f2fs: introduce a radix_tree for the free_nid list
[deliverable/linux.git] / fs / f2fs / node.c
1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23
24 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
25
26 static struct kmem_cache *nat_entry_slab;
27 static struct kmem_cache *free_nid_slab;
28
29 static void clear_node_page_dirty(struct page *page)
30 {
31 struct address_space *mapping = page->mapping;
32 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
33 unsigned int long flags;
34
35 if (PageDirty(page)) {
36 spin_lock_irqsave(&mapping->tree_lock, flags);
37 radix_tree_tag_clear(&mapping->page_tree,
38 page_index(page),
39 PAGECACHE_TAG_DIRTY);
40 spin_unlock_irqrestore(&mapping->tree_lock, flags);
41
42 clear_page_dirty_for_io(page);
43 dec_page_count(sbi, F2FS_DIRTY_NODES);
44 }
45 ClearPageUptodate(page);
46 }
47
48 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
49 {
50 pgoff_t index = current_nat_addr(sbi, nid);
51 return get_meta_page(sbi, index);
52 }
53
54 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
55 {
56 struct page *src_page;
57 struct page *dst_page;
58 pgoff_t src_off;
59 pgoff_t dst_off;
60 void *src_addr;
61 void *dst_addr;
62 struct f2fs_nm_info *nm_i = NM_I(sbi);
63
64 src_off = current_nat_addr(sbi, nid);
65 dst_off = next_nat_addr(sbi, src_off);
66
67 /* get current nat block page with lock */
68 src_page = get_meta_page(sbi, src_off);
69
70 /* Dirty src_page means that it is already the new target NAT page. */
71 if (PageDirty(src_page))
72 return src_page;
73
74 dst_page = grab_meta_page(sbi, dst_off);
75
76 src_addr = page_address(src_page);
77 dst_addr = page_address(dst_page);
78 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
79 set_page_dirty(dst_page);
80 f2fs_put_page(src_page, 1);
81
82 set_to_next_nat(nm_i, nid);
83
84 return dst_page;
85 }
86
87 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
88 {
89 return radix_tree_lookup(&nm_i->nat_root, n);
90 }
91
92 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
93 nid_t start, unsigned int nr, struct nat_entry **ep)
94 {
95 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
96 }
97
98 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
99 {
100 list_del(&e->list);
101 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
102 nm_i->nat_cnt--;
103 kmem_cache_free(nat_entry_slab, e);
104 }
105
106 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
107 {
108 struct f2fs_nm_info *nm_i = NM_I(sbi);
109 struct nat_entry *e;
110 int is_cp = 1;
111
112 read_lock(&nm_i->nat_tree_lock);
113 e = __lookup_nat_cache(nm_i, nid);
114 if (e && !e->checkpointed)
115 is_cp = 0;
116 read_unlock(&nm_i->nat_tree_lock);
117 return is_cp;
118 }
119
120 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
121 {
122 struct nat_entry *new;
123
124 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
125 if (!new)
126 return NULL;
127 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
128 kmem_cache_free(nat_entry_slab, new);
129 return NULL;
130 }
131 memset(new, 0, sizeof(struct nat_entry));
132 nat_set_nid(new, nid);
133 new->checkpointed = true;
134 list_add_tail(&new->list, &nm_i->nat_entries);
135 nm_i->nat_cnt++;
136 return new;
137 }
138
139 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
140 struct f2fs_nat_entry *ne)
141 {
142 struct nat_entry *e;
143 retry:
144 write_lock(&nm_i->nat_tree_lock);
145 e = __lookup_nat_cache(nm_i, nid);
146 if (!e) {
147 e = grab_nat_entry(nm_i, nid);
148 if (!e) {
149 write_unlock(&nm_i->nat_tree_lock);
150 goto retry;
151 }
152 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
153 nat_set_ino(e, le32_to_cpu(ne->ino));
154 nat_set_version(e, ne->version);
155 }
156 write_unlock(&nm_i->nat_tree_lock);
157 }
158
159 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
160 block_t new_blkaddr)
161 {
162 struct f2fs_nm_info *nm_i = NM_I(sbi);
163 struct nat_entry *e;
164 retry:
165 write_lock(&nm_i->nat_tree_lock);
166 e = __lookup_nat_cache(nm_i, ni->nid);
167 if (!e) {
168 e = grab_nat_entry(nm_i, ni->nid);
169 if (!e) {
170 write_unlock(&nm_i->nat_tree_lock);
171 goto retry;
172 }
173 e->ni = *ni;
174 f2fs_bug_on(ni->blk_addr == NEW_ADDR);
175 } else if (new_blkaddr == NEW_ADDR) {
176 /*
177 * when nid is reallocated,
178 * previous nat entry can be remained in nat cache.
179 * So, reinitialize it with new information.
180 */
181 e->ni = *ni;
182 f2fs_bug_on(ni->blk_addr != NULL_ADDR);
183 }
184
185 /* sanity check */
186 f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
187 f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
188 new_blkaddr == NULL_ADDR);
189 f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
190 new_blkaddr == NEW_ADDR);
191 f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
192 nat_get_blkaddr(e) != NULL_ADDR &&
193 new_blkaddr == NEW_ADDR);
194
195 /* increament version no as node is removed */
196 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
197 unsigned char version = nat_get_version(e);
198 nat_set_version(e, inc_node_version(version));
199 }
200
201 /* change address */
202 nat_set_blkaddr(e, new_blkaddr);
203 __set_nat_cache_dirty(nm_i, e);
204 write_unlock(&nm_i->nat_tree_lock);
205 }
206
207 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
208 {
209 struct f2fs_nm_info *nm_i = NM_I(sbi);
210
211 if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
212 return 0;
213
214 write_lock(&nm_i->nat_tree_lock);
215 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
216 struct nat_entry *ne;
217 ne = list_first_entry(&nm_i->nat_entries,
218 struct nat_entry, list);
219 __del_from_nat_cache(nm_i, ne);
220 nr_shrink--;
221 }
222 write_unlock(&nm_i->nat_tree_lock);
223 return nr_shrink;
224 }
225
226 /*
227 * This function returns always success
228 */
229 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
230 {
231 struct f2fs_nm_info *nm_i = NM_I(sbi);
232 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
233 struct f2fs_summary_block *sum = curseg->sum_blk;
234 nid_t start_nid = START_NID(nid);
235 struct f2fs_nat_block *nat_blk;
236 struct page *page = NULL;
237 struct f2fs_nat_entry ne;
238 struct nat_entry *e;
239 int i;
240
241 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
242 ni->nid = nid;
243
244 /* Check nat cache */
245 read_lock(&nm_i->nat_tree_lock);
246 e = __lookup_nat_cache(nm_i, nid);
247 if (e) {
248 ni->ino = nat_get_ino(e);
249 ni->blk_addr = nat_get_blkaddr(e);
250 ni->version = nat_get_version(e);
251 }
252 read_unlock(&nm_i->nat_tree_lock);
253 if (e)
254 return;
255
256 /* Check current segment summary */
257 mutex_lock(&curseg->curseg_mutex);
258 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
259 if (i >= 0) {
260 ne = nat_in_journal(sum, i);
261 node_info_from_raw_nat(ni, &ne);
262 }
263 mutex_unlock(&curseg->curseg_mutex);
264 if (i >= 0)
265 goto cache;
266
267 /* Fill node_info from nat page */
268 page = get_current_nat_page(sbi, start_nid);
269 nat_blk = (struct f2fs_nat_block *)page_address(page);
270 ne = nat_blk->entries[nid - start_nid];
271 node_info_from_raw_nat(ni, &ne);
272 f2fs_put_page(page, 1);
273 cache:
274 /* cache nat entry */
275 cache_nat_entry(NM_I(sbi), nid, &ne);
276 }
277
278 /*
279 * The maximum depth is four.
280 * Offset[0] will have raw inode offset.
281 */
282 static int get_node_path(struct f2fs_inode_info *fi, long block,
283 int offset[4], unsigned int noffset[4])
284 {
285 const long direct_index = ADDRS_PER_INODE(fi);
286 const long direct_blks = ADDRS_PER_BLOCK;
287 const long dptrs_per_blk = NIDS_PER_BLOCK;
288 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
289 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
290 int n = 0;
291 int level = 0;
292
293 noffset[0] = 0;
294
295 if (block < direct_index) {
296 offset[n] = block;
297 goto got;
298 }
299 block -= direct_index;
300 if (block < direct_blks) {
301 offset[n++] = NODE_DIR1_BLOCK;
302 noffset[n] = 1;
303 offset[n] = block;
304 level = 1;
305 goto got;
306 }
307 block -= direct_blks;
308 if (block < direct_blks) {
309 offset[n++] = NODE_DIR2_BLOCK;
310 noffset[n] = 2;
311 offset[n] = block;
312 level = 1;
313 goto got;
314 }
315 block -= direct_blks;
316 if (block < indirect_blks) {
317 offset[n++] = NODE_IND1_BLOCK;
318 noffset[n] = 3;
319 offset[n++] = block / direct_blks;
320 noffset[n] = 4 + offset[n - 1];
321 offset[n] = block % direct_blks;
322 level = 2;
323 goto got;
324 }
325 block -= indirect_blks;
326 if (block < indirect_blks) {
327 offset[n++] = NODE_IND2_BLOCK;
328 noffset[n] = 4 + dptrs_per_blk;
329 offset[n++] = block / direct_blks;
330 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
331 offset[n] = block % direct_blks;
332 level = 2;
333 goto got;
334 }
335 block -= indirect_blks;
336 if (block < dindirect_blks) {
337 offset[n++] = NODE_DIND_BLOCK;
338 noffset[n] = 5 + (dptrs_per_blk * 2);
339 offset[n++] = block / indirect_blks;
340 noffset[n] = 6 + (dptrs_per_blk * 2) +
341 offset[n - 1] * (dptrs_per_blk + 1);
342 offset[n++] = (block / direct_blks) % dptrs_per_blk;
343 noffset[n] = 7 + (dptrs_per_blk * 2) +
344 offset[n - 2] * (dptrs_per_blk + 1) +
345 offset[n - 1];
346 offset[n] = block % direct_blks;
347 level = 3;
348 goto got;
349 } else {
350 BUG();
351 }
352 got:
353 return level;
354 }
355
356 /*
357 * Caller should call f2fs_put_dnode(dn).
358 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
359 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
360 * In the case of RDONLY_NODE, we don't need to care about mutex.
361 */
362 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
363 {
364 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
365 struct page *npage[4];
366 struct page *parent;
367 int offset[4];
368 unsigned int noffset[4];
369 nid_t nids[4];
370 int level, i;
371 int err = 0;
372
373 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
374
375 nids[0] = dn->inode->i_ino;
376 npage[0] = dn->inode_page;
377
378 if (!npage[0]) {
379 npage[0] = get_node_page(sbi, nids[0]);
380 if (IS_ERR(npage[0]))
381 return PTR_ERR(npage[0]);
382 }
383 parent = npage[0];
384 if (level != 0)
385 nids[1] = get_nid(parent, offset[0], true);
386 dn->inode_page = npage[0];
387 dn->inode_page_locked = true;
388
389 /* get indirect or direct nodes */
390 for (i = 1; i <= level; i++) {
391 bool done = false;
392
393 if (!nids[i] && mode == ALLOC_NODE) {
394 /* alloc new node */
395 if (!alloc_nid(sbi, &(nids[i]))) {
396 err = -ENOSPC;
397 goto release_pages;
398 }
399
400 dn->nid = nids[i];
401 npage[i] = new_node_page(dn, noffset[i], NULL);
402 if (IS_ERR(npage[i])) {
403 alloc_nid_failed(sbi, nids[i]);
404 err = PTR_ERR(npage[i]);
405 goto release_pages;
406 }
407
408 set_nid(parent, offset[i - 1], nids[i], i == 1);
409 alloc_nid_done(sbi, nids[i]);
410 done = true;
411 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
412 npage[i] = get_node_page_ra(parent, offset[i - 1]);
413 if (IS_ERR(npage[i])) {
414 err = PTR_ERR(npage[i]);
415 goto release_pages;
416 }
417 done = true;
418 }
419 if (i == 1) {
420 dn->inode_page_locked = false;
421 unlock_page(parent);
422 } else {
423 f2fs_put_page(parent, 1);
424 }
425
426 if (!done) {
427 npage[i] = get_node_page(sbi, nids[i]);
428 if (IS_ERR(npage[i])) {
429 err = PTR_ERR(npage[i]);
430 f2fs_put_page(npage[0], 0);
431 goto release_out;
432 }
433 }
434 if (i < level) {
435 parent = npage[i];
436 nids[i + 1] = get_nid(parent, offset[i], false);
437 }
438 }
439 dn->nid = nids[level];
440 dn->ofs_in_node = offset[level];
441 dn->node_page = npage[level];
442 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
443 return 0;
444
445 release_pages:
446 f2fs_put_page(parent, 1);
447 if (i > 1)
448 f2fs_put_page(npage[0], 0);
449 release_out:
450 dn->inode_page = NULL;
451 dn->node_page = NULL;
452 return err;
453 }
454
455 static void truncate_node(struct dnode_of_data *dn)
456 {
457 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
458 struct node_info ni;
459
460 get_node_info(sbi, dn->nid, &ni);
461 if (dn->inode->i_blocks == 0) {
462 f2fs_bug_on(ni.blk_addr != NULL_ADDR);
463 goto invalidate;
464 }
465 f2fs_bug_on(ni.blk_addr == NULL_ADDR);
466
467 /* Deallocate node address */
468 invalidate_blocks(sbi, ni.blk_addr);
469 dec_valid_node_count(sbi, dn->inode);
470 set_node_addr(sbi, &ni, NULL_ADDR);
471
472 if (dn->nid == dn->inode->i_ino) {
473 remove_orphan_inode(sbi, dn->nid);
474 dec_valid_inode_count(sbi);
475 } else {
476 sync_inode_page(dn);
477 }
478 invalidate:
479 clear_node_page_dirty(dn->node_page);
480 F2FS_SET_SB_DIRT(sbi);
481
482 f2fs_put_page(dn->node_page, 1);
483
484 invalidate_mapping_pages(NODE_MAPPING(sbi),
485 dn->node_page->index, dn->node_page->index);
486
487 dn->node_page = NULL;
488 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
489 }
490
491 static int truncate_dnode(struct dnode_of_data *dn)
492 {
493 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
494 struct page *page;
495
496 if (dn->nid == 0)
497 return 1;
498
499 /* get direct node */
500 page = get_node_page(sbi, dn->nid);
501 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
502 return 1;
503 else if (IS_ERR(page))
504 return PTR_ERR(page);
505
506 /* Make dnode_of_data for parameter */
507 dn->node_page = page;
508 dn->ofs_in_node = 0;
509 truncate_data_blocks(dn);
510 truncate_node(dn);
511 return 1;
512 }
513
514 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
515 int ofs, int depth)
516 {
517 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
518 struct dnode_of_data rdn = *dn;
519 struct page *page;
520 struct f2fs_node *rn;
521 nid_t child_nid;
522 unsigned int child_nofs;
523 int freed = 0;
524 int i, ret;
525
526 if (dn->nid == 0)
527 return NIDS_PER_BLOCK + 1;
528
529 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
530
531 page = get_node_page(sbi, dn->nid);
532 if (IS_ERR(page)) {
533 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
534 return PTR_ERR(page);
535 }
536
537 rn = F2FS_NODE(page);
538 if (depth < 3) {
539 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
540 child_nid = le32_to_cpu(rn->in.nid[i]);
541 if (child_nid == 0)
542 continue;
543 rdn.nid = child_nid;
544 ret = truncate_dnode(&rdn);
545 if (ret < 0)
546 goto out_err;
547 set_nid(page, i, 0, false);
548 }
549 } else {
550 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
551 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
552 child_nid = le32_to_cpu(rn->in.nid[i]);
553 if (child_nid == 0) {
554 child_nofs += NIDS_PER_BLOCK + 1;
555 continue;
556 }
557 rdn.nid = child_nid;
558 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
559 if (ret == (NIDS_PER_BLOCK + 1)) {
560 set_nid(page, i, 0, false);
561 child_nofs += ret;
562 } else if (ret < 0 && ret != -ENOENT) {
563 goto out_err;
564 }
565 }
566 freed = child_nofs;
567 }
568
569 if (!ofs) {
570 /* remove current indirect node */
571 dn->node_page = page;
572 truncate_node(dn);
573 freed++;
574 } else {
575 f2fs_put_page(page, 1);
576 }
577 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
578 return freed;
579
580 out_err:
581 f2fs_put_page(page, 1);
582 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
583 return ret;
584 }
585
586 static int truncate_partial_nodes(struct dnode_of_data *dn,
587 struct f2fs_inode *ri, int *offset, int depth)
588 {
589 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
590 struct page *pages[2];
591 nid_t nid[3];
592 nid_t child_nid;
593 int err = 0;
594 int i;
595 int idx = depth - 2;
596
597 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
598 if (!nid[0])
599 return 0;
600
601 /* get indirect nodes in the path */
602 for (i = 0; i < idx + 1; i++) {
603 /* refernece count'll be increased */
604 pages[i] = get_node_page(sbi, nid[i]);
605 if (IS_ERR(pages[i])) {
606 err = PTR_ERR(pages[i]);
607 idx = i - 1;
608 goto fail;
609 }
610 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
611 }
612
613 /* free direct nodes linked to a partial indirect node */
614 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
615 child_nid = get_nid(pages[idx], i, false);
616 if (!child_nid)
617 continue;
618 dn->nid = child_nid;
619 err = truncate_dnode(dn);
620 if (err < 0)
621 goto fail;
622 set_nid(pages[idx], i, 0, false);
623 }
624
625 if (offset[idx + 1] == 0) {
626 dn->node_page = pages[idx];
627 dn->nid = nid[idx];
628 truncate_node(dn);
629 } else {
630 f2fs_put_page(pages[idx], 1);
631 }
632 offset[idx]++;
633 offset[idx + 1] = 0;
634 idx--;
635 fail:
636 for (i = idx; i >= 0; i--)
637 f2fs_put_page(pages[i], 1);
638
639 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
640
641 return err;
642 }
643
644 /*
645 * All the block addresses of data and nodes should be nullified.
646 */
647 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
648 {
649 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
650 int err = 0, cont = 1;
651 int level, offset[4], noffset[4];
652 unsigned int nofs = 0;
653 struct f2fs_inode *ri;
654 struct dnode_of_data dn;
655 struct page *page;
656
657 trace_f2fs_truncate_inode_blocks_enter(inode, from);
658
659 level = get_node_path(F2FS_I(inode), from, offset, noffset);
660 restart:
661 page = get_node_page(sbi, inode->i_ino);
662 if (IS_ERR(page)) {
663 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
664 return PTR_ERR(page);
665 }
666
667 set_new_dnode(&dn, inode, page, NULL, 0);
668 unlock_page(page);
669
670 ri = F2FS_INODE(page);
671 switch (level) {
672 case 0:
673 case 1:
674 nofs = noffset[1];
675 break;
676 case 2:
677 nofs = noffset[1];
678 if (!offset[level - 1])
679 goto skip_partial;
680 err = truncate_partial_nodes(&dn, ri, offset, level);
681 if (err < 0 && err != -ENOENT)
682 goto fail;
683 nofs += 1 + NIDS_PER_BLOCK;
684 break;
685 case 3:
686 nofs = 5 + 2 * NIDS_PER_BLOCK;
687 if (!offset[level - 1])
688 goto skip_partial;
689 err = truncate_partial_nodes(&dn, ri, offset, level);
690 if (err < 0 && err != -ENOENT)
691 goto fail;
692 break;
693 default:
694 BUG();
695 }
696
697 skip_partial:
698 while (cont) {
699 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
700 switch (offset[0]) {
701 case NODE_DIR1_BLOCK:
702 case NODE_DIR2_BLOCK:
703 err = truncate_dnode(&dn);
704 break;
705
706 case NODE_IND1_BLOCK:
707 case NODE_IND2_BLOCK:
708 err = truncate_nodes(&dn, nofs, offset[1], 2);
709 break;
710
711 case NODE_DIND_BLOCK:
712 err = truncate_nodes(&dn, nofs, offset[1], 3);
713 cont = 0;
714 break;
715
716 default:
717 BUG();
718 }
719 if (err < 0 && err != -ENOENT)
720 goto fail;
721 if (offset[1] == 0 &&
722 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
723 lock_page(page);
724 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
725 f2fs_put_page(page, 1);
726 goto restart;
727 }
728 wait_on_page_writeback(page);
729 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
730 set_page_dirty(page);
731 unlock_page(page);
732 }
733 offset[1] = 0;
734 offset[0]++;
735 nofs += err;
736 }
737 fail:
738 f2fs_put_page(page, 0);
739 trace_f2fs_truncate_inode_blocks_exit(inode, err);
740 return err > 0 ? 0 : err;
741 }
742
743 int truncate_xattr_node(struct inode *inode, struct page *page)
744 {
745 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
746 nid_t nid = F2FS_I(inode)->i_xattr_nid;
747 struct dnode_of_data dn;
748 struct page *npage;
749
750 if (!nid)
751 return 0;
752
753 npage = get_node_page(sbi, nid);
754 if (IS_ERR(npage))
755 return PTR_ERR(npage);
756
757 F2FS_I(inode)->i_xattr_nid = 0;
758
759 /* need to do checkpoint during fsync */
760 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
761
762 set_new_dnode(&dn, inode, page, npage, nid);
763
764 if (page)
765 dn.inode_page_locked = true;
766 truncate_node(&dn);
767 return 0;
768 }
769
770 /*
771 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
772 * f2fs_unlock_op().
773 */
774 void remove_inode_page(struct inode *inode)
775 {
776 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
777 struct page *page;
778 nid_t ino = inode->i_ino;
779 struct dnode_of_data dn;
780
781 page = get_node_page(sbi, ino);
782 if (IS_ERR(page))
783 return;
784
785 if (truncate_xattr_node(inode, page)) {
786 f2fs_put_page(page, 1);
787 return;
788 }
789 /* 0 is possible, after f2fs_new_inode() is failed */
790 f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
791 set_new_dnode(&dn, inode, page, page, ino);
792 truncate_node(&dn);
793 }
794
795 struct page *new_inode_page(struct inode *inode, const struct qstr *name)
796 {
797 struct dnode_of_data dn;
798
799 /* allocate inode page for new inode */
800 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
801
802 /* caller should f2fs_put_page(page, 1); */
803 return new_node_page(&dn, 0, NULL);
804 }
805
806 struct page *new_node_page(struct dnode_of_data *dn,
807 unsigned int ofs, struct page *ipage)
808 {
809 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
810 struct node_info old_ni, new_ni;
811 struct page *page;
812 int err;
813
814 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
815 return ERR_PTR(-EPERM);
816
817 page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
818 if (!page)
819 return ERR_PTR(-ENOMEM);
820
821 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
822 err = -ENOSPC;
823 goto fail;
824 }
825
826 get_node_info(sbi, dn->nid, &old_ni);
827
828 /* Reinitialize old_ni with new node page */
829 f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
830 new_ni = old_ni;
831 new_ni.ino = dn->inode->i_ino;
832 set_node_addr(sbi, &new_ni, NEW_ADDR);
833
834 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
835 set_cold_node(dn->inode, page);
836 SetPageUptodate(page);
837 set_page_dirty(page);
838
839 if (ofs == XATTR_NODE_OFFSET)
840 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
841
842 dn->node_page = page;
843 if (ipage)
844 update_inode(dn->inode, ipage);
845 else
846 sync_inode_page(dn);
847 if (ofs == 0)
848 inc_valid_inode_count(sbi);
849
850 return page;
851
852 fail:
853 clear_node_page_dirty(page);
854 f2fs_put_page(page, 1);
855 return ERR_PTR(err);
856 }
857
858 /*
859 * Caller should do after getting the following values.
860 * 0: f2fs_put_page(page, 0)
861 * LOCKED_PAGE: f2fs_put_page(page, 1)
862 * error: nothing
863 */
864 static int read_node_page(struct page *page, int rw)
865 {
866 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
867 struct node_info ni;
868
869 get_node_info(sbi, page->index, &ni);
870
871 if (unlikely(ni.blk_addr == NULL_ADDR)) {
872 f2fs_put_page(page, 1);
873 return -ENOENT;
874 }
875
876 if (PageUptodate(page))
877 return LOCKED_PAGE;
878
879 return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
880 }
881
882 /*
883 * Readahead a node page
884 */
885 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
886 {
887 struct page *apage;
888 int err;
889
890 apage = find_get_page(NODE_MAPPING(sbi), nid);
891 if (apage && PageUptodate(apage)) {
892 f2fs_put_page(apage, 0);
893 return;
894 }
895 f2fs_put_page(apage, 0);
896
897 apage = grab_cache_page(NODE_MAPPING(sbi), nid);
898 if (!apage)
899 return;
900
901 err = read_node_page(apage, READA);
902 if (err == 0)
903 f2fs_put_page(apage, 0);
904 else if (err == LOCKED_PAGE)
905 f2fs_put_page(apage, 1);
906 }
907
908 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
909 {
910 struct page *page;
911 int err;
912 repeat:
913 page = grab_cache_page(NODE_MAPPING(sbi), nid);
914 if (!page)
915 return ERR_PTR(-ENOMEM);
916
917 err = read_node_page(page, READ_SYNC);
918 if (err < 0)
919 return ERR_PTR(err);
920 else if (err == LOCKED_PAGE)
921 goto got_it;
922
923 lock_page(page);
924 if (unlikely(!PageUptodate(page))) {
925 f2fs_put_page(page, 1);
926 return ERR_PTR(-EIO);
927 }
928 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
929 f2fs_put_page(page, 1);
930 goto repeat;
931 }
932 got_it:
933 f2fs_bug_on(nid != nid_of_node(page));
934 mark_page_accessed(page);
935 return page;
936 }
937
938 /*
939 * Return a locked page for the desired node page.
940 * And, readahead MAX_RA_NODE number of node pages.
941 */
942 struct page *get_node_page_ra(struct page *parent, int start)
943 {
944 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
945 struct blk_plug plug;
946 struct page *page;
947 int err, i, end;
948 nid_t nid;
949
950 /* First, try getting the desired direct node. */
951 nid = get_nid(parent, start, false);
952 if (!nid)
953 return ERR_PTR(-ENOENT);
954 repeat:
955 page = grab_cache_page(NODE_MAPPING(sbi), nid);
956 if (!page)
957 return ERR_PTR(-ENOMEM);
958
959 err = read_node_page(page, READ_SYNC);
960 if (err < 0)
961 return ERR_PTR(err);
962 else if (err == LOCKED_PAGE)
963 goto page_hit;
964
965 blk_start_plug(&plug);
966
967 /* Then, try readahead for siblings of the desired node */
968 end = start + MAX_RA_NODE;
969 end = min(end, NIDS_PER_BLOCK);
970 for (i = start + 1; i < end; i++) {
971 nid = get_nid(parent, i, false);
972 if (!nid)
973 continue;
974 ra_node_page(sbi, nid);
975 }
976
977 blk_finish_plug(&plug);
978
979 lock_page(page);
980 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
981 f2fs_put_page(page, 1);
982 goto repeat;
983 }
984 page_hit:
985 if (unlikely(!PageUptodate(page))) {
986 f2fs_put_page(page, 1);
987 return ERR_PTR(-EIO);
988 }
989 mark_page_accessed(page);
990 return page;
991 }
992
993 void sync_inode_page(struct dnode_of_data *dn)
994 {
995 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
996 update_inode(dn->inode, dn->node_page);
997 } else if (dn->inode_page) {
998 if (!dn->inode_page_locked)
999 lock_page(dn->inode_page);
1000 update_inode(dn->inode, dn->inode_page);
1001 if (!dn->inode_page_locked)
1002 unlock_page(dn->inode_page);
1003 } else {
1004 update_inode_page(dn->inode);
1005 }
1006 }
1007
1008 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1009 struct writeback_control *wbc)
1010 {
1011 pgoff_t index, end;
1012 struct pagevec pvec;
1013 int step = ino ? 2 : 0;
1014 int nwritten = 0, wrote = 0;
1015
1016 pagevec_init(&pvec, 0);
1017
1018 next_step:
1019 index = 0;
1020 end = LONG_MAX;
1021
1022 while (index <= end) {
1023 int i, nr_pages;
1024 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1025 PAGECACHE_TAG_DIRTY,
1026 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1027 if (nr_pages == 0)
1028 break;
1029
1030 for (i = 0; i < nr_pages; i++) {
1031 struct page *page = pvec.pages[i];
1032
1033 /*
1034 * flushing sequence with step:
1035 * 0. indirect nodes
1036 * 1. dentry dnodes
1037 * 2. file dnodes
1038 */
1039 if (step == 0 && IS_DNODE(page))
1040 continue;
1041 if (step == 1 && (!IS_DNODE(page) ||
1042 is_cold_node(page)))
1043 continue;
1044 if (step == 2 && (!IS_DNODE(page) ||
1045 !is_cold_node(page)))
1046 continue;
1047
1048 /*
1049 * If an fsync mode,
1050 * we should not skip writing node pages.
1051 */
1052 if (ino && ino_of_node(page) == ino)
1053 lock_page(page);
1054 else if (!trylock_page(page))
1055 continue;
1056
1057 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1058 continue_unlock:
1059 unlock_page(page);
1060 continue;
1061 }
1062 if (ino && ino_of_node(page) != ino)
1063 goto continue_unlock;
1064
1065 if (!PageDirty(page)) {
1066 /* someone wrote it for us */
1067 goto continue_unlock;
1068 }
1069
1070 if (!clear_page_dirty_for_io(page))
1071 goto continue_unlock;
1072
1073 /* called by fsync() */
1074 if (ino && IS_DNODE(page)) {
1075 int mark = !is_checkpointed_node(sbi, ino);
1076 set_fsync_mark(page, 1);
1077 if (IS_INODE(page))
1078 set_dentry_mark(page, mark);
1079 nwritten++;
1080 } else {
1081 set_fsync_mark(page, 0);
1082 set_dentry_mark(page, 0);
1083 }
1084 NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1085 wrote++;
1086
1087 if (--wbc->nr_to_write == 0)
1088 break;
1089 }
1090 pagevec_release(&pvec);
1091 cond_resched();
1092
1093 if (wbc->nr_to_write == 0) {
1094 step = 2;
1095 break;
1096 }
1097 }
1098
1099 if (step < 2) {
1100 step++;
1101 goto next_step;
1102 }
1103
1104 if (wrote)
1105 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1106 return nwritten;
1107 }
1108
1109 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1110 {
1111 pgoff_t index = 0, end = LONG_MAX;
1112 struct pagevec pvec;
1113 int ret2 = 0, ret = 0;
1114
1115 pagevec_init(&pvec, 0);
1116
1117 while (index <= end) {
1118 int i, nr_pages;
1119 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1120 PAGECACHE_TAG_WRITEBACK,
1121 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1122 if (nr_pages == 0)
1123 break;
1124
1125 for (i = 0; i < nr_pages; i++) {
1126 struct page *page = pvec.pages[i];
1127
1128 /* until radix tree lookup accepts end_index */
1129 if (unlikely(page->index > end))
1130 continue;
1131
1132 if (ino && ino_of_node(page) == ino) {
1133 wait_on_page_writeback(page);
1134 if (TestClearPageError(page))
1135 ret = -EIO;
1136 }
1137 }
1138 pagevec_release(&pvec);
1139 cond_resched();
1140 }
1141
1142 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1143 ret2 = -ENOSPC;
1144 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1145 ret2 = -EIO;
1146 if (!ret)
1147 ret = ret2;
1148 return ret;
1149 }
1150
1151 static int f2fs_write_node_page(struct page *page,
1152 struct writeback_control *wbc)
1153 {
1154 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1155 nid_t nid;
1156 block_t new_addr;
1157 struct node_info ni;
1158 struct f2fs_io_info fio = {
1159 .type = NODE,
1160 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1161 };
1162
1163 if (unlikely(sbi->por_doing))
1164 goto redirty_out;
1165
1166 wait_on_page_writeback(page);
1167
1168 /* get old block addr of this node page */
1169 nid = nid_of_node(page);
1170 f2fs_bug_on(page->index != nid);
1171
1172 get_node_info(sbi, nid, &ni);
1173
1174 /* This page is already truncated */
1175 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1176 dec_page_count(sbi, F2FS_DIRTY_NODES);
1177 unlock_page(page);
1178 return 0;
1179 }
1180
1181 if (wbc->for_reclaim)
1182 goto redirty_out;
1183
1184 mutex_lock(&sbi->node_write);
1185 set_page_writeback(page);
1186 write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1187 set_node_addr(sbi, &ni, new_addr);
1188 dec_page_count(sbi, F2FS_DIRTY_NODES);
1189 mutex_unlock(&sbi->node_write);
1190 unlock_page(page);
1191 return 0;
1192
1193 redirty_out:
1194 dec_page_count(sbi, F2FS_DIRTY_NODES);
1195 wbc->pages_skipped++;
1196 set_page_dirty(page);
1197 return AOP_WRITEPAGE_ACTIVATE;
1198 }
1199
1200 /*
1201 * It is very important to gather dirty pages and write at once, so that we can
1202 * submit a big bio without interfering other data writes.
1203 * Be default, 512 pages (2MB) * 3 node types, is more reasonable.
1204 */
1205 #define COLLECT_DIRTY_NODES 1536
1206 static int f2fs_write_node_pages(struct address_space *mapping,
1207 struct writeback_control *wbc)
1208 {
1209 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1210 long nr_to_write = wbc->nr_to_write;
1211
1212 /* balancing f2fs's metadata in background */
1213 f2fs_balance_fs_bg(sbi);
1214
1215 /* collect a number of dirty node pages and write together */
1216 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1217 return 0;
1218
1219 /* if mounting is failed, skip writing node pages */
1220 wbc->nr_to_write = 3 * max_hw_blocks(sbi);
1221 wbc->sync_mode = WB_SYNC_NONE;
1222 sync_node_pages(sbi, 0, wbc);
1223 wbc->nr_to_write = nr_to_write - (3 * max_hw_blocks(sbi) -
1224 wbc->nr_to_write);
1225 return 0;
1226 }
1227
1228 static int f2fs_set_node_page_dirty(struct page *page)
1229 {
1230 struct address_space *mapping = page->mapping;
1231 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1232
1233 trace_f2fs_set_page_dirty(page, NODE);
1234
1235 SetPageUptodate(page);
1236 if (!PageDirty(page)) {
1237 __set_page_dirty_nobuffers(page);
1238 inc_page_count(sbi, F2FS_DIRTY_NODES);
1239 SetPagePrivate(page);
1240 return 1;
1241 }
1242 return 0;
1243 }
1244
1245 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1246 unsigned int length)
1247 {
1248 struct inode *inode = page->mapping->host;
1249 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1250 if (PageDirty(page))
1251 dec_page_count(sbi, F2FS_DIRTY_NODES);
1252 ClearPagePrivate(page);
1253 }
1254
1255 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1256 {
1257 ClearPagePrivate(page);
1258 return 1;
1259 }
1260
1261 /*
1262 * Structure of the f2fs node operations
1263 */
1264 const struct address_space_operations f2fs_node_aops = {
1265 .writepage = f2fs_write_node_page,
1266 .writepages = f2fs_write_node_pages,
1267 .set_page_dirty = f2fs_set_node_page_dirty,
1268 .invalidatepage = f2fs_invalidate_node_page,
1269 .releasepage = f2fs_release_node_page,
1270 };
1271
1272 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1273 nid_t n)
1274 {
1275 return radix_tree_lookup(&nm_i->free_nid_root, n);
1276 }
1277
1278 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1279 struct free_nid *i)
1280 {
1281 list_del(&i->list);
1282 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1283 kmem_cache_free(free_nid_slab, i);
1284 }
1285
1286 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
1287 {
1288 struct free_nid *i;
1289 struct nat_entry *ne;
1290 bool allocated = false;
1291
1292 if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1293 return -1;
1294
1295 /* 0 nid should not be used */
1296 if (unlikely(nid == 0))
1297 return 0;
1298
1299 if (build) {
1300 /* do not add allocated nids */
1301 read_lock(&nm_i->nat_tree_lock);
1302 ne = __lookup_nat_cache(nm_i, nid);
1303 if (ne &&
1304 (!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
1305 allocated = true;
1306 read_unlock(&nm_i->nat_tree_lock);
1307 if (allocated)
1308 return 0;
1309 }
1310
1311 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1312 i->nid = nid;
1313 i->state = NID_NEW;
1314
1315 spin_lock(&nm_i->free_nid_list_lock);
1316 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1317 spin_unlock(&nm_i->free_nid_list_lock);
1318 kmem_cache_free(free_nid_slab, i);
1319 return 0;
1320 }
1321 list_add_tail(&i->list, &nm_i->free_nid_list);
1322 nm_i->fcnt++;
1323 spin_unlock(&nm_i->free_nid_list_lock);
1324 return 1;
1325 }
1326
1327 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1328 {
1329 struct free_nid *i;
1330 spin_lock(&nm_i->free_nid_list_lock);
1331 i = __lookup_free_nid_list(nm_i, nid);
1332 if (i && i->state == NID_NEW) {
1333 __del_from_free_nid_list(nm_i, i);
1334 nm_i->fcnt--;
1335 }
1336 spin_unlock(&nm_i->free_nid_list_lock);
1337 }
1338
1339 static void scan_nat_page(struct f2fs_nm_info *nm_i,
1340 struct page *nat_page, nid_t start_nid)
1341 {
1342 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1343 block_t blk_addr;
1344 int i;
1345
1346 i = start_nid % NAT_ENTRY_PER_BLOCK;
1347
1348 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1349
1350 if (unlikely(start_nid >= nm_i->max_nid))
1351 break;
1352
1353 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1354 f2fs_bug_on(blk_addr == NEW_ADDR);
1355 if (blk_addr == NULL_ADDR) {
1356 if (add_free_nid(nm_i, start_nid, true) < 0)
1357 break;
1358 }
1359 }
1360 }
1361
1362 static void build_free_nids(struct f2fs_sb_info *sbi)
1363 {
1364 struct f2fs_nm_info *nm_i = NM_I(sbi);
1365 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1366 struct f2fs_summary_block *sum = curseg->sum_blk;
1367 int i = 0;
1368 nid_t nid = nm_i->next_scan_nid;
1369
1370 /* Enough entries */
1371 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1372 return;
1373
1374 /* readahead nat pages to be scanned */
1375 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1376
1377 while (1) {
1378 struct page *page = get_current_nat_page(sbi, nid);
1379
1380 scan_nat_page(nm_i, page, nid);
1381 f2fs_put_page(page, 1);
1382
1383 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1384 if (unlikely(nid >= nm_i->max_nid))
1385 nid = 0;
1386
1387 if (i++ == FREE_NID_PAGES)
1388 break;
1389 }
1390
1391 /* go to the next free nat pages to find free nids abundantly */
1392 nm_i->next_scan_nid = nid;
1393
1394 /* find free nids from current sum_pages */
1395 mutex_lock(&curseg->curseg_mutex);
1396 for (i = 0; i < nats_in_cursum(sum); i++) {
1397 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1398 nid = le32_to_cpu(nid_in_journal(sum, i));
1399 if (addr == NULL_ADDR)
1400 add_free_nid(nm_i, nid, true);
1401 else
1402 remove_free_nid(nm_i, nid);
1403 }
1404 mutex_unlock(&curseg->curseg_mutex);
1405 }
1406
1407 /*
1408 * If this function returns success, caller can obtain a new nid
1409 * from second parameter of this function.
1410 * The returned nid could be used ino as well as nid when inode is created.
1411 */
1412 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1413 {
1414 struct f2fs_nm_info *nm_i = NM_I(sbi);
1415 struct free_nid *i = NULL;
1416 struct list_head *this;
1417 retry:
1418 if (unlikely(sbi->total_valid_node_count + 1 >= nm_i->max_nid))
1419 return false;
1420
1421 spin_lock(&nm_i->free_nid_list_lock);
1422
1423 /* We should not use stale free nids created by build_free_nids */
1424 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1425 f2fs_bug_on(list_empty(&nm_i->free_nid_list));
1426 list_for_each(this, &nm_i->free_nid_list) {
1427 i = list_entry(this, struct free_nid, list);
1428 if (i->state == NID_NEW)
1429 break;
1430 }
1431
1432 f2fs_bug_on(i->state != NID_NEW);
1433 *nid = i->nid;
1434 i->state = NID_ALLOC;
1435 nm_i->fcnt--;
1436 spin_unlock(&nm_i->free_nid_list_lock);
1437 return true;
1438 }
1439 spin_unlock(&nm_i->free_nid_list_lock);
1440
1441 /* Let's scan nat pages and its caches to get free nids */
1442 mutex_lock(&nm_i->build_lock);
1443 build_free_nids(sbi);
1444 mutex_unlock(&nm_i->build_lock);
1445 goto retry;
1446 }
1447
1448 /*
1449 * alloc_nid() should be called prior to this function.
1450 */
1451 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1452 {
1453 struct f2fs_nm_info *nm_i = NM_I(sbi);
1454 struct free_nid *i;
1455
1456 spin_lock(&nm_i->free_nid_list_lock);
1457 i = __lookup_free_nid_list(nm_i, nid);
1458 f2fs_bug_on(!i || i->state != NID_ALLOC);
1459 __del_from_free_nid_list(nm_i, i);
1460 spin_unlock(&nm_i->free_nid_list_lock);
1461 }
1462
1463 /*
1464 * alloc_nid() should be called prior to this function.
1465 */
1466 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1467 {
1468 struct f2fs_nm_info *nm_i = NM_I(sbi);
1469 struct free_nid *i;
1470
1471 if (!nid)
1472 return;
1473
1474 spin_lock(&nm_i->free_nid_list_lock);
1475 i = __lookup_free_nid_list(nm_i, nid);
1476 f2fs_bug_on(!i || i->state != NID_ALLOC);
1477 if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
1478 __del_from_free_nid_list(nm_i, i);
1479 } else {
1480 i->state = NID_NEW;
1481 nm_i->fcnt++;
1482 }
1483 spin_unlock(&nm_i->free_nid_list_lock);
1484 }
1485
1486 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1487 struct f2fs_summary *sum, struct node_info *ni,
1488 block_t new_blkaddr)
1489 {
1490 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1491 set_node_addr(sbi, ni, new_blkaddr);
1492 clear_node_page_dirty(page);
1493 }
1494
1495 bool recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1496 {
1497 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1498 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1499 nid_t new_xnid = nid_of_node(page);
1500 struct node_info ni;
1501
1502 if (ofs_of_node(page) != XATTR_NODE_OFFSET)
1503 return false;
1504
1505 /* 1: invalidate the previous xattr nid */
1506 if (!prev_xnid)
1507 goto recover_xnid;
1508
1509 /* Deallocate node address */
1510 get_node_info(sbi, prev_xnid, &ni);
1511 f2fs_bug_on(ni.blk_addr == NULL_ADDR);
1512 invalidate_blocks(sbi, ni.blk_addr);
1513 dec_valid_node_count(sbi, inode);
1514 set_node_addr(sbi, &ni, NULL_ADDR);
1515
1516 recover_xnid:
1517 /* 2: allocate new xattr nid */
1518 if (unlikely(!inc_valid_node_count(sbi, inode)))
1519 f2fs_bug_on(1);
1520
1521 remove_free_nid(NM_I(sbi), new_xnid);
1522 get_node_info(sbi, new_xnid, &ni);
1523 ni.ino = inode->i_ino;
1524 set_node_addr(sbi, &ni, NEW_ADDR);
1525 F2FS_I(inode)->i_xattr_nid = new_xnid;
1526
1527 /* 3: update xattr blkaddr */
1528 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1529 set_node_addr(sbi, &ni, blkaddr);
1530
1531 update_inode_page(inode);
1532 return true;
1533 }
1534
1535 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1536 {
1537 struct f2fs_inode *src, *dst;
1538 nid_t ino = ino_of_node(page);
1539 struct node_info old_ni, new_ni;
1540 struct page *ipage;
1541
1542 ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1543 if (!ipage)
1544 return -ENOMEM;
1545
1546 /* Should not use this inode from free nid list */
1547 remove_free_nid(NM_I(sbi), ino);
1548
1549 get_node_info(sbi, ino, &old_ni);
1550 SetPageUptodate(ipage);
1551 fill_node_footer(ipage, ino, ino, 0, true);
1552
1553 src = F2FS_INODE(page);
1554 dst = F2FS_INODE(ipage);
1555
1556 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1557 dst->i_size = 0;
1558 dst->i_blocks = cpu_to_le64(1);
1559 dst->i_links = cpu_to_le32(1);
1560 dst->i_xattr_nid = 0;
1561
1562 new_ni = old_ni;
1563 new_ni.ino = ino;
1564
1565 if (unlikely(!inc_valid_node_count(sbi, NULL)))
1566 WARN_ON(1);
1567 set_node_addr(sbi, &new_ni, NEW_ADDR);
1568 inc_valid_inode_count(sbi);
1569 f2fs_put_page(ipage, 1);
1570 return 0;
1571 }
1572
1573 /*
1574 * ra_sum_pages() merge contiguous pages into one bio and submit.
1575 * these pre-readed pages are linked in pages list.
1576 */
1577 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct list_head *pages,
1578 int start, int nrpages)
1579 {
1580 struct page *page;
1581 int page_idx = start;
1582 struct f2fs_io_info fio = {
1583 .type = META,
1584 .rw = READ_SYNC | REQ_META | REQ_PRIO
1585 };
1586
1587 for (; page_idx < start + nrpages; page_idx++) {
1588 /* alloc temporal page for read node summary info*/
1589 page = alloc_page(GFP_F2FS_ZERO);
1590 if (!page) {
1591 struct page *tmp;
1592 list_for_each_entry_safe(page, tmp, pages, lru) {
1593 list_del(&page->lru);
1594 unlock_page(page);
1595 __free_pages(page, 0);
1596 }
1597 return -ENOMEM;
1598 }
1599
1600 lock_page(page);
1601 page->index = page_idx;
1602 list_add_tail(&page->lru, pages);
1603 }
1604
1605 list_for_each_entry(page, pages, lru)
1606 f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1607
1608 f2fs_submit_merged_bio(sbi, META, READ);
1609 return 0;
1610 }
1611
1612 int restore_node_summary(struct f2fs_sb_info *sbi,
1613 unsigned int segno, struct f2fs_summary_block *sum)
1614 {
1615 struct f2fs_node *rn;
1616 struct f2fs_summary *sum_entry;
1617 struct page *page, *tmp;
1618 block_t addr;
1619 int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1620 int i, last_offset, nrpages, err = 0;
1621 LIST_HEAD(page_list);
1622
1623 /* scan the node segment */
1624 last_offset = sbi->blocks_per_seg;
1625 addr = START_BLOCK(sbi, segno);
1626 sum_entry = &sum->entries[0];
1627
1628 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1629 nrpages = min(last_offset - i, bio_blocks);
1630
1631 /* read ahead node pages */
1632 err = ra_sum_pages(sbi, &page_list, addr, nrpages);
1633 if (err)
1634 return err;
1635
1636 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1637
1638 lock_page(page);
1639 if (unlikely(!PageUptodate(page))) {
1640 err = -EIO;
1641 } else {
1642 rn = F2FS_NODE(page);
1643 sum_entry->nid = rn->footer.nid;
1644 sum_entry->version = 0;
1645 sum_entry->ofs_in_node = 0;
1646 sum_entry++;
1647 }
1648
1649 list_del(&page->lru);
1650 unlock_page(page);
1651 __free_pages(page, 0);
1652 }
1653 }
1654 return err;
1655 }
1656
1657 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1658 {
1659 struct f2fs_nm_info *nm_i = NM_I(sbi);
1660 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1661 struct f2fs_summary_block *sum = curseg->sum_blk;
1662 int i;
1663
1664 mutex_lock(&curseg->curseg_mutex);
1665
1666 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1667 mutex_unlock(&curseg->curseg_mutex);
1668 return false;
1669 }
1670
1671 for (i = 0; i < nats_in_cursum(sum); i++) {
1672 struct nat_entry *ne;
1673 struct f2fs_nat_entry raw_ne;
1674 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1675
1676 raw_ne = nat_in_journal(sum, i);
1677 retry:
1678 write_lock(&nm_i->nat_tree_lock);
1679 ne = __lookup_nat_cache(nm_i, nid);
1680 if (ne) {
1681 __set_nat_cache_dirty(nm_i, ne);
1682 write_unlock(&nm_i->nat_tree_lock);
1683 continue;
1684 }
1685 ne = grab_nat_entry(nm_i, nid);
1686 if (!ne) {
1687 write_unlock(&nm_i->nat_tree_lock);
1688 goto retry;
1689 }
1690 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1691 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1692 nat_set_version(ne, raw_ne.version);
1693 __set_nat_cache_dirty(nm_i, ne);
1694 write_unlock(&nm_i->nat_tree_lock);
1695 }
1696 update_nats_in_cursum(sum, -i);
1697 mutex_unlock(&curseg->curseg_mutex);
1698 return true;
1699 }
1700
1701 /*
1702 * This function is called during the checkpointing process.
1703 */
1704 void flush_nat_entries(struct f2fs_sb_info *sbi)
1705 {
1706 struct f2fs_nm_info *nm_i = NM_I(sbi);
1707 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1708 struct f2fs_summary_block *sum = curseg->sum_blk;
1709 struct list_head *cur, *n;
1710 struct page *page = NULL;
1711 struct f2fs_nat_block *nat_blk = NULL;
1712 nid_t start_nid = 0, end_nid = 0;
1713 bool flushed;
1714
1715 flushed = flush_nats_in_journal(sbi);
1716
1717 if (!flushed)
1718 mutex_lock(&curseg->curseg_mutex);
1719
1720 /* 1) flush dirty nat caches */
1721 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1722 struct nat_entry *ne;
1723 nid_t nid;
1724 struct f2fs_nat_entry raw_ne;
1725 int offset = -1;
1726 block_t new_blkaddr;
1727
1728 ne = list_entry(cur, struct nat_entry, list);
1729 nid = nat_get_nid(ne);
1730
1731 if (nat_get_blkaddr(ne) == NEW_ADDR)
1732 continue;
1733 if (flushed)
1734 goto to_nat_page;
1735
1736 /* if there is room for nat enries in curseg->sumpage */
1737 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1738 if (offset >= 0) {
1739 raw_ne = nat_in_journal(sum, offset);
1740 goto flush_now;
1741 }
1742 to_nat_page:
1743 if (!page || (start_nid > nid || nid > end_nid)) {
1744 if (page) {
1745 f2fs_put_page(page, 1);
1746 page = NULL;
1747 }
1748 start_nid = START_NID(nid);
1749 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1750
1751 /*
1752 * get nat block with dirty flag, increased reference
1753 * count, mapped and lock
1754 */
1755 page = get_next_nat_page(sbi, start_nid);
1756 nat_blk = page_address(page);
1757 }
1758
1759 f2fs_bug_on(!nat_blk);
1760 raw_ne = nat_blk->entries[nid - start_nid];
1761 flush_now:
1762 new_blkaddr = nat_get_blkaddr(ne);
1763
1764 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1765 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1766 raw_ne.version = nat_get_version(ne);
1767
1768 if (offset < 0) {
1769 nat_blk->entries[nid - start_nid] = raw_ne;
1770 } else {
1771 nat_in_journal(sum, offset) = raw_ne;
1772 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1773 }
1774
1775 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1776 add_free_nid(NM_I(sbi), nid, false) <= 0) {
1777 write_lock(&nm_i->nat_tree_lock);
1778 __del_from_nat_cache(nm_i, ne);
1779 write_unlock(&nm_i->nat_tree_lock);
1780 } else {
1781 write_lock(&nm_i->nat_tree_lock);
1782 __clear_nat_cache_dirty(nm_i, ne);
1783 write_unlock(&nm_i->nat_tree_lock);
1784 }
1785 }
1786 if (!flushed)
1787 mutex_unlock(&curseg->curseg_mutex);
1788 f2fs_put_page(page, 1);
1789
1790 /* 2) shrink nat caches if necessary */
1791 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1792 }
1793
1794 static int init_node_manager(struct f2fs_sb_info *sbi)
1795 {
1796 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1797 struct f2fs_nm_info *nm_i = NM_I(sbi);
1798 unsigned char *version_bitmap;
1799 unsigned int nat_segs, nat_blocks;
1800
1801 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1802
1803 /* segment_count_nat includes pair segment so divide to 2. */
1804 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1805 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1806
1807 /* not used nids: 0, node, meta, (and root counted as valid node) */
1808 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks - 3;
1809 nm_i->fcnt = 0;
1810 nm_i->nat_cnt = 0;
1811
1812 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1813 INIT_LIST_HEAD(&nm_i->free_nid_list);
1814 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1815 INIT_LIST_HEAD(&nm_i->nat_entries);
1816 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1817
1818 mutex_init(&nm_i->build_lock);
1819 spin_lock_init(&nm_i->free_nid_list_lock);
1820 rwlock_init(&nm_i->nat_tree_lock);
1821
1822 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1823 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1824 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1825 if (!version_bitmap)
1826 return -EFAULT;
1827
1828 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1829 GFP_KERNEL);
1830 if (!nm_i->nat_bitmap)
1831 return -ENOMEM;
1832 return 0;
1833 }
1834
1835 int build_node_manager(struct f2fs_sb_info *sbi)
1836 {
1837 int err;
1838
1839 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1840 if (!sbi->nm_info)
1841 return -ENOMEM;
1842
1843 err = init_node_manager(sbi);
1844 if (err)
1845 return err;
1846
1847 build_free_nids(sbi);
1848 return 0;
1849 }
1850
1851 void destroy_node_manager(struct f2fs_sb_info *sbi)
1852 {
1853 struct f2fs_nm_info *nm_i = NM_I(sbi);
1854 struct free_nid *i, *next_i;
1855 struct nat_entry *natvec[NATVEC_SIZE];
1856 nid_t nid = 0;
1857 unsigned int found;
1858
1859 if (!nm_i)
1860 return;
1861
1862 /* destroy free nid list */
1863 spin_lock(&nm_i->free_nid_list_lock);
1864 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1865 f2fs_bug_on(i->state == NID_ALLOC);
1866 __del_from_free_nid_list(nm_i, i);
1867 nm_i->fcnt--;
1868 }
1869 f2fs_bug_on(nm_i->fcnt);
1870 spin_unlock(&nm_i->free_nid_list_lock);
1871
1872 /* destroy nat cache */
1873 write_lock(&nm_i->nat_tree_lock);
1874 while ((found = __gang_lookup_nat_cache(nm_i,
1875 nid, NATVEC_SIZE, natvec))) {
1876 unsigned idx;
1877 for (idx = 0; idx < found; idx++) {
1878 struct nat_entry *e = natvec[idx];
1879 nid = nat_get_nid(e) + 1;
1880 __del_from_nat_cache(nm_i, e);
1881 }
1882 }
1883 f2fs_bug_on(nm_i->nat_cnt);
1884 write_unlock(&nm_i->nat_tree_lock);
1885
1886 kfree(nm_i->nat_bitmap);
1887 sbi->nm_info = NULL;
1888 kfree(nm_i);
1889 }
1890
1891 int __init create_node_manager_caches(void)
1892 {
1893 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1894 sizeof(struct nat_entry), NULL);
1895 if (!nat_entry_slab)
1896 return -ENOMEM;
1897
1898 free_nid_slab = f2fs_kmem_cache_create("free_nid",
1899 sizeof(struct free_nid), NULL);
1900 if (!free_nid_slab) {
1901 kmem_cache_destroy(nat_entry_slab);
1902 return -ENOMEM;
1903 }
1904 return 0;
1905 }
1906
1907 void destroy_node_manager_caches(void)
1908 {
1909 kmem_cache_destroy(free_nid_slab);
1910 kmem_cache_destroy(nat_entry_slab);
1911 }
This page took 0.165614 seconds and 6 git commands to generate.