ubifs: Remove unused header
[deliverable/linux.git] / fs / f2fs / gc.c
1 /*
2 * fs/f2fs/gc.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/module.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/f2fs_fs.h>
16 #include <linux/kthread.h>
17 #include <linux/delay.h>
18 #include <linux/freezer.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "gc.h"
24 #include <trace/events/f2fs.h>
25
26 static int gc_thread_func(void *data)
27 {
28 struct f2fs_sb_info *sbi = data;
29 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
30 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
31 long wait_ms;
32
33 wait_ms = gc_th->min_sleep_time;
34
35 do {
36 if (try_to_freeze())
37 continue;
38 else
39 wait_event_interruptible_timeout(*wq,
40 kthread_should_stop(),
41 msecs_to_jiffies(wait_ms));
42 if (kthread_should_stop())
43 break;
44
45 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
46 increase_sleep_time(gc_th, &wait_ms);
47 continue;
48 }
49
50 /*
51 * [GC triggering condition]
52 * 0. GC is not conducted currently.
53 * 1. There are enough dirty segments.
54 * 2. IO subsystem is idle by checking the # of writeback pages.
55 * 3. IO subsystem is idle by checking the # of requests in
56 * bdev's request list.
57 *
58 * Note) We have to avoid triggering GCs frequently.
59 * Because it is possible that some segments can be
60 * invalidated soon after by user update or deletion.
61 * So, I'd like to wait some time to collect dirty segments.
62 */
63 if (!mutex_trylock(&sbi->gc_mutex))
64 continue;
65
66 if (!is_idle(sbi)) {
67 increase_sleep_time(gc_th, &wait_ms);
68 mutex_unlock(&sbi->gc_mutex);
69 continue;
70 }
71
72 if (has_enough_invalid_blocks(sbi))
73 decrease_sleep_time(gc_th, &wait_ms);
74 else
75 increase_sleep_time(gc_th, &wait_ms);
76
77 stat_inc_bggc_count(sbi);
78
79 /* if return value is not zero, no victim was selected */
80 if (f2fs_gc(sbi, test_opt(sbi, FORCE_FG_GC)))
81 wait_ms = gc_th->no_gc_sleep_time;
82
83 trace_f2fs_background_gc(sbi->sb, wait_ms,
84 prefree_segments(sbi), free_segments(sbi));
85
86 /* balancing f2fs's metadata periodically */
87 f2fs_balance_fs_bg(sbi);
88
89 } while (!kthread_should_stop());
90 return 0;
91 }
92
93 int start_gc_thread(struct f2fs_sb_info *sbi)
94 {
95 struct f2fs_gc_kthread *gc_th;
96 dev_t dev = sbi->sb->s_bdev->bd_dev;
97 int err = 0;
98
99 gc_th = kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
100 if (!gc_th) {
101 err = -ENOMEM;
102 goto out;
103 }
104
105 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
106 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
107 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
108
109 gc_th->gc_idle = 0;
110
111 sbi->gc_thread = gc_th;
112 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
113 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
114 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
115 if (IS_ERR(gc_th->f2fs_gc_task)) {
116 err = PTR_ERR(gc_th->f2fs_gc_task);
117 kfree(gc_th);
118 sbi->gc_thread = NULL;
119 }
120 out:
121 return err;
122 }
123
124 void stop_gc_thread(struct f2fs_sb_info *sbi)
125 {
126 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
127 if (!gc_th)
128 return;
129 kthread_stop(gc_th->f2fs_gc_task);
130 kfree(gc_th);
131 sbi->gc_thread = NULL;
132 }
133
134 static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type)
135 {
136 int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
137
138 if (gc_th && gc_th->gc_idle) {
139 if (gc_th->gc_idle == 1)
140 gc_mode = GC_CB;
141 else if (gc_th->gc_idle == 2)
142 gc_mode = GC_GREEDY;
143 }
144 return gc_mode;
145 }
146
147 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
148 int type, struct victim_sel_policy *p)
149 {
150 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
151
152 if (p->alloc_mode == SSR) {
153 p->gc_mode = GC_GREEDY;
154 p->dirty_segmap = dirty_i->dirty_segmap[type];
155 p->max_search = dirty_i->nr_dirty[type];
156 p->ofs_unit = 1;
157 } else {
158 p->gc_mode = select_gc_type(sbi->gc_thread, gc_type);
159 p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
160 p->max_search = dirty_i->nr_dirty[DIRTY];
161 p->ofs_unit = sbi->segs_per_sec;
162 }
163
164 if (p->max_search > sbi->max_victim_search)
165 p->max_search = sbi->max_victim_search;
166
167 p->offset = sbi->last_victim[p->gc_mode];
168 }
169
170 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
171 struct victim_sel_policy *p)
172 {
173 /* SSR allocates in a segment unit */
174 if (p->alloc_mode == SSR)
175 return sbi->blocks_per_seg;
176 if (p->gc_mode == GC_GREEDY)
177 return sbi->blocks_per_seg * p->ofs_unit;
178 else if (p->gc_mode == GC_CB)
179 return UINT_MAX;
180 else /* No other gc_mode */
181 return 0;
182 }
183
184 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
185 {
186 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
187 unsigned int secno;
188
189 /*
190 * If the gc_type is FG_GC, we can select victim segments
191 * selected by background GC before.
192 * Those segments guarantee they have small valid blocks.
193 */
194 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
195 if (sec_usage_check(sbi, secno))
196 continue;
197 clear_bit(secno, dirty_i->victim_secmap);
198 return secno * sbi->segs_per_sec;
199 }
200 return NULL_SEGNO;
201 }
202
203 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
204 {
205 struct sit_info *sit_i = SIT_I(sbi);
206 unsigned int secno = GET_SECNO(sbi, segno);
207 unsigned int start = secno * sbi->segs_per_sec;
208 unsigned long long mtime = 0;
209 unsigned int vblocks;
210 unsigned char age = 0;
211 unsigned char u;
212 unsigned int i;
213
214 for (i = 0; i < sbi->segs_per_sec; i++)
215 mtime += get_seg_entry(sbi, start + i)->mtime;
216 vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
217
218 mtime = div_u64(mtime, sbi->segs_per_sec);
219 vblocks = div_u64(vblocks, sbi->segs_per_sec);
220
221 u = (vblocks * 100) >> sbi->log_blocks_per_seg;
222
223 /* Handle if the system time has changed by the user */
224 if (mtime < sit_i->min_mtime)
225 sit_i->min_mtime = mtime;
226 if (mtime > sit_i->max_mtime)
227 sit_i->max_mtime = mtime;
228 if (sit_i->max_mtime != sit_i->min_mtime)
229 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
230 sit_i->max_mtime - sit_i->min_mtime);
231
232 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
233 }
234
235 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
236 unsigned int segno, struct victim_sel_policy *p)
237 {
238 if (p->alloc_mode == SSR)
239 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
240
241 /* alloc_mode == LFS */
242 if (p->gc_mode == GC_GREEDY)
243 return get_valid_blocks(sbi, segno, sbi->segs_per_sec);
244 else
245 return get_cb_cost(sbi, segno);
246 }
247
248 /*
249 * This function is called from two paths.
250 * One is garbage collection and the other is SSR segment selection.
251 * When it is called during GC, it just gets a victim segment
252 * and it does not remove it from dirty seglist.
253 * When it is called from SSR segment selection, it finds a segment
254 * which has minimum valid blocks and removes it from dirty seglist.
255 */
256 static int get_victim_by_default(struct f2fs_sb_info *sbi,
257 unsigned int *result, int gc_type, int type, char alloc_mode)
258 {
259 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
260 struct victim_sel_policy p;
261 unsigned int secno, max_cost;
262 unsigned int last_segment = MAIN_SEGS(sbi);
263 int nsearched = 0;
264
265 mutex_lock(&dirty_i->seglist_lock);
266
267 p.alloc_mode = alloc_mode;
268 select_policy(sbi, gc_type, type, &p);
269
270 p.min_segno = NULL_SEGNO;
271 p.min_cost = max_cost = get_max_cost(sbi, &p);
272
273 if (p.max_search == 0)
274 goto out;
275
276 if (p.alloc_mode == LFS && gc_type == FG_GC) {
277 p.min_segno = check_bg_victims(sbi);
278 if (p.min_segno != NULL_SEGNO)
279 goto got_it;
280 }
281
282 while (1) {
283 unsigned long cost;
284 unsigned int segno;
285
286 segno = find_next_bit(p.dirty_segmap, last_segment, p.offset);
287 if (segno >= last_segment) {
288 if (sbi->last_victim[p.gc_mode]) {
289 last_segment = sbi->last_victim[p.gc_mode];
290 sbi->last_victim[p.gc_mode] = 0;
291 p.offset = 0;
292 continue;
293 }
294 break;
295 }
296
297 p.offset = segno + p.ofs_unit;
298 if (p.ofs_unit > 1)
299 p.offset -= segno % p.ofs_unit;
300
301 secno = GET_SECNO(sbi, segno);
302
303 if (sec_usage_check(sbi, secno))
304 continue;
305 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
306 continue;
307
308 cost = get_gc_cost(sbi, segno, &p);
309
310 if (p.min_cost > cost) {
311 p.min_segno = segno;
312 p.min_cost = cost;
313 } else if (unlikely(cost == max_cost)) {
314 continue;
315 }
316
317 if (nsearched++ >= p.max_search) {
318 sbi->last_victim[p.gc_mode] = segno;
319 break;
320 }
321 }
322 if (p.min_segno != NULL_SEGNO) {
323 got_it:
324 if (p.alloc_mode == LFS) {
325 secno = GET_SECNO(sbi, p.min_segno);
326 if (gc_type == FG_GC)
327 sbi->cur_victim_sec = secno;
328 else
329 set_bit(secno, dirty_i->victim_secmap);
330 }
331 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
332
333 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
334 sbi->cur_victim_sec,
335 prefree_segments(sbi), free_segments(sbi));
336 }
337 out:
338 mutex_unlock(&dirty_i->seglist_lock);
339
340 return (p.min_segno == NULL_SEGNO) ? 0 : 1;
341 }
342
343 static const struct victim_selection default_v_ops = {
344 .get_victim = get_victim_by_default,
345 };
346
347 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
348 {
349 struct inode_entry *ie;
350
351 ie = radix_tree_lookup(&gc_list->iroot, ino);
352 if (ie)
353 return ie->inode;
354 return NULL;
355 }
356
357 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
358 {
359 struct inode_entry *new_ie;
360
361 if (inode == find_gc_inode(gc_list, inode->i_ino)) {
362 iput(inode);
363 return;
364 }
365 new_ie = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
366 new_ie->inode = inode;
367
368 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
369 list_add_tail(&new_ie->list, &gc_list->ilist);
370 }
371
372 static void put_gc_inode(struct gc_inode_list *gc_list)
373 {
374 struct inode_entry *ie, *next_ie;
375 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
376 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
377 iput(ie->inode);
378 list_del(&ie->list);
379 kmem_cache_free(inode_entry_slab, ie);
380 }
381 }
382
383 static int check_valid_map(struct f2fs_sb_info *sbi,
384 unsigned int segno, int offset)
385 {
386 struct sit_info *sit_i = SIT_I(sbi);
387 struct seg_entry *sentry;
388 int ret;
389
390 mutex_lock(&sit_i->sentry_lock);
391 sentry = get_seg_entry(sbi, segno);
392 ret = f2fs_test_bit(offset, sentry->cur_valid_map);
393 mutex_unlock(&sit_i->sentry_lock);
394 return ret;
395 }
396
397 /*
398 * This function compares node address got in summary with that in NAT.
399 * On validity, copy that node with cold status, otherwise (invalid node)
400 * ignore that.
401 */
402 static int gc_node_segment(struct f2fs_sb_info *sbi,
403 struct f2fs_summary *sum, unsigned int segno, int gc_type)
404 {
405 bool initial = true;
406 struct f2fs_summary *entry;
407 block_t start_addr;
408 int off;
409
410 start_addr = START_BLOCK(sbi, segno);
411
412 next_step:
413 entry = sum;
414
415 for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
416 nid_t nid = le32_to_cpu(entry->nid);
417 struct page *node_page;
418 struct node_info ni;
419
420 /* stop BG_GC if there is not enough free sections. */
421 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
422 return 0;
423
424 if (check_valid_map(sbi, segno, off) == 0)
425 continue;
426
427 if (initial) {
428 ra_node_page(sbi, nid);
429 continue;
430 }
431 node_page = get_node_page(sbi, nid);
432 if (IS_ERR(node_page))
433 continue;
434
435 /* block may become invalid during get_node_page */
436 if (check_valid_map(sbi, segno, off) == 0) {
437 f2fs_put_page(node_page, 1);
438 continue;
439 }
440
441 get_node_info(sbi, nid, &ni);
442 if (ni.blk_addr != start_addr + off) {
443 f2fs_put_page(node_page, 1);
444 continue;
445 }
446
447 /* set page dirty and write it */
448 if (gc_type == FG_GC) {
449 f2fs_wait_on_page_writeback(node_page, NODE);
450 set_page_dirty(node_page);
451 } else {
452 if (!PageWriteback(node_page))
453 set_page_dirty(node_page);
454 }
455 f2fs_put_page(node_page, 1);
456 stat_inc_node_blk_count(sbi, 1, gc_type);
457 }
458
459 if (initial) {
460 initial = false;
461 goto next_step;
462 }
463
464 if (gc_type == FG_GC) {
465 struct writeback_control wbc = {
466 .sync_mode = WB_SYNC_ALL,
467 .nr_to_write = LONG_MAX,
468 .for_reclaim = 0,
469 };
470 sync_node_pages(sbi, 0, &wbc);
471
472 /* return 1 only if FG_GC succefully reclaimed one */
473 if (get_valid_blocks(sbi, segno, 1) == 0)
474 return 1;
475 }
476 return 0;
477 }
478
479 /*
480 * Calculate start block index indicating the given node offset.
481 * Be careful, caller should give this node offset only indicating direct node
482 * blocks. If any node offsets, which point the other types of node blocks such
483 * as indirect or double indirect node blocks, are given, it must be a caller's
484 * bug.
485 */
486 block_t start_bidx_of_node(unsigned int node_ofs, struct f2fs_inode_info *fi)
487 {
488 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
489 unsigned int bidx;
490
491 if (node_ofs == 0)
492 return 0;
493
494 if (node_ofs <= 2) {
495 bidx = node_ofs - 1;
496 } else if (node_ofs <= indirect_blks) {
497 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
498 bidx = node_ofs - 2 - dec;
499 } else {
500 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
501 bidx = node_ofs - 5 - dec;
502 }
503 return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi);
504 }
505
506 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
507 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
508 {
509 struct page *node_page;
510 nid_t nid;
511 unsigned int ofs_in_node;
512 block_t source_blkaddr;
513
514 nid = le32_to_cpu(sum->nid);
515 ofs_in_node = le16_to_cpu(sum->ofs_in_node);
516
517 node_page = get_node_page(sbi, nid);
518 if (IS_ERR(node_page))
519 return false;
520
521 get_node_info(sbi, nid, dni);
522
523 if (sum->version != dni->version) {
524 f2fs_put_page(node_page, 1);
525 return false;
526 }
527
528 *nofs = ofs_of_node(node_page);
529 source_blkaddr = datablock_addr(node_page, ofs_in_node);
530 f2fs_put_page(node_page, 1);
531
532 if (source_blkaddr != blkaddr)
533 return false;
534 return true;
535 }
536
537 static void move_encrypted_block(struct inode *inode, block_t bidx)
538 {
539 struct f2fs_io_info fio = {
540 .sbi = F2FS_I_SB(inode),
541 .type = DATA,
542 .rw = READ_SYNC,
543 .encrypted_page = NULL,
544 };
545 struct dnode_of_data dn;
546 struct f2fs_summary sum;
547 struct node_info ni;
548 struct page *page;
549 int err;
550
551 /* do not read out */
552 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
553 if (!page)
554 return;
555
556 set_new_dnode(&dn, inode, NULL, NULL, 0);
557 err = get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
558 if (err)
559 goto out;
560
561 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
562 ClearPageUptodate(page);
563 goto put_out;
564 }
565
566 /*
567 * don't cache encrypted data into meta inode until previous dirty
568 * data were writebacked to avoid racing between GC and flush.
569 */
570 f2fs_wait_on_page_writeback(page, DATA);
571
572 get_node_info(fio.sbi, dn.nid, &ni);
573 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
574
575 /* read page */
576 fio.page = page;
577 fio.blk_addr = dn.data_blkaddr;
578
579 fio.encrypted_page = pagecache_get_page(META_MAPPING(fio.sbi),
580 fio.blk_addr,
581 FGP_LOCK|FGP_CREAT,
582 GFP_NOFS);
583 if (!fio.encrypted_page)
584 goto put_out;
585
586 err = f2fs_submit_page_bio(&fio);
587 if (err)
588 goto put_page_out;
589
590 /* write page */
591 lock_page(fio.encrypted_page);
592
593 if (unlikely(!PageUptodate(fio.encrypted_page)))
594 goto put_page_out;
595 if (unlikely(fio.encrypted_page->mapping != META_MAPPING(fio.sbi)))
596 goto put_page_out;
597
598 set_page_dirty(fio.encrypted_page);
599 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA);
600 if (clear_page_dirty_for_io(fio.encrypted_page))
601 dec_page_count(fio.sbi, F2FS_DIRTY_META);
602
603 set_page_writeback(fio.encrypted_page);
604
605 /* allocate block address */
606 f2fs_wait_on_page_writeback(dn.node_page, NODE);
607 allocate_data_block(fio.sbi, NULL, fio.blk_addr,
608 &fio.blk_addr, &sum, CURSEG_COLD_DATA);
609 fio.rw = WRITE_SYNC;
610 f2fs_submit_page_mbio(&fio);
611
612 dn.data_blkaddr = fio.blk_addr;
613 set_data_blkaddr(&dn);
614 f2fs_update_extent_cache(&dn);
615 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
616 if (page->index == 0)
617 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
618 put_page_out:
619 f2fs_put_page(fio.encrypted_page, 1);
620 put_out:
621 f2fs_put_dnode(&dn);
622 out:
623 f2fs_put_page(page, 1);
624 }
625
626 static void move_data_page(struct inode *inode, block_t bidx, int gc_type)
627 {
628 struct page *page;
629
630 page = get_lock_data_page(inode, bidx, true);
631 if (IS_ERR(page))
632 return;
633
634 if (gc_type == BG_GC) {
635 if (PageWriteback(page))
636 goto out;
637 set_page_dirty(page);
638 set_cold_data(page);
639 } else {
640 struct f2fs_io_info fio = {
641 .sbi = F2FS_I_SB(inode),
642 .type = DATA,
643 .rw = WRITE_SYNC,
644 .page = page,
645 .encrypted_page = NULL,
646 };
647 set_page_dirty(page);
648 f2fs_wait_on_page_writeback(page, DATA);
649 if (clear_page_dirty_for_io(page))
650 inode_dec_dirty_pages(inode);
651 set_cold_data(page);
652 do_write_data_page(&fio);
653 clear_cold_data(page);
654 }
655 out:
656 f2fs_put_page(page, 1);
657 }
658
659 /*
660 * This function tries to get parent node of victim data block, and identifies
661 * data block validity. If the block is valid, copy that with cold status and
662 * modify parent node.
663 * If the parent node is not valid or the data block address is different,
664 * the victim data block is ignored.
665 */
666 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
667 struct gc_inode_list *gc_list, unsigned int segno, int gc_type)
668 {
669 struct super_block *sb = sbi->sb;
670 struct f2fs_summary *entry;
671 block_t start_addr;
672 int off;
673 int phase = 0;
674
675 start_addr = START_BLOCK(sbi, segno);
676
677 next_step:
678 entry = sum;
679
680 for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
681 struct page *data_page;
682 struct inode *inode;
683 struct node_info dni; /* dnode info for the data */
684 unsigned int ofs_in_node, nofs;
685 block_t start_bidx;
686
687 /* stop BG_GC if there is not enough free sections. */
688 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
689 return 0;
690
691 if (check_valid_map(sbi, segno, off) == 0)
692 continue;
693
694 if (phase == 0) {
695 ra_node_page(sbi, le32_to_cpu(entry->nid));
696 continue;
697 }
698
699 /* Get an inode by ino with checking validity */
700 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
701 continue;
702
703 if (phase == 1) {
704 ra_node_page(sbi, dni.ino);
705 continue;
706 }
707
708 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
709
710 if (phase == 2) {
711 inode = f2fs_iget(sb, dni.ino);
712 if (IS_ERR(inode) || is_bad_inode(inode))
713 continue;
714
715 /* if encrypted inode, let's go phase 3 */
716 if (f2fs_encrypted_inode(inode) &&
717 S_ISREG(inode->i_mode)) {
718 add_gc_inode(gc_list, inode);
719 continue;
720 }
721
722 start_bidx = start_bidx_of_node(nofs, F2FS_I(inode));
723 data_page = get_read_data_page(inode,
724 start_bidx + ofs_in_node, READA, true);
725 if (IS_ERR(data_page)) {
726 iput(inode);
727 continue;
728 }
729
730 f2fs_put_page(data_page, 0);
731 add_gc_inode(gc_list, inode);
732 continue;
733 }
734
735 /* phase 3 */
736 inode = find_gc_inode(gc_list, dni.ino);
737 if (inode) {
738 start_bidx = start_bidx_of_node(nofs, F2FS_I(inode))
739 + ofs_in_node;
740 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
741 move_encrypted_block(inode, start_bidx);
742 else
743 move_data_page(inode, start_bidx, gc_type);
744 stat_inc_data_blk_count(sbi, 1, gc_type);
745 }
746 }
747
748 if (++phase < 4)
749 goto next_step;
750
751 if (gc_type == FG_GC) {
752 f2fs_submit_merged_bio(sbi, DATA, WRITE);
753
754 /* return 1 only if FG_GC succefully reclaimed one */
755 if (get_valid_blocks(sbi, segno, 1) == 0)
756 return 1;
757 }
758 return 0;
759 }
760
761 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
762 int gc_type)
763 {
764 struct sit_info *sit_i = SIT_I(sbi);
765 int ret;
766
767 mutex_lock(&sit_i->sentry_lock);
768 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
769 NO_CHECK_TYPE, LFS);
770 mutex_unlock(&sit_i->sentry_lock);
771 return ret;
772 }
773
774 static int do_garbage_collect(struct f2fs_sb_info *sbi, unsigned int segno,
775 struct gc_inode_list *gc_list, int gc_type)
776 {
777 struct page *sum_page;
778 struct f2fs_summary_block *sum;
779 struct blk_plug plug;
780 int nfree = 0;
781
782 /* read segment summary of victim */
783 sum_page = get_sum_page(sbi, segno);
784
785 blk_start_plug(&plug);
786
787 sum = page_address(sum_page);
788
789 /*
790 * this is to avoid deadlock:
791 * - lock_page(sum_page) - f2fs_replace_block
792 * - check_valid_map() - mutex_lock(sentry_lock)
793 * - mutex_lock(sentry_lock) - change_curseg()
794 * - lock_page(sum_page)
795 */
796 unlock_page(sum_page);
797
798 switch (GET_SUM_TYPE((&sum->footer))) {
799 case SUM_TYPE_NODE:
800 nfree = gc_node_segment(sbi, sum->entries, segno, gc_type);
801 break;
802 case SUM_TYPE_DATA:
803 nfree = gc_data_segment(sbi, sum->entries, gc_list,
804 segno, gc_type);
805 break;
806 }
807 blk_finish_plug(&plug);
808
809 stat_inc_seg_count(sbi, GET_SUM_TYPE((&sum->footer)), gc_type);
810 stat_inc_call_count(sbi->stat_info);
811
812 f2fs_put_page(sum_page, 0);
813 return nfree;
814 }
815
816 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync)
817 {
818 unsigned int segno, i;
819 int gc_type = sync ? FG_GC : BG_GC;
820 int sec_freed = 0;
821 int ret = -EINVAL;
822 struct cp_control cpc;
823 struct gc_inode_list gc_list = {
824 .ilist = LIST_HEAD_INIT(gc_list.ilist),
825 .iroot = RADIX_TREE_INIT(GFP_NOFS),
826 };
827
828 cpc.reason = __get_cp_reason(sbi);
829 gc_more:
830 segno = NULL_SEGNO;
831
832 if (unlikely(!(sbi->sb->s_flags & MS_ACTIVE)))
833 goto stop;
834 if (unlikely(f2fs_cp_error(sbi))) {
835 ret = -EIO;
836 goto stop;
837 }
838
839 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, sec_freed)) {
840 gc_type = FG_GC;
841 if (__get_victim(sbi, &segno, gc_type) || prefree_segments(sbi))
842 write_checkpoint(sbi, &cpc);
843 }
844
845 if (segno == NULL_SEGNO && !__get_victim(sbi, &segno, gc_type))
846 goto stop;
847 ret = 0;
848
849 /* readahead multi ssa blocks those have contiguous address */
850 if (sbi->segs_per_sec > 1)
851 ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), sbi->segs_per_sec,
852 META_SSA, true);
853
854 for (i = 0; i < sbi->segs_per_sec; i++) {
855 /*
856 * for FG_GC case, halt gcing left segments once failed one
857 * of segments in selected section to avoid long latency.
858 */
859 if (!do_garbage_collect(sbi, segno + i, &gc_list, gc_type) &&
860 gc_type == FG_GC)
861 break;
862 }
863
864 if (i == sbi->segs_per_sec && gc_type == FG_GC)
865 sec_freed++;
866
867 if (gc_type == FG_GC)
868 sbi->cur_victim_sec = NULL_SEGNO;
869
870 if (!sync) {
871 if (has_not_enough_free_secs(sbi, sec_freed))
872 goto gc_more;
873
874 if (gc_type == FG_GC)
875 write_checkpoint(sbi, &cpc);
876 }
877 stop:
878 mutex_unlock(&sbi->gc_mutex);
879
880 put_gc_inode(&gc_list);
881
882 if (sync)
883 ret = sec_freed ? 0 : -EAGAIN;
884 return ret;
885 }
886
887 void build_gc_manager(struct f2fs_sb_info *sbi)
888 {
889 DIRTY_I(sbi)->v_ops = &default_v_ops;
890 }
This page took 0.049506 seconds and 5 git commands to generate.