f2fs: use ra_meta_pages to simplify readahead code in restore_node_summary
[deliverable/linux.git] / fs / f2fs / segment.c
1 /*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/vmalloc.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include <trace/events/f2fs.h>
24
25 #define __reverse_ffz(x) __reverse_ffs(~(x))
26
27 static struct kmem_cache *discard_entry_slab;
28 static struct kmem_cache *sit_entry_set_slab;
29 static struct kmem_cache *inmem_entry_slab;
30
31 /*
32 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
33 * MSB and LSB are reversed in a byte by f2fs_set_bit.
34 */
35 static inline unsigned long __reverse_ffs(unsigned long word)
36 {
37 int num = 0;
38
39 #if BITS_PER_LONG == 64
40 if ((word & 0xffffffff) == 0) {
41 num += 32;
42 word >>= 32;
43 }
44 #endif
45 if ((word & 0xffff) == 0) {
46 num += 16;
47 word >>= 16;
48 }
49 if ((word & 0xff) == 0) {
50 num += 8;
51 word >>= 8;
52 }
53 if ((word & 0xf0) == 0)
54 num += 4;
55 else
56 word >>= 4;
57 if ((word & 0xc) == 0)
58 num += 2;
59 else
60 word >>= 2;
61 if ((word & 0x2) == 0)
62 num += 1;
63 return num;
64 }
65
66 /*
67 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
68 * f2fs_set_bit makes MSB and LSB reversed in a byte.
69 * Example:
70 * LSB <--> MSB
71 * f2fs_set_bit(0, bitmap) => 0000 0001
72 * f2fs_set_bit(7, bitmap) => 1000 0000
73 */
74 static unsigned long __find_rev_next_bit(const unsigned long *addr,
75 unsigned long size, unsigned long offset)
76 {
77 const unsigned long *p = addr + BIT_WORD(offset);
78 unsigned long result = offset & ~(BITS_PER_LONG - 1);
79 unsigned long tmp;
80 unsigned long mask, submask;
81 unsigned long quot, rest;
82
83 if (offset >= size)
84 return size;
85
86 size -= result;
87 offset %= BITS_PER_LONG;
88 if (!offset)
89 goto aligned;
90
91 tmp = *(p++);
92 quot = (offset >> 3) << 3;
93 rest = offset & 0x7;
94 mask = ~0UL << quot;
95 submask = (unsigned char)(0xff << rest) >> rest;
96 submask <<= quot;
97 mask &= submask;
98 tmp &= mask;
99 if (size < BITS_PER_LONG)
100 goto found_first;
101 if (tmp)
102 goto found_middle;
103
104 size -= BITS_PER_LONG;
105 result += BITS_PER_LONG;
106 aligned:
107 while (size & ~(BITS_PER_LONG-1)) {
108 tmp = *(p++);
109 if (tmp)
110 goto found_middle;
111 result += BITS_PER_LONG;
112 size -= BITS_PER_LONG;
113 }
114 if (!size)
115 return result;
116 tmp = *p;
117 found_first:
118 tmp &= (~0UL >> (BITS_PER_LONG - size));
119 if (tmp == 0UL) /* Are any bits set? */
120 return result + size; /* Nope. */
121 found_middle:
122 return result + __reverse_ffs(tmp);
123 }
124
125 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
126 unsigned long size, unsigned long offset)
127 {
128 const unsigned long *p = addr + BIT_WORD(offset);
129 unsigned long result = offset & ~(BITS_PER_LONG - 1);
130 unsigned long tmp;
131 unsigned long mask, submask;
132 unsigned long quot, rest;
133
134 if (offset >= size)
135 return size;
136
137 size -= result;
138 offset %= BITS_PER_LONG;
139 if (!offset)
140 goto aligned;
141
142 tmp = *(p++);
143 quot = (offset >> 3) << 3;
144 rest = offset & 0x7;
145 mask = ~(~0UL << quot);
146 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
147 submask <<= quot;
148 mask += submask;
149 tmp |= mask;
150 if (size < BITS_PER_LONG)
151 goto found_first;
152 if (~tmp)
153 goto found_middle;
154
155 size -= BITS_PER_LONG;
156 result += BITS_PER_LONG;
157 aligned:
158 while (size & ~(BITS_PER_LONG - 1)) {
159 tmp = *(p++);
160 if (~tmp)
161 goto found_middle;
162 result += BITS_PER_LONG;
163 size -= BITS_PER_LONG;
164 }
165 if (!size)
166 return result;
167 tmp = *p;
168
169 found_first:
170 tmp |= ~0UL << size;
171 if (tmp == ~0UL) /* Are any bits zero? */
172 return result + size; /* Nope. */
173 found_middle:
174 return result + __reverse_ffz(tmp);
175 }
176
177 void register_inmem_page(struct inode *inode, struct page *page)
178 {
179 struct f2fs_inode_info *fi = F2FS_I(inode);
180 struct inmem_pages *new;
181 int err;
182
183 SetPagePrivate(page);
184
185 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
186
187 /* add atomic page indices to the list */
188 new->page = page;
189 INIT_LIST_HEAD(&new->list);
190 retry:
191 /* increase reference count with clean state */
192 mutex_lock(&fi->inmem_lock);
193 err = radix_tree_insert(&fi->inmem_root, page->index, new);
194 if (err == -EEXIST) {
195 mutex_unlock(&fi->inmem_lock);
196 kmem_cache_free(inmem_entry_slab, new);
197 return;
198 } else if (err) {
199 mutex_unlock(&fi->inmem_lock);
200 goto retry;
201 }
202 get_page(page);
203 list_add_tail(&new->list, &fi->inmem_pages);
204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205 mutex_unlock(&fi->inmem_lock);
206 }
207
208 void commit_inmem_pages(struct inode *inode, bool abort)
209 {
210 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
211 struct f2fs_inode_info *fi = F2FS_I(inode);
212 struct inmem_pages *cur, *tmp;
213 bool submit_bio = false;
214 struct f2fs_io_info fio = {
215 .type = DATA,
216 .rw = WRITE_SYNC | REQ_PRIO,
217 };
218
219 /*
220 * The abort is true only when f2fs_evict_inode is called.
221 * Basically, the f2fs_evict_inode doesn't produce any data writes, so
222 * that we don't need to call f2fs_balance_fs.
223 * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this
224 * inode becomes free by iget_locked in f2fs_iget.
225 */
226 if (!abort) {
227 f2fs_balance_fs(sbi);
228 f2fs_lock_op(sbi);
229 }
230
231 mutex_lock(&fi->inmem_lock);
232 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
233 if (!abort) {
234 lock_page(cur->page);
235 if (cur->page->mapping == inode->i_mapping) {
236 f2fs_wait_on_page_writeback(cur->page, DATA);
237 if (clear_page_dirty_for_io(cur->page))
238 inode_dec_dirty_pages(inode);
239 do_write_data_page(cur->page, &fio);
240 submit_bio = true;
241 }
242 f2fs_put_page(cur->page, 1);
243 } else {
244 put_page(cur->page);
245 }
246 radix_tree_delete(&fi->inmem_root, cur->page->index);
247 list_del(&cur->list);
248 kmem_cache_free(inmem_entry_slab, cur);
249 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
250 }
251 mutex_unlock(&fi->inmem_lock);
252
253 if (!abort) {
254 f2fs_unlock_op(sbi);
255 if (submit_bio)
256 f2fs_submit_merged_bio(sbi, DATA, WRITE);
257 }
258 }
259
260 /*
261 * This function balances dirty node and dentry pages.
262 * In addition, it controls garbage collection.
263 */
264 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
265 {
266 /*
267 * We should do GC or end up with checkpoint, if there are so many dirty
268 * dir/node pages without enough free segments.
269 */
270 if (has_not_enough_free_secs(sbi, 0)) {
271 mutex_lock(&sbi->gc_mutex);
272 f2fs_gc(sbi);
273 }
274 }
275
276 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
277 {
278 /* check the # of cached NAT entries and prefree segments */
279 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
280 excess_prefree_segs(sbi) ||
281 !available_free_memory(sbi, INO_ENTRIES))
282 f2fs_sync_fs(sbi->sb, true);
283 }
284
285 static int issue_flush_thread(void *data)
286 {
287 struct f2fs_sb_info *sbi = data;
288 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
289 wait_queue_head_t *q = &fcc->flush_wait_queue;
290 repeat:
291 if (kthread_should_stop())
292 return 0;
293
294 if (!llist_empty(&fcc->issue_list)) {
295 struct bio *bio = bio_alloc(GFP_NOIO, 0);
296 struct flush_cmd *cmd, *next;
297 int ret;
298
299 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
300 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
301
302 bio->bi_bdev = sbi->sb->s_bdev;
303 ret = submit_bio_wait(WRITE_FLUSH, bio);
304
305 llist_for_each_entry_safe(cmd, next,
306 fcc->dispatch_list, llnode) {
307 cmd->ret = ret;
308 complete(&cmd->wait);
309 }
310 bio_put(bio);
311 fcc->dispatch_list = NULL;
312 }
313
314 wait_event_interruptible(*q,
315 kthread_should_stop() || !llist_empty(&fcc->issue_list));
316 goto repeat;
317 }
318
319 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
320 {
321 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
322 struct flush_cmd cmd;
323
324 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
325 test_opt(sbi, FLUSH_MERGE));
326
327 if (test_opt(sbi, NOBARRIER))
328 return 0;
329
330 if (!test_opt(sbi, FLUSH_MERGE))
331 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
332
333 init_completion(&cmd.wait);
334
335 llist_add(&cmd.llnode, &fcc->issue_list);
336
337 if (!fcc->dispatch_list)
338 wake_up(&fcc->flush_wait_queue);
339
340 wait_for_completion(&cmd.wait);
341
342 return cmd.ret;
343 }
344
345 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
346 {
347 dev_t dev = sbi->sb->s_bdev->bd_dev;
348 struct flush_cmd_control *fcc;
349 int err = 0;
350
351 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
352 if (!fcc)
353 return -ENOMEM;
354 init_waitqueue_head(&fcc->flush_wait_queue);
355 init_llist_head(&fcc->issue_list);
356 SM_I(sbi)->cmd_control_info = fcc;
357 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
358 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
359 if (IS_ERR(fcc->f2fs_issue_flush)) {
360 err = PTR_ERR(fcc->f2fs_issue_flush);
361 kfree(fcc);
362 SM_I(sbi)->cmd_control_info = NULL;
363 return err;
364 }
365
366 return err;
367 }
368
369 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
370 {
371 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
372
373 if (fcc && fcc->f2fs_issue_flush)
374 kthread_stop(fcc->f2fs_issue_flush);
375 kfree(fcc);
376 SM_I(sbi)->cmd_control_info = NULL;
377 }
378
379 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
380 enum dirty_type dirty_type)
381 {
382 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
383
384 /* need not be added */
385 if (IS_CURSEG(sbi, segno))
386 return;
387
388 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
389 dirty_i->nr_dirty[dirty_type]++;
390
391 if (dirty_type == DIRTY) {
392 struct seg_entry *sentry = get_seg_entry(sbi, segno);
393 enum dirty_type t = sentry->type;
394
395 if (unlikely(t >= DIRTY)) {
396 f2fs_bug_on(sbi, 1);
397 return;
398 }
399 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
400 dirty_i->nr_dirty[t]++;
401 }
402 }
403
404 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
405 enum dirty_type dirty_type)
406 {
407 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
408
409 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
410 dirty_i->nr_dirty[dirty_type]--;
411
412 if (dirty_type == DIRTY) {
413 struct seg_entry *sentry = get_seg_entry(sbi, segno);
414 enum dirty_type t = sentry->type;
415
416 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
417 dirty_i->nr_dirty[t]--;
418
419 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
420 clear_bit(GET_SECNO(sbi, segno),
421 dirty_i->victim_secmap);
422 }
423 }
424
425 /*
426 * Should not occur error such as -ENOMEM.
427 * Adding dirty entry into seglist is not critical operation.
428 * If a given segment is one of current working segments, it won't be added.
429 */
430 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
431 {
432 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
433 unsigned short valid_blocks;
434
435 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
436 return;
437
438 mutex_lock(&dirty_i->seglist_lock);
439
440 valid_blocks = get_valid_blocks(sbi, segno, 0);
441
442 if (valid_blocks == 0) {
443 __locate_dirty_segment(sbi, segno, PRE);
444 __remove_dirty_segment(sbi, segno, DIRTY);
445 } else if (valid_blocks < sbi->blocks_per_seg) {
446 __locate_dirty_segment(sbi, segno, DIRTY);
447 } else {
448 /* Recovery routine with SSR needs this */
449 __remove_dirty_segment(sbi, segno, DIRTY);
450 }
451
452 mutex_unlock(&dirty_i->seglist_lock);
453 }
454
455 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
456 block_t blkstart, block_t blklen)
457 {
458 sector_t start = SECTOR_FROM_BLOCK(blkstart);
459 sector_t len = SECTOR_FROM_BLOCK(blklen);
460 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
461 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
462 }
463
464 void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
465 {
466 if (f2fs_issue_discard(sbi, blkaddr, 1)) {
467 struct page *page = grab_meta_page(sbi, blkaddr);
468 /* zero-filled page */
469 set_page_dirty(page);
470 f2fs_put_page(page, 1);
471 }
472 }
473
474 static void __add_discard_entry(struct f2fs_sb_info *sbi,
475 struct cp_control *cpc, unsigned int start, unsigned int end)
476 {
477 struct list_head *head = &SM_I(sbi)->discard_list;
478 struct discard_entry *new, *last;
479
480 if (!list_empty(head)) {
481 last = list_last_entry(head, struct discard_entry, list);
482 if (START_BLOCK(sbi, cpc->trim_start) + start ==
483 last->blkaddr + last->len) {
484 last->len += end - start;
485 goto done;
486 }
487 }
488
489 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
490 INIT_LIST_HEAD(&new->list);
491 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
492 new->len = end - start;
493 list_add_tail(&new->list, head);
494 done:
495 SM_I(sbi)->nr_discards += end - start;
496 cpc->trimmed += end - start;
497 }
498
499 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
500 {
501 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
502 int max_blocks = sbi->blocks_per_seg;
503 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
504 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
505 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
506 unsigned long dmap[entries];
507 unsigned int start = 0, end = -1;
508 bool force = (cpc->reason == CP_DISCARD);
509 int i;
510
511 if (!force && (!test_opt(sbi, DISCARD) ||
512 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards))
513 return;
514
515 if (force && !se->valid_blocks) {
516 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
517 /*
518 * if this segment is registered in the prefree list, then
519 * we should skip adding a discard candidate, and let the
520 * checkpoint do that later.
521 */
522 mutex_lock(&dirty_i->seglist_lock);
523 if (test_bit(cpc->trim_start, dirty_i->dirty_segmap[PRE])) {
524 mutex_unlock(&dirty_i->seglist_lock);
525 cpc->trimmed += sbi->blocks_per_seg;
526 return;
527 }
528 mutex_unlock(&dirty_i->seglist_lock);
529
530 __add_discard_entry(sbi, cpc, 0, sbi->blocks_per_seg);
531 return;
532 }
533
534 /* zero block will be discarded through the prefree list */
535 if (!se->valid_blocks || se->valid_blocks == max_blocks)
536 return;
537
538 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
539 for (i = 0; i < entries; i++)
540 dmap[i] = force ? ~ckpt_map[i] :
541 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
542
543 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
544 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
545 if (start >= max_blocks)
546 break;
547
548 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
549
550 if (end - start < cpc->trim_minlen)
551 continue;
552
553 __add_discard_entry(sbi, cpc, start, end);
554 }
555 }
556
557 void release_discard_addrs(struct f2fs_sb_info *sbi)
558 {
559 struct list_head *head = &(SM_I(sbi)->discard_list);
560 struct discard_entry *entry, *this;
561
562 /* drop caches */
563 list_for_each_entry_safe(entry, this, head, list) {
564 list_del(&entry->list);
565 kmem_cache_free(discard_entry_slab, entry);
566 }
567 }
568
569 /*
570 * Should call clear_prefree_segments after checkpoint is done.
571 */
572 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
573 {
574 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
575 unsigned int segno;
576
577 mutex_lock(&dirty_i->seglist_lock);
578 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
579 __set_test_and_free(sbi, segno);
580 mutex_unlock(&dirty_i->seglist_lock);
581 }
582
583 void clear_prefree_segments(struct f2fs_sb_info *sbi)
584 {
585 struct list_head *head = &(SM_I(sbi)->discard_list);
586 struct discard_entry *entry, *this;
587 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
588 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
589 unsigned int start = 0, end = -1;
590
591 mutex_lock(&dirty_i->seglist_lock);
592
593 while (1) {
594 int i;
595 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
596 if (start >= MAIN_SEGS(sbi))
597 break;
598 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
599 start + 1);
600
601 for (i = start; i < end; i++)
602 clear_bit(i, prefree_map);
603
604 dirty_i->nr_dirty[PRE] -= end - start;
605
606 if (!test_opt(sbi, DISCARD))
607 continue;
608
609 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
610 (end - start) << sbi->log_blocks_per_seg);
611 }
612 mutex_unlock(&dirty_i->seglist_lock);
613
614 /* send small discards */
615 list_for_each_entry_safe(entry, this, head, list) {
616 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
617 list_del(&entry->list);
618 SM_I(sbi)->nr_discards -= entry->len;
619 kmem_cache_free(discard_entry_slab, entry);
620 }
621 }
622
623 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
624 {
625 struct sit_info *sit_i = SIT_I(sbi);
626
627 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
628 sit_i->dirty_sentries++;
629 return false;
630 }
631
632 return true;
633 }
634
635 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
636 unsigned int segno, int modified)
637 {
638 struct seg_entry *se = get_seg_entry(sbi, segno);
639 se->type = type;
640 if (modified)
641 __mark_sit_entry_dirty(sbi, segno);
642 }
643
644 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
645 {
646 struct seg_entry *se;
647 unsigned int segno, offset;
648 long int new_vblocks;
649
650 segno = GET_SEGNO(sbi, blkaddr);
651
652 se = get_seg_entry(sbi, segno);
653 new_vblocks = se->valid_blocks + del;
654 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
655
656 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
657 (new_vblocks > sbi->blocks_per_seg)));
658
659 se->valid_blocks = new_vblocks;
660 se->mtime = get_mtime(sbi);
661 SIT_I(sbi)->max_mtime = se->mtime;
662
663 /* Update valid block bitmap */
664 if (del > 0) {
665 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
666 f2fs_bug_on(sbi, 1);
667 } else {
668 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
669 f2fs_bug_on(sbi, 1);
670 }
671 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
672 se->ckpt_valid_blocks += del;
673
674 __mark_sit_entry_dirty(sbi, segno);
675
676 /* update total number of valid blocks to be written in ckpt area */
677 SIT_I(sbi)->written_valid_blocks += del;
678
679 if (sbi->segs_per_sec > 1)
680 get_sec_entry(sbi, segno)->valid_blocks += del;
681 }
682
683 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
684 {
685 update_sit_entry(sbi, new, 1);
686 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
687 update_sit_entry(sbi, old, -1);
688
689 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
690 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
691 }
692
693 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
694 {
695 unsigned int segno = GET_SEGNO(sbi, addr);
696 struct sit_info *sit_i = SIT_I(sbi);
697
698 f2fs_bug_on(sbi, addr == NULL_ADDR);
699 if (addr == NEW_ADDR)
700 return;
701
702 /* add it into sit main buffer */
703 mutex_lock(&sit_i->sentry_lock);
704
705 update_sit_entry(sbi, addr, -1);
706
707 /* add it into dirty seglist */
708 locate_dirty_segment(sbi, segno);
709
710 mutex_unlock(&sit_i->sentry_lock);
711 }
712
713 /*
714 * This function should be resided under the curseg_mutex lock
715 */
716 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
717 struct f2fs_summary *sum)
718 {
719 struct curseg_info *curseg = CURSEG_I(sbi, type);
720 void *addr = curseg->sum_blk;
721 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
722 memcpy(addr, sum, sizeof(struct f2fs_summary));
723 }
724
725 /*
726 * Calculate the number of current summary pages for writing
727 */
728 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
729 {
730 int valid_sum_count = 0;
731 int i, sum_in_page;
732
733 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
734 if (sbi->ckpt->alloc_type[i] == SSR)
735 valid_sum_count += sbi->blocks_per_seg;
736 else {
737 if (for_ra)
738 valid_sum_count += le16_to_cpu(
739 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
740 else
741 valid_sum_count += curseg_blkoff(sbi, i);
742 }
743 }
744
745 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
746 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
747 if (valid_sum_count <= sum_in_page)
748 return 1;
749 else if ((valid_sum_count - sum_in_page) <=
750 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
751 return 2;
752 return 3;
753 }
754
755 /*
756 * Caller should put this summary page
757 */
758 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
759 {
760 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
761 }
762
763 static void write_sum_page(struct f2fs_sb_info *sbi,
764 struct f2fs_summary_block *sum_blk, block_t blk_addr)
765 {
766 struct page *page = grab_meta_page(sbi, blk_addr);
767 void *kaddr = page_address(page);
768 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
769 set_page_dirty(page);
770 f2fs_put_page(page, 1);
771 }
772
773 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
774 {
775 struct curseg_info *curseg = CURSEG_I(sbi, type);
776 unsigned int segno = curseg->segno + 1;
777 struct free_segmap_info *free_i = FREE_I(sbi);
778
779 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
780 return !test_bit(segno, free_i->free_segmap);
781 return 0;
782 }
783
784 /*
785 * Find a new segment from the free segments bitmap to right order
786 * This function should be returned with success, otherwise BUG
787 */
788 static void get_new_segment(struct f2fs_sb_info *sbi,
789 unsigned int *newseg, bool new_sec, int dir)
790 {
791 struct free_segmap_info *free_i = FREE_I(sbi);
792 unsigned int segno, secno, zoneno;
793 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
794 unsigned int hint = *newseg / sbi->segs_per_sec;
795 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
796 unsigned int left_start = hint;
797 bool init = true;
798 int go_left = 0;
799 int i;
800
801 write_lock(&free_i->segmap_lock);
802
803 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
804 segno = find_next_zero_bit(free_i->free_segmap,
805 MAIN_SEGS(sbi), *newseg + 1);
806 if (segno - *newseg < sbi->segs_per_sec -
807 (*newseg % sbi->segs_per_sec))
808 goto got_it;
809 }
810 find_other_zone:
811 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
812 if (secno >= MAIN_SECS(sbi)) {
813 if (dir == ALLOC_RIGHT) {
814 secno = find_next_zero_bit(free_i->free_secmap,
815 MAIN_SECS(sbi), 0);
816 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
817 } else {
818 go_left = 1;
819 left_start = hint - 1;
820 }
821 }
822 if (go_left == 0)
823 goto skip_left;
824
825 while (test_bit(left_start, free_i->free_secmap)) {
826 if (left_start > 0) {
827 left_start--;
828 continue;
829 }
830 left_start = find_next_zero_bit(free_i->free_secmap,
831 MAIN_SECS(sbi), 0);
832 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
833 break;
834 }
835 secno = left_start;
836 skip_left:
837 hint = secno;
838 segno = secno * sbi->segs_per_sec;
839 zoneno = secno / sbi->secs_per_zone;
840
841 /* give up on finding another zone */
842 if (!init)
843 goto got_it;
844 if (sbi->secs_per_zone == 1)
845 goto got_it;
846 if (zoneno == old_zoneno)
847 goto got_it;
848 if (dir == ALLOC_LEFT) {
849 if (!go_left && zoneno + 1 >= total_zones)
850 goto got_it;
851 if (go_left && zoneno == 0)
852 goto got_it;
853 }
854 for (i = 0; i < NR_CURSEG_TYPE; i++)
855 if (CURSEG_I(sbi, i)->zone == zoneno)
856 break;
857
858 if (i < NR_CURSEG_TYPE) {
859 /* zone is in user, try another */
860 if (go_left)
861 hint = zoneno * sbi->secs_per_zone - 1;
862 else if (zoneno + 1 >= total_zones)
863 hint = 0;
864 else
865 hint = (zoneno + 1) * sbi->secs_per_zone;
866 init = false;
867 goto find_other_zone;
868 }
869 got_it:
870 /* set it as dirty segment in free segmap */
871 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
872 __set_inuse(sbi, segno);
873 *newseg = segno;
874 write_unlock(&free_i->segmap_lock);
875 }
876
877 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
878 {
879 struct curseg_info *curseg = CURSEG_I(sbi, type);
880 struct summary_footer *sum_footer;
881
882 curseg->segno = curseg->next_segno;
883 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
884 curseg->next_blkoff = 0;
885 curseg->next_segno = NULL_SEGNO;
886
887 sum_footer = &(curseg->sum_blk->footer);
888 memset(sum_footer, 0, sizeof(struct summary_footer));
889 if (IS_DATASEG(type))
890 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
891 if (IS_NODESEG(type))
892 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
893 __set_sit_entry_type(sbi, type, curseg->segno, modified);
894 }
895
896 /*
897 * Allocate a current working segment.
898 * This function always allocates a free segment in LFS manner.
899 */
900 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
901 {
902 struct curseg_info *curseg = CURSEG_I(sbi, type);
903 unsigned int segno = curseg->segno;
904 int dir = ALLOC_LEFT;
905
906 write_sum_page(sbi, curseg->sum_blk,
907 GET_SUM_BLOCK(sbi, segno));
908 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
909 dir = ALLOC_RIGHT;
910
911 if (test_opt(sbi, NOHEAP))
912 dir = ALLOC_RIGHT;
913
914 get_new_segment(sbi, &segno, new_sec, dir);
915 curseg->next_segno = segno;
916 reset_curseg(sbi, type, 1);
917 curseg->alloc_type = LFS;
918 }
919
920 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
921 struct curseg_info *seg, block_t start)
922 {
923 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
924 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
925 unsigned long target_map[entries];
926 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
927 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
928 int i, pos;
929
930 for (i = 0; i < entries; i++)
931 target_map[i] = ckpt_map[i] | cur_map[i];
932
933 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
934
935 seg->next_blkoff = pos;
936 }
937
938 /*
939 * If a segment is written by LFS manner, next block offset is just obtained
940 * by increasing the current block offset. However, if a segment is written by
941 * SSR manner, next block offset obtained by calling __next_free_blkoff
942 */
943 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
944 struct curseg_info *seg)
945 {
946 if (seg->alloc_type == SSR)
947 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
948 else
949 seg->next_blkoff++;
950 }
951
952 /*
953 * This function always allocates a used segment(from dirty seglist) by SSR
954 * manner, so it should recover the existing segment information of valid blocks
955 */
956 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
957 {
958 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
959 struct curseg_info *curseg = CURSEG_I(sbi, type);
960 unsigned int new_segno = curseg->next_segno;
961 struct f2fs_summary_block *sum_node;
962 struct page *sum_page;
963
964 write_sum_page(sbi, curseg->sum_blk,
965 GET_SUM_BLOCK(sbi, curseg->segno));
966 __set_test_and_inuse(sbi, new_segno);
967
968 mutex_lock(&dirty_i->seglist_lock);
969 __remove_dirty_segment(sbi, new_segno, PRE);
970 __remove_dirty_segment(sbi, new_segno, DIRTY);
971 mutex_unlock(&dirty_i->seglist_lock);
972
973 reset_curseg(sbi, type, 1);
974 curseg->alloc_type = SSR;
975 __next_free_blkoff(sbi, curseg, 0);
976
977 if (reuse) {
978 sum_page = get_sum_page(sbi, new_segno);
979 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
980 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
981 f2fs_put_page(sum_page, 1);
982 }
983 }
984
985 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
986 {
987 struct curseg_info *curseg = CURSEG_I(sbi, type);
988 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
989
990 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
991 return v_ops->get_victim(sbi,
992 &(curseg)->next_segno, BG_GC, type, SSR);
993
994 /* For data segments, let's do SSR more intensively */
995 for (; type >= CURSEG_HOT_DATA; type--)
996 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
997 BG_GC, type, SSR))
998 return 1;
999 return 0;
1000 }
1001
1002 /*
1003 * flush out current segment and replace it with new segment
1004 * This function should be returned with success, otherwise BUG
1005 */
1006 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1007 int type, bool force)
1008 {
1009 struct curseg_info *curseg = CURSEG_I(sbi, type);
1010
1011 if (force)
1012 new_curseg(sbi, type, true);
1013 else if (type == CURSEG_WARM_NODE)
1014 new_curseg(sbi, type, false);
1015 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1016 new_curseg(sbi, type, false);
1017 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1018 change_curseg(sbi, type, true);
1019 else
1020 new_curseg(sbi, type, false);
1021
1022 stat_inc_seg_type(sbi, curseg);
1023 }
1024
1025 void allocate_new_segments(struct f2fs_sb_info *sbi)
1026 {
1027 struct curseg_info *curseg;
1028 unsigned int old_curseg;
1029 int i;
1030
1031 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1032 curseg = CURSEG_I(sbi, i);
1033 old_curseg = curseg->segno;
1034 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
1035 locate_dirty_segment(sbi, old_curseg);
1036 }
1037 }
1038
1039 static const struct segment_allocation default_salloc_ops = {
1040 .allocate_segment = allocate_segment_by_default,
1041 };
1042
1043 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1044 {
1045 __u64 start = range->start >> sbi->log_blocksize;
1046 __u64 end = start + (range->len >> sbi->log_blocksize) - 1;
1047 unsigned int start_segno, end_segno;
1048 struct cp_control cpc;
1049
1050 if (range->minlen > SEGMENT_SIZE(sbi) || start >= MAX_BLKADDR(sbi) ||
1051 range->len < sbi->blocksize)
1052 return -EINVAL;
1053
1054 cpc.trimmed = 0;
1055 if (end <= MAIN_BLKADDR(sbi))
1056 goto out;
1057
1058 /* start/end segment number in main_area */
1059 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1060 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1061 GET_SEGNO(sbi, end);
1062 cpc.reason = CP_DISCARD;
1063 cpc.trim_start = start_segno;
1064 cpc.trim_end = end_segno;
1065 cpc.trim_minlen = range->minlen >> sbi->log_blocksize;
1066
1067 /* do checkpoint to issue discard commands safely */
1068 mutex_lock(&sbi->gc_mutex);
1069 write_checkpoint(sbi, &cpc);
1070 mutex_unlock(&sbi->gc_mutex);
1071 out:
1072 range->len = cpc.trimmed << sbi->log_blocksize;
1073 return 0;
1074 }
1075
1076 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1077 {
1078 struct curseg_info *curseg = CURSEG_I(sbi, type);
1079 if (curseg->next_blkoff < sbi->blocks_per_seg)
1080 return true;
1081 return false;
1082 }
1083
1084 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1085 {
1086 if (p_type == DATA)
1087 return CURSEG_HOT_DATA;
1088 else
1089 return CURSEG_HOT_NODE;
1090 }
1091
1092 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1093 {
1094 if (p_type == DATA) {
1095 struct inode *inode = page->mapping->host;
1096
1097 if (S_ISDIR(inode->i_mode))
1098 return CURSEG_HOT_DATA;
1099 else
1100 return CURSEG_COLD_DATA;
1101 } else {
1102 if (IS_DNODE(page) && is_cold_node(page))
1103 return CURSEG_WARM_NODE;
1104 else
1105 return CURSEG_COLD_NODE;
1106 }
1107 }
1108
1109 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1110 {
1111 if (p_type == DATA) {
1112 struct inode *inode = page->mapping->host;
1113
1114 if (S_ISDIR(inode->i_mode))
1115 return CURSEG_HOT_DATA;
1116 else if (is_cold_data(page) || file_is_cold(inode))
1117 return CURSEG_COLD_DATA;
1118 else
1119 return CURSEG_WARM_DATA;
1120 } else {
1121 if (IS_DNODE(page))
1122 return is_cold_node(page) ? CURSEG_WARM_NODE :
1123 CURSEG_HOT_NODE;
1124 else
1125 return CURSEG_COLD_NODE;
1126 }
1127 }
1128
1129 static int __get_segment_type(struct page *page, enum page_type p_type)
1130 {
1131 switch (F2FS_P_SB(page)->active_logs) {
1132 case 2:
1133 return __get_segment_type_2(page, p_type);
1134 case 4:
1135 return __get_segment_type_4(page, p_type);
1136 }
1137 /* NR_CURSEG_TYPE(6) logs by default */
1138 f2fs_bug_on(F2FS_P_SB(page),
1139 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1140 return __get_segment_type_6(page, p_type);
1141 }
1142
1143 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1144 block_t old_blkaddr, block_t *new_blkaddr,
1145 struct f2fs_summary *sum, int type)
1146 {
1147 struct sit_info *sit_i = SIT_I(sbi);
1148 struct curseg_info *curseg;
1149
1150 curseg = CURSEG_I(sbi, type);
1151
1152 mutex_lock(&curseg->curseg_mutex);
1153
1154 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1155
1156 /*
1157 * __add_sum_entry should be resided under the curseg_mutex
1158 * because, this function updates a summary entry in the
1159 * current summary block.
1160 */
1161 __add_sum_entry(sbi, type, sum);
1162
1163 mutex_lock(&sit_i->sentry_lock);
1164 __refresh_next_blkoff(sbi, curseg);
1165
1166 stat_inc_block_count(sbi, curseg);
1167
1168 if (!__has_curseg_space(sbi, type))
1169 sit_i->s_ops->allocate_segment(sbi, type, false);
1170 /*
1171 * SIT information should be updated before segment allocation,
1172 * since SSR needs latest valid block information.
1173 */
1174 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1175
1176 mutex_unlock(&sit_i->sentry_lock);
1177
1178 if (page && IS_NODESEG(type))
1179 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1180
1181 mutex_unlock(&curseg->curseg_mutex);
1182 }
1183
1184 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
1185 block_t old_blkaddr, block_t *new_blkaddr,
1186 struct f2fs_summary *sum, struct f2fs_io_info *fio)
1187 {
1188 int type = __get_segment_type(page, fio->type);
1189
1190 allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
1191
1192 /* writeout dirty page into bdev */
1193 f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
1194 }
1195
1196 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1197 {
1198 struct f2fs_io_info fio = {
1199 .type = META,
1200 .rw = WRITE_SYNC | REQ_META | REQ_PRIO
1201 };
1202
1203 set_page_writeback(page);
1204 f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1205 }
1206
1207 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
1208 struct f2fs_io_info *fio,
1209 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
1210 {
1211 struct f2fs_summary sum;
1212 set_summary(&sum, nid, 0, 0);
1213 do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
1214 }
1215
1216 void write_data_page(struct page *page, struct dnode_of_data *dn,
1217 block_t *new_blkaddr, struct f2fs_io_info *fio)
1218 {
1219 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1220 struct f2fs_summary sum;
1221 struct node_info ni;
1222
1223 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1224 get_node_info(sbi, dn->nid, &ni);
1225 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1226
1227 do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
1228 }
1229
1230 void rewrite_data_page(struct page *page, block_t old_blkaddr,
1231 struct f2fs_io_info *fio)
1232 {
1233 f2fs_submit_page_mbio(F2FS_P_SB(page), page, old_blkaddr, fio);
1234 }
1235
1236 void recover_data_page(struct f2fs_sb_info *sbi,
1237 struct page *page, struct f2fs_summary *sum,
1238 block_t old_blkaddr, block_t new_blkaddr)
1239 {
1240 struct sit_info *sit_i = SIT_I(sbi);
1241 struct curseg_info *curseg;
1242 unsigned int segno, old_cursegno;
1243 struct seg_entry *se;
1244 int type;
1245
1246 segno = GET_SEGNO(sbi, new_blkaddr);
1247 se = get_seg_entry(sbi, segno);
1248 type = se->type;
1249
1250 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1251 if (old_blkaddr == NULL_ADDR)
1252 type = CURSEG_COLD_DATA;
1253 else
1254 type = CURSEG_WARM_DATA;
1255 }
1256 curseg = CURSEG_I(sbi, type);
1257
1258 mutex_lock(&curseg->curseg_mutex);
1259 mutex_lock(&sit_i->sentry_lock);
1260
1261 old_cursegno = curseg->segno;
1262
1263 /* change the current segment */
1264 if (segno != curseg->segno) {
1265 curseg->next_segno = segno;
1266 change_curseg(sbi, type, true);
1267 }
1268
1269 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1270 __add_sum_entry(sbi, type, sum);
1271
1272 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1273 locate_dirty_segment(sbi, old_cursegno);
1274
1275 mutex_unlock(&sit_i->sentry_lock);
1276 mutex_unlock(&curseg->curseg_mutex);
1277 }
1278
1279 static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1280 struct page *page, enum page_type type)
1281 {
1282 enum page_type btype = PAGE_TYPE_OF_BIO(type);
1283 struct f2fs_bio_info *io = &sbi->write_io[btype];
1284 struct bio_vec *bvec;
1285 int i;
1286
1287 down_read(&io->io_rwsem);
1288 if (!io->bio)
1289 goto out;
1290
1291 bio_for_each_segment_all(bvec, io->bio, i) {
1292 if (page == bvec->bv_page) {
1293 up_read(&io->io_rwsem);
1294 return true;
1295 }
1296 }
1297
1298 out:
1299 up_read(&io->io_rwsem);
1300 return false;
1301 }
1302
1303 void f2fs_wait_on_page_writeback(struct page *page,
1304 enum page_type type)
1305 {
1306 if (PageWriteback(page)) {
1307 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1308
1309 if (is_merged_page(sbi, page, type))
1310 f2fs_submit_merged_bio(sbi, type, WRITE);
1311 wait_on_page_writeback(page);
1312 }
1313 }
1314
1315 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1316 {
1317 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1318 struct curseg_info *seg_i;
1319 unsigned char *kaddr;
1320 struct page *page;
1321 block_t start;
1322 int i, j, offset;
1323
1324 start = start_sum_block(sbi);
1325
1326 page = get_meta_page(sbi, start++);
1327 kaddr = (unsigned char *)page_address(page);
1328
1329 /* Step 1: restore nat cache */
1330 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1331 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1332
1333 /* Step 2: restore sit cache */
1334 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1335 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1336 SUM_JOURNAL_SIZE);
1337 offset = 2 * SUM_JOURNAL_SIZE;
1338
1339 /* Step 3: restore summary entries */
1340 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1341 unsigned short blk_off;
1342 unsigned int segno;
1343
1344 seg_i = CURSEG_I(sbi, i);
1345 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1346 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1347 seg_i->next_segno = segno;
1348 reset_curseg(sbi, i, 0);
1349 seg_i->alloc_type = ckpt->alloc_type[i];
1350 seg_i->next_blkoff = blk_off;
1351
1352 if (seg_i->alloc_type == SSR)
1353 blk_off = sbi->blocks_per_seg;
1354
1355 for (j = 0; j < blk_off; j++) {
1356 struct f2fs_summary *s;
1357 s = (struct f2fs_summary *)(kaddr + offset);
1358 seg_i->sum_blk->entries[j] = *s;
1359 offset += SUMMARY_SIZE;
1360 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1361 SUM_FOOTER_SIZE)
1362 continue;
1363
1364 f2fs_put_page(page, 1);
1365 page = NULL;
1366
1367 page = get_meta_page(sbi, start++);
1368 kaddr = (unsigned char *)page_address(page);
1369 offset = 0;
1370 }
1371 }
1372 f2fs_put_page(page, 1);
1373 return 0;
1374 }
1375
1376 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1377 {
1378 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1379 struct f2fs_summary_block *sum;
1380 struct curseg_info *curseg;
1381 struct page *new;
1382 unsigned short blk_off;
1383 unsigned int segno = 0;
1384 block_t blk_addr = 0;
1385
1386 /* get segment number and block addr */
1387 if (IS_DATASEG(type)) {
1388 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1389 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1390 CURSEG_HOT_DATA]);
1391 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1392 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1393 else
1394 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1395 } else {
1396 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1397 CURSEG_HOT_NODE]);
1398 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1399 CURSEG_HOT_NODE]);
1400 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1401 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1402 type - CURSEG_HOT_NODE);
1403 else
1404 blk_addr = GET_SUM_BLOCK(sbi, segno);
1405 }
1406
1407 new = get_meta_page(sbi, blk_addr);
1408 sum = (struct f2fs_summary_block *)page_address(new);
1409
1410 if (IS_NODESEG(type)) {
1411 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1412 struct f2fs_summary *ns = &sum->entries[0];
1413 int i;
1414 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1415 ns->version = 0;
1416 ns->ofs_in_node = 0;
1417 }
1418 } else {
1419 int err;
1420
1421 err = restore_node_summary(sbi, segno, sum);
1422 if (err) {
1423 f2fs_put_page(new, 1);
1424 return err;
1425 }
1426 }
1427 }
1428
1429 /* set uncompleted segment to curseg */
1430 curseg = CURSEG_I(sbi, type);
1431 mutex_lock(&curseg->curseg_mutex);
1432 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1433 curseg->next_segno = segno;
1434 reset_curseg(sbi, type, 0);
1435 curseg->alloc_type = ckpt->alloc_type[type];
1436 curseg->next_blkoff = blk_off;
1437 mutex_unlock(&curseg->curseg_mutex);
1438 f2fs_put_page(new, 1);
1439 return 0;
1440 }
1441
1442 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1443 {
1444 int type = CURSEG_HOT_DATA;
1445 int err;
1446
1447 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1448 int npages = npages_for_summary_flush(sbi, true);
1449
1450 if (npages >= 2)
1451 ra_meta_pages(sbi, start_sum_block(sbi), npages,
1452 META_CP);
1453
1454 /* restore for compacted data summary */
1455 if (read_compacted_summaries(sbi))
1456 return -EINVAL;
1457 type = CURSEG_HOT_NODE;
1458 }
1459
1460 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1461 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1462 NR_CURSEG_TYPE - type, META_CP);
1463
1464 for (; type <= CURSEG_COLD_NODE; type++) {
1465 err = read_normal_summaries(sbi, type);
1466 if (err)
1467 return err;
1468 }
1469
1470 return 0;
1471 }
1472
1473 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1474 {
1475 struct page *page;
1476 unsigned char *kaddr;
1477 struct f2fs_summary *summary;
1478 struct curseg_info *seg_i;
1479 int written_size = 0;
1480 int i, j;
1481
1482 page = grab_meta_page(sbi, blkaddr++);
1483 kaddr = (unsigned char *)page_address(page);
1484
1485 /* Step 1: write nat cache */
1486 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1487 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1488 written_size += SUM_JOURNAL_SIZE;
1489
1490 /* Step 2: write sit cache */
1491 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1492 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1493 SUM_JOURNAL_SIZE);
1494 written_size += SUM_JOURNAL_SIZE;
1495
1496 /* Step 3: write summary entries */
1497 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1498 unsigned short blkoff;
1499 seg_i = CURSEG_I(sbi, i);
1500 if (sbi->ckpt->alloc_type[i] == SSR)
1501 blkoff = sbi->blocks_per_seg;
1502 else
1503 blkoff = curseg_blkoff(sbi, i);
1504
1505 for (j = 0; j < blkoff; j++) {
1506 if (!page) {
1507 page = grab_meta_page(sbi, blkaddr++);
1508 kaddr = (unsigned char *)page_address(page);
1509 written_size = 0;
1510 }
1511 summary = (struct f2fs_summary *)(kaddr + written_size);
1512 *summary = seg_i->sum_blk->entries[j];
1513 written_size += SUMMARY_SIZE;
1514
1515 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1516 SUM_FOOTER_SIZE)
1517 continue;
1518
1519 set_page_dirty(page);
1520 f2fs_put_page(page, 1);
1521 page = NULL;
1522 }
1523 }
1524 if (page) {
1525 set_page_dirty(page);
1526 f2fs_put_page(page, 1);
1527 }
1528 }
1529
1530 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1531 block_t blkaddr, int type)
1532 {
1533 int i, end;
1534 if (IS_DATASEG(type))
1535 end = type + NR_CURSEG_DATA_TYPE;
1536 else
1537 end = type + NR_CURSEG_NODE_TYPE;
1538
1539 for (i = type; i < end; i++) {
1540 struct curseg_info *sum = CURSEG_I(sbi, i);
1541 mutex_lock(&sum->curseg_mutex);
1542 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1543 mutex_unlock(&sum->curseg_mutex);
1544 }
1545 }
1546
1547 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1548 {
1549 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1550 write_compacted_summaries(sbi, start_blk);
1551 else
1552 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1553 }
1554
1555 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1556 {
1557 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1558 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1559 }
1560
1561 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1562 unsigned int val, int alloc)
1563 {
1564 int i;
1565
1566 if (type == NAT_JOURNAL) {
1567 for (i = 0; i < nats_in_cursum(sum); i++) {
1568 if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1569 return i;
1570 }
1571 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1572 return update_nats_in_cursum(sum, 1);
1573 } else if (type == SIT_JOURNAL) {
1574 for (i = 0; i < sits_in_cursum(sum); i++)
1575 if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1576 return i;
1577 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1578 return update_sits_in_cursum(sum, 1);
1579 }
1580 return -1;
1581 }
1582
1583 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1584 unsigned int segno)
1585 {
1586 return get_meta_page(sbi, current_sit_addr(sbi, segno));
1587 }
1588
1589 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1590 unsigned int start)
1591 {
1592 struct sit_info *sit_i = SIT_I(sbi);
1593 struct page *src_page, *dst_page;
1594 pgoff_t src_off, dst_off;
1595 void *src_addr, *dst_addr;
1596
1597 src_off = current_sit_addr(sbi, start);
1598 dst_off = next_sit_addr(sbi, src_off);
1599
1600 /* get current sit block page without lock */
1601 src_page = get_meta_page(sbi, src_off);
1602 dst_page = grab_meta_page(sbi, dst_off);
1603 f2fs_bug_on(sbi, PageDirty(src_page));
1604
1605 src_addr = page_address(src_page);
1606 dst_addr = page_address(dst_page);
1607 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1608
1609 set_page_dirty(dst_page);
1610 f2fs_put_page(src_page, 1);
1611
1612 set_to_next_sit(sit_i, start);
1613
1614 return dst_page;
1615 }
1616
1617 static struct sit_entry_set *grab_sit_entry_set(void)
1618 {
1619 struct sit_entry_set *ses =
1620 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC);
1621
1622 ses->entry_cnt = 0;
1623 INIT_LIST_HEAD(&ses->set_list);
1624 return ses;
1625 }
1626
1627 static void release_sit_entry_set(struct sit_entry_set *ses)
1628 {
1629 list_del(&ses->set_list);
1630 kmem_cache_free(sit_entry_set_slab, ses);
1631 }
1632
1633 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1634 struct list_head *head)
1635 {
1636 struct sit_entry_set *next = ses;
1637
1638 if (list_is_last(&ses->set_list, head))
1639 return;
1640
1641 list_for_each_entry_continue(next, head, set_list)
1642 if (ses->entry_cnt <= next->entry_cnt)
1643 break;
1644
1645 list_move_tail(&ses->set_list, &next->set_list);
1646 }
1647
1648 static void add_sit_entry(unsigned int segno, struct list_head *head)
1649 {
1650 struct sit_entry_set *ses;
1651 unsigned int start_segno = START_SEGNO(segno);
1652
1653 list_for_each_entry(ses, head, set_list) {
1654 if (ses->start_segno == start_segno) {
1655 ses->entry_cnt++;
1656 adjust_sit_entry_set(ses, head);
1657 return;
1658 }
1659 }
1660
1661 ses = grab_sit_entry_set();
1662
1663 ses->start_segno = start_segno;
1664 ses->entry_cnt++;
1665 list_add(&ses->set_list, head);
1666 }
1667
1668 static void add_sits_in_set(struct f2fs_sb_info *sbi)
1669 {
1670 struct f2fs_sm_info *sm_info = SM_I(sbi);
1671 struct list_head *set_list = &sm_info->sit_entry_set;
1672 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1673 unsigned int segno;
1674
1675 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1676 add_sit_entry(segno, set_list);
1677 }
1678
1679 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1680 {
1681 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1682 struct f2fs_summary_block *sum = curseg->sum_blk;
1683 int i;
1684
1685 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1686 unsigned int segno;
1687 bool dirtied;
1688
1689 segno = le32_to_cpu(segno_in_journal(sum, i));
1690 dirtied = __mark_sit_entry_dirty(sbi, segno);
1691
1692 if (!dirtied)
1693 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1694 }
1695 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1696 }
1697
1698 /*
1699 * CP calls this function, which flushes SIT entries including sit_journal,
1700 * and moves prefree segs to free segs.
1701 */
1702 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1703 {
1704 struct sit_info *sit_i = SIT_I(sbi);
1705 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1706 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1707 struct f2fs_summary_block *sum = curseg->sum_blk;
1708 struct sit_entry_set *ses, *tmp;
1709 struct list_head *head = &SM_I(sbi)->sit_entry_set;
1710 bool to_journal = true;
1711 struct seg_entry *se;
1712
1713 mutex_lock(&curseg->curseg_mutex);
1714 mutex_lock(&sit_i->sentry_lock);
1715
1716 /*
1717 * add and account sit entries of dirty bitmap in sit entry
1718 * set temporarily
1719 */
1720 add_sits_in_set(sbi);
1721
1722 /*
1723 * if there are no enough space in journal to store dirty sit
1724 * entries, remove all entries from journal and add and account
1725 * them in sit entry set.
1726 */
1727 if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL))
1728 remove_sits_in_journal(sbi);
1729
1730 if (!sit_i->dirty_sentries)
1731 goto out;
1732
1733 /*
1734 * there are two steps to flush sit entries:
1735 * #1, flush sit entries to journal in current cold data summary block.
1736 * #2, flush sit entries to sit page.
1737 */
1738 list_for_each_entry_safe(ses, tmp, head, set_list) {
1739 struct page *page = NULL;
1740 struct f2fs_sit_block *raw_sit = NULL;
1741 unsigned int start_segno = ses->start_segno;
1742 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1743 (unsigned long)MAIN_SEGS(sbi));
1744 unsigned int segno = start_segno;
1745
1746 if (to_journal &&
1747 !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL))
1748 to_journal = false;
1749
1750 if (!to_journal) {
1751 page = get_next_sit_page(sbi, start_segno);
1752 raw_sit = page_address(page);
1753 }
1754
1755 /* flush dirty sit entries in region of current sit set */
1756 for_each_set_bit_from(segno, bitmap, end) {
1757 int offset, sit_offset;
1758
1759 se = get_seg_entry(sbi, segno);
1760
1761 /* add discard candidates */
1762 if (cpc->reason != CP_DISCARD) {
1763 cpc->trim_start = segno;
1764 add_discard_addrs(sbi, cpc);
1765 }
1766
1767 if (to_journal) {
1768 offset = lookup_journal_in_cursum(sum,
1769 SIT_JOURNAL, segno, 1);
1770 f2fs_bug_on(sbi, offset < 0);
1771 segno_in_journal(sum, offset) =
1772 cpu_to_le32(segno);
1773 seg_info_to_raw_sit(se,
1774 &sit_in_journal(sum, offset));
1775 } else {
1776 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1777 seg_info_to_raw_sit(se,
1778 &raw_sit->entries[sit_offset]);
1779 }
1780
1781 __clear_bit(segno, bitmap);
1782 sit_i->dirty_sentries--;
1783 ses->entry_cnt--;
1784 }
1785
1786 if (!to_journal)
1787 f2fs_put_page(page, 1);
1788
1789 f2fs_bug_on(sbi, ses->entry_cnt);
1790 release_sit_entry_set(ses);
1791 }
1792
1793 f2fs_bug_on(sbi, !list_empty(head));
1794 f2fs_bug_on(sbi, sit_i->dirty_sentries);
1795 out:
1796 if (cpc->reason == CP_DISCARD) {
1797 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
1798 add_discard_addrs(sbi, cpc);
1799 }
1800 mutex_unlock(&sit_i->sentry_lock);
1801 mutex_unlock(&curseg->curseg_mutex);
1802
1803 set_prefree_as_free_segments(sbi);
1804 }
1805
1806 static int build_sit_info(struct f2fs_sb_info *sbi)
1807 {
1808 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1809 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1810 struct sit_info *sit_i;
1811 unsigned int sit_segs, start;
1812 char *src_bitmap, *dst_bitmap;
1813 unsigned int bitmap_size;
1814
1815 /* allocate memory for SIT information */
1816 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1817 if (!sit_i)
1818 return -ENOMEM;
1819
1820 SM_I(sbi)->sit_info = sit_i;
1821
1822 sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry));
1823 if (!sit_i->sentries)
1824 return -ENOMEM;
1825
1826 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
1827 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1828 if (!sit_i->dirty_sentries_bitmap)
1829 return -ENOMEM;
1830
1831 for (start = 0; start < MAIN_SEGS(sbi); start++) {
1832 sit_i->sentries[start].cur_valid_map
1833 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1834 sit_i->sentries[start].ckpt_valid_map
1835 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1836 if (!sit_i->sentries[start].cur_valid_map
1837 || !sit_i->sentries[start].ckpt_valid_map)
1838 return -ENOMEM;
1839 }
1840
1841 if (sbi->segs_per_sec > 1) {
1842 sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) *
1843 sizeof(struct sec_entry));
1844 if (!sit_i->sec_entries)
1845 return -ENOMEM;
1846 }
1847
1848 /* get information related with SIT */
1849 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1850
1851 /* setup SIT bitmap from ckeckpoint pack */
1852 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1853 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1854
1855 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1856 if (!dst_bitmap)
1857 return -ENOMEM;
1858
1859 /* init SIT information */
1860 sit_i->s_ops = &default_salloc_ops;
1861
1862 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1863 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1864 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1865 sit_i->sit_bitmap = dst_bitmap;
1866 sit_i->bitmap_size = bitmap_size;
1867 sit_i->dirty_sentries = 0;
1868 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1869 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1870 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1871 mutex_init(&sit_i->sentry_lock);
1872 return 0;
1873 }
1874
1875 static int build_free_segmap(struct f2fs_sb_info *sbi)
1876 {
1877 struct free_segmap_info *free_i;
1878 unsigned int bitmap_size, sec_bitmap_size;
1879
1880 /* allocate memory for free segmap information */
1881 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1882 if (!free_i)
1883 return -ENOMEM;
1884
1885 SM_I(sbi)->free_info = free_i;
1886
1887 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
1888 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1889 if (!free_i->free_segmap)
1890 return -ENOMEM;
1891
1892 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
1893 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1894 if (!free_i->free_secmap)
1895 return -ENOMEM;
1896
1897 /* set all segments as dirty temporarily */
1898 memset(free_i->free_segmap, 0xff, bitmap_size);
1899 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1900
1901 /* init free segmap information */
1902 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
1903 free_i->free_segments = 0;
1904 free_i->free_sections = 0;
1905 rwlock_init(&free_i->segmap_lock);
1906 return 0;
1907 }
1908
1909 static int build_curseg(struct f2fs_sb_info *sbi)
1910 {
1911 struct curseg_info *array;
1912 int i;
1913
1914 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
1915 if (!array)
1916 return -ENOMEM;
1917
1918 SM_I(sbi)->curseg_array = array;
1919
1920 for (i = 0; i < NR_CURSEG_TYPE; i++) {
1921 mutex_init(&array[i].curseg_mutex);
1922 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1923 if (!array[i].sum_blk)
1924 return -ENOMEM;
1925 array[i].segno = NULL_SEGNO;
1926 array[i].next_blkoff = 0;
1927 }
1928 return restore_curseg_summaries(sbi);
1929 }
1930
1931 static void build_sit_entries(struct f2fs_sb_info *sbi)
1932 {
1933 struct sit_info *sit_i = SIT_I(sbi);
1934 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1935 struct f2fs_summary_block *sum = curseg->sum_blk;
1936 int sit_blk_cnt = SIT_BLK_CNT(sbi);
1937 unsigned int i, start, end;
1938 unsigned int readed, start_blk = 0;
1939 int nrpages = MAX_BIO_BLOCKS(sbi);
1940
1941 do {
1942 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
1943
1944 start = start_blk * sit_i->sents_per_block;
1945 end = (start_blk + readed) * sit_i->sents_per_block;
1946
1947 for (; start < end && start < MAIN_SEGS(sbi); start++) {
1948 struct seg_entry *se = &sit_i->sentries[start];
1949 struct f2fs_sit_block *sit_blk;
1950 struct f2fs_sit_entry sit;
1951 struct page *page;
1952
1953 mutex_lock(&curseg->curseg_mutex);
1954 for (i = 0; i < sits_in_cursum(sum); i++) {
1955 if (le32_to_cpu(segno_in_journal(sum, i))
1956 == start) {
1957 sit = sit_in_journal(sum, i);
1958 mutex_unlock(&curseg->curseg_mutex);
1959 goto got_it;
1960 }
1961 }
1962 mutex_unlock(&curseg->curseg_mutex);
1963
1964 page = get_current_sit_page(sbi, start);
1965 sit_blk = (struct f2fs_sit_block *)page_address(page);
1966 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1967 f2fs_put_page(page, 1);
1968 got_it:
1969 check_block_count(sbi, start, &sit);
1970 seg_info_from_raw_sit(se, &sit);
1971 if (sbi->segs_per_sec > 1) {
1972 struct sec_entry *e = get_sec_entry(sbi, start);
1973 e->valid_blocks += se->valid_blocks;
1974 }
1975 }
1976 start_blk += readed;
1977 } while (start_blk < sit_blk_cnt);
1978 }
1979
1980 static void init_free_segmap(struct f2fs_sb_info *sbi)
1981 {
1982 unsigned int start;
1983 int type;
1984
1985 for (start = 0; start < MAIN_SEGS(sbi); start++) {
1986 struct seg_entry *sentry = get_seg_entry(sbi, start);
1987 if (!sentry->valid_blocks)
1988 __set_free(sbi, start);
1989 }
1990
1991 /* set use the current segments */
1992 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1993 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1994 __set_test_and_inuse(sbi, curseg_t->segno);
1995 }
1996 }
1997
1998 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1999 {
2000 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2001 struct free_segmap_info *free_i = FREE_I(sbi);
2002 unsigned int segno = 0, offset = 0;
2003 unsigned short valid_blocks;
2004
2005 while (1) {
2006 /* find dirty segment based on free segmap */
2007 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2008 if (segno >= MAIN_SEGS(sbi))
2009 break;
2010 offset = segno + 1;
2011 valid_blocks = get_valid_blocks(sbi, segno, 0);
2012 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2013 continue;
2014 if (valid_blocks > sbi->blocks_per_seg) {
2015 f2fs_bug_on(sbi, 1);
2016 continue;
2017 }
2018 mutex_lock(&dirty_i->seglist_lock);
2019 __locate_dirty_segment(sbi, segno, DIRTY);
2020 mutex_unlock(&dirty_i->seglist_lock);
2021 }
2022 }
2023
2024 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2025 {
2026 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2027 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2028
2029 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
2030 if (!dirty_i->victim_secmap)
2031 return -ENOMEM;
2032 return 0;
2033 }
2034
2035 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2036 {
2037 struct dirty_seglist_info *dirty_i;
2038 unsigned int bitmap_size, i;
2039
2040 /* allocate memory for dirty segments list information */
2041 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2042 if (!dirty_i)
2043 return -ENOMEM;
2044
2045 SM_I(sbi)->dirty_info = dirty_i;
2046 mutex_init(&dirty_i->seglist_lock);
2047
2048 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2049
2050 for (i = 0; i < NR_DIRTY_TYPE; i++) {
2051 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
2052 if (!dirty_i->dirty_segmap[i])
2053 return -ENOMEM;
2054 }
2055
2056 init_dirty_segmap(sbi);
2057 return init_victim_secmap(sbi);
2058 }
2059
2060 /*
2061 * Update min, max modified time for cost-benefit GC algorithm
2062 */
2063 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2064 {
2065 struct sit_info *sit_i = SIT_I(sbi);
2066 unsigned int segno;
2067
2068 mutex_lock(&sit_i->sentry_lock);
2069
2070 sit_i->min_mtime = LLONG_MAX;
2071
2072 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2073 unsigned int i;
2074 unsigned long long mtime = 0;
2075
2076 for (i = 0; i < sbi->segs_per_sec; i++)
2077 mtime += get_seg_entry(sbi, segno + i)->mtime;
2078
2079 mtime = div_u64(mtime, sbi->segs_per_sec);
2080
2081 if (sit_i->min_mtime > mtime)
2082 sit_i->min_mtime = mtime;
2083 }
2084 sit_i->max_mtime = get_mtime(sbi);
2085 mutex_unlock(&sit_i->sentry_lock);
2086 }
2087
2088 int build_segment_manager(struct f2fs_sb_info *sbi)
2089 {
2090 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2091 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2092 struct f2fs_sm_info *sm_info;
2093 int err;
2094
2095 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2096 if (!sm_info)
2097 return -ENOMEM;
2098
2099 /* init sm info */
2100 sbi->sm_info = sm_info;
2101 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2102 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2103 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2104 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2105 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2106 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2107 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2108 sm_info->rec_prefree_segments = sm_info->main_segments *
2109 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2110 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2111 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2112 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2113
2114 INIT_LIST_HEAD(&sm_info->discard_list);
2115 sm_info->nr_discards = 0;
2116 sm_info->max_discards = 0;
2117
2118 INIT_LIST_HEAD(&sm_info->sit_entry_set);
2119
2120 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2121 err = create_flush_cmd_control(sbi);
2122 if (err)
2123 return err;
2124 }
2125
2126 err = build_sit_info(sbi);
2127 if (err)
2128 return err;
2129 err = build_free_segmap(sbi);
2130 if (err)
2131 return err;
2132 err = build_curseg(sbi);
2133 if (err)
2134 return err;
2135
2136 /* reinit free segmap based on SIT */
2137 build_sit_entries(sbi);
2138
2139 init_free_segmap(sbi);
2140 err = build_dirty_segmap(sbi);
2141 if (err)
2142 return err;
2143
2144 init_min_max_mtime(sbi);
2145 return 0;
2146 }
2147
2148 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2149 enum dirty_type dirty_type)
2150 {
2151 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2152
2153 mutex_lock(&dirty_i->seglist_lock);
2154 kfree(dirty_i->dirty_segmap[dirty_type]);
2155 dirty_i->nr_dirty[dirty_type] = 0;
2156 mutex_unlock(&dirty_i->seglist_lock);
2157 }
2158
2159 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2160 {
2161 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2162 kfree(dirty_i->victim_secmap);
2163 }
2164
2165 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2166 {
2167 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2168 int i;
2169
2170 if (!dirty_i)
2171 return;
2172
2173 /* discard pre-free/dirty segments list */
2174 for (i = 0; i < NR_DIRTY_TYPE; i++)
2175 discard_dirty_segmap(sbi, i);
2176
2177 destroy_victim_secmap(sbi);
2178 SM_I(sbi)->dirty_info = NULL;
2179 kfree(dirty_i);
2180 }
2181
2182 static void destroy_curseg(struct f2fs_sb_info *sbi)
2183 {
2184 struct curseg_info *array = SM_I(sbi)->curseg_array;
2185 int i;
2186
2187 if (!array)
2188 return;
2189 SM_I(sbi)->curseg_array = NULL;
2190 for (i = 0; i < NR_CURSEG_TYPE; i++)
2191 kfree(array[i].sum_blk);
2192 kfree(array);
2193 }
2194
2195 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2196 {
2197 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2198 if (!free_i)
2199 return;
2200 SM_I(sbi)->free_info = NULL;
2201 kfree(free_i->free_segmap);
2202 kfree(free_i->free_secmap);
2203 kfree(free_i);
2204 }
2205
2206 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2207 {
2208 struct sit_info *sit_i = SIT_I(sbi);
2209 unsigned int start;
2210
2211 if (!sit_i)
2212 return;
2213
2214 if (sit_i->sentries) {
2215 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2216 kfree(sit_i->sentries[start].cur_valid_map);
2217 kfree(sit_i->sentries[start].ckpt_valid_map);
2218 }
2219 }
2220 vfree(sit_i->sentries);
2221 vfree(sit_i->sec_entries);
2222 kfree(sit_i->dirty_sentries_bitmap);
2223
2224 SM_I(sbi)->sit_info = NULL;
2225 kfree(sit_i->sit_bitmap);
2226 kfree(sit_i);
2227 }
2228
2229 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2230 {
2231 struct f2fs_sm_info *sm_info = SM_I(sbi);
2232
2233 if (!sm_info)
2234 return;
2235 destroy_flush_cmd_control(sbi);
2236 destroy_dirty_segmap(sbi);
2237 destroy_curseg(sbi);
2238 destroy_free_segmap(sbi);
2239 destroy_sit_info(sbi);
2240 sbi->sm_info = NULL;
2241 kfree(sm_info);
2242 }
2243
2244 int __init create_segment_manager_caches(void)
2245 {
2246 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2247 sizeof(struct discard_entry));
2248 if (!discard_entry_slab)
2249 goto fail;
2250
2251 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2252 sizeof(struct sit_entry_set));
2253 if (!sit_entry_set_slab)
2254 goto destory_discard_entry;
2255
2256 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2257 sizeof(struct inmem_pages));
2258 if (!inmem_entry_slab)
2259 goto destroy_sit_entry_set;
2260 return 0;
2261
2262 destroy_sit_entry_set:
2263 kmem_cache_destroy(sit_entry_set_slab);
2264 destory_discard_entry:
2265 kmem_cache_destroy(discard_entry_slab);
2266 fail:
2267 return -ENOMEM;
2268 }
2269
2270 void destroy_segment_manager_caches(void)
2271 {
2272 kmem_cache_destroy(sit_entry_set_slab);
2273 kmem_cache_destroy(discard_entry_slab);
2274 kmem_cache_destroy(inmem_entry_slab);
2275 }
This page took 0.074282 seconds and 6 git commands to generate.