4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
23 #include <trace/events/f2fs.h>
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
27 static struct kmem_cache
*nat_entry_slab
;
28 static struct kmem_cache
*free_nid_slab
;
29 static struct kmem_cache
*nat_entry_set_slab
;
31 bool available_free_memory(struct f2fs_sb_info
*sbi
, int type
)
33 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
35 unsigned long avail_ram
;
36 unsigned long mem_size
= 0;
41 /* only uses low memory */
42 avail_ram
= val
.totalram
- val
.totalhigh
;
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 if (type
== FREE_NIDS
) {
48 mem_size
= (nm_i
->fcnt
* sizeof(struct free_nid
)) >>
50 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
51 } else if (type
== NAT_ENTRIES
) {
52 mem_size
= (nm_i
->nat_cnt
* sizeof(struct nat_entry
)) >>
54 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
55 if (excess_cached_nats(sbi
))
57 } else if (type
== DIRTY_DENTS
) {
58 if (sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
60 mem_size
= get_pages(sbi
, F2FS_DIRTY_DENTS
);
61 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
62 } else if (type
== INO_ENTRIES
) {
65 for (i
= 0; i
<= UPDATE_INO
; i
++)
66 mem_size
+= (sbi
->im
[i
].ino_num
*
67 sizeof(struct ino_entry
)) >> PAGE_SHIFT
;
68 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
69 } else if (type
== EXTENT_CACHE
) {
70 mem_size
= (atomic_read(&sbi
->total_ext_tree
) *
71 sizeof(struct extent_tree
) +
72 atomic_read(&sbi
->total_ext_node
) *
73 sizeof(struct extent_node
)) >> PAGE_SHIFT
;
74 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
76 if (!sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
82 static void clear_node_page_dirty(struct page
*page
)
84 struct address_space
*mapping
= page
->mapping
;
85 unsigned int long flags
;
87 if (PageDirty(page
)) {
88 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
89 radix_tree_tag_clear(&mapping
->page_tree
,
92 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
94 clear_page_dirty_for_io(page
);
95 dec_page_count(F2FS_M_SB(mapping
), F2FS_DIRTY_NODES
);
97 ClearPageUptodate(page
);
100 static struct page
*get_current_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
102 pgoff_t index
= current_nat_addr(sbi
, nid
);
103 return get_meta_page(sbi
, index
);
106 static struct page
*get_next_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
108 struct page
*src_page
;
109 struct page
*dst_page
;
114 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
116 src_off
= current_nat_addr(sbi
, nid
);
117 dst_off
= next_nat_addr(sbi
, src_off
);
119 /* get current nat block page with lock */
120 src_page
= get_meta_page(sbi
, src_off
);
121 dst_page
= grab_meta_page(sbi
, dst_off
);
122 f2fs_bug_on(sbi
, PageDirty(src_page
));
124 src_addr
= page_address(src_page
);
125 dst_addr
= page_address(dst_page
);
126 memcpy(dst_addr
, src_addr
, PAGE_SIZE
);
127 set_page_dirty(dst_page
);
128 f2fs_put_page(src_page
, 1);
130 set_to_next_nat(nm_i
, nid
);
135 static struct nat_entry
*__lookup_nat_cache(struct f2fs_nm_info
*nm_i
, nid_t n
)
137 return radix_tree_lookup(&nm_i
->nat_root
, n
);
140 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info
*nm_i
,
141 nid_t start
, unsigned int nr
, struct nat_entry
**ep
)
143 return radix_tree_gang_lookup(&nm_i
->nat_root
, (void **)ep
, start
, nr
);
146 static void __del_from_nat_cache(struct f2fs_nm_info
*nm_i
, struct nat_entry
*e
)
149 radix_tree_delete(&nm_i
->nat_root
, nat_get_nid(e
));
151 kmem_cache_free(nat_entry_slab
, e
);
154 static void __set_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
155 struct nat_entry
*ne
)
157 nid_t set
= NAT_BLOCK_OFFSET(ne
->ni
.nid
);
158 struct nat_entry_set
*head
;
160 if (get_nat_flag(ne
, IS_DIRTY
))
163 head
= radix_tree_lookup(&nm_i
->nat_set_root
, set
);
165 head
= f2fs_kmem_cache_alloc(nat_entry_set_slab
, GFP_NOFS
);
167 INIT_LIST_HEAD(&head
->entry_list
);
168 INIT_LIST_HEAD(&head
->set_list
);
171 f2fs_radix_tree_insert(&nm_i
->nat_set_root
, set
, head
);
173 list_move_tail(&ne
->list
, &head
->entry_list
);
174 nm_i
->dirty_nat_cnt
++;
176 set_nat_flag(ne
, IS_DIRTY
, true);
179 static void __clear_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
180 struct nat_entry
*ne
)
182 nid_t set
= NAT_BLOCK_OFFSET(ne
->ni
.nid
);
183 struct nat_entry_set
*head
;
185 head
= radix_tree_lookup(&nm_i
->nat_set_root
, set
);
187 list_move_tail(&ne
->list
, &nm_i
->nat_entries
);
188 set_nat_flag(ne
, IS_DIRTY
, false);
190 nm_i
->dirty_nat_cnt
--;
194 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info
*nm_i
,
195 nid_t start
, unsigned int nr
, struct nat_entry_set
**ep
)
197 return radix_tree_gang_lookup(&nm_i
->nat_set_root
, (void **)ep
,
201 int need_dentry_mark(struct f2fs_sb_info
*sbi
, nid_t nid
)
203 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
207 down_read(&nm_i
->nat_tree_lock
);
208 e
= __lookup_nat_cache(nm_i
, nid
);
210 if (!get_nat_flag(e
, IS_CHECKPOINTED
) &&
211 !get_nat_flag(e
, HAS_FSYNCED_INODE
))
214 up_read(&nm_i
->nat_tree_lock
);
218 bool is_checkpointed_node(struct f2fs_sb_info
*sbi
, nid_t nid
)
220 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
224 down_read(&nm_i
->nat_tree_lock
);
225 e
= __lookup_nat_cache(nm_i
, nid
);
226 if (e
&& !get_nat_flag(e
, IS_CHECKPOINTED
))
228 up_read(&nm_i
->nat_tree_lock
);
232 bool need_inode_block_update(struct f2fs_sb_info
*sbi
, nid_t ino
)
234 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
236 bool need_update
= true;
238 down_read(&nm_i
->nat_tree_lock
);
239 e
= __lookup_nat_cache(nm_i
, ino
);
240 if (e
&& get_nat_flag(e
, HAS_LAST_FSYNC
) &&
241 (get_nat_flag(e
, IS_CHECKPOINTED
) ||
242 get_nat_flag(e
, HAS_FSYNCED_INODE
)))
244 up_read(&nm_i
->nat_tree_lock
);
248 static struct nat_entry
*grab_nat_entry(struct f2fs_nm_info
*nm_i
, nid_t nid
)
250 struct nat_entry
*new;
252 new = f2fs_kmem_cache_alloc(nat_entry_slab
, GFP_NOFS
);
253 f2fs_radix_tree_insert(&nm_i
->nat_root
, nid
, new);
254 memset(new, 0, sizeof(struct nat_entry
));
255 nat_set_nid(new, nid
);
257 list_add_tail(&new->list
, &nm_i
->nat_entries
);
262 static void cache_nat_entry(struct f2fs_sb_info
*sbi
, nid_t nid
,
263 struct f2fs_nat_entry
*ne
)
265 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
268 e
= __lookup_nat_cache(nm_i
, nid
);
270 e
= grab_nat_entry(nm_i
, nid
);
271 node_info_from_raw_nat(&e
->ni
, ne
);
273 f2fs_bug_on(sbi
, nat_get_ino(e
) != ne
->ino
||
274 nat_get_blkaddr(e
) != ne
->block_addr
||
275 nat_get_version(e
) != ne
->version
);
279 static void set_node_addr(struct f2fs_sb_info
*sbi
, struct node_info
*ni
,
280 block_t new_blkaddr
, bool fsync_done
)
282 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
285 down_write(&nm_i
->nat_tree_lock
);
286 e
= __lookup_nat_cache(nm_i
, ni
->nid
);
288 e
= grab_nat_entry(nm_i
, ni
->nid
);
289 copy_node_info(&e
->ni
, ni
);
290 f2fs_bug_on(sbi
, ni
->blk_addr
== NEW_ADDR
);
291 } else if (new_blkaddr
== NEW_ADDR
) {
293 * when nid is reallocated,
294 * previous nat entry can be remained in nat cache.
295 * So, reinitialize it with new information.
297 copy_node_info(&e
->ni
, ni
);
298 f2fs_bug_on(sbi
, ni
->blk_addr
!= NULL_ADDR
);
302 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) != ni
->blk_addr
);
303 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NULL_ADDR
&&
304 new_blkaddr
== NULL_ADDR
);
305 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NEW_ADDR
&&
306 new_blkaddr
== NEW_ADDR
);
307 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) != NEW_ADDR
&&
308 nat_get_blkaddr(e
) != NULL_ADDR
&&
309 new_blkaddr
== NEW_ADDR
);
311 /* increment version no as node is removed */
312 if (nat_get_blkaddr(e
) != NEW_ADDR
&& new_blkaddr
== NULL_ADDR
) {
313 unsigned char version
= nat_get_version(e
);
314 nat_set_version(e
, inc_node_version(version
));
316 /* in order to reuse the nid */
317 if (nm_i
->next_scan_nid
> ni
->nid
)
318 nm_i
->next_scan_nid
= ni
->nid
;
322 nat_set_blkaddr(e
, new_blkaddr
);
323 if (new_blkaddr
== NEW_ADDR
|| new_blkaddr
== NULL_ADDR
)
324 set_nat_flag(e
, IS_CHECKPOINTED
, false);
325 __set_nat_cache_dirty(nm_i
, e
);
327 /* update fsync_mark if its inode nat entry is still alive */
328 if (ni
->nid
!= ni
->ino
)
329 e
= __lookup_nat_cache(nm_i
, ni
->ino
);
331 if (fsync_done
&& ni
->nid
== ni
->ino
)
332 set_nat_flag(e
, HAS_FSYNCED_INODE
, true);
333 set_nat_flag(e
, HAS_LAST_FSYNC
, fsync_done
);
335 up_write(&nm_i
->nat_tree_lock
);
338 int try_to_free_nats(struct f2fs_sb_info
*sbi
, int nr_shrink
)
340 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
343 if (!down_write_trylock(&nm_i
->nat_tree_lock
))
346 while (nr_shrink
&& !list_empty(&nm_i
->nat_entries
)) {
347 struct nat_entry
*ne
;
348 ne
= list_first_entry(&nm_i
->nat_entries
,
349 struct nat_entry
, list
);
350 __del_from_nat_cache(nm_i
, ne
);
353 up_write(&nm_i
->nat_tree_lock
);
354 return nr
- nr_shrink
;
358 * This function always returns success
360 void get_node_info(struct f2fs_sb_info
*sbi
, nid_t nid
, struct node_info
*ni
)
362 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
363 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
364 struct f2fs_journal
*journal
= curseg
->journal
;
365 nid_t start_nid
= START_NID(nid
);
366 struct f2fs_nat_block
*nat_blk
;
367 struct page
*page
= NULL
;
368 struct f2fs_nat_entry ne
;
374 /* Check nat cache */
375 down_read(&nm_i
->nat_tree_lock
);
376 e
= __lookup_nat_cache(nm_i
, nid
);
378 ni
->ino
= nat_get_ino(e
);
379 ni
->blk_addr
= nat_get_blkaddr(e
);
380 ni
->version
= nat_get_version(e
);
381 up_read(&nm_i
->nat_tree_lock
);
385 memset(&ne
, 0, sizeof(struct f2fs_nat_entry
));
387 /* Check current segment summary */
388 down_read(&curseg
->journal_rwsem
);
389 i
= lookup_journal_in_cursum(journal
, NAT_JOURNAL
, nid
, 0);
391 ne
= nat_in_journal(journal
, i
);
392 node_info_from_raw_nat(ni
, &ne
);
394 up_read(&curseg
->journal_rwsem
);
398 /* Fill node_info from nat page */
399 page
= get_current_nat_page(sbi
, start_nid
);
400 nat_blk
= (struct f2fs_nat_block
*)page_address(page
);
401 ne
= nat_blk
->entries
[nid
- start_nid
];
402 node_info_from_raw_nat(ni
, &ne
);
403 f2fs_put_page(page
, 1);
405 up_read(&nm_i
->nat_tree_lock
);
406 /* cache nat entry */
407 down_write(&nm_i
->nat_tree_lock
);
408 cache_nat_entry(sbi
, nid
, &ne
);
409 up_write(&nm_i
->nat_tree_lock
);
413 * readahead MAX_RA_NODE number of node pages.
415 static void ra_node_pages(struct page
*parent
, int start
, int n
)
417 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
418 struct blk_plug plug
;
422 blk_start_plug(&plug
);
424 /* Then, try readahead for siblings of the desired node */
426 end
= min(end
, NIDS_PER_BLOCK
);
427 for (i
= start
; i
< end
; i
++) {
428 nid
= get_nid(parent
, i
, false);
429 ra_node_page(sbi
, nid
);
432 blk_finish_plug(&plug
);
435 pgoff_t
get_next_page_offset(struct dnode_of_data
*dn
, pgoff_t pgofs
)
437 const long direct_index
= ADDRS_PER_INODE(dn
->inode
);
438 const long direct_blks
= ADDRS_PER_BLOCK
;
439 const long indirect_blks
= ADDRS_PER_BLOCK
* NIDS_PER_BLOCK
;
440 unsigned int skipped_unit
= ADDRS_PER_BLOCK
;
441 int cur_level
= dn
->cur_level
;
442 int max_level
= dn
->max_level
;
448 while (max_level
-- > cur_level
)
449 skipped_unit
*= NIDS_PER_BLOCK
;
451 switch (dn
->max_level
) {
453 base
+= 2 * indirect_blks
;
455 base
+= 2 * direct_blks
;
457 base
+= direct_index
;
460 f2fs_bug_on(F2FS_I_SB(dn
->inode
), 1);
463 return ((pgofs
- base
) / skipped_unit
+ 1) * skipped_unit
+ base
;
467 * The maximum depth is four.
468 * Offset[0] will have raw inode offset.
470 static int get_node_path(struct inode
*inode
, long block
,
471 int offset
[4], unsigned int noffset
[4])
473 const long direct_index
= ADDRS_PER_INODE(inode
);
474 const long direct_blks
= ADDRS_PER_BLOCK
;
475 const long dptrs_per_blk
= NIDS_PER_BLOCK
;
476 const long indirect_blks
= ADDRS_PER_BLOCK
* NIDS_PER_BLOCK
;
477 const long dindirect_blks
= indirect_blks
* NIDS_PER_BLOCK
;
483 if (block
< direct_index
) {
487 block
-= direct_index
;
488 if (block
< direct_blks
) {
489 offset
[n
++] = NODE_DIR1_BLOCK
;
495 block
-= direct_blks
;
496 if (block
< direct_blks
) {
497 offset
[n
++] = NODE_DIR2_BLOCK
;
503 block
-= direct_blks
;
504 if (block
< indirect_blks
) {
505 offset
[n
++] = NODE_IND1_BLOCK
;
507 offset
[n
++] = block
/ direct_blks
;
508 noffset
[n
] = 4 + offset
[n
- 1];
509 offset
[n
] = block
% direct_blks
;
513 block
-= indirect_blks
;
514 if (block
< indirect_blks
) {
515 offset
[n
++] = NODE_IND2_BLOCK
;
516 noffset
[n
] = 4 + dptrs_per_blk
;
517 offset
[n
++] = block
/ direct_blks
;
518 noffset
[n
] = 5 + dptrs_per_blk
+ offset
[n
- 1];
519 offset
[n
] = block
% direct_blks
;
523 block
-= indirect_blks
;
524 if (block
< dindirect_blks
) {
525 offset
[n
++] = NODE_DIND_BLOCK
;
526 noffset
[n
] = 5 + (dptrs_per_blk
* 2);
527 offset
[n
++] = block
/ indirect_blks
;
528 noffset
[n
] = 6 + (dptrs_per_blk
* 2) +
529 offset
[n
- 1] * (dptrs_per_blk
+ 1);
530 offset
[n
++] = (block
/ direct_blks
) % dptrs_per_blk
;
531 noffset
[n
] = 7 + (dptrs_per_blk
* 2) +
532 offset
[n
- 2] * (dptrs_per_blk
+ 1) +
534 offset
[n
] = block
% direct_blks
;
545 * Caller should call f2fs_put_dnode(dn).
546 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
547 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
548 * In the case of RDONLY_NODE, we don't need to care about mutex.
550 int get_dnode_of_data(struct dnode_of_data
*dn
, pgoff_t index
, int mode
)
552 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
553 struct page
*npage
[4];
554 struct page
*parent
= NULL
;
556 unsigned int noffset
[4];
561 level
= get_node_path(dn
->inode
, index
, offset
, noffset
);
563 nids
[0] = dn
->inode
->i_ino
;
564 npage
[0] = dn
->inode_page
;
567 npage
[0] = get_node_page(sbi
, nids
[0]);
568 if (IS_ERR(npage
[0]))
569 return PTR_ERR(npage
[0]);
572 /* if inline_data is set, should not report any block indices */
573 if (f2fs_has_inline_data(dn
->inode
) && index
) {
575 f2fs_put_page(npage
[0], 1);
581 nids
[1] = get_nid(parent
, offset
[0], true);
582 dn
->inode_page
= npage
[0];
583 dn
->inode_page_locked
= true;
585 /* get indirect or direct nodes */
586 for (i
= 1; i
<= level
; i
++) {
589 if (!nids
[i
] && mode
== ALLOC_NODE
) {
591 if (!alloc_nid(sbi
, &(nids
[i
]))) {
597 npage
[i
] = new_node_page(dn
, noffset
[i
], NULL
);
598 if (IS_ERR(npage
[i
])) {
599 alloc_nid_failed(sbi
, nids
[i
]);
600 err
= PTR_ERR(npage
[i
]);
604 set_nid(parent
, offset
[i
- 1], nids
[i
], i
== 1);
605 alloc_nid_done(sbi
, nids
[i
]);
607 } else if (mode
== LOOKUP_NODE_RA
&& i
== level
&& level
> 1) {
608 npage
[i
] = get_node_page_ra(parent
, offset
[i
- 1]);
609 if (IS_ERR(npage
[i
])) {
610 err
= PTR_ERR(npage
[i
]);
616 dn
->inode_page_locked
= false;
619 f2fs_put_page(parent
, 1);
623 npage
[i
] = get_node_page(sbi
, nids
[i
]);
624 if (IS_ERR(npage
[i
])) {
625 err
= PTR_ERR(npage
[i
]);
626 f2fs_put_page(npage
[0], 0);
632 nids
[i
+ 1] = get_nid(parent
, offset
[i
], false);
635 dn
->nid
= nids
[level
];
636 dn
->ofs_in_node
= offset
[level
];
637 dn
->node_page
= npage
[level
];
638 dn
->data_blkaddr
= datablock_addr(dn
->node_page
, dn
->ofs_in_node
);
642 f2fs_put_page(parent
, 1);
644 f2fs_put_page(npage
[0], 0);
646 dn
->inode_page
= NULL
;
647 dn
->node_page
= NULL
;
648 if (err
== -ENOENT
) {
650 dn
->max_level
= level
;
651 dn
->ofs_in_node
= offset
[level
];
656 static void truncate_node(struct dnode_of_data
*dn
)
658 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
661 get_node_info(sbi
, dn
->nid
, &ni
);
662 if (dn
->inode
->i_blocks
== 0) {
663 f2fs_bug_on(sbi
, ni
.blk_addr
!= NULL_ADDR
);
666 f2fs_bug_on(sbi
, ni
.blk_addr
== NULL_ADDR
);
668 /* Deallocate node address */
669 invalidate_blocks(sbi
, ni
.blk_addr
);
670 dec_valid_node_count(sbi
, dn
->inode
);
671 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
673 if (dn
->nid
== dn
->inode
->i_ino
) {
674 remove_orphan_inode(sbi
, dn
->nid
);
675 dec_valid_inode_count(sbi
);
676 f2fs_inode_synced(dn
->inode
);
679 clear_node_page_dirty(dn
->node_page
);
680 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
682 f2fs_put_page(dn
->node_page
, 1);
684 invalidate_mapping_pages(NODE_MAPPING(sbi
),
685 dn
->node_page
->index
, dn
->node_page
->index
);
687 dn
->node_page
= NULL
;
688 trace_f2fs_truncate_node(dn
->inode
, dn
->nid
, ni
.blk_addr
);
691 static int truncate_dnode(struct dnode_of_data
*dn
)
698 /* get direct node */
699 page
= get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
700 if (IS_ERR(page
) && PTR_ERR(page
) == -ENOENT
)
702 else if (IS_ERR(page
))
703 return PTR_ERR(page
);
705 /* Make dnode_of_data for parameter */
706 dn
->node_page
= page
;
708 truncate_data_blocks(dn
);
713 static int truncate_nodes(struct dnode_of_data
*dn
, unsigned int nofs
,
716 struct dnode_of_data rdn
= *dn
;
718 struct f2fs_node
*rn
;
720 unsigned int child_nofs
;
725 return NIDS_PER_BLOCK
+ 1;
727 trace_f2fs_truncate_nodes_enter(dn
->inode
, dn
->nid
, dn
->data_blkaddr
);
729 page
= get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
731 trace_f2fs_truncate_nodes_exit(dn
->inode
, PTR_ERR(page
));
732 return PTR_ERR(page
);
735 ra_node_pages(page
, ofs
, NIDS_PER_BLOCK
);
737 rn
= F2FS_NODE(page
);
739 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++, freed
++) {
740 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
744 ret
= truncate_dnode(&rdn
);
747 if (set_nid(page
, i
, 0, false))
748 dn
->node_changed
= true;
751 child_nofs
= nofs
+ ofs
* (NIDS_PER_BLOCK
+ 1) + 1;
752 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++) {
753 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
754 if (child_nid
== 0) {
755 child_nofs
+= NIDS_PER_BLOCK
+ 1;
759 ret
= truncate_nodes(&rdn
, child_nofs
, 0, depth
- 1);
760 if (ret
== (NIDS_PER_BLOCK
+ 1)) {
761 if (set_nid(page
, i
, 0, false))
762 dn
->node_changed
= true;
764 } else if (ret
< 0 && ret
!= -ENOENT
) {
772 /* remove current indirect node */
773 dn
->node_page
= page
;
777 f2fs_put_page(page
, 1);
779 trace_f2fs_truncate_nodes_exit(dn
->inode
, freed
);
783 f2fs_put_page(page
, 1);
784 trace_f2fs_truncate_nodes_exit(dn
->inode
, ret
);
788 static int truncate_partial_nodes(struct dnode_of_data
*dn
,
789 struct f2fs_inode
*ri
, int *offset
, int depth
)
791 struct page
*pages
[2];
798 nid
[0] = le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
802 /* get indirect nodes in the path */
803 for (i
= 0; i
< idx
+ 1; i
++) {
804 /* reference count'll be increased */
805 pages
[i
] = get_node_page(F2FS_I_SB(dn
->inode
), nid
[i
]);
806 if (IS_ERR(pages
[i
])) {
807 err
= PTR_ERR(pages
[i
]);
811 nid
[i
+ 1] = get_nid(pages
[i
], offset
[i
+ 1], false);
814 ra_node_pages(pages
[idx
], offset
[idx
+ 1], NIDS_PER_BLOCK
);
816 /* free direct nodes linked to a partial indirect node */
817 for (i
= offset
[idx
+ 1]; i
< NIDS_PER_BLOCK
; i
++) {
818 child_nid
= get_nid(pages
[idx
], i
, false);
822 err
= truncate_dnode(dn
);
825 if (set_nid(pages
[idx
], i
, 0, false))
826 dn
->node_changed
= true;
829 if (offset
[idx
+ 1] == 0) {
830 dn
->node_page
= pages
[idx
];
834 f2fs_put_page(pages
[idx
], 1);
840 for (i
= idx
; i
>= 0; i
--)
841 f2fs_put_page(pages
[i
], 1);
843 trace_f2fs_truncate_partial_nodes(dn
->inode
, nid
, depth
, err
);
849 * All the block addresses of data and nodes should be nullified.
851 int truncate_inode_blocks(struct inode
*inode
, pgoff_t from
)
853 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
854 int err
= 0, cont
= 1;
855 int level
, offset
[4], noffset
[4];
856 unsigned int nofs
= 0;
857 struct f2fs_inode
*ri
;
858 struct dnode_of_data dn
;
861 trace_f2fs_truncate_inode_blocks_enter(inode
, from
);
863 level
= get_node_path(inode
, from
, offset
, noffset
);
865 page
= get_node_page(sbi
, inode
->i_ino
);
867 trace_f2fs_truncate_inode_blocks_exit(inode
, PTR_ERR(page
));
868 return PTR_ERR(page
);
871 set_new_dnode(&dn
, inode
, page
, NULL
, 0);
874 ri
= F2FS_INODE(page
);
882 if (!offset
[level
- 1])
884 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
885 if (err
< 0 && err
!= -ENOENT
)
887 nofs
+= 1 + NIDS_PER_BLOCK
;
890 nofs
= 5 + 2 * NIDS_PER_BLOCK
;
891 if (!offset
[level
- 1])
893 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
894 if (err
< 0 && err
!= -ENOENT
)
903 dn
.nid
= le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
905 case NODE_DIR1_BLOCK
:
906 case NODE_DIR2_BLOCK
:
907 err
= truncate_dnode(&dn
);
910 case NODE_IND1_BLOCK
:
911 case NODE_IND2_BLOCK
:
912 err
= truncate_nodes(&dn
, nofs
, offset
[1], 2);
915 case NODE_DIND_BLOCK
:
916 err
= truncate_nodes(&dn
, nofs
, offset
[1], 3);
923 if (err
< 0 && err
!= -ENOENT
)
925 if (offset
[1] == 0 &&
926 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]) {
928 BUG_ON(page
->mapping
!= NODE_MAPPING(sbi
));
929 f2fs_wait_on_page_writeback(page
, NODE
, true);
930 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
] = 0;
931 set_page_dirty(page
);
939 f2fs_put_page(page
, 0);
940 trace_f2fs_truncate_inode_blocks_exit(inode
, err
);
941 return err
> 0 ? 0 : err
;
944 int truncate_xattr_node(struct inode
*inode
, struct page
*page
)
946 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
947 nid_t nid
= F2FS_I(inode
)->i_xattr_nid
;
948 struct dnode_of_data dn
;
954 npage
= get_node_page(sbi
, nid
);
956 return PTR_ERR(npage
);
958 f2fs_i_xnid_write(inode
, 0);
960 /* need to do checkpoint during fsync */
961 F2FS_I(inode
)->xattr_ver
= cur_cp_version(F2FS_CKPT(sbi
));
963 set_new_dnode(&dn
, inode
, page
, npage
, nid
);
966 dn
.inode_page_locked
= true;
972 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
975 int remove_inode_page(struct inode
*inode
)
977 struct dnode_of_data dn
;
980 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
981 err
= get_dnode_of_data(&dn
, 0, LOOKUP_NODE
);
985 err
= truncate_xattr_node(inode
, dn
.inode_page
);
991 /* remove potential inline_data blocks */
992 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
993 S_ISLNK(inode
->i_mode
))
994 truncate_data_blocks_range(&dn
, 1);
996 /* 0 is possible, after f2fs_new_inode() has failed */
997 f2fs_bug_on(F2FS_I_SB(inode
),
998 inode
->i_blocks
!= 0 && inode
->i_blocks
!= 1);
1000 /* will put inode & node pages */
1005 struct page
*new_inode_page(struct inode
*inode
)
1007 struct dnode_of_data dn
;
1009 /* allocate inode page for new inode */
1010 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
1012 /* caller should f2fs_put_page(page, 1); */
1013 return new_node_page(&dn
, 0, NULL
);
1016 struct page
*new_node_page(struct dnode_of_data
*dn
,
1017 unsigned int ofs
, struct page
*ipage
)
1019 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
1020 struct node_info old_ni
, new_ni
;
1024 if (unlikely(is_inode_flag_set(dn
->inode
, FI_NO_ALLOC
)))
1025 return ERR_PTR(-EPERM
);
1027 page
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), dn
->nid
, false);
1029 return ERR_PTR(-ENOMEM
);
1031 if (unlikely(!inc_valid_node_count(sbi
, dn
->inode
))) {
1036 get_node_info(sbi
, dn
->nid
, &old_ni
);
1038 /* Reinitialize old_ni with new node page */
1039 f2fs_bug_on(sbi
, old_ni
.blk_addr
!= NULL_ADDR
);
1041 new_ni
.ino
= dn
->inode
->i_ino
;
1042 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
1044 f2fs_wait_on_page_writeback(page
, NODE
, true);
1045 fill_node_footer(page
, dn
->nid
, dn
->inode
->i_ino
, ofs
, true);
1046 set_cold_node(dn
->inode
, page
);
1047 if (!PageUptodate(page
))
1048 SetPageUptodate(page
);
1049 if (set_page_dirty(page
))
1050 dn
->node_changed
= true;
1052 if (f2fs_has_xattr_block(ofs
))
1053 f2fs_i_xnid_write(dn
->inode
, dn
->nid
);
1056 inc_valid_inode_count(sbi
);
1060 clear_node_page_dirty(page
);
1061 f2fs_put_page(page
, 1);
1062 return ERR_PTR(err
);
1066 * Caller should do after getting the following values.
1067 * 0: f2fs_put_page(page, 0)
1068 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1070 static int read_node_page(struct page
*page
, int op_flags
)
1072 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1073 struct node_info ni
;
1074 struct f2fs_io_info fio
= {
1078 .op_flags
= op_flags
,
1080 .encrypted_page
= NULL
,
1083 if (PageUptodate(page
))
1086 get_node_info(sbi
, page
->index
, &ni
);
1088 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1089 ClearPageUptodate(page
);
1093 fio
.new_blkaddr
= fio
.old_blkaddr
= ni
.blk_addr
;
1094 return f2fs_submit_page_bio(&fio
);
1098 * Readahead a node page
1100 void ra_node_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
1107 f2fs_bug_on(sbi
, check_nid_range(sbi
, nid
));
1110 apage
= radix_tree_lookup(&NODE_MAPPING(sbi
)->page_tree
, nid
);
1115 apage
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), nid
, false);
1119 err
= read_node_page(apage
, REQ_RAHEAD
);
1120 f2fs_put_page(apage
, err
? 1 : 0);
1123 static struct page
*__get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
,
1124 struct page
*parent
, int start
)
1130 return ERR_PTR(-ENOENT
);
1131 f2fs_bug_on(sbi
, check_nid_range(sbi
, nid
));
1133 page
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), nid
, false);
1135 return ERR_PTR(-ENOMEM
);
1137 err
= read_node_page(page
, READ_SYNC
);
1139 f2fs_put_page(page
, 1);
1140 return ERR_PTR(err
);
1141 } else if (err
== LOCKED_PAGE
) {
1146 ra_node_pages(parent
, start
+ 1, MAX_RA_NODE
);
1150 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1151 f2fs_put_page(page
, 1);
1155 if (unlikely(!PageUptodate(page
)))
1158 if(unlikely(nid
!= nid_of_node(page
))) {
1159 f2fs_bug_on(sbi
, 1);
1160 ClearPageUptodate(page
);
1162 f2fs_put_page(page
, 1);
1163 return ERR_PTR(-EIO
);
1168 struct page
*get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
)
1170 return __get_node_page(sbi
, nid
, NULL
, 0);
1173 struct page
*get_node_page_ra(struct page
*parent
, int start
)
1175 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
1176 nid_t nid
= get_nid(parent
, start
, false);
1178 return __get_node_page(sbi
, nid
, parent
, start
);
1181 static void flush_inline_data(struct f2fs_sb_info
*sbi
, nid_t ino
)
1183 struct inode
*inode
;
1187 /* should flush inline_data before evict_inode */
1188 inode
= ilookup(sbi
->sb
, ino
);
1192 page
= pagecache_get_page(inode
->i_mapping
, 0, FGP_LOCK
|FGP_NOWAIT
, 0);
1196 if (!PageUptodate(page
))
1199 if (!PageDirty(page
))
1202 if (!clear_page_dirty_for_io(page
))
1205 ret
= f2fs_write_inline_data(inode
, page
);
1206 inode_dec_dirty_pages(inode
);
1208 set_page_dirty(page
);
1210 f2fs_put_page(page
, 1);
1215 void move_node_page(struct page
*node_page
, int gc_type
)
1217 if (gc_type
== FG_GC
) {
1218 struct f2fs_sb_info
*sbi
= F2FS_P_SB(node_page
);
1219 struct writeback_control wbc
= {
1220 .sync_mode
= WB_SYNC_ALL
,
1225 set_page_dirty(node_page
);
1226 f2fs_wait_on_page_writeback(node_page
, NODE
, true);
1228 f2fs_bug_on(sbi
, PageWriteback(node_page
));
1229 if (!clear_page_dirty_for_io(node_page
))
1232 if (NODE_MAPPING(sbi
)->a_ops
->writepage(node_page
, &wbc
))
1233 unlock_page(node_page
);
1236 /* set page dirty and write it */
1237 if (!PageWriteback(node_page
))
1238 set_page_dirty(node_page
);
1241 unlock_page(node_page
);
1243 f2fs_put_page(node_page
, 0);
1246 static struct page
*last_fsync_dnode(struct f2fs_sb_info
*sbi
, nid_t ino
)
1249 struct pagevec pvec
;
1250 struct page
*last_page
= NULL
;
1252 pagevec_init(&pvec
, 0);
1256 while (index
<= end
) {
1258 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1259 PAGECACHE_TAG_DIRTY
,
1260 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1264 for (i
= 0; i
< nr_pages
; i
++) {
1265 struct page
*page
= pvec
.pages
[i
];
1267 if (unlikely(f2fs_cp_error(sbi
))) {
1268 f2fs_put_page(last_page
, 0);
1269 pagevec_release(&pvec
);
1270 return ERR_PTR(-EIO
);
1273 if (!IS_DNODE(page
) || !is_cold_node(page
))
1275 if (ino_of_node(page
) != ino
)
1280 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1285 if (ino_of_node(page
) != ino
)
1286 goto continue_unlock
;
1288 if (!PageDirty(page
)) {
1289 /* someone wrote it for us */
1290 goto continue_unlock
;
1294 f2fs_put_page(last_page
, 0);
1300 pagevec_release(&pvec
);
1306 int fsync_node_pages(struct f2fs_sb_info
*sbi
, struct inode
*inode
,
1307 struct writeback_control
*wbc
, bool atomic
)
1310 struct pagevec pvec
;
1312 struct page
*last_page
= NULL
;
1313 bool marked
= false;
1314 nid_t ino
= inode
->i_ino
;
1317 last_page
= last_fsync_dnode(sbi
, ino
);
1318 if (IS_ERR_OR_NULL(last_page
))
1319 return PTR_ERR_OR_ZERO(last_page
);
1322 pagevec_init(&pvec
, 0);
1326 while (index
<= end
) {
1328 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1329 PAGECACHE_TAG_DIRTY
,
1330 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1334 for (i
= 0; i
< nr_pages
; i
++) {
1335 struct page
*page
= pvec
.pages
[i
];
1337 if (unlikely(f2fs_cp_error(sbi
))) {
1338 f2fs_put_page(last_page
, 0);
1339 pagevec_release(&pvec
);
1343 if (!IS_DNODE(page
) || !is_cold_node(page
))
1345 if (ino_of_node(page
) != ino
)
1350 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1355 if (ino_of_node(page
) != ino
)
1356 goto continue_unlock
;
1358 if (!PageDirty(page
) && page
!= last_page
) {
1359 /* someone wrote it for us */
1360 goto continue_unlock
;
1363 f2fs_wait_on_page_writeback(page
, NODE
, true);
1364 BUG_ON(PageWriteback(page
));
1366 if (!atomic
|| page
== last_page
) {
1367 set_fsync_mark(page
, 1);
1368 if (IS_INODE(page
)) {
1369 if (is_inode_flag_set(inode
,
1371 update_inode(inode
, page
);
1372 set_dentry_mark(page
,
1373 need_dentry_mark(sbi
, ino
));
1375 /* may be written by other thread */
1376 if (!PageDirty(page
))
1377 set_page_dirty(page
);
1380 if (!clear_page_dirty_for_io(page
))
1381 goto continue_unlock
;
1383 ret
= NODE_MAPPING(sbi
)->a_ops
->writepage(page
, wbc
);
1386 f2fs_put_page(last_page
, 0);
1389 if (page
== last_page
) {
1390 f2fs_put_page(page
, 0);
1395 pagevec_release(&pvec
);
1401 if (!ret
&& atomic
&& !marked
) {
1402 f2fs_msg(sbi
->sb
, KERN_DEBUG
,
1403 "Retry to write fsync mark: ino=%u, idx=%lx",
1404 ino
, last_page
->index
);
1405 lock_page(last_page
);
1406 set_page_dirty(last_page
);
1407 unlock_page(last_page
);
1410 return ret
? -EIO
: 0;
1413 int sync_node_pages(struct f2fs_sb_info
*sbi
, struct writeback_control
*wbc
)
1416 struct pagevec pvec
;
1420 pagevec_init(&pvec
, 0);
1426 while (index
<= end
) {
1428 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1429 PAGECACHE_TAG_DIRTY
,
1430 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1434 for (i
= 0; i
< nr_pages
; i
++) {
1435 struct page
*page
= pvec
.pages
[i
];
1437 if (unlikely(f2fs_cp_error(sbi
))) {
1438 pagevec_release(&pvec
);
1443 * flushing sequence with step:
1448 if (step
== 0 && IS_DNODE(page
))
1450 if (step
== 1 && (!IS_DNODE(page
) ||
1451 is_cold_node(page
)))
1453 if (step
== 2 && (!IS_DNODE(page
) ||
1454 !is_cold_node(page
)))
1457 if (!trylock_page(page
))
1460 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1466 if (!PageDirty(page
)) {
1467 /* someone wrote it for us */
1468 goto continue_unlock
;
1471 /* flush inline_data */
1472 if (is_inline_node(page
)) {
1473 clear_inline_node(page
);
1475 flush_inline_data(sbi
, ino_of_node(page
));
1479 f2fs_wait_on_page_writeback(page
, NODE
, true);
1481 BUG_ON(PageWriteback(page
));
1482 if (!clear_page_dirty_for_io(page
))
1483 goto continue_unlock
;
1485 set_fsync_mark(page
, 0);
1486 set_dentry_mark(page
, 0);
1488 if (NODE_MAPPING(sbi
)->a_ops
->writepage(page
, wbc
))
1491 if (--wbc
->nr_to_write
== 0)
1494 pagevec_release(&pvec
);
1497 if (wbc
->nr_to_write
== 0) {
1510 int wait_on_node_pages_writeback(struct f2fs_sb_info
*sbi
, nid_t ino
)
1512 pgoff_t index
= 0, end
= ULONG_MAX
;
1513 struct pagevec pvec
;
1514 int ret2
= 0, ret
= 0;
1516 pagevec_init(&pvec
, 0);
1518 while (index
<= end
) {
1520 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1521 PAGECACHE_TAG_WRITEBACK
,
1522 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1526 for (i
= 0; i
< nr_pages
; i
++) {
1527 struct page
*page
= pvec
.pages
[i
];
1529 /* until radix tree lookup accepts end_index */
1530 if (unlikely(page
->index
> end
))
1533 if (ino
&& ino_of_node(page
) == ino
) {
1534 f2fs_wait_on_page_writeback(page
, NODE
, true);
1535 if (TestClearPageError(page
))
1539 pagevec_release(&pvec
);
1543 if (unlikely(test_and_clear_bit(AS_ENOSPC
, &NODE_MAPPING(sbi
)->flags
)))
1545 if (unlikely(test_and_clear_bit(AS_EIO
, &NODE_MAPPING(sbi
)->flags
)))
1552 static int f2fs_write_node_page(struct page
*page
,
1553 struct writeback_control
*wbc
)
1555 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1557 struct node_info ni
;
1558 struct f2fs_io_info fio
= {
1562 .op_flags
= (wbc
->sync_mode
== WB_SYNC_ALL
) ? WRITE_SYNC
: 0,
1564 .encrypted_page
= NULL
,
1567 trace_f2fs_writepage(page
, NODE
);
1569 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1571 if (unlikely(f2fs_cp_error(sbi
)))
1574 /* get old block addr of this node page */
1575 nid
= nid_of_node(page
);
1576 f2fs_bug_on(sbi
, page
->index
!= nid
);
1578 if (wbc
->for_reclaim
) {
1579 if (!down_read_trylock(&sbi
->node_write
))
1582 down_read(&sbi
->node_write
);
1585 get_node_info(sbi
, nid
, &ni
);
1587 /* This page is already truncated */
1588 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1589 ClearPageUptodate(page
);
1590 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1591 up_read(&sbi
->node_write
);
1596 set_page_writeback(page
);
1597 fio
.old_blkaddr
= ni
.blk_addr
;
1598 write_node_page(nid
, &fio
);
1599 set_node_addr(sbi
, &ni
, fio
.new_blkaddr
, is_fsync_dnode(page
));
1600 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1601 up_read(&sbi
->node_write
);
1603 if (wbc
->for_reclaim
)
1604 f2fs_submit_merged_bio_cond(sbi
, NULL
, page
, 0, NODE
, WRITE
);
1608 if (unlikely(f2fs_cp_error(sbi
)))
1609 f2fs_submit_merged_bio(sbi
, NODE
, WRITE
);
1614 redirty_page_for_writepage(wbc
, page
);
1615 return AOP_WRITEPAGE_ACTIVATE
;
1618 static int f2fs_write_node_pages(struct address_space
*mapping
,
1619 struct writeback_control
*wbc
)
1621 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
1622 struct blk_plug plug
;
1625 /* balancing f2fs's metadata in background */
1626 f2fs_balance_fs_bg(sbi
);
1628 /* collect a number of dirty node pages and write together */
1629 if (get_pages(sbi
, F2FS_DIRTY_NODES
) < nr_pages_to_skip(sbi
, NODE
))
1632 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
1634 diff
= nr_pages_to_write(sbi
, NODE
, wbc
);
1635 wbc
->sync_mode
= WB_SYNC_NONE
;
1636 blk_start_plug(&plug
);
1637 sync_node_pages(sbi
, wbc
);
1638 blk_finish_plug(&plug
);
1639 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- diff
);
1643 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_NODES
);
1644 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
1648 static int f2fs_set_node_page_dirty(struct page
*page
)
1650 trace_f2fs_set_page_dirty(page
, NODE
);
1652 if (!PageUptodate(page
))
1653 SetPageUptodate(page
);
1654 if (!PageDirty(page
)) {
1655 f2fs_set_page_dirty_nobuffers(page
);
1656 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_NODES
);
1657 SetPagePrivate(page
);
1658 f2fs_trace_pid(page
);
1665 * Structure of the f2fs node operations
1667 const struct address_space_operations f2fs_node_aops
= {
1668 .writepage
= f2fs_write_node_page
,
1669 .writepages
= f2fs_write_node_pages
,
1670 .set_page_dirty
= f2fs_set_node_page_dirty
,
1671 .invalidatepage
= f2fs_invalidate_page
,
1672 .releasepage
= f2fs_release_page
,
1675 static struct free_nid
*__lookup_free_nid_list(struct f2fs_nm_info
*nm_i
,
1678 return radix_tree_lookup(&nm_i
->free_nid_root
, n
);
1681 static void __del_from_free_nid_list(struct f2fs_nm_info
*nm_i
,
1685 radix_tree_delete(&nm_i
->free_nid_root
, i
->nid
);
1688 static int add_free_nid(struct f2fs_sb_info
*sbi
, nid_t nid
, bool build
)
1690 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1692 struct nat_entry
*ne
;
1694 if (!available_free_memory(sbi
, FREE_NIDS
))
1697 /* 0 nid should not be used */
1698 if (unlikely(nid
== 0))
1702 /* do not add allocated nids */
1703 ne
= __lookup_nat_cache(nm_i
, nid
);
1704 if (ne
&& (!get_nat_flag(ne
, IS_CHECKPOINTED
) ||
1705 nat_get_blkaddr(ne
) != NULL_ADDR
))
1709 i
= f2fs_kmem_cache_alloc(free_nid_slab
, GFP_NOFS
);
1713 if (radix_tree_preload(GFP_NOFS
)) {
1714 kmem_cache_free(free_nid_slab
, i
);
1718 spin_lock(&nm_i
->free_nid_list_lock
);
1719 if (radix_tree_insert(&nm_i
->free_nid_root
, i
->nid
, i
)) {
1720 spin_unlock(&nm_i
->free_nid_list_lock
);
1721 radix_tree_preload_end();
1722 kmem_cache_free(free_nid_slab
, i
);
1725 list_add_tail(&i
->list
, &nm_i
->free_nid_list
);
1727 spin_unlock(&nm_i
->free_nid_list_lock
);
1728 radix_tree_preload_end();
1732 static void remove_free_nid(struct f2fs_nm_info
*nm_i
, nid_t nid
)
1735 bool need_free
= false;
1737 spin_lock(&nm_i
->free_nid_list_lock
);
1738 i
= __lookup_free_nid_list(nm_i
, nid
);
1739 if (i
&& i
->state
== NID_NEW
) {
1740 __del_from_free_nid_list(nm_i
, i
);
1744 spin_unlock(&nm_i
->free_nid_list_lock
);
1747 kmem_cache_free(free_nid_slab
, i
);
1750 static void scan_nat_page(struct f2fs_sb_info
*sbi
,
1751 struct page
*nat_page
, nid_t start_nid
)
1753 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1754 struct f2fs_nat_block
*nat_blk
= page_address(nat_page
);
1758 i
= start_nid
% NAT_ENTRY_PER_BLOCK
;
1760 for (; i
< NAT_ENTRY_PER_BLOCK
; i
++, start_nid
++) {
1762 if (unlikely(start_nid
>= nm_i
->max_nid
))
1765 blk_addr
= le32_to_cpu(nat_blk
->entries
[i
].block_addr
);
1766 f2fs_bug_on(sbi
, blk_addr
== NEW_ADDR
);
1767 if (blk_addr
== NULL_ADDR
) {
1768 if (add_free_nid(sbi
, start_nid
, true) < 0)
1774 void build_free_nids(struct f2fs_sb_info
*sbi
)
1776 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1777 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1778 struct f2fs_journal
*journal
= curseg
->journal
;
1780 nid_t nid
= nm_i
->next_scan_nid
;
1782 /* Enough entries */
1783 if (nm_i
->fcnt
>= NAT_ENTRY_PER_BLOCK
)
1786 /* readahead nat pages to be scanned */
1787 ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nid
), FREE_NID_PAGES
,
1790 down_read(&nm_i
->nat_tree_lock
);
1793 struct page
*page
= get_current_nat_page(sbi
, nid
);
1795 scan_nat_page(sbi
, page
, nid
);
1796 f2fs_put_page(page
, 1);
1798 nid
+= (NAT_ENTRY_PER_BLOCK
- (nid
% NAT_ENTRY_PER_BLOCK
));
1799 if (unlikely(nid
>= nm_i
->max_nid
))
1802 if (++i
>= FREE_NID_PAGES
)
1806 /* go to the next free nat pages to find free nids abundantly */
1807 nm_i
->next_scan_nid
= nid
;
1809 /* find free nids from current sum_pages */
1810 down_read(&curseg
->journal_rwsem
);
1811 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
1814 addr
= le32_to_cpu(nat_in_journal(journal
, i
).block_addr
);
1815 nid
= le32_to_cpu(nid_in_journal(journal
, i
));
1816 if (addr
== NULL_ADDR
)
1817 add_free_nid(sbi
, nid
, true);
1819 remove_free_nid(nm_i
, nid
);
1821 up_read(&curseg
->journal_rwsem
);
1822 up_read(&nm_i
->nat_tree_lock
);
1824 ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nm_i
->next_scan_nid
),
1825 nm_i
->ra_nid_pages
, META_NAT
, false);
1829 * If this function returns success, caller can obtain a new nid
1830 * from second parameter of this function.
1831 * The returned nid could be used ino as well as nid when inode is created.
1833 bool alloc_nid(struct f2fs_sb_info
*sbi
, nid_t
*nid
)
1835 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1836 struct free_nid
*i
= NULL
;
1838 #ifdef CONFIG_F2FS_FAULT_INJECTION
1839 if (time_to_inject(FAULT_ALLOC_NID
))
1842 if (unlikely(sbi
->total_valid_node_count
+ 1 > nm_i
->available_nids
))
1845 spin_lock(&nm_i
->free_nid_list_lock
);
1847 /* We should not use stale free nids created by build_free_nids */
1848 if (nm_i
->fcnt
&& !on_build_free_nids(nm_i
)) {
1849 f2fs_bug_on(sbi
, list_empty(&nm_i
->free_nid_list
));
1850 list_for_each_entry(i
, &nm_i
->free_nid_list
, list
)
1851 if (i
->state
== NID_NEW
)
1854 f2fs_bug_on(sbi
, i
->state
!= NID_NEW
);
1856 i
->state
= NID_ALLOC
;
1858 spin_unlock(&nm_i
->free_nid_list_lock
);
1861 spin_unlock(&nm_i
->free_nid_list_lock
);
1863 /* Let's scan nat pages and its caches to get free nids */
1864 mutex_lock(&nm_i
->build_lock
);
1865 build_free_nids(sbi
);
1866 mutex_unlock(&nm_i
->build_lock
);
1871 * alloc_nid() should be called prior to this function.
1873 void alloc_nid_done(struct f2fs_sb_info
*sbi
, nid_t nid
)
1875 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1878 spin_lock(&nm_i
->free_nid_list_lock
);
1879 i
= __lookup_free_nid_list(nm_i
, nid
);
1880 f2fs_bug_on(sbi
, !i
|| i
->state
!= NID_ALLOC
);
1881 __del_from_free_nid_list(nm_i
, i
);
1882 spin_unlock(&nm_i
->free_nid_list_lock
);
1884 kmem_cache_free(free_nid_slab
, i
);
1888 * alloc_nid() should be called prior to this function.
1890 void alloc_nid_failed(struct f2fs_sb_info
*sbi
, nid_t nid
)
1892 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1894 bool need_free
= false;
1899 spin_lock(&nm_i
->free_nid_list_lock
);
1900 i
= __lookup_free_nid_list(nm_i
, nid
);
1901 f2fs_bug_on(sbi
, !i
|| i
->state
!= NID_ALLOC
);
1902 if (!available_free_memory(sbi
, FREE_NIDS
)) {
1903 __del_from_free_nid_list(nm_i
, i
);
1909 spin_unlock(&nm_i
->free_nid_list_lock
);
1912 kmem_cache_free(free_nid_slab
, i
);
1915 int try_to_free_nids(struct f2fs_sb_info
*sbi
, int nr_shrink
)
1917 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1918 struct free_nid
*i
, *next
;
1921 if (nm_i
->fcnt
<= MAX_FREE_NIDS
)
1924 if (!mutex_trylock(&nm_i
->build_lock
))
1927 spin_lock(&nm_i
->free_nid_list_lock
);
1928 list_for_each_entry_safe(i
, next
, &nm_i
->free_nid_list
, list
) {
1929 if (nr_shrink
<= 0 || nm_i
->fcnt
<= MAX_FREE_NIDS
)
1931 if (i
->state
== NID_ALLOC
)
1933 __del_from_free_nid_list(nm_i
, i
);
1934 kmem_cache_free(free_nid_slab
, i
);
1938 spin_unlock(&nm_i
->free_nid_list_lock
);
1939 mutex_unlock(&nm_i
->build_lock
);
1941 return nr
- nr_shrink
;
1944 void recover_inline_xattr(struct inode
*inode
, struct page
*page
)
1946 void *src_addr
, *dst_addr
;
1949 struct f2fs_inode
*ri
;
1951 ipage
= get_node_page(F2FS_I_SB(inode
), inode
->i_ino
);
1952 f2fs_bug_on(F2FS_I_SB(inode
), IS_ERR(ipage
));
1954 ri
= F2FS_INODE(page
);
1955 if (!(ri
->i_inline
& F2FS_INLINE_XATTR
)) {
1956 clear_inode_flag(inode
, FI_INLINE_XATTR
);
1960 dst_addr
= inline_xattr_addr(ipage
);
1961 src_addr
= inline_xattr_addr(page
);
1962 inline_size
= inline_xattr_size(inode
);
1964 f2fs_wait_on_page_writeback(ipage
, NODE
, true);
1965 memcpy(dst_addr
, src_addr
, inline_size
);
1967 update_inode(inode
, ipage
);
1968 f2fs_put_page(ipage
, 1);
1971 void recover_xattr_data(struct inode
*inode
, struct page
*page
, block_t blkaddr
)
1973 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1974 nid_t prev_xnid
= F2FS_I(inode
)->i_xattr_nid
;
1975 nid_t new_xnid
= nid_of_node(page
);
1976 struct node_info ni
;
1978 /* 1: invalidate the previous xattr nid */
1982 /* Deallocate node address */
1983 get_node_info(sbi
, prev_xnid
, &ni
);
1984 f2fs_bug_on(sbi
, ni
.blk_addr
== NULL_ADDR
);
1985 invalidate_blocks(sbi
, ni
.blk_addr
);
1986 dec_valid_node_count(sbi
, inode
);
1987 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
1990 /* 2: allocate new xattr nid */
1991 if (unlikely(!inc_valid_node_count(sbi
, inode
)))
1992 f2fs_bug_on(sbi
, 1);
1994 remove_free_nid(NM_I(sbi
), new_xnid
);
1995 get_node_info(sbi
, new_xnid
, &ni
);
1996 ni
.ino
= inode
->i_ino
;
1997 set_node_addr(sbi
, &ni
, NEW_ADDR
, false);
1998 f2fs_i_xnid_write(inode
, new_xnid
);
2000 /* 3: update xattr blkaddr */
2001 refresh_sit_entry(sbi
, NEW_ADDR
, blkaddr
);
2002 set_node_addr(sbi
, &ni
, blkaddr
, false);
2005 int recover_inode_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
2007 struct f2fs_inode
*src
, *dst
;
2008 nid_t ino
= ino_of_node(page
);
2009 struct node_info old_ni
, new_ni
;
2012 get_node_info(sbi
, ino
, &old_ni
);
2014 if (unlikely(old_ni
.blk_addr
!= NULL_ADDR
))
2017 ipage
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), ino
, false);
2021 /* Should not use this inode from free nid list */
2022 remove_free_nid(NM_I(sbi
), ino
);
2024 if (!PageUptodate(ipage
))
2025 SetPageUptodate(ipage
);
2026 fill_node_footer(ipage
, ino
, ino
, 0, true);
2028 src
= F2FS_INODE(page
);
2029 dst
= F2FS_INODE(ipage
);
2031 memcpy(dst
, src
, (unsigned long)&src
->i_ext
- (unsigned long)src
);
2033 dst
->i_blocks
= cpu_to_le64(1);
2034 dst
->i_links
= cpu_to_le32(1);
2035 dst
->i_xattr_nid
= 0;
2036 dst
->i_inline
= src
->i_inline
& F2FS_INLINE_XATTR
;
2041 if (unlikely(!inc_valid_node_count(sbi
, NULL
)))
2043 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
2044 inc_valid_inode_count(sbi
);
2045 set_page_dirty(ipage
);
2046 f2fs_put_page(ipage
, 1);
2050 int restore_node_summary(struct f2fs_sb_info
*sbi
,
2051 unsigned int segno
, struct f2fs_summary_block
*sum
)
2053 struct f2fs_node
*rn
;
2054 struct f2fs_summary
*sum_entry
;
2056 int bio_blocks
= MAX_BIO_BLOCKS(sbi
);
2057 int i
, idx
, last_offset
, nrpages
;
2059 /* scan the node segment */
2060 last_offset
= sbi
->blocks_per_seg
;
2061 addr
= START_BLOCK(sbi
, segno
);
2062 sum_entry
= &sum
->entries
[0];
2064 for (i
= 0; i
< last_offset
; i
+= nrpages
, addr
+= nrpages
) {
2065 nrpages
= min(last_offset
- i
, bio_blocks
);
2067 /* readahead node pages */
2068 ra_meta_pages(sbi
, addr
, nrpages
, META_POR
, true);
2070 for (idx
= addr
; idx
< addr
+ nrpages
; idx
++) {
2071 struct page
*page
= get_tmp_page(sbi
, idx
);
2073 rn
= F2FS_NODE(page
);
2074 sum_entry
->nid
= rn
->footer
.nid
;
2075 sum_entry
->version
= 0;
2076 sum_entry
->ofs_in_node
= 0;
2078 f2fs_put_page(page
, 1);
2081 invalidate_mapping_pages(META_MAPPING(sbi
), addr
,
2087 static void remove_nats_in_journal(struct f2fs_sb_info
*sbi
)
2089 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2090 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2091 struct f2fs_journal
*journal
= curseg
->journal
;
2094 down_write(&curseg
->journal_rwsem
);
2095 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
2096 struct nat_entry
*ne
;
2097 struct f2fs_nat_entry raw_ne
;
2098 nid_t nid
= le32_to_cpu(nid_in_journal(journal
, i
));
2100 raw_ne
= nat_in_journal(journal
, i
);
2102 ne
= __lookup_nat_cache(nm_i
, nid
);
2104 ne
= grab_nat_entry(nm_i
, nid
);
2105 node_info_from_raw_nat(&ne
->ni
, &raw_ne
);
2107 __set_nat_cache_dirty(nm_i
, ne
);
2109 update_nats_in_cursum(journal
, -i
);
2110 up_write(&curseg
->journal_rwsem
);
2113 static void __adjust_nat_entry_set(struct nat_entry_set
*nes
,
2114 struct list_head
*head
, int max
)
2116 struct nat_entry_set
*cur
;
2118 if (nes
->entry_cnt
>= max
)
2121 list_for_each_entry(cur
, head
, set_list
) {
2122 if (cur
->entry_cnt
>= nes
->entry_cnt
) {
2123 list_add(&nes
->set_list
, cur
->set_list
.prev
);
2128 list_add_tail(&nes
->set_list
, head
);
2131 static void __flush_nat_entry_set(struct f2fs_sb_info
*sbi
,
2132 struct nat_entry_set
*set
)
2134 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2135 struct f2fs_journal
*journal
= curseg
->journal
;
2136 nid_t start_nid
= set
->set
* NAT_ENTRY_PER_BLOCK
;
2137 bool to_journal
= true;
2138 struct f2fs_nat_block
*nat_blk
;
2139 struct nat_entry
*ne
, *cur
;
2140 struct page
*page
= NULL
;
2143 * there are two steps to flush nat entries:
2144 * #1, flush nat entries to journal in current hot data summary block.
2145 * #2, flush nat entries to nat page.
2147 if (!__has_cursum_space(journal
, set
->entry_cnt
, NAT_JOURNAL
))
2151 down_write(&curseg
->journal_rwsem
);
2153 page
= get_next_nat_page(sbi
, start_nid
);
2154 nat_blk
= page_address(page
);
2155 f2fs_bug_on(sbi
, !nat_blk
);
2158 /* flush dirty nats in nat entry set */
2159 list_for_each_entry_safe(ne
, cur
, &set
->entry_list
, list
) {
2160 struct f2fs_nat_entry
*raw_ne
;
2161 nid_t nid
= nat_get_nid(ne
);
2164 if (nat_get_blkaddr(ne
) == NEW_ADDR
)
2168 offset
= lookup_journal_in_cursum(journal
,
2169 NAT_JOURNAL
, nid
, 1);
2170 f2fs_bug_on(sbi
, offset
< 0);
2171 raw_ne
= &nat_in_journal(journal
, offset
);
2172 nid_in_journal(journal
, offset
) = cpu_to_le32(nid
);
2174 raw_ne
= &nat_blk
->entries
[nid
- start_nid
];
2176 raw_nat_from_node_info(raw_ne
, &ne
->ni
);
2178 __clear_nat_cache_dirty(NM_I(sbi
), ne
);
2179 if (nat_get_blkaddr(ne
) == NULL_ADDR
)
2180 add_free_nid(sbi
, nid
, false);
2184 up_write(&curseg
->journal_rwsem
);
2186 f2fs_put_page(page
, 1);
2188 f2fs_bug_on(sbi
, set
->entry_cnt
);
2190 radix_tree_delete(&NM_I(sbi
)->nat_set_root
, set
->set
);
2191 kmem_cache_free(nat_entry_set_slab
, set
);
2195 * This function is called during the checkpointing process.
2197 void flush_nat_entries(struct f2fs_sb_info
*sbi
)
2199 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2200 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2201 struct f2fs_journal
*journal
= curseg
->journal
;
2202 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
2203 struct nat_entry_set
*set
, *tmp
;
2208 if (!nm_i
->dirty_nat_cnt
)
2211 down_write(&nm_i
->nat_tree_lock
);
2214 * if there are no enough space in journal to store dirty nat
2215 * entries, remove all entries from journal and merge them
2216 * into nat entry set.
2218 if (!__has_cursum_space(journal
, nm_i
->dirty_nat_cnt
, NAT_JOURNAL
))
2219 remove_nats_in_journal(sbi
);
2221 while ((found
= __gang_lookup_nat_set(nm_i
,
2222 set_idx
, SETVEC_SIZE
, setvec
))) {
2224 set_idx
= setvec
[found
- 1]->set
+ 1;
2225 for (idx
= 0; idx
< found
; idx
++)
2226 __adjust_nat_entry_set(setvec
[idx
], &sets
,
2227 MAX_NAT_JENTRIES(journal
));
2230 /* flush dirty nats in nat entry set */
2231 list_for_each_entry_safe(set
, tmp
, &sets
, set_list
)
2232 __flush_nat_entry_set(sbi
, set
);
2234 up_write(&nm_i
->nat_tree_lock
);
2236 f2fs_bug_on(sbi
, nm_i
->dirty_nat_cnt
);
2239 static int init_node_manager(struct f2fs_sb_info
*sbi
)
2241 struct f2fs_super_block
*sb_raw
= F2FS_RAW_SUPER(sbi
);
2242 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2243 unsigned char *version_bitmap
;
2244 unsigned int nat_segs
, nat_blocks
;
2246 nm_i
->nat_blkaddr
= le32_to_cpu(sb_raw
->nat_blkaddr
);
2248 /* segment_count_nat includes pair segment so divide to 2. */
2249 nat_segs
= le32_to_cpu(sb_raw
->segment_count_nat
) >> 1;
2250 nat_blocks
= nat_segs
<< le32_to_cpu(sb_raw
->log_blocks_per_seg
);
2252 nm_i
->max_nid
= NAT_ENTRY_PER_BLOCK
* nat_blocks
;
2254 /* not used nids: 0, node, meta, (and root counted as valid node) */
2255 nm_i
->available_nids
= nm_i
->max_nid
- F2FS_RESERVED_NODE_NUM
;
2258 nm_i
->ram_thresh
= DEF_RAM_THRESHOLD
;
2259 nm_i
->ra_nid_pages
= DEF_RA_NID_PAGES
;
2260 nm_i
->dirty_nats_ratio
= DEF_DIRTY_NAT_RATIO_THRESHOLD
;
2262 INIT_RADIX_TREE(&nm_i
->free_nid_root
, GFP_ATOMIC
);
2263 INIT_LIST_HEAD(&nm_i
->free_nid_list
);
2264 INIT_RADIX_TREE(&nm_i
->nat_root
, GFP_NOIO
);
2265 INIT_RADIX_TREE(&nm_i
->nat_set_root
, GFP_NOIO
);
2266 INIT_LIST_HEAD(&nm_i
->nat_entries
);
2268 mutex_init(&nm_i
->build_lock
);
2269 spin_lock_init(&nm_i
->free_nid_list_lock
);
2270 init_rwsem(&nm_i
->nat_tree_lock
);
2272 nm_i
->next_scan_nid
= le32_to_cpu(sbi
->ckpt
->next_free_nid
);
2273 nm_i
->bitmap_size
= __bitmap_size(sbi
, NAT_BITMAP
);
2274 version_bitmap
= __bitmap_ptr(sbi
, NAT_BITMAP
);
2275 if (!version_bitmap
)
2278 nm_i
->nat_bitmap
= kmemdup(version_bitmap
, nm_i
->bitmap_size
,
2280 if (!nm_i
->nat_bitmap
)
2285 int build_node_manager(struct f2fs_sb_info
*sbi
)
2289 sbi
->nm_info
= kzalloc(sizeof(struct f2fs_nm_info
), GFP_KERNEL
);
2293 err
= init_node_manager(sbi
);
2297 build_free_nids(sbi
);
2301 void destroy_node_manager(struct f2fs_sb_info
*sbi
)
2303 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2304 struct free_nid
*i
, *next_i
;
2305 struct nat_entry
*natvec
[NATVEC_SIZE
];
2306 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
2313 /* destroy free nid list */
2314 spin_lock(&nm_i
->free_nid_list_lock
);
2315 list_for_each_entry_safe(i
, next_i
, &nm_i
->free_nid_list
, list
) {
2316 f2fs_bug_on(sbi
, i
->state
== NID_ALLOC
);
2317 __del_from_free_nid_list(nm_i
, i
);
2319 spin_unlock(&nm_i
->free_nid_list_lock
);
2320 kmem_cache_free(free_nid_slab
, i
);
2321 spin_lock(&nm_i
->free_nid_list_lock
);
2323 f2fs_bug_on(sbi
, nm_i
->fcnt
);
2324 spin_unlock(&nm_i
->free_nid_list_lock
);
2326 /* destroy nat cache */
2327 down_write(&nm_i
->nat_tree_lock
);
2328 while ((found
= __gang_lookup_nat_cache(nm_i
,
2329 nid
, NATVEC_SIZE
, natvec
))) {
2332 nid
= nat_get_nid(natvec
[found
- 1]) + 1;
2333 for (idx
= 0; idx
< found
; idx
++)
2334 __del_from_nat_cache(nm_i
, natvec
[idx
]);
2336 f2fs_bug_on(sbi
, nm_i
->nat_cnt
);
2338 /* destroy nat set cache */
2340 while ((found
= __gang_lookup_nat_set(nm_i
,
2341 nid
, SETVEC_SIZE
, setvec
))) {
2344 nid
= setvec
[found
- 1]->set
+ 1;
2345 for (idx
= 0; idx
< found
; idx
++) {
2346 /* entry_cnt is not zero, when cp_error was occurred */
2347 f2fs_bug_on(sbi
, !list_empty(&setvec
[idx
]->entry_list
));
2348 radix_tree_delete(&nm_i
->nat_set_root
, setvec
[idx
]->set
);
2349 kmem_cache_free(nat_entry_set_slab
, setvec
[idx
]);
2352 up_write(&nm_i
->nat_tree_lock
);
2354 kfree(nm_i
->nat_bitmap
);
2355 sbi
->nm_info
= NULL
;
2359 int __init
create_node_manager_caches(void)
2361 nat_entry_slab
= f2fs_kmem_cache_create("nat_entry",
2362 sizeof(struct nat_entry
));
2363 if (!nat_entry_slab
)
2366 free_nid_slab
= f2fs_kmem_cache_create("free_nid",
2367 sizeof(struct free_nid
));
2369 goto destroy_nat_entry
;
2371 nat_entry_set_slab
= f2fs_kmem_cache_create("nat_entry_set",
2372 sizeof(struct nat_entry_set
));
2373 if (!nat_entry_set_slab
)
2374 goto destroy_free_nid
;
2378 kmem_cache_destroy(free_nid_slab
);
2380 kmem_cache_destroy(nat_entry_slab
);
2385 void destroy_node_manager_caches(void)
2387 kmem_cache_destroy(nat_entry_set_slab
);
2388 kmem_cache_destroy(free_nid_slab
);
2389 kmem_cache_destroy(nat_entry_slab
);