_block *sb; /* pointer to VFS super block */
750 struct proc_dir_entry *s_proc; /* proc entry */
751 struct f2fs_super_block *raw_super; /* raw super block pointer */
752 int valid_super_block; /* valid super block no */
753 int s_flag; /* flags for sbi */
754
755 #ifdef CONFIG_F2FS_FS_ENCRYPTION
756 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
757 u8 key_prefix_size;
758 #endif
759 /* for node-related operations */
760 struct f2fs_nm_info *nm_info; /* node manager */
761 struct inode *node_inode; /* cache node blocks */
762
763 /* for segment-related operations */
764 struct f2fs_sm_info *sm_info; /* segment manager */
765
766 /* for bio operations */
767 struct f2fs_bio_info read_io; /* for read bios */
768 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
769
770 /* for checkpoint */
771 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
772 struct inode *meta_inode; /* cache meta blocks */
773 struct mutex cp_mutex; /* checkpoint procedure lock */
774 struct rw_semaphore cp_rwsem; /* blocking FS operations */
775 struct rw_semaphore node_write; /* locking node writes */
776 wait_queue_head_t cp_wait;
777 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
778 long interval_time[MAX_TIME]; /* to store thresholds */
779
780 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
781
782 /* for orphan inode, use 0'th array */
783 unsigned int max_orphans; /* max orphan inodes */
784
785 /* for inode management */
786 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
787 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
788
789 /* for extent tree cache */
790 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
791 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
792 struct list_head extent_list; /* lru list for shrinker */
793 spinlock_t extent_lock; /* locking extent lru list */
794 atomic_t total_ext_tree; /* extent tree count */
795 struct list_head zombie_list; /* extent zombie tree list */
796 atomic_t total_zombie_tree; /* extent zombie tree count */
797 atomic_t total_ext_node; /* extent info count */
798
799 /* basic filesystem units */
800 unsigned int log_sectors_per_block; /* log2 sectors per block */
801 unsigned int log_blocksize; /* log2 block size */
802 unsigned int blocksize; /* block size */
803 unsigned int root_ino_num; /* root inode number*/
804 unsigned int node_ino_num; /* node inode number*/
805 unsigned int meta_ino_num; /* meta inode number*/
806 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
807 unsigned int blocks_per_seg; /* blocks per segment */
808 unsigned int segs_per_sec; /* segments per section */
809 unsigned int secs_per_zone; /* sections per zone */
810 unsigned int total_sections; /* total section count */
811 unsigned int total_node_count; /* total node block count */
812 unsigned int total_valid_node_count; /* valid node block count */
813 loff_t max_file_blocks; /* max block index of file */
814 int active_logs; /* # of active logs */
815 int dir_level; /* directory level */
816
817 block_t user_block_count; /* # of user blocks */
818 block_t total_valid_block_count; /* # of valid blocks */
819 block_t discard_blks; /* discard command candidats */
820 block_t last_valid_block_count; /* for recovery */
821 u32 s_next_generation; /* for NFS support */
822 atomic_t nr_wb_bios; /* # of writeback bios */
823
824 /* # of pages, see count_type */
825 struct percpu_counter nr_pages[NR_COUNT_TYPE];
826 /* # of allocated blocks */
827 struct percpu_counter alloc_valid_block_count;
828
829 /* valid inode count */
830 struct percpu_counter total_valid_inode_count;
831
832 struct f2fs_mount_info mount_opt; /* mount options */
833
834 /* for cleaning operations */
835 struct mutex gc_mutex; /* mutex for GC */
836 struct f2fs_gc_kthread *gc_thread; /* GC thread */
837 unsigned int cur_victim_sec; /* current victim section num */
838
839 /* maximum # of trials to find a victim segment for SSR and GC */
840 unsigned int max_victim_search;
841
842 /*
843 * for stat information.
844 * one is for the LFS mode, and the other is for the SSR mode.
845 */
846 #ifdef CONFIG_F2FS_STAT_FS
847 struct f2fs_stat_info *stat_info; /* FS status information */
848 unsigned int segment_count[2]; /* # of allocated segments */
849 unsigned int block_count[2]; /* # of allocated blocks */
850 atomic_t inplace_count; /* # of inplace update */
851 atomic64_t total_hit_ext; /* # of lookup extent cache */
852 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
853 atomic64_t read_hit_largest; /* # of hit largest extent node */
854 atomic64_t read_hit_cached; /* # of hit cached extent node */
855 atomic_t inline_xattr; /* # of inline_xattr inodes */
856 atomic_t inline_inode; /* # of inline_data inodes */
857 atomic_t inline_dir; /* # of inline_dentry inodes */
858 int bg_gc; /* background gc calls */
859 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
860 #endif
861 unsigned int last_victim[2]; /* last victim segment # */
862 spinlock_t stat_lock; /* lock for stat operations */
863
864 /* For sysfs suppport */
865 struct kobject s_kobj;
866 struct completion s_kobj_unregister;
867
868 /* For shrinker support */
869 struct list_head s_list;
870 struct mutex umount_mutex;
871 unsigned int shrinker_run_no;
872
873 /* For write statistics */
874 u64 sectors_written_start;
875 u64 kbytes_written;
876
877 /* Reference to checksum algorithm driver via cryptoapi */
878 struct crypto_shash *s_chksum_driver;
879 };
880
881 /* For write statistics. Suppose sector size is 512 bytes,
882 * and the return value is in kbytes. s is of struct f2fs_sb_info.
883 */
884 #define BD_PART_WRITTEN(s) \
885 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
886 s->sectors_written_start) >> 1)
887
888 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
889 {
890 sbi->last_time[type] = jiffies;
891 }
892
893 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
894 {
895 struct timespec ts = {sbi->interval_time[type], 0};
896 unsigned long interval = timespec_to_jiffies(&ts);
897
898 return time_after(jiffies, sbi->last_time[type] + interval);
899 }
900
901 static inline bool is_idle(struct f2fs_sb_info *sbi)
902 {
903 struct block_device *bdev = sbi->sb->s_bdev;
904 struct request_queue *q = bdev_get_queue(bdev);
905 struct request_list *rl = &q->root_rl;
906
907 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
908 return 0;
909
910 return f2fs_time_over(sbi, REQ_TIME);
911 }
912
913 /*
914 * Inline functions
915 */
916 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
917 unsigned int length)
918 {
919 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
920 u32 *ctx = (u32 *)shash_desc_ctx(shash);
921 int err;
922
923 shash->tfm = sbi->s_chksum_driver;
924 shash->flags = 0;
925 *ctx = F2FS_SUPER_MAGIC;
926
927 err = crypto_shash_update(shash, address, length);
928 BUG_ON(err);
929
930 return *ctx;
931 }
932
933 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
934 void *buf, size_t buf_size)
935 {
936 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
937 }
938
939 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
940 {
941 return container_of(inode, struct f2fs_inode_info, vfs_inode);
942 }
943
944 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
945 {
946 return sb->s_fs_info;
947 }
948
949 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
950 {
951 return F2FS_SB(inode->i_sb);
952 }
953
954 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
955 {
956 return F2FS_I_SB(mapping->host);
957 }
958
959 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
960 {
961 return F2FS_M_SB(page->mapping);
962 }
963
964 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
965 {
966 return (struct f2fs_super_block *)(sbi->raw_super);
967 }
968
969 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
970 {
971 return (struct f2fs_checkpoint *)(sbi->ckpt);
972 }
973
974 static inline struct f2fs_node *F2FS_NODE(struct page *page)
975 {
976 return (struct f2fs_node *)page_address(page);
977 }
978
979 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
980 {
981 return &((struct f2fs_node *)page_address(page))->i;
982 }
983
984 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
985 {
986 return (struct f2fs_nm_info *)(sbi->nm_info);
987 }
988
989 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
990 {
991 return (struct f2fs_sm_info *)(sbi->sm_info);
992 }
993
994 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
995 {
996 return (struct sit_info *)(SM_I(sbi)->sit_info);
997 }
998
999 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1000 {
1001 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1002 }
1003
1004 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1005 {
1006 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1007 }
1008
1009 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1010 {
1011 return sbi->meta_inode->i_mapping;
1012 }
1013
1014 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1015 {
1016 return sbi->node_inode->i_mapping;
1017 }
1018
1019 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1020 {
1021 return sbi->s_flag & (0x01 << type);
1022 }
1023
1024 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1025 {
1026 sbi->s_flag |= (0x01 << type);
1027 }
1028
1029 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1030 {
1031 sbi->s_flag &= ~(0x01 << type);
1032 }
1033
1034 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1035 {
1036 return le64_to_cpu(cp->checkpoint_ver);
1037 }
1038
1039 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1040 {
1041 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1042 return ckpt_flags & f;
1043 }
1044
1045 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1046 {
1047 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1048 ckpt_flags |= f;
1049 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1050 }
1051
1052 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1053 {
1054 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1055 ckpt_flags &= (~f);
1056 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1057 }
1058
1059 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1060 {
1061 down_read(&sbi->cp_rwsem);
1062 }
1063
1064 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1065 {
1066 up_read(&sbi->cp_rwsem);
1067 }
1068
1069 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1070 {
1071 down_write(&sbi->cp_rwsem);
1072 }
1073
1074 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1075 {
1076 up_write(&sbi->cp_rwsem);
1077 }
1078
1079 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1080 {
1081 int reason = CP_SYNC;
1082
1083 if (test_opt(sbi, FASTBOOT))
1084 reason = CP_FASTBOOT;
1085 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1086 reason = CP_UMOUNT;
1087 return reason;
1088 }
1089
1090 static inline bool __remain_node_summaries(int reason)
1091 {
1092 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1093 }
1094
1095 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1096 {
1097 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1098 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1099 }
1100
1101 /*
1102 * Check whether the given nid is within node id range.
1103 */
1104 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1105 {
1106 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1107 return -EINVAL;
1108 if (unlikely(nid >= NM_I(sbi)->max_nid))
1109 return -EINVAL;
1110 return 0;
1111 }
1112
1113 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1114
1115 /*
1116 * Check whether the inode has blocks or not
1117 */
1118 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1119 {
1120 if (F2FS_I(inode)->i_xattr_nid)
1121 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1122 else
1123 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1124 }
1125
1126 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1127 {
1128 return ofs == XATTR_NODE_OFFSET;
1129 }
1130
1131 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1132 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1133 struct inode *inode, blkcnt_t *count)
1134 {
1135 block_t valid_block_count;
1136
1137 spin_lock(&sbi->stat_lock);
1138 #ifdef CONFIG_F2FS_FAULT_INJECTION
1139 if (time_to_inject(FAULT_BLOCK)) {
1140 spin_unlock(&sbi->stat_lock);
1141 return false;
1142 }
1143 #endif
1144 valid_block_count =
1145 sbi->total_valid_block_count + (block_t)(*count);
1146 if (unlikely(valid_block_count > sbi->user_block_count)) {
1147 *count = sbi->user_block_count - sbi->total_valid_block_count;
1148 if (!*count) {
1149 spin_unlock(&sbi->stat_lock);
1150 return false;
1151 }
1152 }
1153 /* *count can be recalculated */
1154 f2fs_i_blocks_write(inode, *count, true);
1155 sbi->total_valid_block_count =
1156 sbi->total_valid_block_count + (block_t)(*count);
1157 spin_unlock(&sbi->stat_lock);
1158
1159 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1160 return true;
1161 }
1162
1163 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1164 struct inode *inode,
1165 blkcnt_t count)
1166 {
1167 spin_lock(&sbi->stat_lock);
1168 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1169 f2fs_bug_on(sbi, inode->i_blocks < count);
1170 f2fs_i_blocks_write(inode, count, false);
1171 sbi->total_valid_block_count -= (block_t)count;
1172 spin_unlock(&sbi->stat_lock);
1173 }
1174
1175 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1176 {
1177 percpu_counter_inc(&sbi->nr_pages[count_type]);
1178 set_sbi_flag(sbi, SBI_IS_DIRTY);
1179 }
1180
1181 static inline void inode_inc_dirty_pages(struct inode *inode)
1182 {
1183 percpu_counter_inc(&F2FS_I(inode)->dirty_pages);
1184 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1185 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1186 }
1187
1188 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1189 {
1190 percpu_counter_dec(&sbi->nr_pages[count_type]);
1191 }
1192
1193 static inline void inode_dec_dirty_pages(struct inode *inode)
1194 {
1195 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1196 !S_ISLNK(inode->i_mode))
1197 return;
1198
1199 percpu_counter_dec(&F2FS_I(inode)->dirty_pages);
1200 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1201 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1202 }
1203
1204 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1205 {
1206 return percpu_counter_sum_positive(&sbi->nr_pages[count_type]);
1207 }
1208
1209 static inline s64 get_dirty_pages(struct inode *inode)
1210 {
1211 return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages);
1212 }
1213
1214 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1215 {
1216 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1217 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1218 sbi->log_blocks_per_seg;
1219
1220 return segs / sbi->segs_per_sec;
1221 }
1222
1223 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1224 {
1225 return sbi->total_valid_block_count;
1226 }
1227
1228 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1229 {
1230 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1231
1232 /* return NAT or SIT bitmap */
1233 if (flag == NAT_BITMAP)
1234 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1235 else if (flag == SIT_BITMAP)
1236 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1237
1238 return 0;
1239 }
1240
1241 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1242 {
1243 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1244 }
1245
1246 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1247 {
1248 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1249 int offset;
1250
1251 if (__cp_payload(sbi) > 0) {
1252 if (flag == NAT_BITMAP)
1253 return &ckpt->sit_nat_version_bitmap;
1254 else
1255 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1256 } else {
1257 offset = (flag == NAT_BITMAP) ?
1258 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1259 return &ckpt->sit_nat_version_bitmap + offset;
1260 }
1261 }
1262
1263 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1264 {
1265 block_t start_addr;
1266 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1267 unsigned long long ckpt_version = cur_cp_version(ckpt);
1268
1269 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1270
1271 /*
1272 * odd numbered checkpoint should at cp segment 0
1273 * and even segment must be at cp segment 1
1274 */
1275 if (!(ckpt_version & 1))
1276 start_addr += sbi->blocks_per_seg;
1277
1278 return start_addr;
1279 }
1280
1281 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1282 {
1283 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1284 }
1285
1286 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1287 struct inode *inode)
1288 {
1289 block_t valid_block_count;
1290 unsigned int valid_node_count;
1291
1292 spin_lock(&sbi->stat_lock);
1293
1294 valid_block_count = sbi->total_valid_block_count + 1;
1295 if (unlikely(valid_block_count > sbi->user_block_count)) {
1296 spin_unlock(&sbi->stat_lock);
1297 return false;
1298 }
1299
1300 valid_node_count = sbi->total_valid_node_count + 1;
1301 if (unlikely(valid_node_count > sbi->total_node_count)) {
1302 spin_unlock(&sbi->stat_lock);
1303 return false;
1304 }
1305
1306 if (inode)
1307 f2fs_i_blocks_write(inode, 1, true);
1308
1309 sbi->total_valid_node_count++;
1310 sbi->total_valid_block_count++;
1311 spin_unlock(&sbi->stat_lock);
1312
1313 percpu_counter_inc(&sbi->alloc_valid_block_count);
1314 return true;
1315 }
1316
1317 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1318 struct inode *inode)
1319 {
1320 spin_lock(&sbi->stat_lock);
1321
1322 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1323 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1324 f2fs_bug_on(sbi, !inode->i_blocks);
1325
1326 f2fs_i_blocks_write(inode, 1, false);
1327 sbi->total_valid_node_count--;
1328 sbi->total_valid_block_count--;
1329
1330 spin_unlock(&sbi->stat_lock);
1331 }
1332
1333 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1334 {
1335 return sbi->total_valid_node_count;
1336 }
1337
1338 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1339 {
1340 percpu_counter_inc(&sbi->total_valid_inode_count);
1341 }
1342
1343 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1344 {
1345 percpu_counter_dec(&sbi->total_valid_inode_count);
1346 }
1347
1348 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1349 {
1350 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1351 }
1352
1353 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1354 pgoff_t index, bool for_write)
1355 {
1356 #ifdef CONFIG_F2FS_FAULT_INJECTION
1357 struct page *page = find_lock_page(mapping, index);
1358 if (page)
1359 return page;
1360
1361 if (time_to_inject(FAULT_PAGE_ALLOC))
1362 return NULL;
1363 #endif
1364 if (!for_write)
1365 return grab_cache_page(mapping, index);
1366 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1367 }
1368
1369 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1370 {
1371 char *src_kaddr = kmap(src);
1372 char *dst_kaddr = kmap(dst);
1373
1374 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1375 kunmap(dst);
1376 kunmap(src);
1377 }
1378
1379 static inline void f2fs_put_page(struct page *page, int unlock)
1380 {
1381 if (!page)
1382 return;
1383
1384 if (unlock) {
1385 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1386 unlock_page(page);
1387 }
1388 put_page(page);
1389 }
1390
1391 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1392 {
1393 if (dn->node_page)
1394 f2fs_put_page(dn->node_page, 1);
1395 if (dn->inode_page && dn->node_page != dn->inode_page)
1396 f2fs_put_page(dn->inode_page, 0);
1397 dn->node_page = NULL;
1398 dn->inode_page = NULL;
1399 }
1400
1401 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1402 size_t size)
1403 {
1404 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1405 }
1406
1407 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1408 gfp_t flags)
1409 {
1410 void *entry;
1411
1412 entry = kmem_cache_alloc(cachep, flags);
1413 if (!entry)
1414 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1415 return entry;
1416 }
1417
1418 static inline struct bio *f2fs_bio_alloc(int npages)
1419 {
1420 struct bio *bio;
1421
1422 /* No failure on bio allocation */
1423 bio = bio_alloc(GFP_NOIO, npages);
1424 if (!bio)
1425 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1426 return bio;
1427 }
1428
1429 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1430 unsigned long index, void *item)
1431 {
1432 while (radix_tree_insert(root, index, item))
1433 cond_resched();
1434 }
1435
1436 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1437
1438 static inline bool IS_INODE(struct page *page)
1439 {
1440 struct f2fs_node *p = F2FS_NODE(page);
1441 return RAW_IS_INODE(p);
1442 }
1443
1444 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1445 {
1446 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1447 }
1448
1449 static inline block_t datablock_addr(struct page *node_page,
1450 unsigned int offset)
1451 {
1452 struct f2fs_node *raw_node;
1453 __le32 *addr_array;
1454 raw_node = F2FS_NODE(node_page);
1455 addr_array = blkaddr_in_node(raw_node);
1456 return le32_to_cpu(addr_array[offset]);
1457 }
1458
1459 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1460 {
1461 int mask;
1462
1463 addr += (nr >> 3);
1464 mask = 1 << (7 - (nr & 0x07));
1465 return mask & *addr;
1466 }
1467
1468 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1469 {
1470 int mask;
1471
1472 addr += (nr >> 3);
1473 mask = 1 << (7 - (nr & 0x07));
1474 *addr |= mask;
1475 }
1476
1477 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1478 {
1479 int mask;
1480
1481 addr += (nr >> 3);
1482 mask = 1 << (7 - (nr & 0x07));
1483 *addr &= ~mask;
1484 }
1485
1486 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1487 {
1488 int mask;
1489 int ret;
1490
1491 addr += (nr >> 3);
1492 mask = 1 << (7 - (nr & 0x07));
1493 ret = mask & *addr;
1494 *addr |= mask;
1495 return ret;
1496 }
1497
1498 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1499 {
1500 int mask;
1501 int ret;
1502
1503 addr += (nr >> 3);
1504 mask = 1 << (7 - (nr & 0x07));
1505 ret = mask & *addr;
1506 *addr &= ~mask;
1507 return ret;
1508 }
1509
1510 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1511 {
1512 int mask;
1513
1514 addr += (nr >> 3);
1515 mask = 1 << (7 - (nr & 0x07));
1516 *addr ^= mask;
1517 }
1518
1519 /* used for f2fs_inode_info->flags */
1520 enum {
1521 FI_NEW_INODE, /* indicate newly allocated inode */
1522 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1523 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1524 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1525 FI_INC_LINK, /* need to increment i_nlink */
1526 FI_ACL_MODE, /* indicate acl mode */
1527 FI_NO_ALLOC, /* should not allocate any blocks */
1528 FI_FREE_NID, /* free allocated nide */
1529 FI_NO_EXTENT, /* not to use the extent cache */
1530 FI_INLINE_XATTR, /* used for inline xattr */
1531 FI_INLINE_DATA, /* used for inline data*/
1532 FI_INLINE_DENTRY, /* used for inline dentry */
1533 FI_APPEND_WRITE, /* inode has appended data */
1534 FI_UPDATE_WRITE, /* inode has in-place-update data */
1535 FI_NEED_IPU, /* used for ipu per file */
1536 FI_ATOMIC_FILE, /* indicate atomic file */
1537 FI_VOLATILE_FILE, /* indicate volatile file */
1538 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1539 FI_DROP_CACHE, /* drop dirty page cache */
1540 FI_DATA_EXIST, /* indicate data exists */
1541 FI_INLINE_DOTS, /* indicate inline dot dentries */
1542 FI_DO_DEFRAG, /* indicate defragment is running */
1543 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1544 };
1545
1546 static inline void __mark_inode_dirty_flag(struct inode *inode,
1547 int flag, bool set)
1548 {
1549 switch (flag) {
1550 case FI_INLINE_XATTR:
1551 case FI_INLINE_DATA:
1552 case FI_INLINE_DENTRY:
1553 if (set)
1554 return;
1555 case FI_DATA_EXIST:
1556 case FI_INLINE_DOTS:
1557 mark_inode_dirty_sync(inode);
1558 }
1559 }
1560
1561 static inline void set_inode_flag(struct inode *inode, int flag)
1562 {
1563 if (!test_bit(flag, &F2FS_I(inode)->flags))
1564 set_bit(flag, &F2FS_I(inode)->flags);
1565 __mark_inode_dirty_flag(inode, flag, true);
1566 }
1567
1568 static inline int is_inode_flag_set(struct inode *inode, int flag)
1569 {
1570 return test_bit(flag, &F2FS_I(inode)->flags);
1571 }
1572
1573 static inline void clear_inode_flag(struct inode *inode, int flag)
1574 {
1575 if (test_bit(flag, &F2FS_I(inode)->flags))
1576 clear_bit(flag, &F2FS_I(inode)->flags);
1577 __mark_inode_dirty_flag(inode, flag, false);
1578 }
1579
1580 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1581 {
1582 F2FS_I(inode)->i_acl_mode = mode;
1583 set_inode_flag(inode, FI_ACL_MODE);
1584 mark_inode_dirty_sync(inode);
1585 }
1586
1587 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1588 {
1589 if (inc)
1590 inc_nlink(inode);
1591 else
1592 drop_nlink(inode);
1593 mark_inode_dirty_sync(inode);
1594 }
1595
1596 static inline void f2fs_i_blocks_write(struct inode *inode,
1597 blkcnt_t diff, bool add)
1598 {
1599 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1600 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1601
1602 inode->i_blocks = add ? inode->i_blocks + diff :
1603 inode->i_blocks - diff;
1604 mark_inode_dirty_sync(inode);
1605 if (clean || recover)
1606 set_inode_flag(inode, FI_AUTO_RECOVER);
1607 }
1608
1609 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1610 {
1611 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1612 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1613
1614 if (i_size_read(inode) == i_size)
1615 return;
1616
1617 i_size_write(inode, i_size);
1618 mark_inode_dirty_sync(inode);
1619 if (clean || recover)
1620 set_inode_flag(inode, FI_AUTO_RECOVER);
1621 }
1622
1623 static inline bool f2fs_skip_inode_update(struct inode *inode)
1624 {
1625 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER))
1626 return false;
1627 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1628 }
1629
1630 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1631 {
1632 F2FS_I(inode)->i_current_depth = depth;
1633 mark_inode_dirty_sync(inode);
1634 }
1635
1636 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1637 {
1638 F2FS_I(inode)->i_xattr_nid = xnid;
1639 mark_inode_dirty_sync(inode);
1640 }
1641
1642 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1643 {
1644 F2FS_I(inode)->i_pino = pino;
1645 mark_inode_dirty_sync(inode);
1646 }
1647
1648 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1649 {
1650 struct f2fs_inode_info *fi = F2FS_I(inode);
1651
1652 if (ri->i_inline & F2FS_INLINE_XATTR)
1653 set_bit(FI_INLINE_XATTR, &fi->flags);
1654 if (ri->i_inline & F2FS_INLINE_DATA)
1655 set_bit(FI_INLINE_DATA, &fi->flags);
1656 if (ri->i_inline & F2FS_INLINE_DENTRY)
1657 set_bit(FI_INLINE_DENTRY, &fi->flags);
1658 if (ri->i_inline & F2FS_DATA_EXIST)
1659 set_bit(FI_DATA_EXIST, &fi->flags);
1660 if (ri->i_inline & F2FS_INLINE_DOTS)
1661 set_bit(FI_INLINE_DOTS, &fi->flags);
1662 }
1663
1664 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1665 {
1666 ri->i_inline = 0;
1667
1668 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1669 ri->i_inline |= F2FS_INLINE_XATTR;
1670 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1671 ri->i_inline |= F2FS_INLINE_DATA;
1672 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1673 ri->i_inline |= F2FS_INLINE_DENTRY;
1674 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1675 ri->i_inline |= F2FS_DATA_EXIST;
1676 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1677 ri->i_inline |= F2FS_INLINE_DOTS;
1678 }
1679
1680 static inline int f2fs_has_inline_xattr(struct inode *inode)
1681 {
1682 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1683 }
1684
1685 static inline unsigned int addrs_per_inode(struct inode *inode)
1686 {
1687 if (f2fs_has_inline_xattr(inode))
1688 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1689 return DEF_ADDRS_PER_INODE;
1690 }
1691
1692 static inline void *inline_xattr_addr(struct page *page)
1693 {
1694 struct f2fs_inode *ri = F2FS_INODE(page);
1695 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1696 F2FS_INLINE_XATTR_ADDRS]);
1697 }
1698
1699 static inline int inline_xattr_size(struct inode *inode)
1700 {
1701 if (f2fs_has_inline_xattr(inode))
1702 return F2FS_INLINE_XATTR_ADDRS << 2;
1703 else
1704 return 0;
1705 }
1706
1707 static inline int f2fs_has_inline_data(struct inode *inode)
1708 {
1709 return is_inode_flag_set(inode, FI_INLINE_DATA);
1710 }
1711
1712 static inline void f2fs_clear_inline_inode(struct inode *inode)
1713 {
1714 clear_inode_flag(inode, FI_INLINE_DATA);
1715 clear_inode_flag(inode, FI_DATA_EXIST);
1716 }
1717
1718 static inline int f2fs_exist_data(struct inode *inode)
1719 {
1720 return is_inode_flag_set(inode, FI_DATA_EXIST);
1721 }
1722
1723 static inline int f2fs_has_inline_dots(struct inode *inode)
1724 {
1725 return is_inode_flag_set(inode, FI_INLINE_DOTS);
1726 }
1727
1728 static inline bool f2fs_is_atomic_file(struct inode *inode)
1729 {
1730 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1731 }
1732
1733 static inline bool f2fs_is_volatile_file(struct inode *inode)
1734 {
1735 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1736 }
1737
1738 static inline bool f2fs_is_first_block_written(struct inode *inode)
1739 {
1740 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1741 }
1742
1743 static inline bool f2fs_is_drop_cache(struct inode *inode)
1744 {
1745 return is_inode_flag_set(inode, FI_DROP_CACHE);
1746 }
1747
1748 static inline void *inline_data_addr(struct page *page)
1749 {
1750 struct f2fs_inode *ri = F2FS_INODE(page);
1751 return (void *)&(ri->i_addr[1]);
1752 }
1753
1754 static inline int f2fs_has_inline_dentry(struct inode *inode)
1755 {
1756 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1757 }
1758
1759 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1760 {
1761 if (!f2fs_has_inline_dentry(dir))
1762 kunmap(page);
1763 }
1764
1765 static inline int is_file(struct inode *inode, int type)
1766 {
1767 return F2FS_I(inode)->i_advise & type;
1768 }
1769
1770 static inline void set_file(struct inode *inode, int type)
1771 {
1772 F2FS_I(inode)->i_advise |= type;
1773 mark_inode_dirty_sync(inode);
1774 }
1775
1776 static inline void clear_file(struct inode *inode, int type)
1777 {
1778 F2FS_I(inode)->i_advise &= ~type;
1779 mark_inode_dirty_sync(inode);
1780 }
1781
1782 static inline int f2fs_readonly(struct super_block *sb)
1783 {
1784 return sb->s_flags & MS_RDONLY;
1785 }
1786
1787 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1788 {
1789 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1790 }
1791
1792 static inline bool is_dot_dotdot(const struct qstr *str)
1793 {
1794 if (str->len == 1 && str->name[0] == '.')
1795 return true;
1796
1797 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1798 return true;
1799
1800 return false;
1801 }
1802
1803 static inline bool f2fs_may_extent_tree(struct inode *inode)
1804 {
1805 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1806 is_inode_flag_set(inode, FI_NO_EXTENT))
1807 return false;
1808
1809 return S_ISREG(inode->i_mode);
1810 }
1811
1812 static inline void *f2fs_kmalloc(size_t size, gfp_t flags)
1813 {
1814 #ifdef CONFIG_F2FS_FAULT_INJECTION
1815 if (time_to_inject(FAULT_KMALLOC))
1816 return NULL;
1817 #endif
1818 return kmalloc(size, flags);
1819 }
1820
1821 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1822 {
1823 void *ret;
1824
1825 ret = kmalloc(size, flags | __GFP_NOWARN);
1826 if (!ret)
1827 ret = __vmalloc(size, flags, PAGE_KERNEL);
1828 return ret;
1829 }
1830
1831 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1832 {
1833 void *ret;
1834
1835 ret = kzalloc(size, flags | __GFP_NOWARN);
1836 if (!ret)
1837 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1838 return ret;
1839 }
1840
1841 #define get_inode_mode(i) \
1842 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
1843 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1844
1845 /* get offset of first page in next direct node */
1846 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1847 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1848 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1849 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1850
1851 /*
1852 * file.c
1853 */
1854 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1855 void truncate_data_blocks(struct dnode_of_data *);
1856 int truncate_blocks(struct inode *, u64, bool);
1857 int f2fs_truncate(struct inode *, bool);
1858 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1859 int f2fs_setattr(struct dentry *, struct iattr *);
1860 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1861 int truncate_data_blocks_range(struct dnode_of_data *, int);
1862 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1863 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1864
1865 /*
1866 * inode.c
1867 */
1868 void f2fs_set_inode_flags(struct inode *);
1869 struct inode *f2fs_iget(struct super_block *, unsigned long);
1870 int try_to_free_nats(struct f2fs_sb_info *, int);
1871 int update_inode(struct inode *, struct page *);
1872 int update_inode_page(struct inode *);
1873 int f2fs_write_inode(struct inode *, struct writeback_control *);
1874 void f2fs_evict_inode(struct inode *);
1875 void handle_failed_inode(struct inode *);
1876
1877 /*
1878 * namei.c
1879 */
1880 struct dentry *f2fs_get_parent(struct dentry *child);
1881
1882 /*
1883 * dir.c
1884 */
1885 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1886 void set_de_type(struct f2fs_dir_entry *, umode_t);
1887 unsigned char get_de_type(struct f2fs_dir_entry *);
1888 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1889 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1890 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1891 unsigned int, struct fscrypt_str *);
1892 void do_make_empty_dir(struct inode *, struct inode *,
1893 struct f2fs_dentry_ptr *);
1894 struct page *init_inode_metadata(struct inode *, struct inode *,
1895 const struct qstr *, struct page *);
1896 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1897 int room_for_filename(const void *, int, int);
1898 void f2fs_drop_nlink(struct inode *, struct inode *);
1899 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1900 struct page **);
1901 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1902 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1903 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1904 struct page *, struct inode *);
1905 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1906 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1907 const struct qstr *, f2fs_hash_t , unsigned int);
1908 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1909 struct inode *, nid_t, umode_t);
1910 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1911 umode_t);
1912 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1913 struct inode *);
1914 int f2fs_do_tmpfile(struct inode *, struct inode *);
1915 bool f2fs_empty_dir(struct inode *);
1916
1917 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1918 {
1919 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1920 inode, inode->i_ino, inode->i_mode);
1921 }
1922
1923 /*
1924 * super.c
1925 */
1926 void f2fs_inode_synced(struct inode *);
1927 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1928 int f2fs_sync_fs(struct super_block *, int);
1929 extern __printf(3, 4)
1930 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1931 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1932
1933 /*
1934 * hash.c
1935 */
1936 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1937
1938 /*
1939 * node.c
1940 */
1941 struct dnode_of_data;
1942 struct node_info;
1943
1944 bool available_free_memory(struct f2fs_sb_info *, int);
1945 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1946 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1947 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1948 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1949 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1950 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1951 int truncate_inode_blocks(struct inode *, pgoff_t);
1952 int truncate_xattr_node(struct inode *, struct page *);
1953 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1954 int remove_inode_page(struct inode *);
1955 struct page *new_inode_page(struct inode *);
1956 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1957 void ra_node_page(struct f2fs_sb_info *, nid_t);
1958 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1959 struct page *get_node_page_ra(struct page *, int);
1960 void move_node_page(struct page *, int);
1961 int fsync_node_pages(struct f2fs_sb_info *, struct inode *,
1962 struct writeback_control *, bool);
1963 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
1964 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1965 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1966 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1967 int try_to_free_nids(struct f2fs_sb_info *, int);
1968 void recover_inline_xattr(struct inode *, struct page *);
1969 void recover_xattr_data(struct inode *, struct page *, block_t);
1970 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1971 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1972 struct f2fs_summary_block *);
1973 void flush_nat_entries(struct f2fs_sb_info *);
1974 int build_node_manager(struct f2fs_sb_info *);
1975 void destroy_node_manager(struct f2fs_sb_info *);
1976 int __init create_node_manager_caches(void);
1977 void destroy_node_manager_caches(void);
1978
1979 /*
1980 * segment.c
1981 */
1982 void register_inmem_page(struct inode *, struct page *);
1983 void drop_inmem_pages(struct inode *);
1984 int commit_inmem_pages(struct inode *);
1985 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1986 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1987 int f2fs_issue_flush(struct f2fs_sb_info *);
1988 int create_flush_cmd_control(struct f2fs_sb_info *);
1989 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1990 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1991 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1992 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1993 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1994 void release_discard_addrs(struct f2fs_sb_info *);
1995 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1996 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1997 void allocate_new_segments(struct f2fs_sb_info *);
1998 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1999 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
2000 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
2001 void write_meta_page(struct f2fs_sb_info *, struct page *);
2002 void write_node_page(unsigned int, struct f2fs_io_info *);
2003 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
2004 void rewrite_data_page(struct f2fs_io_info *);
2005 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
2006 block_t, block_t, bool, bool);
2007 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
2008 block_t, block_t, unsigned char, bool, bool);
2009 void allocate_data_block(struct f2fs_sb_info *, struct page *,
2010 block_t, block_t *, struct f2fs_summary *, int);
2011 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
2012 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
2013 void write_data_summaries(struct f2fs_sb_info *, block_t);
2014 void write_node_summaries(struct f2fs_sb_info *, block_t);
2015 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
2016 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
2017 int build_segment_manager(struct f2fs_sb_info *);
2018 void destroy_segment_manager(struct f2fs_sb_info *);
2019 int __init create_segment_manager_caches(void);
2020 void destroy_segment_manager_caches(void);
2021
2022 /*
2023 * checkpoint.c
2024 */
2025 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
2026 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
2027 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
2028 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
2029 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
2030 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
2031 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
2032 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
2033 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2034 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2035 void release_ino_entry(struct f2fs_sb_info *, bool);
2036 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
2037 int f2fs_sync_inode_meta(struct f2fs_sb_info *);
2038 int acquire_orphan_inode(struct f2fs_sb_info *);
2039 void release_orphan_inode(struct f2fs_sb_info *);
2040 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
2041 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
2042 int recover_orphan_inodes(struct f2fs_sb_info *);
2043 int get_valid_checkpoint(struct f2fs_sb_info *);
2044 void update_dirty_page(struct inode *, struct page *);
2045 void remove_dirty_inode(struct inode *);
2046 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
2047 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
2048 void init_ino_entry_info(struct f2fs_sb_info *);
2049 int __init create_checkpoint_caches(void);
2050 void destroy_checkpoint_caches(void);
2051
2052 /*
2053 * data.c
2054 */
2055 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
2056 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
2057 struct page *, nid_t, enum page_type, int);
2058 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
2059 int f2fs_submit_page_bio(struct f2fs_io_info *);
2060 void f2fs_submit_page_mbio(struct f2fs_io_info *);
2061 void set_data_blkaddr(struct dnode_of_data *);
2062 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
2063 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
2064 int reserve_new_block(struct dnode_of_data *);
2065 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
2066 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
2067 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
2068 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
2069 struct page *find_data_page(struct inode *, pgoff_t);
2070 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
2071 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
2072 int do_write_data_page(struct f2fs_io_info *);
2073 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
2074 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
2075 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
2076 int f2fs_release_page(struct page *, gfp_t);
2077
2078 /*
2079 * gc.c
2080 */
2081 int start_gc_thread(struct f2fs_sb_info *);
2082 void stop_gc_thread(struct f2fs_sb_info *);
2083 block_t start_bidx_of_node(unsigned int, struct inode *);
2084 int f2fs_gc(struct f2fs_sb_info *, bool);
2085 void build_gc_manager(struct f2fs_sb_info *);
2086
2087 /*
2088 * recovery.c
2089 */
2090 int recover_fsync_data(struct f2fs_sb_info *, bool);
2091 bool space_for_roll_forward(struct f2fs_sb_info *);
2092
2093 /*
2094 * debug.c
2095 */
2096 #ifdef CONFIG_F2FS_STAT_FS
2097 struct f2fs_stat_info {
2098 struct list_head stat_list;
2099 struct f2fs_sb_info *sbi;
2100 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2101 int main_area_segs, main_area_sections, main_area_zones;
2102 unsigned long long hit_largest, hit_cached, hit_rbtree;
2103 unsigned long long hit_total, total_ext;
2104 int ext_tree, zombie_tree, ext_node;
2105 s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, inmem_pages;
2106 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2107 int nats, dirty_nats, sits, dirty_sits, fnids;
2108 int total_count, utilization;
2109 int bg_gc, wb_bios;
2110 int inline_xattr, inline_inode, inline_dir, orphans;
2111 unsigned int valid_count, valid_node_count, valid_inode_count;
2112 unsigned int bimodal, avg_vblocks;
2113 int util_free, util_valid, util_invalid;
2114 int rsvd_segs, overp_segs;
2115 int dirty_count, node_pages, meta_pages;
2116 int prefree_count, call_count, cp_count, bg_cp_count;
2117 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2118 int bg_node_segs, bg_data_segs;
2119 int tot_blks, data_blks, node_blks;
2120 int bg_data_blks, bg_node_blks;
2121 int curseg[NR_CURSEG_TYPE];
2122 int cursec[NR_CURSEG_TYPE];
2123 int curzone[NR_CURSEG_TYPE];
2124
2125 unsigned int segment_count[2];
2126 unsigned int block_count[2];
2127 unsigned int inplace_count;
2128 unsigned long long base_mem, cache_mem, page_mem;
2129 };
2130
2131 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2132 {
2133 return (struct f2fs_stat_info *)sbi->stat_info;
2134 }
2135
2136 #define stat_inc_cp_count(si) ((si)->cp_count++)
2137 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2138 #define stat_inc_call_count(si) ((si)->call_count++)
2139 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2140 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2141 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2142 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2143 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2144 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2145 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2146 #define stat_inc_inline_xattr(inode) \
2147 do { \
2148 if (f2fs_has_inline_xattr(inode)) \
2149 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2150 } while (0)
2151 #define stat_dec_inline_xattr(inode) \
2152 do { \
2153 if (f2fs_has_inline_xattr(inode)) \
2154 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2155 } while (0)
2156 #define stat_inc_inline_inode(inode) \
2157 do { \
2158 if (f2fs_has_inline_data(inode)) \
2159 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2160 } while (0)
2161 #define stat_dec_inline_inode(inode) \
2162 do { \
2163 if (f2fs_has_inline_data(inode)) \
2164 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2165 } while (0)
2166 #define stat_inc_inline_dir(inode) \
2167 do { \
2168 if (f2fs_has_inline_dentry(inode)) \
2169 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2170 } while (0)
2171 #define stat_dec_inline_dir(inode) \
2172 do { \
2173 if (f2fs_has_inline_dentry(inode)) \
2174 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2175 } while (0)
2176 #define stat_inc_seg_type(sbi, curseg) \
2177 ((sbi)->segment_count[(curseg)->alloc_type]++)
2178 #define stat_inc_block_count(sbi, curseg) \
2179 ((sbi)->block_count[(curseg)->alloc_type]++)
2180 #define stat_inc_inplace_blocks(sbi) \
2181 (atomic_inc(&(sbi)->inplace_count))
2182 #define stat_inc_seg_count(sbi, type, gc_type) \
2183 do { \
2184 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2185 (si)->tot_segs++; \
2186 if (type == SUM_TYPE_DATA) { \
2187 si->data_segs++; \
2188 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2189 } else { \
2190 si->node_segs++; \
2191 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2192 } \
2193 } while (0)
2194
2195 #define stat_inc_tot_blk_count(si, blks) \
2196 (si->tot_blks += (blks))
2197
2198 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2199 do { \
2200 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2201 stat_inc_tot_blk_count(si, blks); \
2202 si->data_blks += (blks); \
2203 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2204 } while (0)
2205
2206 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2207 do { \
2208 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2209 stat_inc_tot_blk_count(si, blks); \
2210 si->node_blks += (blks); \
2211 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2212 } while (0)
2213
2214 int f2fs_build_stats(struct f2fs_sb_info *);
2215 void f2fs_destroy_stats(struct f2fs_sb_info *);
2216 int __init f2fs_create_root_stats(void);
2217 void f2fs_destroy_root_stats(void);
2218 #else
2219 #define stat_inc_cp_count(si)
2220 #define stat_inc_bg_cp_count(si)
2221 #define stat_inc_call_count(si)
2222 #define stat_inc_bggc_count(si)
2223 #define stat_inc_dirty_inode(sbi, type)
2224 #define stat_dec_dirty_inode(sbi, type)
2225 #define stat_inc_total_hit(sb)
2226 #define stat_inc_rbtree_node_hit(sb)
2227 #define stat_inc_largest_node_hit(sbi)
2228 #define stat_inc_cached_node_hit(sbi)
2229 #define stat_inc_inline_xattr(inode)
2230 #define stat_dec_inline_xattr(inode)
2231 #define stat_inc_inline_inode(inode)
2232 #define stat_dec_inline_inode(inode)
2233 #define stat_inc_inline_dir(inode)
2234 #define stat_dec_inline_dir(inode)
2235 #define stat_inc_seg_type(sbi, curseg)
2236 #define stat_inc_block_count(sbi, curseg)
2237 #define stat_inc_inplace_blocks(sbi)
2238 #define stat_inc_seg_count(sbi, type, gc_type)
2239 #define stat_inc_tot_blk_count(si, blks)
2240 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2241 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2242
2243 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2244 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2245 static inline int __init f2fs_create_root_stats(void) { return 0; }
2246 static inline void f2fs_destroy_root_stats(void) { }
2247 #endif
2248
2249 extern const struct file_operations f2fs_dir_operations;
2250 extern const struct file_operations f2fs_file_operations;
2251 extern const struct inode_operations f2fs_file_inode_operations;
2252 extern const struct address_space_operations f2fs_dblock_aops;
2253 extern const struct address_space_operations f2fs_node_aops;
2254 extern const struct address_space_operations f2fs_meta_aops;
2255 extern const struct inode_operations f2fs_dir_inode_operations;
2256 extern const struct inode_operations f2fs_symlink_inode_operations;
2257 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2258 extern const struct inode_operations f2fs_special_inode_operations;
2259 extern struct kmem_cache *inode_entry_slab;
2260
2261 /*
2262 * inline.c
2263 */
2264 bool f2fs_may_inline_data(struct inode *);
2265 bool f2fs_may_inline_dentry(struct inode *);
2266 void read_inline_data(struct page *, struct page *);
2267 bool truncate_inline_inode(struct page *, u64);
2268 int f2fs_read_inline_data(struct inode *, struct page *);
2269 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2270 int f2fs_convert_inline_inode(struct inode *);
2271 int f2fs_write_inline_data(struct inode *, struct page *);
2272 bool recover_inline_data(struct inode *, struct page *);
2273 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2274 struct fscrypt_name *, struct page **);
2275 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2276 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2277 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2278 nid_t, umode_t);
2279 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2280 struct inode *, struct inode *);
2281 bool f2fs_empty_inline_dir(struct inode *);
2282 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2283 struct fscrypt_str *);
2284 int f2fs_inline_data_fiemap(struct inode *,
2285 struct fiemap_extent_info *, __u64, __u64);
2286
2287 /*
2288 * shrinker.c
2289 */
2290 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2291 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2292 void f2fs_join_shrinker(struct f2fs_sb_info *);
2293 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2294
2295 /*
2296 * extent_cache.c
2297 */
2298 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2299 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2300 unsigned int f2fs_destroy_extent_node(struct inode *);
2301 void f2fs_destroy_extent_tree(struct inode *);
2302 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2303 void f2fs_update_extent_cache(struct dnode_of_data *);
2304 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2305 pgoff_t, block_t, unsigned int);
2306 void init_extent_cache_info(struct f2fs_sb_info *);
2307 int __init create_extent_cache(void);
2308 void destroy_extent_cache(void);
2309
2310 /*
2311 * crypto support
2312 */
2313 static inline bool f2fs_encrypted_inode(struct inode *inode)
2314 {
2315 return file_is_encrypt(inode);
2316 }
2317
2318 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2319 {
2320 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2321 file_set_encrypt(inode);
2322 #endif
2323 }
2324
2325 static inline bool f2fs_bio_encrypted(struct bio *bio)
2326 {
2327 return bio->bi_private != NULL;
2328 }
2329
2330 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2331 {
2332 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2333 }
2334
2335 static inline bool f2fs_may_encrypt(struct inode *inode)
2336 {
2337 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2338 umode_t mode = inode->i_mode;
2339
2340 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2341 #else
2342 return 0;
2343 #endif
2344 }
2345
2346 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2347 #define fscrypt_set_d_op(i)
2348 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2349 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2350 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2351 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2352 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2353 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2354 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2355 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2356 #define fscrypt_process_policy fscrypt_notsupp_process_policy
2357 #define fscrypt_get_policy fscrypt_notsupp_get_policy
2358 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2359 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2360 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2361 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2362 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2363 #define fscrypt_free_filename fscrypt_notsupp_free_filename
2364 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2365 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2366 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2367 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2368 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2369 #endif
2370 #endif
This page took 0.118207 seconds and 6 git commands to generate.