Merge branch 'kconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / fs / f2fs / node.h
1 /*
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 /* start node id of a node block dedicated to the given node id */
12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16
17 /* # of pages to perform readahead before building free nids */
18 #define FREE_NID_PAGES 4
19
20 /* maximum readahead size for node during getting data blocks */
21 #define MAX_RA_NODE 128
22
23 /* control the memory footprint threshold (10MB per 1GB ram) */
24 #define DEF_RAM_THRESHOLD 10
25
26 /* vector size for gang look-up from nat cache that consists of radix tree */
27 #define NATVEC_SIZE 64
28 #define SETVEC_SIZE 32
29
30 /* return value for read_node_page */
31 #define LOCKED_PAGE 1
32
33 /* For flag in struct node_info */
34 enum {
35 IS_CHECKPOINTED, /* is it checkpointed before? */
36 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
37 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
38 IS_DIRTY, /* this nat entry is dirty? */
39 };
40
41 /*
42 * For node information
43 */
44 struct node_info {
45 nid_t nid; /* node id */
46 nid_t ino; /* inode number of the node's owner */
47 block_t blk_addr; /* block address of the node */
48 unsigned char version; /* version of the node */
49 unsigned char flag; /* for node information bits */
50 };
51
52 struct nat_entry {
53 struct list_head list; /* for clean or dirty nat list */
54 struct node_info ni; /* in-memory node information */
55 };
56
57 #define nat_get_nid(nat) (nat->ni.nid)
58 #define nat_set_nid(nat, n) (nat->ni.nid = n)
59 #define nat_get_blkaddr(nat) (nat->ni.blk_addr)
60 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
61 #define nat_get_ino(nat) (nat->ni.ino)
62 #define nat_set_ino(nat, i) (nat->ni.ino = i)
63 #define nat_get_version(nat) (nat->ni.version)
64 #define nat_set_version(nat, v) (nat->ni.version = v)
65
66 #define inc_node_version(version) (++version)
67
68 static inline void copy_node_info(struct node_info *dst,
69 struct node_info *src)
70 {
71 dst->nid = src->nid;
72 dst->ino = src->ino;
73 dst->blk_addr = src->blk_addr;
74 dst->version = src->version;
75 /* should not copy flag here */
76 }
77
78 static inline void set_nat_flag(struct nat_entry *ne,
79 unsigned int type, bool set)
80 {
81 unsigned char mask = 0x01 << type;
82 if (set)
83 ne->ni.flag |= mask;
84 else
85 ne->ni.flag &= ~mask;
86 }
87
88 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
89 {
90 unsigned char mask = 0x01 << type;
91 return ne->ni.flag & mask;
92 }
93
94 static inline void nat_reset_flag(struct nat_entry *ne)
95 {
96 /* these states can be set only after checkpoint was done */
97 set_nat_flag(ne, IS_CHECKPOINTED, true);
98 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
99 set_nat_flag(ne, HAS_LAST_FSYNC, true);
100 }
101
102 static inline void node_info_from_raw_nat(struct node_info *ni,
103 struct f2fs_nat_entry *raw_ne)
104 {
105 ni->ino = le32_to_cpu(raw_ne->ino);
106 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
107 ni->version = raw_ne->version;
108 }
109
110 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
111 struct node_info *ni)
112 {
113 raw_ne->ino = cpu_to_le32(ni->ino);
114 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
115 raw_ne->version = ni->version;
116 }
117
118 enum mem_type {
119 FREE_NIDS, /* indicates the free nid list */
120 NAT_ENTRIES, /* indicates the cached nat entry */
121 DIRTY_DENTS, /* indicates dirty dentry pages */
122 INO_ENTRIES, /* indicates inode entries */
123 BASE_CHECK, /* check kernel status */
124 };
125
126 struct nat_entry_set {
127 struct list_head set_list; /* link with other nat sets */
128 struct list_head entry_list; /* link with dirty nat entries */
129 nid_t set; /* set number*/
130 unsigned int entry_cnt; /* the # of nat entries in set */
131 };
132
133 /*
134 * For free nid mangement
135 */
136 enum nid_state {
137 NID_NEW, /* newly added to free nid list */
138 NID_ALLOC /* it is allocated */
139 };
140
141 struct free_nid {
142 struct list_head list; /* for free node id list */
143 nid_t nid; /* node id */
144 int state; /* in use or not: NID_NEW or NID_ALLOC */
145 };
146
147 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
148 {
149 struct f2fs_nm_info *nm_i = NM_I(sbi);
150 struct free_nid *fnid;
151
152 spin_lock(&nm_i->free_nid_list_lock);
153 if (nm_i->fcnt <= 0) {
154 spin_unlock(&nm_i->free_nid_list_lock);
155 return;
156 }
157 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
158 *nid = fnid->nid;
159 spin_unlock(&nm_i->free_nid_list_lock);
160 }
161
162 /*
163 * inline functions
164 */
165 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
166 {
167 struct f2fs_nm_info *nm_i = NM_I(sbi);
168 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
169 }
170
171 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
172 {
173 struct f2fs_nm_info *nm_i = NM_I(sbi);
174 pgoff_t block_off;
175 pgoff_t block_addr;
176 int seg_off;
177
178 block_off = NAT_BLOCK_OFFSET(start);
179 seg_off = block_off >> sbi->log_blocks_per_seg;
180
181 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
182 (seg_off << sbi->log_blocks_per_seg << 1) +
183 (block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
184
185 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
186 block_addr += sbi->blocks_per_seg;
187
188 return block_addr;
189 }
190
191 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
192 pgoff_t block_addr)
193 {
194 struct f2fs_nm_info *nm_i = NM_I(sbi);
195
196 block_addr -= nm_i->nat_blkaddr;
197 if ((block_addr >> sbi->log_blocks_per_seg) % 2)
198 block_addr -= sbi->blocks_per_seg;
199 else
200 block_addr += sbi->blocks_per_seg;
201
202 return block_addr + nm_i->nat_blkaddr;
203 }
204
205 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
206 {
207 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
208
209 f2fs_change_bit(block_off, nm_i->nat_bitmap);
210 }
211
212 static inline void fill_node_footer(struct page *page, nid_t nid,
213 nid_t ino, unsigned int ofs, bool reset)
214 {
215 struct f2fs_node *rn = F2FS_NODE(page);
216 unsigned int old_flag = 0;
217
218 if (reset)
219 memset(rn, 0, sizeof(*rn));
220 else
221 old_flag = le32_to_cpu(rn->footer.flag);
222
223 rn->footer.nid = cpu_to_le32(nid);
224 rn->footer.ino = cpu_to_le32(ino);
225
226 /* should remain old flag bits such as COLD_BIT_SHIFT */
227 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
228 (old_flag & OFFSET_BIT_MASK));
229 }
230
231 static inline void copy_node_footer(struct page *dst, struct page *src)
232 {
233 struct f2fs_node *src_rn = F2FS_NODE(src);
234 struct f2fs_node *dst_rn = F2FS_NODE(dst);
235 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
236 }
237
238 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
239 {
240 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
241 struct f2fs_node *rn = F2FS_NODE(page);
242
243 rn->footer.cp_ver = ckpt->checkpoint_ver;
244 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
245 }
246
247 static inline nid_t ino_of_node(struct page *node_page)
248 {
249 struct f2fs_node *rn = F2FS_NODE(node_page);
250 return le32_to_cpu(rn->footer.ino);
251 }
252
253 static inline nid_t nid_of_node(struct page *node_page)
254 {
255 struct f2fs_node *rn = F2FS_NODE(node_page);
256 return le32_to_cpu(rn->footer.nid);
257 }
258
259 static inline unsigned int ofs_of_node(struct page *node_page)
260 {
261 struct f2fs_node *rn = F2FS_NODE(node_page);
262 unsigned flag = le32_to_cpu(rn->footer.flag);
263 return flag >> OFFSET_BIT_SHIFT;
264 }
265
266 static inline unsigned long long cpver_of_node(struct page *node_page)
267 {
268 struct f2fs_node *rn = F2FS_NODE(node_page);
269 return le64_to_cpu(rn->footer.cp_ver);
270 }
271
272 static inline block_t next_blkaddr_of_node(struct page *node_page)
273 {
274 struct f2fs_node *rn = F2FS_NODE(node_page);
275 return le32_to_cpu(rn->footer.next_blkaddr);
276 }
277
278 /*
279 * f2fs assigns the following node offsets described as (num).
280 * N = NIDS_PER_BLOCK
281 *
282 * Inode block (0)
283 * |- direct node (1)
284 * |- direct node (2)
285 * |- indirect node (3)
286 * | `- direct node (4 => 4 + N - 1)
287 * |- indirect node (4 + N)
288 * | `- direct node (5 + N => 5 + 2N - 1)
289 * `- double indirect node (5 + 2N)
290 * `- indirect node (6 + 2N)
291 * `- direct node
292 * ......
293 * `- indirect node ((6 + 2N) + x(N + 1))
294 * `- direct node
295 * ......
296 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
297 * `- direct node
298 */
299 static inline bool IS_DNODE(struct page *node_page)
300 {
301 unsigned int ofs = ofs_of_node(node_page);
302
303 if (f2fs_has_xattr_block(ofs))
304 return false;
305
306 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
307 ofs == 5 + 2 * NIDS_PER_BLOCK)
308 return false;
309 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
310 ofs -= 6 + 2 * NIDS_PER_BLOCK;
311 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
312 return false;
313 }
314 return true;
315 }
316
317 static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
318 {
319 struct f2fs_node *rn = F2FS_NODE(p);
320
321 f2fs_wait_on_page_writeback(p, NODE);
322
323 if (i)
324 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
325 else
326 rn->in.nid[off] = cpu_to_le32(nid);
327 set_page_dirty(p);
328 }
329
330 static inline nid_t get_nid(struct page *p, int off, bool i)
331 {
332 struct f2fs_node *rn = F2FS_NODE(p);
333
334 if (i)
335 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
336 return le32_to_cpu(rn->in.nid[off]);
337 }
338
339 /*
340 * Coldness identification:
341 * - Mark cold files in f2fs_inode_info
342 * - Mark cold node blocks in their node footer
343 * - Mark cold data pages in page cache
344 */
345 static inline int is_file(struct inode *inode, int type)
346 {
347 return F2FS_I(inode)->i_advise & type;
348 }
349
350 static inline void set_file(struct inode *inode, int type)
351 {
352 F2FS_I(inode)->i_advise |= type;
353 }
354
355 static inline void clear_file(struct inode *inode, int type)
356 {
357 F2FS_I(inode)->i_advise &= ~type;
358 }
359
360 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
361 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
362 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
363 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
364 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
365 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
366
367 static inline int is_cold_data(struct page *page)
368 {
369 return PageChecked(page);
370 }
371
372 static inline void set_cold_data(struct page *page)
373 {
374 SetPageChecked(page);
375 }
376
377 static inline void clear_cold_data(struct page *page)
378 {
379 ClearPageChecked(page);
380 }
381
382 static inline int is_node(struct page *page, int type)
383 {
384 struct f2fs_node *rn = F2FS_NODE(page);
385 return le32_to_cpu(rn->footer.flag) & (1 << type);
386 }
387
388 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
389 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
390 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
391
392 static inline void set_cold_node(struct inode *inode, struct page *page)
393 {
394 struct f2fs_node *rn = F2FS_NODE(page);
395 unsigned int flag = le32_to_cpu(rn->footer.flag);
396
397 if (S_ISDIR(inode->i_mode))
398 flag &= ~(0x1 << COLD_BIT_SHIFT);
399 else
400 flag |= (0x1 << COLD_BIT_SHIFT);
401 rn->footer.flag = cpu_to_le32(flag);
402 }
403
404 static inline void set_mark(struct page *page, int mark, int type)
405 {
406 struct f2fs_node *rn = F2FS_NODE(page);
407 unsigned int flag = le32_to_cpu(rn->footer.flag);
408 if (mark)
409 flag |= (0x1 << type);
410 else
411 flag &= ~(0x1 << type);
412 rn->footer.flag = cpu_to_le32(flag);
413 }
414 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
415 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)
This page took 0.039635 seconds and 5 git commands to generate.