ceph: pre-allocate data structure that tracks caps flushing
[deliverable/linux.git] / fs / f2fs / recovery.c
1 /*
2 * fs/f2fs/recovery.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include "f2fs.h"
14 #include "node.h"
15 #include "segment.h"
16
17 /*
18 * Roll forward recovery scenarios.
19 *
20 * [Term] F: fsync_mark, D: dentry_mark
21 *
22 * 1. inode(x) | CP | inode(x) | dnode(F)
23 * -> Update the latest inode(x).
24 *
25 * 2. inode(x) | CP | inode(F) | dnode(F)
26 * -> No problem.
27 *
28 * 3. inode(x) | CP | dnode(F) | inode(x)
29 * -> Recover to the latest dnode(F), and drop the last inode(x)
30 *
31 * 4. inode(x) | CP | dnode(F) | inode(F)
32 * -> No problem.
33 *
34 * 5. CP | inode(x) | dnode(F)
35 * -> The inode(DF) was missing. Should drop this dnode(F).
36 *
37 * 6. CP | inode(DF) | dnode(F)
38 * -> No problem.
39 *
40 * 7. CP | dnode(F) | inode(DF)
41 * -> If f2fs_iget fails, then goto next to find inode(DF).
42 *
43 * 8. CP | dnode(F) | inode(x)
44 * -> If f2fs_iget fails, then goto next to find inode(DF).
45 * But it will fail due to no inode(DF).
46 */
47
48 static struct kmem_cache *fsync_entry_slab;
49
50 bool space_for_roll_forward(struct f2fs_sb_info *sbi)
51 {
52 if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
53 > sbi->user_block_count)
54 return false;
55 return true;
56 }
57
58 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
59 nid_t ino)
60 {
61 struct fsync_inode_entry *entry;
62
63 list_for_each_entry(entry, head, list)
64 if (entry->inode->i_ino == ino)
65 return entry;
66
67 return NULL;
68 }
69
70 static int recover_dentry(struct inode *inode, struct page *ipage)
71 {
72 struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
73 nid_t pino = le32_to_cpu(raw_inode->i_pino);
74 struct f2fs_dir_entry *de;
75 struct qstr name;
76 struct page *page;
77 struct inode *dir, *einode;
78 int err = 0;
79
80 dir = f2fs_iget(inode->i_sb, pino);
81 if (IS_ERR(dir)) {
82 err = PTR_ERR(dir);
83 goto out;
84 }
85
86 name.len = le32_to_cpu(raw_inode->i_namelen);
87 name.name = raw_inode->i_name;
88
89 if (unlikely(name.len > F2FS_NAME_LEN)) {
90 WARN_ON(1);
91 err = -ENAMETOOLONG;
92 goto out_err;
93 }
94 retry:
95 de = f2fs_find_entry(dir, &name, &page);
96 if (de && inode->i_ino == le32_to_cpu(de->ino))
97 goto out_unmap_put;
98
99 if (de) {
100 einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
101 if (IS_ERR(einode)) {
102 WARN_ON(1);
103 err = PTR_ERR(einode);
104 if (err == -ENOENT)
105 err = -EEXIST;
106 goto out_unmap_put;
107 }
108 err = acquire_orphan_inode(F2FS_I_SB(inode));
109 if (err) {
110 iput(einode);
111 goto out_unmap_put;
112 }
113 f2fs_delete_entry(de, page, dir, einode);
114 iput(einode);
115 goto retry;
116 }
117 err = __f2fs_add_link(dir, &name, inode, inode->i_ino, inode->i_mode);
118 if (err)
119 goto out_err;
120
121 if (is_inode_flag_set(F2FS_I(dir), FI_DELAY_IPUT)) {
122 iput(dir);
123 } else {
124 add_dirty_dir_inode(dir);
125 set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT);
126 }
127
128 goto out;
129
130 out_unmap_put:
131 f2fs_dentry_kunmap(dir, page);
132 f2fs_put_page(page, 0);
133 out_err:
134 iput(dir);
135 out:
136 f2fs_msg(inode->i_sb, KERN_NOTICE,
137 "%s: ino = %x, name = %s, dir = %lx, err = %d",
138 __func__, ino_of_node(ipage), raw_inode->i_name,
139 IS_ERR(dir) ? 0 : dir->i_ino, err);
140 return err;
141 }
142
143 static void recover_inode(struct inode *inode, struct page *page)
144 {
145 struct f2fs_inode *raw = F2FS_INODE(page);
146
147 inode->i_mode = le16_to_cpu(raw->i_mode);
148 i_size_write(inode, le64_to_cpu(raw->i_size));
149 inode->i_atime.tv_sec = le64_to_cpu(raw->i_mtime);
150 inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime);
151 inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime);
152 inode->i_atime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
153 inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec);
154 inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
155
156 f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
157 ino_of_node(page), F2FS_INODE(page)->i_name);
158 }
159
160 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
161 {
162 unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
163 struct curseg_info *curseg;
164 struct page *page = NULL;
165 block_t blkaddr;
166 int err = 0;
167
168 /* get node pages in the current segment */
169 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
170 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
171
172 ra_meta_pages(sbi, blkaddr, 1, META_POR);
173
174 while (1) {
175 struct fsync_inode_entry *entry;
176
177 if (blkaddr < MAIN_BLKADDR(sbi) || blkaddr >= MAX_BLKADDR(sbi))
178 return 0;
179
180 page = get_meta_page(sbi, blkaddr);
181
182 if (cp_ver != cpver_of_node(page))
183 break;
184
185 if (!is_fsync_dnode(page))
186 goto next;
187
188 entry = get_fsync_inode(head, ino_of_node(page));
189 if (!entry) {
190 if (IS_INODE(page) && is_dent_dnode(page)) {
191 err = recover_inode_page(sbi, page);
192 if (err)
193 break;
194 }
195
196 /* add this fsync inode to the list */
197 entry = kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO);
198 if (!entry) {
199 err = -ENOMEM;
200 break;
201 }
202 /*
203 * CP | dnode(F) | inode(DF)
204 * For this case, we should not give up now.
205 */
206 entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
207 if (IS_ERR(entry->inode)) {
208 err = PTR_ERR(entry->inode);
209 kmem_cache_free(fsync_entry_slab, entry);
210 if (err == -ENOENT) {
211 err = 0;
212 goto next;
213 }
214 break;
215 }
216 list_add_tail(&entry->list, head);
217 }
218 entry->blkaddr = blkaddr;
219
220 if (IS_INODE(page)) {
221 entry->last_inode = blkaddr;
222 if (is_dent_dnode(page))
223 entry->last_dentry = blkaddr;
224 }
225 next:
226 /* check next segment */
227 blkaddr = next_blkaddr_of_node(page);
228 f2fs_put_page(page, 1);
229
230 ra_meta_pages_cond(sbi, blkaddr);
231 }
232 f2fs_put_page(page, 1);
233 return err;
234 }
235
236 static void destroy_fsync_dnodes(struct list_head *head)
237 {
238 struct fsync_inode_entry *entry, *tmp;
239
240 list_for_each_entry_safe(entry, tmp, head, list) {
241 iput(entry->inode);
242 list_del(&entry->list);
243 kmem_cache_free(fsync_entry_slab, entry);
244 }
245 }
246
247 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
248 block_t blkaddr, struct dnode_of_data *dn)
249 {
250 struct seg_entry *sentry;
251 unsigned int segno = GET_SEGNO(sbi, blkaddr);
252 unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
253 struct f2fs_summary_block *sum_node;
254 struct f2fs_summary sum;
255 struct page *sum_page, *node_page;
256 struct dnode_of_data tdn = *dn;
257 nid_t ino, nid;
258 struct inode *inode;
259 unsigned int offset;
260 block_t bidx;
261 int i;
262
263 sentry = get_seg_entry(sbi, segno);
264 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
265 return 0;
266
267 /* Get the previous summary */
268 for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
269 struct curseg_info *curseg = CURSEG_I(sbi, i);
270 if (curseg->segno == segno) {
271 sum = curseg->sum_blk->entries[blkoff];
272 goto got_it;
273 }
274 }
275
276 sum_page = get_sum_page(sbi, segno);
277 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
278 sum = sum_node->entries[blkoff];
279 f2fs_put_page(sum_page, 1);
280 got_it:
281 /* Use the locked dnode page and inode */
282 nid = le32_to_cpu(sum.nid);
283 if (dn->inode->i_ino == nid) {
284 tdn.nid = nid;
285 if (!dn->inode_page_locked)
286 lock_page(dn->inode_page);
287 tdn.node_page = dn->inode_page;
288 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
289 goto truncate_out;
290 } else if (dn->nid == nid) {
291 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
292 goto truncate_out;
293 }
294
295 /* Get the node page */
296 node_page = get_node_page(sbi, nid);
297 if (IS_ERR(node_page))
298 return PTR_ERR(node_page);
299
300 offset = ofs_of_node(node_page);
301 ino = ino_of_node(node_page);
302 f2fs_put_page(node_page, 1);
303
304 if (ino != dn->inode->i_ino) {
305 /* Deallocate previous index in the node page */
306 inode = f2fs_iget(sbi->sb, ino);
307 if (IS_ERR(inode))
308 return PTR_ERR(inode);
309 } else {
310 inode = dn->inode;
311 }
312
313 bidx = start_bidx_of_node(offset, F2FS_I(inode)) +
314 le16_to_cpu(sum.ofs_in_node);
315
316 /*
317 * if inode page is locked, unlock temporarily, but its reference
318 * count keeps alive.
319 */
320 if (ino == dn->inode->i_ino && dn->inode_page_locked)
321 unlock_page(dn->inode_page);
322
323 set_new_dnode(&tdn, inode, NULL, NULL, 0);
324 if (get_dnode_of_data(&tdn, bidx, LOOKUP_NODE))
325 goto out;
326
327 if (tdn.data_blkaddr == blkaddr)
328 truncate_data_blocks_range(&tdn, 1);
329
330 f2fs_put_dnode(&tdn);
331 out:
332 if (ino != dn->inode->i_ino)
333 iput(inode);
334 else if (dn->inode_page_locked)
335 lock_page(dn->inode_page);
336 return 0;
337
338 truncate_out:
339 if (datablock_addr(tdn.node_page, tdn.ofs_in_node) == blkaddr)
340 truncate_data_blocks_range(&tdn, 1);
341 if (dn->inode->i_ino == nid && !dn->inode_page_locked)
342 unlock_page(dn->inode_page);
343 return 0;
344 }
345
346 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
347 struct page *page, block_t blkaddr)
348 {
349 struct f2fs_inode_info *fi = F2FS_I(inode);
350 unsigned int start, end;
351 struct dnode_of_data dn;
352 struct f2fs_summary sum;
353 struct node_info ni;
354 int err = 0, recovered = 0;
355
356 /* step 1: recover xattr */
357 if (IS_INODE(page)) {
358 recover_inline_xattr(inode, page);
359 } else if (f2fs_has_xattr_block(ofs_of_node(page))) {
360 /*
361 * Deprecated; xattr blocks should be found from cold log.
362 * But, we should remain this for backward compatibility.
363 */
364 recover_xattr_data(inode, page, blkaddr);
365 goto out;
366 }
367
368 /* step 2: recover inline data */
369 if (recover_inline_data(inode, page))
370 goto out;
371
372 /* step 3: recover data indices */
373 start = start_bidx_of_node(ofs_of_node(page), fi);
374 end = start + ADDRS_PER_PAGE(page, fi);
375
376 f2fs_lock_op(sbi);
377
378 set_new_dnode(&dn, inode, NULL, NULL, 0);
379
380 err = get_dnode_of_data(&dn, start, ALLOC_NODE);
381 if (err) {
382 f2fs_unlock_op(sbi);
383 goto out;
384 }
385
386 f2fs_wait_on_page_writeback(dn.node_page, NODE);
387
388 get_node_info(sbi, dn.nid, &ni);
389 f2fs_bug_on(sbi, ni.ino != ino_of_node(page));
390 f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page));
391
392 for (; start < end; start++) {
393 block_t src, dest;
394
395 src = datablock_addr(dn.node_page, dn.ofs_in_node);
396 dest = datablock_addr(page, dn.ofs_in_node);
397
398 if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR &&
399 dest >= MAIN_BLKADDR(sbi) && dest < MAX_BLKADDR(sbi)) {
400
401 if (src == NULL_ADDR) {
402 err = reserve_new_block(&dn);
403 /* We should not get -ENOSPC */
404 f2fs_bug_on(sbi, err);
405 }
406
407 /* Check the previous node page having this index */
408 err = check_index_in_prev_nodes(sbi, dest, &dn);
409 if (err)
410 goto err;
411
412 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
413
414 /* write dummy data page */
415 recover_data_page(sbi, NULL, &sum, src, dest);
416 dn.data_blkaddr = dest;
417 set_data_blkaddr(&dn);
418 f2fs_update_extent_cache(&dn);
419 recovered++;
420 }
421 dn.ofs_in_node++;
422 }
423
424 if (IS_INODE(dn.node_page))
425 sync_inode_page(&dn);
426
427 copy_node_footer(dn.node_page, page);
428 fill_node_footer(dn.node_page, dn.nid, ni.ino,
429 ofs_of_node(page), false);
430 set_page_dirty(dn.node_page);
431 err:
432 f2fs_put_dnode(&dn);
433 f2fs_unlock_op(sbi);
434 out:
435 f2fs_msg(sbi->sb, KERN_NOTICE,
436 "recover_data: ino = %lx, recovered = %d blocks, err = %d",
437 inode->i_ino, recovered, err);
438 return err;
439 }
440
441 static int recover_data(struct f2fs_sb_info *sbi,
442 struct list_head *head, int type)
443 {
444 unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
445 struct curseg_info *curseg;
446 struct page *page = NULL;
447 int err = 0;
448 block_t blkaddr;
449
450 /* get node pages in the current segment */
451 curseg = CURSEG_I(sbi, type);
452 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
453
454 while (1) {
455 struct fsync_inode_entry *entry;
456
457 if (blkaddr < MAIN_BLKADDR(sbi) || blkaddr >= MAX_BLKADDR(sbi))
458 break;
459
460 ra_meta_pages_cond(sbi, blkaddr);
461
462 page = get_meta_page(sbi, blkaddr);
463
464 if (cp_ver != cpver_of_node(page)) {
465 f2fs_put_page(page, 1);
466 break;
467 }
468
469 entry = get_fsync_inode(head, ino_of_node(page));
470 if (!entry)
471 goto next;
472 /*
473 * inode(x) | CP | inode(x) | dnode(F)
474 * In this case, we can lose the latest inode(x).
475 * So, call recover_inode for the inode update.
476 */
477 if (entry->last_inode == blkaddr)
478 recover_inode(entry->inode, page);
479 if (entry->last_dentry == blkaddr) {
480 err = recover_dentry(entry->inode, page);
481 if (err) {
482 f2fs_put_page(page, 1);
483 break;
484 }
485 }
486 err = do_recover_data(sbi, entry->inode, page, blkaddr);
487 if (err) {
488 f2fs_put_page(page, 1);
489 break;
490 }
491
492 if (entry->blkaddr == blkaddr) {
493 iput(entry->inode);
494 list_del(&entry->list);
495 kmem_cache_free(fsync_entry_slab, entry);
496 }
497 next:
498 /* check next segment */
499 blkaddr = next_blkaddr_of_node(page);
500 f2fs_put_page(page, 1);
501 }
502 if (!err)
503 allocate_new_segments(sbi);
504 return err;
505 }
506
507 int recover_fsync_data(struct f2fs_sb_info *sbi)
508 {
509 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
510 struct list_head inode_list;
511 block_t blkaddr;
512 int err;
513 bool need_writecp = false;
514
515 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
516 sizeof(struct fsync_inode_entry));
517 if (!fsync_entry_slab)
518 return -ENOMEM;
519
520 INIT_LIST_HEAD(&inode_list);
521
522 /* step #1: find fsynced inode numbers */
523 set_sbi_flag(sbi, SBI_POR_DOING);
524
525 /* prevent checkpoint */
526 mutex_lock(&sbi->cp_mutex);
527
528 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
529
530 err = find_fsync_dnodes(sbi, &inode_list);
531 if (err)
532 goto out;
533
534 if (list_empty(&inode_list))
535 goto out;
536
537 need_writecp = true;
538
539 /* step #2: recover data */
540 err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
541 if (!err)
542 f2fs_bug_on(sbi, !list_empty(&inode_list));
543 out:
544 destroy_fsync_dnodes(&inode_list);
545 kmem_cache_destroy(fsync_entry_slab);
546
547 /* truncate meta pages to be used by the recovery */
548 truncate_inode_pages_range(META_MAPPING(sbi),
549 MAIN_BLKADDR(sbi) << PAGE_CACHE_SHIFT, -1);
550
551 if (err) {
552 truncate_inode_pages_final(NODE_MAPPING(sbi));
553 truncate_inode_pages_final(META_MAPPING(sbi));
554 }
555
556 clear_sbi_flag(sbi, SBI_POR_DOING);
557 if (err) {
558 discard_next_dnode(sbi, blkaddr);
559
560 /* Flush all the NAT/SIT pages */
561 while (get_pages(sbi, F2FS_DIRTY_META))
562 sync_meta_pages(sbi, META, LONG_MAX);
563 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
564 mutex_unlock(&sbi->cp_mutex);
565 } else if (need_writecp) {
566 struct cp_control cpc = {
567 .reason = CP_RECOVERY,
568 };
569 mutex_unlock(&sbi->cp_mutex);
570 write_checkpoint(sbi, &cpc);
571 } else {
572 mutex_unlock(&sbi->cp_mutex);
573 }
574 return err;
575 }
This page took 0.041488 seconds and 5 git commands to generate.