Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[deliverable/linux.git] / fs / f2fs / inline.c
1 /*
2 * fs/f2fs/inline.c
3 * Copyright (c) 2013, Intel Corporation
4 * Authors: Huajun Li <huajun.li@intel.com>
5 * Haicheng Li <haicheng.li@intel.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13
14 #include "f2fs.h"
15
16 bool f2fs_may_inline(struct inode *inode)
17 {
18 if (!test_opt(F2FS_I_SB(inode), INLINE_DATA))
19 return false;
20
21 if (f2fs_is_atomic_file(inode))
22 return false;
23
24 if (!S_ISREG(inode->i_mode))
25 return false;
26
27 if (i_size_read(inode) > MAX_INLINE_DATA)
28 return false;
29
30 return true;
31 }
32
33 void read_inline_data(struct page *page, struct page *ipage)
34 {
35 void *src_addr, *dst_addr;
36
37 if (PageUptodate(page))
38 return;
39
40 f2fs_bug_on(F2FS_P_SB(page), page->index);
41
42 zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
43
44 /* Copy the whole inline data block */
45 src_addr = inline_data_addr(ipage);
46 dst_addr = kmap_atomic(page);
47 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
48 flush_dcache_page(page);
49 kunmap_atomic(dst_addr);
50 SetPageUptodate(page);
51 }
52
53 int f2fs_read_inline_data(struct inode *inode, struct page *page)
54 {
55 struct page *ipage;
56
57 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
58 if (IS_ERR(ipage)) {
59 unlock_page(page);
60 return PTR_ERR(ipage);
61 }
62
63 if (!f2fs_has_inline_data(inode)) {
64 f2fs_put_page(ipage, 1);
65 return -EAGAIN;
66 }
67
68 if (page->index)
69 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
70 else
71 read_inline_data(page, ipage);
72
73 SetPageUptodate(page);
74 f2fs_put_page(ipage, 1);
75 unlock_page(page);
76 return 0;
77 }
78
79 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
80 {
81 void *src_addr, *dst_addr;
82 block_t new_blk_addr;
83 struct f2fs_io_info fio = {
84 .type = DATA,
85 .rw = WRITE_SYNC | REQ_PRIO,
86 };
87 int dirty, err;
88
89 f2fs_bug_on(F2FS_I_SB(dn->inode), page->index);
90
91 if (!f2fs_exist_data(dn->inode))
92 goto clear_out;
93
94 err = f2fs_reserve_block(dn, 0);
95 if (err)
96 return err;
97
98 f2fs_wait_on_page_writeback(page, DATA);
99
100 if (PageUptodate(page))
101 goto no_update;
102
103 zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
104
105 /* Copy the whole inline data block */
106 src_addr = inline_data_addr(dn->inode_page);
107 dst_addr = kmap_atomic(page);
108 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
109 flush_dcache_page(page);
110 kunmap_atomic(dst_addr);
111 SetPageUptodate(page);
112 no_update:
113 /* clear dirty state */
114 dirty = clear_page_dirty_for_io(page);
115
116 /* write data page to try to make data consistent */
117 set_page_writeback(page);
118
119 write_data_page(page, dn, &new_blk_addr, &fio);
120 update_extent_cache(new_blk_addr, dn);
121 f2fs_wait_on_page_writeback(page, DATA);
122 if (dirty)
123 inode_dec_dirty_pages(dn->inode);
124
125 /* this converted inline_data should be recovered. */
126 set_inode_flag(F2FS_I(dn->inode), FI_APPEND_WRITE);
127
128 /* clear inline data and flag after data writeback */
129 truncate_inline_data(dn->inode_page, 0);
130 clear_out:
131 stat_dec_inline_inode(dn->inode);
132 f2fs_clear_inline_inode(dn->inode);
133 sync_inode_page(dn);
134 f2fs_put_dnode(dn);
135 return 0;
136 }
137
138 int f2fs_convert_inline_inode(struct inode *inode)
139 {
140 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
141 struct dnode_of_data dn;
142 struct page *ipage, *page;
143 int err = 0;
144
145 page = grab_cache_page(inode->i_mapping, 0);
146 if (!page)
147 return -ENOMEM;
148
149 f2fs_lock_op(sbi);
150
151 ipage = get_node_page(sbi, inode->i_ino);
152 if (IS_ERR(ipage)) {
153 err = PTR_ERR(ipage);
154 goto out;
155 }
156
157 set_new_dnode(&dn, inode, ipage, ipage, 0);
158
159 if (f2fs_has_inline_data(inode))
160 err = f2fs_convert_inline_page(&dn, page);
161
162 f2fs_put_dnode(&dn);
163 out:
164 f2fs_unlock_op(sbi);
165
166 f2fs_put_page(page, 1);
167 return err;
168 }
169
170 int f2fs_write_inline_data(struct inode *inode, struct page *page)
171 {
172 void *src_addr, *dst_addr;
173 struct dnode_of_data dn;
174 int err;
175
176 set_new_dnode(&dn, inode, NULL, NULL, 0);
177 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
178 if (err)
179 return err;
180
181 if (!f2fs_has_inline_data(inode)) {
182 f2fs_put_dnode(&dn);
183 return -EAGAIN;
184 }
185
186 f2fs_bug_on(F2FS_I_SB(inode), page->index);
187
188 f2fs_wait_on_page_writeback(dn.inode_page, NODE);
189 src_addr = kmap_atomic(page);
190 dst_addr = inline_data_addr(dn.inode_page);
191 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
192 kunmap_atomic(src_addr);
193
194 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
195 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
196
197 sync_inode_page(&dn);
198 f2fs_put_dnode(&dn);
199 return 0;
200 }
201
202 void truncate_inline_data(struct page *ipage, u64 from)
203 {
204 void *addr;
205
206 if (from >= MAX_INLINE_DATA)
207 return;
208
209 f2fs_wait_on_page_writeback(ipage, NODE);
210
211 addr = inline_data_addr(ipage);
212 memset(addr + from, 0, MAX_INLINE_DATA - from);
213 }
214
215 bool recover_inline_data(struct inode *inode, struct page *npage)
216 {
217 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
218 struct f2fs_inode *ri = NULL;
219 void *src_addr, *dst_addr;
220 struct page *ipage;
221
222 /*
223 * The inline_data recovery policy is as follows.
224 * [prev.] [next] of inline_data flag
225 * o o -> recover inline_data
226 * o x -> remove inline_data, and then recover data blocks
227 * x o -> remove inline_data, and then recover inline_data
228 * x x -> recover data blocks
229 */
230 if (IS_INODE(npage))
231 ri = F2FS_INODE(npage);
232
233 if (f2fs_has_inline_data(inode) &&
234 ri && (ri->i_inline & F2FS_INLINE_DATA)) {
235 process_inline:
236 ipage = get_node_page(sbi, inode->i_ino);
237 f2fs_bug_on(sbi, IS_ERR(ipage));
238
239 f2fs_wait_on_page_writeback(ipage, NODE);
240
241 src_addr = inline_data_addr(npage);
242 dst_addr = inline_data_addr(ipage);
243 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
244
245 set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
246 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
247
248 update_inode(inode, ipage);
249 f2fs_put_page(ipage, 1);
250 return true;
251 }
252
253 if (f2fs_has_inline_data(inode)) {
254 ipage = get_node_page(sbi, inode->i_ino);
255 f2fs_bug_on(sbi, IS_ERR(ipage));
256 truncate_inline_data(ipage, 0);
257 f2fs_clear_inline_inode(inode);
258 update_inode(inode, ipage);
259 f2fs_put_page(ipage, 1);
260 } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
261 truncate_blocks(inode, 0, false);
262 goto process_inline;
263 }
264 return false;
265 }
266
267 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
268 struct qstr *name, struct page **res_page)
269 {
270 struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
271 struct f2fs_inline_dentry *inline_dentry;
272 struct f2fs_dir_entry *de;
273 struct f2fs_dentry_ptr d;
274 struct page *ipage;
275
276 ipage = get_node_page(sbi, dir->i_ino);
277 if (IS_ERR(ipage))
278 return NULL;
279
280 inline_dentry = inline_data_addr(ipage);
281
282 make_dentry_ptr(&d, (void *)inline_dentry, 2);
283 de = find_target_dentry(name, NULL, &d);
284
285 unlock_page(ipage);
286 if (de)
287 *res_page = ipage;
288 else
289 f2fs_put_page(ipage, 0);
290
291 /*
292 * For the most part, it should be a bug when name_len is zero.
293 * We stop here for figuring out where the bugs has occurred.
294 */
295 f2fs_bug_on(sbi, d.max < 0);
296 return de;
297 }
298
299 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir,
300 struct page **p)
301 {
302 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
303 struct page *ipage;
304 struct f2fs_dir_entry *de;
305 struct f2fs_inline_dentry *dentry_blk;
306
307 ipage = get_node_page(sbi, dir->i_ino);
308 if (IS_ERR(ipage))
309 return NULL;
310
311 dentry_blk = inline_data_addr(ipage);
312 de = &dentry_blk->dentry[1];
313 *p = ipage;
314 unlock_page(ipage);
315 return de;
316 }
317
318 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
319 struct page *ipage)
320 {
321 struct f2fs_inline_dentry *dentry_blk;
322 struct f2fs_dentry_ptr d;
323
324 dentry_blk = inline_data_addr(ipage);
325
326 make_dentry_ptr(&d, (void *)dentry_blk, 2);
327 do_make_empty_dir(inode, parent, &d);
328
329 set_page_dirty(ipage);
330
331 /* update i_size to MAX_INLINE_DATA */
332 if (i_size_read(inode) < MAX_INLINE_DATA) {
333 i_size_write(inode, MAX_INLINE_DATA);
334 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
335 }
336 return 0;
337 }
338
339 static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
340 struct f2fs_inline_dentry *inline_dentry)
341 {
342 struct page *page;
343 struct dnode_of_data dn;
344 struct f2fs_dentry_block *dentry_blk;
345 int err;
346
347 page = grab_cache_page(dir->i_mapping, 0);
348 if (!page)
349 return -ENOMEM;
350
351 set_new_dnode(&dn, dir, ipage, NULL, 0);
352 err = f2fs_reserve_block(&dn, 0);
353 if (err)
354 goto out;
355
356 f2fs_wait_on_page_writeback(page, DATA);
357 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
358
359 dentry_blk = kmap_atomic(page);
360
361 /* copy data from inline dentry block to new dentry block */
362 memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
363 INLINE_DENTRY_BITMAP_SIZE);
364 memcpy(dentry_blk->dentry, inline_dentry->dentry,
365 sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
366 memcpy(dentry_blk->filename, inline_dentry->filename,
367 NR_INLINE_DENTRY * F2FS_SLOT_LEN);
368
369 kunmap_atomic(dentry_blk);
370 SetPageUptodate(page);
371 set_page_dirty(page);
372
373 /* clear inline dir and flag after data writeback */
374 truncate_inline_data(ipage, 0);
375
376 stat_dec_inline_dir(dir);
377 clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);
378
379 if (i_size_read(dir) < PAGE_CACHE_SIZE) {
380 i_size_write(dir, PAGE_CACHE_SIZE);
381 set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
382 }
383
384 sync_inode_page(&dn);
385 out:
386 f2fs_put_page(page, 1);
387 return err;
388 }
389
390 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
391 struct inode *inode)
392 {
393 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
394 struct page *ipage;
395 unsigned int bit_pos;
396 f2fs_hash_t name_hash;
397 struct f2fs_dir_entry *de;
398 size_t namelen = name->len;
399 struct f2fs_inline_dentry *dentry_blk = NULL;
400 int slots = GET_DENTRY_SLOTS(namelen);
401 struct page *page;
402 int err = 0;
403 int i;
404
405 name_hash = f2fs_dentry_hash(name);
406
407 ipage = get_node_page(sbi, dir->i_ino);
408 if (IS_ERR(ipage))
409 return PTR_ERR(ipage);
410
411 dentry_blk = inline_data_addr(ipage);
412 bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
413 slots, NR_INLINE_DENTRY);
414 if (bit_pos >= NR_INLINE_DENTRY) {
415 err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
416 if (!err)
417 err = -EAGAIN;
418 goto out;
419 }
420
421 down_write(&F2FS_I(inode)->i_sem);
422 page = init_inode_metadata(inode, dir, name, ipage);
423 if (IS_ERR(page)) {
424 err = PTR_ERR(page);
425 goto fail;
426 }
427
428 f2fs_wait_on_page_writeback(ipage, NODE);
429 de = &dentry_blk->dentry[bit_pos];
430 de->hash_code = name_hash;
431 de->name_len = cpu_to_le16(namelen);
432 memcpy(dentry_blk->filename[bit_pos], name->name, name->len);
433 de->ino = cpu_to_le32(inode->i_ino);
434 set_de_type(de, inode);
435 for (i = 0; i < slots; i++)
436 test_and_set_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
437 set_page_dirty(ipage);
438
439 /* we don't need to mark_inode_dirty now */
440 F2FS_I(inode)->i_pino = dir->i_ino;
441 update_inode(inode, page);
442 f2fs_put_page(page, 1);
443
444 update_parent_metadata(dir, inode, 0);
445 fail:
446 up_write(&F2FS_I(inode)->i_sem);
447
448 if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
449 update_inode(dir, ipage);
450 clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
451 }
452 out:
453 f2fs_put_page(ipage, 1);
454 return err;
455 }
456
457 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
458 struct inode *dir, struct inode *inode)
459 {
460 struct f2fs_inline_dentry *inline_dentry;
461 int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
462 unsigned int bit_pos;
463 int i;
464
465 lock_page(page);
466 f2fs_wait_on_page_writeback(page, NODE);
467
468 inline_dentry = inline_data_addr(page);
469 bit_pos = dentry - inline_dentry->dentry;
470 for (i = 0; i < slots; i++)
471 test_and_clear_bit_le(bit_pos + i,
472 &inline_dentry->dentry_bitmap);
473
474 set_page_dirty(page);
475
476 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
477
478 if (inode)
479 f2fs_drop_nlink(dir, inode, page);
480
481 f2fs_put_page(page, 1);
482 }
483
484 bool f2fs_empty_inline_dir(struct inode *dir)
485 {
486 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
487 struct page *ipage;
488 unsigned int bit_pos = 2;
489 struct f2fs_inline_dentry *dentry_blk;
490
491 ipage = get_node_page(sbi, dir->i_ino);
492 if (IS_ERR(ipage))
493 return false;
494
495 dentry_blk = inline_data_addr(ipage);
496 bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
497 NR_INLINE_DENTRY,
498 bit_pos);
499
500 f2fs_put_page(ipage, 1);
501
502 if (bit_pos < NR_INLINE_DENTRY)
503 return false;
504
505 return true;
506 }
507
508 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx)
509 {
510 struct inode *inode = file_inode(file);
511 struct f2fs_inline_dentry *inline_dentry = NULL;
512 struct page *ipage = NULL;
513 struct f2fs_dentry_ptr d;
514
515 if (ctx->pos == NR_INLINE_DENTRY)
516 return 0;
517
518 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
519 if (IS_ERR(ipage))
520 return PTR_ERR(ipage);
521
522 inline_dentry = inline_data_addr(ipage);
523
524 make_dentry_ptr(&d, (void *)inline_dentry, 2);
525
526 if (!f2fs_fill_dentries(ctx, &d, 0))
527 ctx->pos = NR_INLINE_DENTRY;
528
529 f2fs_put_page(ipage, 1);
530 return 0;
531 }
This page took 0.121436 seconds and 5 git commands to generate.