f2fs: avoid not to call remove_dirty_inode
[deliverable/linux.git] / fs / f2fs / segment.c
1 /*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/vmalloc.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include <trace/events/f2fs.h>
24
25 #define __reverse_ffz(x) __reverse_ffs(~(x))
26
27 static struct kmem_cache *discard_entry_slab;
28
29 /*
30 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
31 * MSB and LSB are reversed in a byte by f2fs_set_bit.
32 */
33 static inline unsigned long __reverse_ffs(unsigned long word)
34 {
35 int num = 0;
36
37 #if BITS_PER_LONG == 64
38 if ((word & 0xffffffff) == 0) {
39 num += 32;
40 word >>= 32;
41 }
42 #endif
43 if ((word & 0xffff) == 0) {
44 num += 16;
45 word >>= 16;
46 }
47 if ((word & 0xff) == 0) {
48 num += 8;
49 word >>= 8;
50 }
51 if ((word & 0xf0) == 0)
52 num += 4;
53 else
54 word >>= 4;
55 if ((word & 0xc) == 0)
56 num += 2;
57 else
58 word >>= 2;
59 if ((word & 0x2) == 0)
60 num += 1;
61 return num;
62 }
63
64 /*
65 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue
66 * f2fs_set_bit makes MSB and LSB reversed in a byte.
67 * Example:
68 * LSB <--> MSB
69 * f2fs_set_bit(0, bitmap) => 0000 0001
70 * f2fs_set_bit(7, bitmap) => 1000 0000
71 */
72 static unsigned long __find_rev_next_bit(const unsigned long *addr,
73 unsigned long size, unsigned long offset)
74 {
75 const unsigned long *p = addr + BIT_WORD(offset);
76 unsigned long result = offset & ~(BITS_PER_LONG - 1);
77 unsigned long tmp;
78 unsigned long mask, submask;
79 unsigned long quot, rest;
80
81 if (offset >= size)
82 return size;
83
84 size -= result;
85 offset %= BITS_PER_LONG;
86 if (!offset)
87 goto aligned;
88
89 tmp = *(p++);
90 quot = (offset >> 3) << 3;
91 rest = offset & 0x7;
92 mask = ~0UL << quot;
93 submask = (unsigned char)(0xff << rest) >> rest;
94 submask <<= quot;
95 mask &= submask;
96 tmp &= mask;
97 if (size < BITS_PER_LONG)
98 goto found_first;
99 if (tmp)
100 goto found_middle;
101
102 size -= BITS_PER_LONG;
103 result += BITS_PER_LONG;
104 aligned:
105 while (size & ~(BITS_PER_LONG-1)) {
106 tmp = *(p++);
107 if (tmp)
108 goto found_middle;
109 result += BITS_PER_LONG;
110 size -= BITS_PER_LONG;
111 }
112 if (!size)
113 return result;
114 tmp = *p;
115 found_first:
116 tmp &= (~0UL >> (BITS_PER_LONG - size));
117 if (tmp == 0UL) /* Are any bits set? */
118 return result + size; /* Nope. */
119 found_middle:
120 return result + __reverse_ffs(tmp);
121 }
122
123 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
124 unsigned long size, unsigned long offset)
125 {
126 const unsigned long *p = addr + BIT_WORD(offset);
127 unsigned long result = offset & ~(BITS_PER_LONG - 1);
128 unsigned long tmp;
129 unsigned long mask, submask;
130 unsigned long quot, rest;
131
132 if (offset >= size)
133 return size;
134
135 size -= result;
136 offset %= BITS_PER_LONG;
137 if (!offset)
138 goto aligned;
139
140 tmp = *(p++);
141 quot = (offset >> 3) << 3;
142 rest = offset & 0x7;
143 mask = ~(~0UL << quot);
144 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
145 submask <<= quot;
146 mask += submask;
147 tmp |= mask;
148 if (size < BITS_PER_LONG)
149 goto found_first;
150 if (~tmp)
151 goto found_middle;
152
153 size -= BITS_PER_LONG;
154 result += BITS_PER_LONG;
155 aligned:
156 while (size & ~(BITS_PER_LONG - 1)) {
157 tmp = *(p++);
158 if (~tmp)
159 goto found_middle;
160 result += BITS_PER_LONG;
161 size -= BITS_PER_LONG;
162 }
163 if (!size)
164 return result;
165 tmp = *p;
166
167 found_first:
168 tmp |= ~0UL << size;
169 if (tmp == ~0UL) /* Are any bits zero? */
170 return result + size; /* Nope. */
171 found_middle:
172 return result + __reverse_ffz(tmp);
173 }
174
175 /*
176 * This function balances dirty node and dentry pages.
177 * In addition, it controls garbage collection.
178 */
179 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
180 {
181 /*
182 * We should do GC or end up with checkpoint, if there are so many dirty
183 * dir/node pages without enough free segments.
184 */
185 if (has_not_enough_free_secs(sbi, 0)) {
186 mutex_lock(&sbi->gc_mutex);
187 f2fs_gc(sbi);
188 }
189 }
190
191 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
192 {
193 /* check the # of cached NAT entries and prefree segments */
194 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
195 excess_prefree_segs(sbi))
196 f2fs_sync_fs(sbi->sb, true);
197 }
198
199 static int issue_flush_thread(void *data)
200 {
201 struct f2fs_sb_info *sbi = data;
202 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
203 wait_queue_head_t *q = &fcc->flush_wait_queue;
204 repeat:
205 if (kthread_should_stop())
206 return 0;
207
208 spin_lock(&fcc->issue_lock);
209 if (fcc->issue_list) {
210 fcc->dispatch_list = fcc->issue_list;
211 fcc->issue_list = fcc->issue_tail = NULL;
212 }
213 spin_unlock(&fcc->issue_lock);
214
215 if (fcc->dispatch_list) {
216 struct bio *bio = bio_alloc(GFP_NOIO, 0);
217 struct flush_cmd *cmd, *next;
218 int ret;
219
220 bio->bi_bdev = sbi->sb->s_bdev;
221 ret = submit_bio_wait(WRITE_FLUSH, bio);
222
223 for (cmd = fcc->dispatch_list; cmd; cmd = next) {
224 cmd->ret = ret;
225 next = cmd->next;
226 complete(&cmd->wait);
227 }
228 bio_put(bio);
229 fcc->dispatch_list = NULL;
230 }
231
232 wait_event_interruptible(*q,
233 kthread_should_stop() || fcc->issue_list);
234 goto repeat;
235 }
236
237 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
238 {
239 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
240 struct flush_cmd cmd;
241
242 if (!test_opt(sbi, FLUSH_MERGE))
243 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
244
245 init_completion(&cmd.wait);
246 cmd.next = NULL;
247
248 spin_lock(&fcc->issue_lock);
249 if (fcc->issue_list)
250 fcc->issue_tail->next = &cmd;
251 else
252 fcc->issue_list = &cmd;
253 fcc->issue_tail = &cmd;
254 spin_unlock(&fcc->issue_lock);
255
256 if (!fcc->dispatch_list)
257 wake_up(&fcc->flush_wait_queue);
258
259 wait_for_completion(&cmd.wait);
260
261 return cmd.ret;
262 }
263
264 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
265 {
266 dev_t dev = sbi->sb->s_bdev->bd_dev;
267 struct flush_cmd_control *fcc;
268 int err = 0;
269
270 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
271 if (!fcc)
272 return -ENOMEM;
273 spin_lock_init(&fcc->issue_lock);
274 init_waitqueue_head(&fcc->flush_wait_queue);
275 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
276 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
277 if (IS_ERR(fcc->f2fs_issue_flush)) {
278 err = PTR_ERR(fcc->f2fs_issue_flush);
279 kfree(fcc);
280 return err;
281 }
282 sbi->sm_info->cmd_control_info = fcc;
283
284 return err;
285 }
286
287 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
288 {
289 struct flush_cmd_control *fcc =
290 sbi->sm_info->cmd_control_info;
291
292 if (fcc && fcc->f2fs_issue_flush)
293 kthread_stop(fcc->f2fs_issue_flush);
294 kfree(fcc);
295 sbi->sm_info->cmd_control_info = NULL;
296 }
297
298 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
299 enum dirty_type dirty_type)
300 {
301 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
302
303 /* need not be added */
304 if (IS_CURSEG(sbi, segno))
305 return;
306
307 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
308 dirty_i->nr_dirty[dirty_type]++;
309
310 if (dirty_type == DIRTY) {
311 struct seg_entry *sentry = get_seg_entry(sbi, segno);
312 enum dirty_type t = sentry->type;
313
314 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
315 dirty_i->nr_dirty[t]++;
316 }
317 }
318
319 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
320 enum dirty_type dirty_type)
321 {
322 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
323
324 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
325 dirty_i->nr_dirty[dirty_type]--;
326
327 if (dirty_type == DIRTY) {
328 struct seg_entry *sentry = get_seg_entry(sbi, segno);
329 enum dirty_type t = sentry->type;
330
331 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
332 dirty_i->nr_dirty[t]--;
333
334 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
335 clear_bit(GET_SECNO(sbi, segno),
336 dirty_i->victim_secmap);
337 }
338 }
339
340 /*
341 * Should not occur error such as -ENOMEM.
342 * Adding dirty entry into seglist is not critical operation.
343 * If a given segment is one of current working segments, it won't be added.
344 */
345 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
346 {
347 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
348 unsigned short valid_blocks;
349
350 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
351 return;
352
353 mutex_lock(&dirty_i->seglist_lock);
354
355 valid_blocks = get_valid_blocks(sbi, segno, 0);
356
357 if (valid_blocks == 0) {
358 __locate_dirty_segment(sbi, segno, PRE);
359 __remove_dirty_segment(sbi, segno, DIRTY);
360 } else if (valid_blocks < sbi->blocks_per_seg) {
361 __locate_dirty_segment(sbi, segno, DIRTY);
362 } else {
363 /* Recovery routine with SSR needs this */
364 __remove_dirty_segment(sbi, segno, DIRTY);
365 }
366
367 mutex_unlock(&dirty_i->seglist_lock);
368 }
369
370 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
371 block_t blkstart, block_t blklen)
372 {
373 sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart);
374 sector_t len = SECTOR_FROM_BLOCK(sbi, blklen);
375 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
376 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
377 }
378
379 void discard_next_dnode(struct f2fs_sb_info *sbi)
380 {
381 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
382 block_t blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
383
384 if (f2fs_issue_discard(sbi, blkaddr, 1)) {
385 struct page *page = grab_meta_page(sbi, blkaddr);
386 /* zero-filled page */
387 set_page_dirty(page);
388 f2fs_put_page(page, 1);
389 }
390 }
391
392 static void add_discard_addrs(struct f2fs_sb_info *sbi,
393 unsigned int segno, struct seg_entry *se)
394 {
395 struct list_head *head = &SM_I(sbi)->discard_list;
396 struct discard_entry *new;
397 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
398 int max_blocks = sbi->blocks_per_seg;
399 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
400 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
401 unsigned long dmap[entries];
402 unsigned int start = 0, end = -1;
403 int i;
404
405 if (!test_opt(sbi, DISCARD))
406 return;
407
408 /* zero block will be discarded through the prefree list */
409 if (!se->valid_blocks || se->valid_blocks == max_blocks)
410 return;
411
412 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
413 for (i = 0; i < entries; i++)
414 dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
415
416 while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
417 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
418 if (start >= max_blocks)
419 break;
420
421 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
422
423 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
424 INIT_LIST_HEAD(&new->list);
425 new->blkaddr = START_BLOCK(sbi, segno) + start;
426 new->len = end - start;
427
428 list_add_tail(&new->list, head);
429 SM_I(sbi)->nr_discards += end - start;
430 }
431 }
432
433 /*
434 * Should call clear_prefree_segments after checkpoint is done.
435 */
436 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
437 {
438 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
439 unsigned int segno = -1;
440 unsigned int total_segs = TOTAL_SEGS(sbi);
441
442 mutex_lock(&dirty_i->seglist_lock);
443 while (1) {
444 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
445 segno + 1);
446 if (segno >= total_segs)
447 break;
448 __set_test_and_free(sbi, segno);
449 }
450 mutex_unlock(&dirty_i->seglist_lock);
451 }
452
453 void clear_prefree_segments(struct f2fs_sb_info *sbi)
454 {
455 struct list_head *head = &(SM_I(sbi)->discard_list);
456 struct discard_entry *entry, *this;
457 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
458 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
459 unsigned int total_segs = TOTAL_SEGS(sbi);
460 unsigned int start = 0, end = -1;
461
462 mutex_lock(&dirty_i->seglist_lock);
463
464 while (1) {
465 int i;
466 start = find_next_bit(prefree_map, total_segs, end + 1);
467 if (start >= total_segs)
468 break;
469 end = find_next_zero_bit(prefree_map, total_segs, start + 1);
470
471 for (i = start; i < end; i++)
472 clear_bit(i, prefree_map);
473
474 dirty_i->nr_dirty[PRE] -= end - start;
475
476 if (!test_opt(sbi, DISCARD))
477 continue;
478
479 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
480 (end - start) << sbi->log_blocks_per_seg);
481 }
482 mutex_unlock(&dirty_i->seglist_lock);
483
484 /* send small discards */
485 list_for_each_entry_safe(entry, this, head, list) {
486 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
487 list_del(&entry->list);
488 SM_I(sbi)->nr_discards -= entry->len;
489 kmem_cache_free(discard_entry_slab, entry);
490 }
491 }
492
493 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
494 {
495 struct sit_info *sit_i = SIT_I(sbi);
496 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
497 sit_i->dirty_sentries++;
498 }
499
500 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
501 unsigned int segno, int modified)
502 {
503 struct seg_entry *se = get_seg_entry(sbi, segno);
504 se->type = type;
505 if (modified)
506 __mark_sit_entry_dirty(sbi, segno);
507 }
508
509 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
510 {
511 struct seg_entry *se;
512 unsigned int segno, offset;
513 long int new_vblocks;
514
515 segno = GET_SEGNO(sbi, blkaddr);
516
517 se = get_seg_entry(sbi, segno);
518 new_vblocks = se->valid_blocks + del;
519 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
520
521 f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
522 (new_vblocks > sbi->blocks_per_seg)));
523
524 se->valid_blocks = new_vblocks;
525 se->mtime = get_mtime(sbi);
526 SIT_I(sbi)->max_mtime = se->mtime;
527
528 /* Update valid block bitmap */
529 if (del > 0) {
530 if (f2fs_set_bit(offset, se->cur_valid_map))
531 BUG();
532 } else {
533 if (!f2fs_clear_bit(offset, se->cur_valid_map))
534 BUG();
535 }
536 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
537 se->ckpt_valid_blocks += del;
538
539 __mark_sit_entry_dirty(sbi, segno);
540
541 /* update total number of valid blocks to be written in ckpt area */
542 SIT_I(sbi)->written_valid_blocks += del;
543
544 if (sbi->segs_per_sec > 1)
545 get_sec_entry(sbi, segno)->valid_blocks += del;
546 }
547
548 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
549 {
550 update_sit_entry(sbi, new, 1);
551 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
552 update_sit_entry(sbi, old, -1);
553
554 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
555 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
556 }
557
558 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
559 {
560 unsigned int segno = GET_SEGNO(sbi, addr);
561 struct sit_info *sit_i = SIT_I(sbi);
562
563 f2fs_bug_on(addr == NULL_ADDR);
564 if (addr == NEW_ADDR)
565 return;
566
567 /* add it into sit main buffer */
568 mutex_lock(&sit_i->sentry_lock);
569
570 update_sit_entry(sbi, addr, -1);
571
572 /* add it into dirty seglist */
573 locate_dirty_segment(sbi, segno);
574
575 mutex_unlock(&sit_i->sentry_lock);
576 }
577
578 /*
579 * This function should be resided under the curseg_mutex lock
580 */
581 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
582 struct f2fs_summary *sum)
583 {
584 struct curseg_info *curseg = CURSEG_I(sbi, type);
585 void *addr = curseg->sum_blk;
586 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
587 memcpy(addr, sum, sizeof(struct f2fs_summary));
588 }
589
590 /*
591 * Calculate the number of current summary pages for writing
592 */
593 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
594 {
595 int valid_sum_count = 0;
596 int i, sum_in_page;
597
598 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
599 if (sbi->ckpt->alloc_type[i] == SSR)
600 valid_sum_count += sbi->blocks_per_seg;
601 else
602 valid_sum_count += curseg_blkoff(sbi, i);
603 }
604
605 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
606 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
607 if (valid_sum_count <= sum_in_page)
608 return 1;
609 else if ((valid_sum_count - sum_in_page) <=
610 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
611 return 2;
612 return 3;
613 }
614
615 /*
616 * Caller should put this summary page
617 */
618 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
619 {
620 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
621 }
622
623 static void write_sum_page(struct f2fs_sb_info *sbi,
624 struct f2fs_summary_block *sum_blk, block_t blk_addr)
625 {
626 struct page *page = grab_meta_page(sbi, blk_addr);
627 void *kaddr = page_address(page);
628 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
629 set_page_dirty(page);
630 f2fs_put_page(page, 1);
631 }
632
633 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
634 {
635 struct curseg_info *curseg = CURSEG_I(sbi, type);
636 unsigned int segno = curseg->segno + 1;
637 struct free_segmap_info *free_i = FREE_I(sbi);
638
639 if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
640 return !test_bit(segno, free_i->free_segmap);
641 return 0;
642 }
643
644 /*
645 * Find a new segment from the free segments bitmap to right order
646 * This function should be returned with success, otherwise BUG
647 */
648 static void get_new_segment(struct f2fs_sb_info *sbi,
649 unsigned int *newseg, bool new_sec, int dir)
650 {
651 struct free_segmap_info *free_i = FREE_I(sbi);
652 unsigned int segno, secno, zoneno;
653 unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
654 unsigned int hint = *newseg / sbi->segs_per_sec;
655 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
656 unsigned int left_start = hint;
657 bool init = true;
658 int go_left = 0;
659 int i;
660
661 write_lock(&free_i->segmap_lock);
662
663 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
664 segno = find_next_zero_bit(free_i->free_segmap,
665 TOTAL_SEGS(sbi), *newseg + 1);
666 if (segno - *newseg < sbi->segs_per_sec -
667 (*newseg % sbi->segs_per_sec))
668 goto got_it;
669 }
670 find_other_zone:
671 secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
672 if (secno >= TOTAL_SECS(sbi)) {
673 if (dir == ALLOC_RIGHT) {
674 secno = find_next_zero_bit(free_i->free_secmap,
675 TOTAL_SECS(sbi), 0);
676 f2fs_bug_on(secno >= TOTAL_SECS(sbi));
677 } else {
678 go_left = 1;
679 left_start = hint - 1;
680 }
681 }
682 if (go_left == 0)
683 goto skip_left;
684
685 while (test_bit(left_start, free_i->free_secmap)) {
686 if (left_start > 0) {
687 left_start--;
688 continue;
689 }
690 left_start = find_next_zero_bit(free_i->free_secmap,
691 TOTAL_SECS(sbi), 0);
692 f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
693 break;
694 }
695 secno = left_start;
696 skip_left:
697 hint = secno;
698 segno = secno * sbi->segs_per_sec;
699 zoneno = secno / sbi->secs_per_zone;
700
701 /* give up on finding another zone */
702 if (!init)
703 goto got_it;
704 if (sbi->secs_per_zone == 1)
705 goto got_it;
706 if (zoneno == old_zoneno)
707 goto got_it;
708 if (dir == ALLOC_LEFT) {
709 if (!go_left && zoneno + 1 >= total_zones)
710 goto got_it;
711 if (go_left && zoneno == 0)
712 goto got_it;
713 }
714 for (i = 0; i < NR_CURSEG_TYPE; i++)
715 if (CURSEG_I(sbi, i)->zone == zoneno)
716 break;
717
718 if (i < NR_CURSEG_TYPE) {
719 /* zone is in user, try another */
720 if (go_left)
721 hint = zoneno * sbi->secs_per_zone - 1;
722 else if (zoneno + 1 >= total_zones)
723 hint = 0;
724 else
725 hint = (zoneno + 1) * sbi->secs_per_zone;
726 init = false;
727 goto find_other_zone;
728 }
729 got_it:
730 /* set it as dirty segment in free segmap */
731 f2fs_bug_on(test_bit(segno, free_i->free_segmap));
732 __set_inuse(sbi, segno);
733 *newseg = segno;
734 write_unlock(&free_i->segmap_lock);
735 }
736
737 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
738 {
739 struct curseg_info *curseg = CURSEG_I(sbi, type);
740 struct summary_footer *sum_footer;
741
742 curseg->segno = curseg->next_segno;
743 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
744 curseg->next_blkoff = 0;
745 curseg->next_segno = NULL_SEGNO;
746
747 sum_footer = &(curseg->sum_blk->footer);
748 memset(sum_footer, 0, sizeof(struct summary_footer));
749 if (IS_DATASEG(type))
750 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
751 if (IS_NODESEG(type))
752 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
753 __set_sit_entry_type(sbi, type, curseg->segno, modified);
754 }
755
756 /*
757 * Allocate a current working segment.
758 * This function always allocates a free segment in LFS manner.
759 */
760 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
761 {
762 struct curseg_info *curseg = CURSEG_I(sbi, type);
763 unsigned int segno = curseg->segno;
764 int dir = ALLOC_LEFT;
765
766 write_sum_page(sbi, curseg->sum_blk,
767 GET_SUM_BLOCK(sbi, segno));
768 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
769 dir = ALLOC_RIGHT;
770
771 if (test_opt(sbi, NOHEAP))
772 dir = ALLOC_RIGHT;
773
774 get_new_segment(sbi, &segno, new_sec, dir);
775 curseg->next_segno = segno;
776 reset_curseg(sbi, type, 1);
777 curseg->alloc_type = LFS;
778 }
779
780 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
781 struct curseg_info *seg, block_t start)
782 {
783 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
784 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
785 unsigned long target_map[entries];
786 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
787 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
788 int i, pos;
789
790 for (i = 0; i < entries; i++)
791 target_map[i] = ckpt_map[i] | cur_map[i];
792
793 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
794
795 seg->next_blkoff = pos;
796 }
797
798 /*
799 * If a segment is written by LFS manner, next block offset is just obtained
800 * by increasing the current block offset. However, if a segment is written by
801 * SSR manner, next block offset obtained by calling __next_free_blkoff
802 */
803 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
804 struct curseg_info *seg)
805 {
806 if (seg->alloc_type == SSR)
807 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
808 else
809 seg->next_blkoff++;
810 }
811
812 /*
813 * This function always allocates a used segment (from dirty seglist) by SSR
814 * manner, so it should recover the existing segment information of valid blocks
815 */
816 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
817 {
818 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
819 struct curseg_info *curseg = CURSEG_I(sbi, type);
820 unsigned int new_segno = curseg->next_segno;
821 struct f2fs_summary_block *sum_node;
822 struct page *sum_page;
823
824 write_sum_page(sbi, curseg->sum_blk,
825 GET_SUM_BLOCK(sbi, curseg->segno));
826 __set_test_and_inuse(sbi, new_segno);
827
828 mutex_lock(&dirty_i->seglist_lock);
829 __remove_dirty_segment(sbi, new_segno, PRE);
830 __remove_dirty_segment(sbi, new_segno, DIRTY);
831 mutex_unlock(&dirty_i->seglist_lock);
832
833 reset_curseg(sbi, type, 1);
834 curseg->alloc_type = SSR;
835 __next_free_blkoff(sbi, curseg, 0);
836
837 if (reuse) {
838 sum_page = get_sum_page(sbi, new_segno);
839 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
840 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
841 f2fs_put_page(sum_page, 1);
842 }
843 }
844
845 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
846 {
847 struct curseg_info *curseg = CURSEG_I(sbi, type);
848 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
849
850 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
851 return v_ops->get_victim(sbi,
852 &(curseg)->next_segno, BG_GC, type, SSR);
853
854 /* For data segments, let's do SSR more intensively */
855 for (; type >= CURSEG_HOT_DATA; type--)
856 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
857 BG_GC, type, SSR))
858 return 1;
859 return 0;
860 }
861
862 /*
863 * flush out current segment and replace it with new segment
864 * This function should be returned with success, otherwise BUG
865 */
866 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
867 int type, bool force)
868 {
869 struct curseg_info *curseg = CURSEG_I(sbi, type);
870
871 if (force)
872 new_curseg(sbi, type, true);
873 else if (type == CURSEG_WARM_NODE)
874 new_curseg(sbi, type, false);
875 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
876 new_curseg(sbi, type, false);
877 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
878 change_curseg(sbi, type, true);
879 else
880 new_curseg(sbi, type, false);
881
882 stat_inc_seg_type(sbi, curseg);
883 }
884
885 void allocate_new_segments(struct f2fs_sb_info *sbi)
886 {
887 struct curseg_info *curseg;
888 unsigned int old_curseg;
889 int i;
890
891 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
892 curseg = CURSEG_I(sbi, i);
893 old_curseg = curseg->segno;
894 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
895 locate_dirty_segment(sbi, old_curseg);
896 }
897 }
898
899 static const struct segment_allocation default_salloc_ops = {
900 .allocate_segment = allocate_segment_by_default,
901 };
902
903 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
904 {
905 struct curseg_info *curseg = CURSEG_I(sbi, type);
906 if (curseg->next_blkoff < sbi->blocks_per_seg)
907 return true;
908 return false;
909 }
910
911 static int __get_segment_type_2(struct page *page, enum page_type p_type)
912 {
913 if (p_type == DATA)
914 return CURSEG_HOT_DATA;
915 else
916 return CURSEG_HOT_NODE;
917 }
918
919 static int __get_segment_type_4(struct page *page, enum page_type p_type)
920 {
921 if (p_type == DATA) {
922 struct inode *inode = page->mapping->host;
923
924 if (S_ISDIR(inode->i_mode))
925 return CURSEG_HOT_DATA;
926 else
927 return CURSEG_COLD_DATA;
928 } else {
929 if (IS_DNODE(page) && !is_cold_node(page))
930 return CURSEG_HOT_NODE;
931 else
932 return CURSEG_COLD_NODE;
933 }
934 }
935
936 static int __get_segment_type_6(struct page *page, enum page_type p_type)
937 {
938 if (p_type == DATA) {
939 struct inode *inode = page->mapping->host;
940
941 if (S_ISDIR(inode->i_mode))
942 return CURSEG_HOT_DATA;
943 else if (is_cold_data(page) || file_is_cold(inode))
944 return CURSEG_COLD_DATA;
945 else
946 return CURSEG_WARM_DATA;
947 } else {
948 if (IS_DNODE(page))
949 return is_cold_node(page) ? CURSEG_WARM_NODE :
950 CURSEG_HOT_NODE;
951 else
952 return CURSEG_COLD_NODE;
953 }
954 }
955
956 static int __get_segment_type(struct page *page, enum page_type p_type)
957 {
958 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
959 switch (sbi->active_logs) {
960 case 2:
961 return __get_segment_type_2(page, p_type);
962 case 4:
963 return __get_segment_type_4(page, p_type);
964 }
965 /* NR_CURSEG_TYPE(6) logs by default */
966 f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
967 return __get_segment_type_6(page, p_type);
968 }
969
970 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
971 block_t old_blkaddr, block_t *new_blkaddr,
972 struct f2fs_summary *sum, int type)
973 {
974 struct sit_info *sit_i = SIT_I(sbi);
975 struct curseg_info *curseg;
976 unsigned int old_cursegno;
977
978 curseg = CURSEG_I(sbi, type);
979
980 mutex_lock(&curseg->curseg_mutex);
981
982 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
983 old_cursegno = curseg->segno;
984
985 /*
986 * __add_sum_entry should be resided under the curseg_mutex
987 * because, this function updates a summary entry in the
988 * current summary block.
989 */
990 __add_sum_entry(sbi, type, sum);
991
992 mutex_lock(&sit_i->sentry_lock);
993 __refresh_next_blkoff(sbi, curseg);
994
995 stat_inc_block_count(sbi, curseg);
996
997 if (!__has_curseg_space(sbi, type))
998 sit_i->s_ops->allocate_segment(sbi, type, false);
999 /*
1000 * SIT information should be updated before segment allocation,
1001 * since SSR needs latest valid block information.
1002 */
1003 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1004 locate_dirty_segment(sbi, old_cursegno);
1005
1006 mutex_unlock(&sit_i->sentry_lock);
1007
1008 if (page && IS_NODESEG(type))
1009 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1010
1011 mutex_unlock(&curseg->curseg_mutex);
1012 }
1013
1014 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
1015 block_t old_blkaddr, block_t *new_blkaddr,
1016 struct f2fs_summary *sum, struct f2fs_io_info *fio)
1017 {
1018 int type = __get_segment_type(page, fio->type);
1019
1020 allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
1021
1022 /* writeout dirty page into bdev */
1023 f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
1024 }
1025
1026 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1027 {
1028 struct f2fs_io_info fio = {
1029 .type = META,
1030 .rw = WRITE_SYNC | REQ_META | REQ_PRIO
1031 };
1032
1033 set_page_writeback(page);
1034 f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1035 }
1036
1037 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
1038 struct f2fs_io_info *fio,
1039 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
1040 {
1041 struct f2fs_summary sum;
1042 set_summary(&sum, nid, 0, 0);
1043 do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
1044 }
1045
1046 void write_data_page(struct page *page, struct dnode_of_data *dn,
1047 block_t *new_blkaddr, struct f2fs_io_info *fio)
1048 {
1049 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
1050 struct f2fs_summary sum;
1051 struct node_info ni;
1052
1053 f2fs_bug_on(dn->data_blkaddr == NULL_ADDR);
1054 get_node_info(sbi, dn->nid, &ni);
1055 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1056
1057 do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
1058 }
1059
1060 void rewrite_data_page(struct page *page, block_t old_blkaddr,
1061 struct f2fs_io_info *fio)
1062 {
1063 struct inode *inode = page->mapping->host;
1064 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1065 f2fs_submit_page_mbio(sbi, page, old_blkaddr, fio);
1066 }
1067
1068 void recover_data_page(struct f2fs_sb_info *sbi,
1069 struct page *page, struct f2fs_summary *sum,
1070 block_t old_blkaddr, block_t new_blkaddr)
1071 {
1072 struct sit_info *sit_i = SIT_I(sbi);
1073 struct curseg_info *curseg;
1074 unsigned int segno, old_cursegno;
1075 struct seg_entry *se;
1076 int type;
1077
1078 segno = GET_SEGNO(sbi, new_blkaddr);
1079 se = get_seg_entry(sbi, segno);
1080 type = se->type;
1081
1082 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1083 if (old_blkaddr == NULL_ADDR)
1084 type = CURSEG_COLD_DATA;
1085 else
1086 type = CURSEG_WARM_DATA;
1087 }
1088 curseg = CURSEG_I(sbi, type);
1089
1090 mutex_lock(&curseg->curseg_mutex);
1091 mutex_lock(&sit_i->sentry_lock);
1092
1093 old_cursegno = curseg->segno;
1094
1095 /* change the current segment */
1096 if (segno != curseg->segno) {
1097 curseg->next_segno = segno;
1098 change_curseg(sbi, type, true);
1099 }
1100
1101 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1102 __add_sum_entry(sbi, type, sum);
1103
1104 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1105 locate_dirty_segment(sbi, old_cursegno);
1106
1107 mutex_unlock(&sit_i->sentry_lock);
1108 mutex_unlock(&curseg->curseg_mutex);
1109 }
1110
1111 void rewrite_node_page(struct f2fs_sb_info *sbi,
1112 struct page *page, struct f2fs_summary *sum,
1113 block_t old_blkaddr, block_t new_blkaddr)
1114 {
1115 struct sit_info *sit_i = SIT_I(sbi);
1116 int type = CURSEG_WARM_NODE;
1117 struct curseg_info *curseg;
1118 unsigned int segno, old_cursegno;
1119 block_t next_blkaddr = next_blkaddr_of_node(page);
1120 unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
1121 struct f2fs_io_info fio = {
1122 .type = NODE,
1123 .rw = WRITE_SYNC,
1124 };
1125
1126 curseg = CURSEG_I(sbi, type);
1127
1128 mutex_lock(&curseg->curseg_mutex);
1129 mutex_lock(&sit_i->sentry_lock);
1130
1131 segno = GET_SEGNO(sbi, new_blkaddr);
1132 old_cursegno = curseg->segno;
1133
1134 /* change the current segment */
1135 if (segno != curseg->segno) {
1136 curseg->next_segno = segno;
1137 change_curseg(sbi, type, true);
1138 }
1139 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1140 __add_sum_entry(sbi, type, sum);
1141
1142 /* change the current log to the next block addr in advance */
1143 if (next_segno != segno) {
1144 curseg->next_segno = next_segno;
1145 change_curseg(sbi, type, true);
1146 }
1147 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, next_blkaddr);
1148
1149 /* rewrite node page */
1150 set_page_writeback(page);
1151 f2fs_submit_page_mbio(sbi, page, new_blkaddr, &fio);
1152 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1153 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1154 locate_dirty_segment(sbi, old_cursegno);
1155
1156 mutex_unlock(&sit_i->sentry_lock);
1157 mutex_unlock(&curseg->curseg_mutex);
1158 }
1159
1160 static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1161 struct page *page, enum page_type type)
1162 {
1163 enum page_type btype = PAGE_TYPE_OF_BIO(type);
1164 struct f2fs_bio_info *io = &sbi->write_io[btype];
1165 struct bio_vec *bvec;
1166 int i;
1167
1168 down_read(&io->io_rwsem);
1169 if (!io->bio)
1170 goto out;
1171
1172 bio_for_each_segment_all(bvec, io->bio, i) {
1173 if (page == bvec->bv_page) {
1174 up_read(&io->io_rwsem);
1175 return true;
1176 }
1177 }
1178
1179 out:
1180 up_read(&io->io_rwsem);
1181 return false;
1182 }
1183
1184 void f2fs_wait_on_page_writeback(struct page *page,
1185 enum page_type type)
1186 {
1187 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1188 if (PageWriteback(page)) {
1189 if (is_merged_page(sbi, page, type))
1190 f2fs_submit_merged_bio(sbi, type, WRITE);
1191 wait_on_page_writeback(page);
1192 }
1193 }
1194
1195 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1196 {
1197 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1198 struct curseg_info *seg_i;
1199 unsigned char *kaddr;
1200 struct page *page;
1201 block_t start;
1202 int i, j, offset;
1203
1204 start = start_sum_block(sbi);
1205
1206 page = get_meta_page(sbi, start++);
1207 kaddr = (unsigned char *)page_address(page);
1208
1209 /* Step 1: restore nat cache */
1210 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1211 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1212
1213 /* Step 2: restore sit cache */
1214 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1215 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1216 SUM_JOURNAL_SIZE);
1217 offset = 2 * SUM_JOURNAL_SIZE;
1218
1219 /* Step 3: restore summary entries */
1220 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1221 unsigned short blk_off;
1222 unsigned int segno;
1223
1224 seg_i = CURSEG_I(sbi, i);
1225 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1226 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1227 seg_i->next_segno = segno;
1228 reset_curseg(sbi, i, 0);
1229 seg_i->alloc_type = ckpt->alloc_type[i];
1230 seg_i->next_blkoff = blk_off;
1231
1232 if (seg_i->alloc_type == SSR)
1233 blk_off = sbi->blocks_per_seg;
1234
1235 for (j = 0; j < blk_off; j++) {
1236 struct f2fs_summary *s;
1237 s = (struct f2fs_summary *)(kaddr + offset);
1238 seg_i->sum_blk->entries[j] = *s;
1239 offset += SUMMARY_SIZE;
1240 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1241 SUM_FOOTER_SIZE)
1242 continue;
1243
1244 f2fs_put_page(page, 1);
1245 page = NULL;
1246
1247 page = get_meta_page(sbi, start++);
1248 kaddr = (unsigned char *)page_address(page);
1249 offset = 0;
1250 }
1251 }
1252 f2fs_put_page(page, 1);
1253 return 0;
1254 }
1255
1256 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1257 {
1258 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1259 struct f2fs_summary_block *sum;
1260 struct curseg_info *curseg;
1261 struct page *new;
1262 unsigned short blk_off;
1263 unsigned int segno = 0;
1264 block_t blk_addr = 0;
1265
1266 /* get segment number and block addr */
1267 if (IS_DATASEG(type)) {
1268 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1269 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1270 CURSEG_HOT_DATA]);
1271 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1272 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1273 else
1274 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1275 } else {
1276 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1277 CURSEG_HOT_NODE]);
1278 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1279 CURSEG_HOT_NODE]);
1280 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1281 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1282 type - CURSEG_HOT_NODE);
1283 else
1284 blk_addr = GET_SUM_BLOCK(sbi, segno);
1285 }
1286
1287 new = get_meta_page(sbi, blk_addr);
1288 sum = (struct f2fs_summary_block *)page_address(new);
1289
1290 if (IS_NODESEG(type)) {
1291 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1292 struct f2fs_summary *ns = &sum->entries[0];
1293 int i;
1294 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1295 ns->version = 0;
1296 ns->ofs_in_node = 0;
1297 }
1298 } else {
1299 int err;
1300
1301 err = restore_node_summary(sbi, segno, sum);
1302 if (err) {
1303 f2fs_put_page(new, 1);
1304 return err;
1305 }
1306 }
1307 }
1308
1309 /* set uncompleted segment to curseg */
1310 curseg = CURSEG_I(sbi, type);
1311 mutex_lock(&curseg->curseg_mutex);
1312 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1313 curseg->next_segno = segno;
1314 reset_curseg(sbi, type, 0);
1315 curseg->alloc_type = ckpt->alloc_type[type];
1316 curseg->next_blkoff = blk_off;
1317 mutex_unlock(&curseg->curseg_mutex);
1318 f2fs_put_page(new, 1);
1319 return 0;
1320 }
1321
1322 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1323 {
1324 int type = CURSEG_HOT_DATA;
1325 int err;
1326
1327 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1328 /* restore for compacted data summary */
1329 if (read_compacted_summaries(sbi))
1330 return -EINVAL;
1331 type = CURSEG_HOT_NODE;
1332 }
1333
1334 for (; type <= CURSEG_COLD_NODE; type++) {
1335 err = read_normal_summaries(sbi, type);
1336 if (err)
1337 return err;
1338 }
1339
1340 return 0;
1341 }
1342
1343 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1344 {
1345 struct page *page;
1346 unsigned char *kaddr;
1347 struct f2fs_summary *summary;
1348 struct curseg_info *seg_i;
1349 int written_size = 0;
1350 int i, j;
1351
1352 page = grab_meta_page(sbi, blkaddr++);
1353 kaddr = (unsigned char *)page_address(page);
1354
1355 /* Step 1: write nat cache */
1356 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1357 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1358 written_size += SUM_JOURNAL_SIZE;
1359
1360 /* Step 2: write sit cache */
1361 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1362 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1363 SUM_JOURNAL_SIZE);
1364 written_size += SUM_JOURNAL_SIZE;
1365
1366 /* Step 3: write summary entries */
1367 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1368 unsigned short blkoff;
1369 seg_i = CURSEG_I(sbi, i);
1370 if (sbi->ckpt->alloc_type[i] == SSR)
1371 blkoff = sbi->blocks_per_seg;
1372 else
1373 blkoff = curseg_blkoff(sbi, i);
1374
1375 for (j = 0; j < blkoff; j++) {
1376 if (!page) {
1377 page = grab_meta_page(sbi, blkaddr++);
1378 kaddr = (unsigned char *)page_address(page);
1379 written_size = 0;
1380 }
1381 summary = (struct f2fs_summary *)(kaddr + written_size);
1382 *summary = seg_i->sum_blk->entries[j];
1383 written_size += SUMMARY_SIZE;
1384
1385 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1386 SUM_FOOTER_SIZE)
1387 continue;
1388
1389 set_page_dirty(page);
1390 f2fs_put_page(page, 1);
1391 page = NULL;
1392 }
1393 }
1394 if (page) {
1395 set_page_dirty(page);
1396 f2fs_put_page(page, 1);
1397 }
1398 }
1399
1400 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1401 block_t blkaddr, int type)
1402 {
1403 int i, end;
1404 if (IS_DATASEG(type))
1405 end = type + NR_CURSEG_DATA_TYPE;
1406 else
1407 end = type + NR_CURSEG_NODE_TYPE;
1408
1409 for (i = type; i < end; i++) {
1410 struct curseg_info *sum = CURSEG_I(sbi, i);
1411 mutex_lock(&sum->curseg_mutex);
1412 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1413 mutex_unlock(&sum->curseg_mutex);
1414 }
1415 }
1416
1417 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1418 {
1419 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1420 write_compacted_summaries(sbi, start_blk);
1421 else
1422 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1423 }
1424
1425 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1426 {
1427 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1428 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1429 }
1430
1431 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1432 unsigned int val, int alloc)
1433 {
1434 int i;
1435
1436 if (type == NAT_JOURNAL) {
1437 for (i = 0; i < nats_in_cursum(sum); i++) {
1438 if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1439 return i;
1440 }
1441 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1442 return update_nats_in_cursum(sum, 1);
1443 } else if (type == SIT_JOURNAL) {
1444 for (i = 0; i < sits_in_cursum(sum); i++)
1445 if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1446 return i;
1447 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1448 return update_sits_in_cursum(sum, 1);
1449 }
1450 return -1;
1451 }
1452
1453 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1454 unsigned int segno)
1455 {
1456 struct sit_info *sit_i = SIT_I(sbi);
1457 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1458 block_t blk_addr = sit_i->sit_base_addr + offset;
1459
1460 check_seg_range(sbi, segno);
1461
1462 /* calculate sit block address */
1463 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1464 blk_addr += sit_i->sit_blocks;
1465
1466 return get_meta_page(sbi, blk_addr);
1467 }
1468
1469 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1470 unsigned int start)
1471 {
1472 struct sit_info *sit_i = SIT_I(sbi);
1473 struct page *src_page, *dst_page;
1474 pgoff_t src_off, dst_off;
1475 void *src_addr, *dst_addr;
1476
1477 src_off = current_sit_addr(sbi, start);
1478 dst_off = next_sit_addr(sbi, src_off);
1479
1480 /* get current sit block page without lock */
1481 src_page = get_meta_page(sbi, src_off);
1482 dst_page = grab_meta_page(sbi, dst_off);
1483 f2fs_bug_on(PageDirty(src_page));
1484
1485 src_addr = page_address(src_page);
1486 dst_addr = page_address(dst_page);
1487 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1488
1489 set_page_dirty(dst_page);
1490 f2fs_put_page(src_page, 1);
1491
1492 set_to_next_sit(sit_i, start);
1493
1494 return dst_page;
1495 }
1496
1497 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1498 {
1499 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1500 struct f2fs_summary_block *sum = curseg->sum_blk;
1501 int i;
1502
1503 /*
1504 * If the journal area in the current summary is full of sit entries,
1505 * all the sit entries will be flushed. Otherwise the sit entries
1506 * are not able to replace with newly hot sit entries.
1507 */
1508 if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1509 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1510 unsigned int segno;
1511 segno = le32_to_cpu(segno_in_journal(sum, i));
1512 __mark_sit_entry_dirty(sbi, segno);
1513 }
1514 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1515 return true;
1516 }
1517 return false;
1518 }
1519
1520 /*
1521 * CP calls this function, which flushes SIT entries including sit_journal,
1522 * and moves prefree segs to free segs.
1523 */
1524 void flush_sit_entries(struct f2fs_sb_info *sbi)
1525 {
1526 struct sit_info *sit_i = SIT_I(sbi);
1527 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1528 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1529 struct f2fs_summary_block *sum = curseg->sum_blk;
1530 unsigned long nsegs = TOTAL_SEGS(sbi);
1531 struct page *page = NULL;
1532 struct f2fs_sit_block *raw_sit = NULL;
1533 unsigned int start = 0, end = 0;
1534 unsigned int segno = -1;
1535 bool flushed;
1536
1537 mutex_lock(&curseg->curseg_mutex);
1538 mutex_lock(&sit_i->sentry_lock);
1539
1540 /*
1541 * "flushed" indicates whether sit entries in journal are flushed
1542 * to the SIT area or not.
1543 */
1544 flushed = flush_sits_in_journal(sbi);
1545
1546 while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1547 struct seg_entry *se = get_seg_entry(sbi, segno);
1548 int sit_offset, offset;
1549
1550 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1551
1552 /* add discard candidates */
1553 if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards)
1554 add_discard_addrs(sbi, segno, se);
1555
1556 if (flushed)
1557 goto to_sit_page;
1558
1559 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1560 if (offset >= 0) {
1561 segno_in_journal(sum, offset) = cpu_to_le32(segno);
1562 seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1563 goto flush_done;
1564 }
1565 to_sit_page:
1566 if (!page || (start > segno) || (segno > end)) {
1567 if (page) {
1568 f2fs_put_page(page, 1);
1569 page = NULL;
1570 }
1571
1572 start = START_SEGNO(sit_i, segno);
1573 end = start + SIT_ENTRY_PER_BLOCK - 1;
1574
1575 /* read sit block that will be updated */
1576 page = get_next_sit_page(sbi, start);
1577 raw_sit = page_address(page);
1578 }
1579
1580 /* udpate entry in SIT block */
1581 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1582 flush_done:
1583 __clear_bit(segno, bitmap);
1584 sit_i->dirty_sentries--;
1585 }
1586 mutex_unlock(&sit_i->sentry_lock);
1587 mutex_unlock(&curseg->curseg_mutex);
1588
1589 /* writeout last modified SIT block */
1590 f2fs_put_page(page, 1);
1591
1592 set_prefree_as_free_segments(sbi);
1593 }
1594
1595 static int build_sit_info(struct f2fs_sb_info *sbi)
1596 {
1597 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1598 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1599 struct sit_info *sit_i;
1600 unsigned int sit_segs, start;
1601 char *src_bitmap, *dst_bitmap;
1602 unsigned int bitmap_size;
1603
1604 /* allocate memory for SIT information */
1605 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1606 if (!sit_i)
1607 return -ENOMEM;
1608
1609 SM_I(sbi)->sit_info = sit_i;
1610
1611 sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1612 if (!sit_i->sentries)
1613 return -ENOMEM;
1614
1615 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1616 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1617 if (!sit_i->dirty_sentries_bitmap)
1618 return -ENOMEM;
1619
1620 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1621 sit_i->sentries[start].cur_valid_map
1622 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1623 sit_i->sentries[start].ckpt_valid_map
1624 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1625 if (!sit_i->sentries[start].cur_valid_map
1626 || !sit_i->sentries[start].ckpt_valid_map)
1627 return -ENOMEM;
1628 }
1629
1630 if (sbi->segs_per_sec > 1) {
1631 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1632 sizeof(struct sec_entry));
1633 if (!sit_i->sec_entries)
1634 return -ENOMEM;
1635 }
1636
1637 /* get information related with SIT */
1638 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1639
1640 /* setup SIT bitmap from ckeckpoint pack */
1641 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1642 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1643
1644 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1645 if (!dst_bitmap)
1646 return -ENOMEM;
1647
1648 /* init SIT information */
1649 sit_i->s_ops = &default_salloc_ops;
1650
1651 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1652 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1653 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1654 sit_i->sit_bitmap = dst_bitmap;
1655 sit_i->bitmap_size = bitmap_size;
1656 sit_i->dirty_sentries = 0;
1657 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1658 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1659 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1660 mutex_init(&sit_i->sentry_lock);
1661 return 0;
1662 }
1663
1664 static int build_free_segmap(struct f2fs_sb_info *sbi)
1665 {
1666 struct f2fs_sm_info *sm_info = SM_I(sbi);
1667 struct free_segmap_info *free_i;
1668 unsigned int bitmap_size, sec_bitmap_size;
1669
1670 /* allocate memory for free segmap information */
1671 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1672 if (!free_i)
1673 return -ENOMEM;
1674
1675 SM_I(sbi)->free_info = free_i;
1676
1677 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1678 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1679 if (!free_i->free_segmap)
1680 return -ENOMEM;
1681
1682 sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1683 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1684 if (!free_i->free_secmap)
1685 return -ENOMEM;
1686
1687 /* set all segments as dirty temporarily */
1688 memset(free_i->free_segmap, 0xff, bitmap_size);
1689 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1690
1691 /* init free segmap information */
1692 free_i->start_segno =
1693 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1694 free_i->free_segments = 0;
1695 free_i->free_sections = 0;
1696 rwlock_init(&free_i->segmap_lock);
1697 return 0;
1698 }
1699
1700 static int build_curseg(struct f2fs_sb_info *sbi)
1701 {
1702 struct curseg_info *array;
1703 int i;
1704
1705 array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1706 if (!array)
1707 return -ENOMEM;
1708
1709 SM_I(sbi)->curseg_array = array;
1710
1711 for (i = 0; i < NR_CURSEG_TYPE; i++) {
1712 mutex_init(&array[i].curseg_mutex);
1713 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1714 if (!array[i].sum_blk)
1715 return -ENOMEM;
1716 array[i].segno = NULL_SEGNO;
1717 array[i].next_blkoff = 0;
1718 }
1719 return restore_curseg_summaries(sbi);
1720 }
1721
1722 static void build_sit_entries(struct f2fs_sb_info *sbi)
1723 {
1724 struct sit_info *sit_i = SIT_I(sbi);
1725 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1726 struct f2fs_summary_block *sum = curseg->sum_blk;
1727 int sit_blk_cnt = SIT_BLK_CNT(sbi);
1728 unsigned int i, start, end;
1729 unsigned int readed, start_blk = 0;
1730 int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1731
1732 do {
1733 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
1734
1735 start = start_blk * sit_i->sents_per_block;
1736 end = (start_blk + readed) * sit_i->sents_per_block;
1737
1738 for (; start < end && start < TOTAL_SEGS(sbi); start++) {
1739 struct seg_entry *se = &sit_i->sentries[start];
1740 struct f2fs_sit_block *sit_blk;
1741 struct f2fs_sit_entry sit;
1742 struct page *page;
1743
1744 mutex_lock(&curseg->curseg_mutex);
1745 for (i = 0; i < sits_in_cursum(sum); i++) {
1746 if (le32_to_cpu(segno_in_journal(sum, i))
1747 == start) {
1748 sit = sit_in_journal(sum, i);
1749 mutex_unlock(&curseg->curseg_mutex);
1750 goto got_it;
1751 }
1752 }
1753 mutex_unlock(&curseg->curseg_mutex);
1754
1755 page = get_current_sit_page(sbi, start);
1756 sit_blk = (struct f2fs_sit_block *)page_address(page);
1757 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1758 f2fs_put_page(page, 1);
1759 got_it:
1760 check_block_count(sbi, start, &sit);
1761 seg_info_from_raw_sit(se, &sit);
1762 if (sbi->segs_per_sec > 1) {
1763 struct sec_entry *e = get_sec_entry(sbi, start);
1764 e->valid_blocks += se->valid_blocks;
1765 }
1766 }
1767 start_blk += readed;
1768 } while (start_blk < sit_blk_cnt);
1769 }
1770
1771 static void init_free_segmap(struct f2fs_sb_info *sbi)
1772 {
1773 unsigned int start;
1774 int type;
1775
1776 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1777 struct seg_entry *sentry = get_seg_entry(sbi, start);
1778 if (!sentry->valid_blocks)
1779 __set_free(sbi, start);
1780 }
1781
1782 /* set use the current segments */
1783 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1784 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1785 __set_test_and_inuse(sbi, curseg_t->segno);
1786 }
1787 }
1788
1789 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1790 {
1791 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1792 struct free_segmap_info *free_i = FREE_I(sbi);
1793 unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1794 unsigned short valid_blocks;
1795
1796 while (1) {
1797 /* find dirty segment based on free segmap */
1798 segno = find_next_inuse(free_i, total_segs, offset);
1799 if (segno >= total_segs)
1800 break;
1801 offset = segno + 1;
1802 valid_blocks = get_valid_blocks(sbi, segno, 0);
1803 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1804 continue;
1805 mutex_lock(&dirty_i->seglist_lock);
1806 __locate_dirty_segment(sbi, segno, DIRTY);
1807 mutex_unlock(&dirty_i->seglist_lock);
1808 }
1809 }
1810
1811 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1812 {
1813 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1814 unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1815
1816 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1817 if (!dirty_i->victim_secmap)
1818 return -ENOMEM;
1819 return 0;
1820 }
1821
1822 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1823 {
1824 struct dirty_seglist_info *dirty_i;
1825 unsigned int bitmap_size, i;
1826
1827 /* allocate memory for dirty segments list information */
1828 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1829 if (!dirty_i)
1830 return -ENOMEM;
1831
1832 SM_I(sbi)->dirty_info = dirty_i;
1833 mutex_init(&dirty_i->seglist_lock);
1834
1835 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1836
1837 for (i = 0; i < NR_DIRTY_TYPE; i++) {
1838 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1839 if (!dirty_i->dirty_segmap[i])
1840 return -ENOMEM;
1841 }
1842
1843 init_dirty_segmap(sbi);
1844 return init_victim_secmap(sbi);
1845 }
1846
1847 /*
1848 * Update min, max modified time for cost-benefit GC algorithm
1849 */
1850 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1851 {
1852 struct sit_info *sit_i = SIT_I(sbi);
1853 unsigned int segno;
1854
1855 mutex_lock(&sit_i->sentry_lock);
1856
1857 sit_i->min_mtime = LLONG_MAX;
1858
1859 for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1860 unsigned int i;
1861 unsigned long long mtime = 0;
1862
1863 for (i = 0; i < sbi->segs_per_sec; i++)
1864 mtime += get_seg_entry(sbi, segno + i)->mtime;
1865
1866 mtime = div_u64(mtime, sbi->segs_per_sec);
1867
1868 if (sit_i->min_mtime > mtime)
1869 sit_i->min_mtime = mtime;
1870 }
1871 sit_i->max_mtime = get_mtime(sbi);
1872 mutex_unlock(&sit_i->sentry_lock);
1873 }
1874
1875 int build_segment_manager(struct f2fs_sb_info *sbi)
1876 {
1877 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1878 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1879 struct f2fs_sm_info *sm_info;
1880 int err;
1881
1882 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1883 if (!sm_info)
1884 return -ENOMEM;
1885
1886 /* init sm info */
1887 sbi->sm_info = sm_info;
1888 INIT_LIST_HEAD(&sm_info->wblist_head);
1889 spin_lock_init(&sm_info->wblist_lock);
1890 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1891 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1892 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1893 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1894 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1895 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1896 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1897 sm_info->rec_prefree_segments = sm_info->main_segments *
1898 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
1899 sm_info->ipu_policy = F2FS_IPU_DISABLE;
1900 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
1901
1902 INIT_LIST_HEAD(&sm_info->discard_list);
1903 sm_info->nr_discards = 0;
1904 sm_info->max_discards = 0;
1905
1906 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
1907 err = create_flush_cmd_control(sbi);
1908 if (err)
1909 return err;
1910 }
1911
1912 err = build_sit_info(sbi);
1913 if (err)
1914 return err;
1915 err = build_free_segmap(sbi);
1916 if (err)
1917 return err;
1918 err = build_curseg(sbi);
1919 if (err)
1920 return err;
1921
1922 /* reinit free segmap based on SIT */
1923 build_sit_entries(sbi);
1924
1925 init_free_segmap(sbi);
1926 err = build_dirty_segmap(sbi);
1927 if (err)
1928 return err;
1929
1930 init_min_max_mtime(sbi);
1931 return 0;
1932 }
1933
1934 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1935 enum dirty_type dirty_type)
1936 {
1937 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1938
1939 mutex_lock(&dirty_i->seglist_lock);
1940 kfree(dirty_i->dirty_segmap[dirty_type]);
1941 dirty_i->nr_dirty[dirty_type] = 0;
1942 mutex_unlock(&dirty_i->seglist_lock);
1943 }
1944
1945 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1946 {
1947 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1948 kfree(dirty_i->victim_secmap);
1949 }
1950
1951 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1952 {
1953 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1954 int i;
1955
1956 if (!dirty_i)
1957 return;
1958
1959 /* discard pre-free/dirty segments list */
1960 for (i = 0; i < NR_DIRTY_TYPE; i++)
1961 discard_dirty_segmap(sbi, i);
1962
1963 destroy_victim_secmap(sbi);
1964 SM_I(sbi)->dirty_info = NULL;
1965 kfree(dirty_i);
1966 }
1967
1968 static void destroy_curseg(struct f2fs_sb_info *sbi)
1969 {
1970 struct curseg_info *array = SM_I(sbi)->curseg_array;
1971 int i;
1972
1973 if (!array)
1974 return;
1975 SM_I(sbi)->curseg_array = NULL;
1976 for (i = 0; i < NR_CURSEG_TYPE; i++)
1977 kfree(array[i].sum_blk);
1978 kfree(array);
1979 }
1980
1981 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1982 {
1983 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1984 if (!free_i)
1985 return;
1986 SM_I(sbi)->free_info = NULL;
1987 kfree(free_i->free_segmap);
1988 kfree(free_i->free_secmap);
1989 kfree(free_i);
1990 }
1991
1992 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1993 {
1994 struct sit_info *sit_i = SIT_I(sbi);
1995 unsigned int start;
1996
1997 if (!sit_i)
1998 return;
1999
2000 if (sit_i->sentries) {
2001 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
2002 kfree(sit_i->sentries[start].cur_valid_map);
2003 kfree(sit_i->sentries[start].ckpt_valid_map);
2004 }
2005 }
2006 vfree(sit_i->sentries);
2007 vfree(sit_i->sec_entries);
2008 kfree(sit_i->dirty_sentries_bitmap);
2009
2010 SM_I(sbi)->sit_info = NULL;
2011 kfree(sit_i->sit_bitmap);
2012 kfree(sit_i);
2013 }
2014
2015 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2016 {
2017 struct f2fs_sm_info *sm_info = SM_I(sbi);
2018
2019 if (!sm_info)
2020 return;
2021 destroy_flush_cmd_control(sbi);
2022 destroy_dirty_segmap(sbi);
2023 destroy_curseg(sbi);
2024 destroy_free_segmap(sbi);
2025 destroy_sit_info(sbi);
2026 sbi->sm_info = NULL;
2027 kfree(sm_info);
2028 }
2029
2030 int __init create_segment_manager_caches(void)
2031 {
2032 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2033 sizeof(struct discard_entry));
2034 if (!discard_entry_slab)
2035 return -ENOMEM;
2036 return 0;
2037 }
2038
2039 void destroy_segment_manager_caches(void)
2040 {
2041 kmem_cache_destroy(discard_entry_slab);
2042 }
This page took 0.07678 seconds and 5 git commands to generate.