Merge tag 'sound-fix-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[deliverable/linux.git] / fs / f2fs / inline.c
1 /*
2 * fs/f2fs/inline.c
3 * Copyright (c) 2013, Intel Corporation
4 * Authors: Huajun Li <huajun.li@intel.com>
5 * Haicheng Li <haicheng.li@intel.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13
14 #include "f2fs.h"
15
16 bool f2fs_may_inline(struct inode *inode)
17 {
18 if (!test_opt(F2FS_I_SB(inode), INLINE_DATA))
19 return false;
20
21 if (f2fs_is_atomic_file(inode))
22 return false;
23
24 if (!S_ISREG(inode->i_mode))
25 return false;
26
27 if (i_size_read(inode) > MAX_INLINE_DATA)
28 return false;
29
30 return true;
31 }
32
33 void read_inline_data(struct page *page, struct page *ipage)
34 {
35 void *src_addr, *dst_addr;
36
37 if (PageUptodate(page))
38 return;
39
40 f2fs_bug_on(F2FS_P_SB(page), page->index);
41
42 zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
43
44 /* Copy the whole inline data block */
45 src_addr = inline_data_addr(ipage);
46 dst_addr = kmap_atomic(page);
47 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
48 flush_dcache_page(page);
49 kunmap_atomic(dst_addr);
50 SetPageUptodate(page);
51 }
52
53 static void truncate_inline_data(struct page *ipage)
54 {
55 f2fs_wait_on_page_writeback(ipage, NODE);
56 memset(inline_data_addr(ipage), 0, MAX_INLINE_DATA);
57 }
58
59 int f2fs_read_inline_data(struct inode *inode, struct page *page)
60 {
61 struct page *ipage;
62
63 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
64 if (IS_ERR(ipage)) {
65 unlock_page(page);
66 return PTR_ERR(ipage);
67 }
68
69 if (!f2fs_has_inline_data(inode)) {
70 f2fs_put_page(ipage, 1);
71 return -EAGAIN;
72 }
73
74 if (page->index)
75 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
76 else
77 read_inline_data(page, ipage);
78
79 SetPageUptodate(page);
80 f2fs_put_page(ipage, 1);
81 unlock_page(page);
82 return 0;
83 }
84
85 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
86 {
87 void *src_addr, *dst_addr;
88 struct f2fs_io_info fio = {
89 .type = DATA,
90 .rw = WRITE_SYNC | REQ_PRIO,
91 };
92 int dirty, err;
93
94 f2fs_bug_on(F2FS_I_SB(dn->inode), page->index);
95
96 if (!f2fs_exist_data(dn->inode))
97 goto clear_out;
98
99 err = f2fs_reserve_block(dn, 0);
100 if (err)
101 return err;
102
103 f2fs_wait_on_page_writeback(page, DATA);
104
105 if (PageUptodate(page))
106 goto no_update;
107
108 zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
109
110 /* Copy the whole inline data block */
111 src_addr = inline_data_addr(dn->inode_page);
112 dst_addr = kmap_atomic(page);
113 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
114 flush_dcache_page(page);
115 kunmap_atomic(dst_addr);
116 SetPageUptodate(page);
117 no_update:
118 /* clear dirty state */
119 dirty = clear_page_dirty_for_io(page);
120
121 /* write data page to try to make data consistent */
122 set_page_writeback(page);
123 fio.blk_addr = dn->data_blkaddr;
124 write_data_page(page, dn, &fio);
125 update_extent_cache(dn);
126 f2fs_wait_on_page_writeback(page, DATA);
127 if (dirty)
128 inode_dec_dirty_pages(dn->inode);
129
130 /* this converted inline_data should be recovered. */
131 set_inode_flag(F2FS_I(dn->inode), FI_APPEND_WRITE);
132
133 /* clear inline data and flag after data writeback */
134 truncate_inline_data(dn->inode_page);
135 clear_out:
136 stat_dec_inline_inode(dn->inode);
137 f2fs_clear_inline_inode(dn->inode);
138 sync_inode_page(dn);
139 f2fs_put_dnode(dn);
140 return 0;
141 }
142
143 int f2fs_convert_inline_inode(struct inode *inode)
144 {
145 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
146 struct dnode_of_data dn;
147 struct page *ipage, *page;
148 int err = 0;
149
150 page = grab_cache_page(inode->i_mapping, 0);
151 if (!page)
152 return -ENOMEM;
153
154 f2fs_lock_op(sbi);
155
156 ipage = get_node_page(sbi, inode->i_ino);
157 if (IS_ERR(ipage)) {
158 err = PTR_ERR(ipage);
159 goto out;
160 }
161
162 set_new_dnode(&dn, inode, ipage, ipage, 0);
163
164 if (f2fs_has_inline_data(inode))
165 err = f2fs_convert_inline_page(&dn, page);
166
167 f2fs_put_dnode(&dn);
168 out:
169 f2fs_unlock_op(sbi);
170
171 f2fs_put_page(page, 1);
172 return err;
173 }
174
175 int f2fs_write_inline_data(struct inode *inode, struct page *page)
176 {
177 void *src_addr, *dst_addr;
178 struct dnode_of_data dn;
179 int err;
180
181 set_new_dnode(&dn, inode, NULL, NULL, 0);
182 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
183 if (err)
184 return err;
185
186 if (!f2fs_has_inline_data(inode)) {
187 f2fs_put_dnode(&dn);
188 return -EAGAIN;
189 }
190
191 f2fs_bug_on(F2FS_I_SB(inode), page->index);
192
193 f2fs_wait_on_page_writeback(dn.inode_page, NODE);
194 src_addr = kmap_atomic(page);
195 dst_addr = inline_data_addr(dn.inode_page);
196 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
197 kunmap_atomic(src_addr);
198
199 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
200 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
201
202 sync_inode_page(&dn);
203 f2fs_put_dnode(&dn);
204 return 0;
205 }
206
207 bool recover_inline_data(struct inode *inode, struct page *npage)
208 {
209 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
210 struct f2fs_inode *ri = NULL;
211 void *src_addr, *dst_addr;
212 struct page *ipage;
213
214 /*
215 * The inline_data recovery policy is as follows.
216 * [prev.] [next] of inline_data flag
217 * o o -> recover inline_data
218 * o x -> remove inline_data, and then recover data blocks
219 * x o -> remove inline_data, and then recover inline_data
220 * x x -> recover data blocks
221 */
222 if (IS_INODE(npage))
223 ri = F2FS_INODE(npage);
224
225 if (f2fs_has_inline_data(inode) &&
226 ri && (ri->i_inline & F2FS_INLINE_DATA)) {
227 process_inline:
228 ipage = get_node_page(sbi, inode->i_ino);
229 f2fs_bug_on(sbi, IS_ERR(ipage));
230
231 f2fs_wait_on_page_writeback(ipage, NODE);
232
233 src_addr = inline_data_addr(npage);
234 dst_addr = inline_data_addr(ipage);
235 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
236
237 set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
238 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
239
240 update_inode(inode, ipage);
241 f2fs_put_page(ipage, 1);
242 return true;
243 }
244
245 if (f2fs_has_inline_data(inode)) {
246 ipage = get_node_page(sbi, inode->i_ino);
247 f2fs_bug_on(sbi, IS_ERR(ipage));
248 truncate_inline_data(ipage);
249 f2fs_clear_inline_inode(inode);
250 update_inode(inode, ipage);
251 f2fs_put_page(ipage, 1);
252 } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
253 truncate_blocks(inode, 0, false);
254 goto process_inline;
255 }
256 return false;
257 }
258
259 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
260 struct qstr *name, struct page **res_page)
261 {
262 struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
263 struct f2fs_inline_dentry *inline_dentry;
264 struct f2fs_dir_entry *de;
265 struct f2fs_dentry_ptr d;
266 struct page *ipage;
267
268 ipage = get_node_page(sbi, dir->i_ino);
269 if (IS_ERR(ipage))
270 return NULL;
271
272 inline_dentry = inline_data_addr(ipage);
273
274 make_dentry_ptr(&d, (void *)inline_dentry, 2);
275 de = find_target_dentry(name, NULL, &d);
276
277 unlock_page(ipage);
278 if (de)
279 *res_page = ipage;
280 else
281 f2fs_put_page(ipage, 0);
282
283 /*
284 * For the most part, it should be a bug when name_len is zero.
285 * We stop here for figuring out where the bugs has occurred.
286 */
287 f2fs_bug_on(sbi, d.max < 0);
288 return de;
289 }
290
291 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir,
292 struct page **p)
293 {
294 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
295 struct page *ipage;
296 struct f2fs_dir_entry *de;
297 struct f2fs_inline_dentry *dentry_blk;
298
299 ipage = get_node_page(sbi, dir->i_ino);
300 if (IS_ERR(ipage))
301 return NULL;
302
303 dentry_blk = inline_data_addr(ipage);
304 de = &dentry_blk->dentry[1];
305 *p = ipage;
306 unlock_page(ipage);
307 return de;
308 }
309
310 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
311 struct page *ipage)
312 {
313 struct f2fs_inline_dentry *dentry_blk;
314 struct f2fs_dentry_ptr d;
315
316 dentry_blk = inline_data_addr(ipage);
317
318 make_dentry_ptr(&d, (void *)dentry_blk, 2);
319 do_make_empty_dir(inode, parent, &d);
320
321 set_page_dirty(ipage);
322
323 /* update i_size to MAX_INLINE_DATA */
324 if (i_size_read(inode) < MAX_INLINE_DATA) {
325 i_size_write(inode, MAX_INLINE_DATA);
326 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
327 }
328 return 0;
329 }
330
331 static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
332 struct f2fs_inline_dentry *inline_dentry)
333 {
334 struct page *page;
335 struct dnode_of_data dn;
336 struct f2fs_dentry_block *dentry_blk;
337 int err;
338
339 page = grab_cache_page(dir->i_mapping, 0);
340 if (!page)
341 return -ENOMEM;
342
343 set_new_dnode(&dn, dir, ipage, NULL, 0);
344 err = f2fs_reserve_block(&dn, 0);
345 if (err)
346 goto out;
347
348 f2fs_wait_on_page_writeback(page, DATA);
349 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
350
351 dentry_blk = kmap_atomic(page);
352
353 /* copy data from inline dentry block to new dentry block */
354 memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
355 INLINE_DENTRY_BITMAP_SIZE);
356 memcpy(dentry_blk->dentry, inline_dentry->dentry,
357 sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
358 memcpy(dentry_blk->filename, inline_dentry->filename,
359 NR_INLINE_DENTRY * F2FS_SLOT_LEN);
360
361 kunmap_atomic(dentry_blk);
362 SetPageUptodate(page);
363 set_page_dirty(page);
364
365 /* clear inline dir and flag after data writeback */
366 truncate_inline_data(ipage);
367
368 stat_dec_inline_dir(dir);
369 clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);
370
371 if (i_size_read(dir) < PAGE_CACHE_SIZE) {
372 i_size_write(dir, PAGE_CACHE_SIZE);
373 set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
374 }
375
376 sync_inode_page(&dn);
377 out:
378 f2fs_put_page(page, 1);
379 return err;
380 }
381
382 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
383 struct inode *inode)
384 {
385 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
386 struct page *ipage;
387 unsigned int bit_pos;
388 f2fs_hash_t name_hash;
389 struct f2fs_dir_entry *de;
390 size_t namelen = name->len;
391 struct f2fs_inline_dentry *dentry_blk = NULL;
392 int slots = GET_DENTRY_SLOTS(namelen);
393 struct page *page;
394 int err = 0;
395 int i;
396
397 name_hash = f2fs_dentry_hash(name);
398
399 ipage = get_node_page(sbi, dir->i_ino);
400 if (IS_ERR(ipage))
401 return PTR_ERR(ipage);
402
403 dentry_blk = inline_data_addr(ipage);
404 bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
405 slots, NR_INLINE_DENTRY);
406 if (bit_pos >= NR_INLINE_DENTRY) {
407 err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
408 if (!err)
409 err = -EAGAIN;
410 goto out;
411 }
412
413 down_write(&F2FS_I(inode)->i_sem);
414 page = init_inode_metadata(inode, dir, name, ipage);
415 if (IS_ERR(page)) {
416 err = PTR_ERR(page);
417 goto fail;
418 }
419
420 f2fs_wait_on_page_writeback(ipage, NODE);
421 de = &dentry_blk->dentry[bit_pos];
422 de->hash_code = name_hash;
423 de->name_len = cpu_to_le16(namelen);
424 memcpy(dentry_blk->filename[bit_pos], name->name, name->len);
425 de->ino = cpu_to_le32(inode->i_ino);
426 set_de_type(de, inode);
427 for (i = 0; i < slots; i++)
428 test_and_set_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
429 set_page_dirty(ipage);
430
431 /* we don't need to mark_inode_dirty now */
432 F2FS_I(inode)->i_pino = dir->i_ino;
433 update_inode(inode, page);
434 f2fs_put_page(page, 1);
435
436 update_parent_metadata(dir, inode, 0);
437 fail:
438 up_write(&F2FS_I(inode)->i_sem);
439
440 if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
441 update_inode(dir, ipage);
442 clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
443 }
444 out:
445 f2fs_put_page(ipage, 1);
446 return err;
447 }
448
449 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
450 struct inode *dir, struct inode *inode)
451 {
452 struct f2fs_inline_dentry *inline_dentry;
453 int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
454 unsigned int bit_pos;
455 int i;
456
457 lock_page(page);
458 f2fs_wait_on_page_writeback(page, NODE);
459
460 inline_dentry = inline_data_addr(page);
461 bit_pos = dentry - inline_dentry->dentry;
462 for (i = 0; i < slots; i++)
463 test_and_clear_bit_le(bit_pos + i,
464 &inline_dentry->dentry_bitmap);
465
466 set_page_dirty(page);
467
468 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
469
470 if (inode)
471 f2fs_drop_nlink(dir, inode, page);
472
473 f2fs_put_page(page, 1);
474 }
475
476 bool f2fs_empty_inline_dir(struct inode *dir)
477 {
478 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
479 struct page *ipage;
480 unsigned int bit_pos = 2;
481 struct f2fs_inline_dentry *dentry_blk;
482
483 ipage = get_node_page(sbi, dir->i_ino);
484 if (IS_ERR(ipage))
485 return false;
486
487 dentry_blk = inline_data_addr(ipage);
488 bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
489 NR_INLINE_DENTRY,
490 bit_pos);
491
492 f2fs_put_page(ipage, 1);
493
494 if (bit_pos < NR_INLINE_DENTRY)
495 return false;
496
497 return true;
498 }
499
500 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx)
501 {
502 struct inode *inode = file_inode(file);
503 struct f2fs_inline_dentry *inline_dentry = NULL;
504 struct page *ipage = NULL;
505 struct f2fs_dentry_ptr d;
506
507 if (ctx->pos == NR_INLINE_DENTRY)
508 return 0;
509
510 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
511 if (IS_ERR(ipage))
512 return PTR_ERR(ipage);
513
514 inline_dentry = inline_data_addr(ipage);
515
516 make_dentry_ptr(&d, (void *)inline_dentry, 2);
517
518 if (!f2fs_fill_dentries(ctx, &d, 0))
519 ctx->pos = NR_INLINE_DENTRY;
520
521 f2fs_put_page(ipage, 1);
522 return 0;
523 }
This page took 0.043225 seconds and 5 git commands to generate.