Merge tag 'ofs-pull-tag-1' of git://git.kernel.org/pub/scm/linux/kernel/git/hubcap...
[deliverable/linux.git] / fs / f2fs / segment.h
1 /*
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
13
14 /* constant macro */
15 #define NULL_SEGNO ((unsigned int)(~0))
16 #define NULL_SECNO ((unsigned int)(~0))
17
18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19
20 /* L: Logical segment # in volume, R: Relative segment # in main area */
21 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
22 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
23
24 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
25 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
26
27 #define IS_CURSEG(sbi, seg) \
28 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
33 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
34
35 #define IS_CURSEC(sbi, secno) \
36 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
37 sbi->segs_per_sec) || \
38 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
39 sbi->segs_per_sec) || \
40 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
41 sbi->segs_per_sec) || \
42 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
43 sbi->segs_per_sec) || \
44 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
45 sbi->segs_per_sec) || \
46 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
47 sbi->segs_per_sec)) \
48
49 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
50 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
51
52 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
53 #define MAIN_SECS(sbi) (sbi->total_sections)
54
55 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
56 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
57
58 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
59 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
60 sbi->log_blocks_per_seg))
61
62 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
63 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
64
65 #define NEXT_FREE_BLKADDR(sbi, curseg) \
66 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
67
68 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
69 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
70 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
71 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
72 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
73
74 #define GET_SEGNO(sbi, blk_addr) \
75 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
76 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
77 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
78 #define GET_SECNO(sbi, segno) \
79 ((segno) / sbi->segs_per_sec)
80 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
81 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
82
83 #define GET_SUM_BLOCK(sbi, segno) \
84 ((sbi->sm_info->ssa_blkaddr) + segno)
85
86 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
87 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
88
89 #define SIT_ENTRY_OFFSET(sit_i, segno) \
90 (segno % sit_i->sents_per_block)
91 #define SIT_BLOCK_OFFSET(segno) \
92 (segno / SIT_ENTRY_PER_BLOCK)
93 #define START_SEGNO(segno) \
94 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
95 #define SIT_BLK_CNT(sbi) \
96 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
97 #define f2fs_bitmap_size(nr) \
98 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
99
100 #define SECTOR_FROM_BLOCK(blk_addr) \
101 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
102 #define SECTOR_TO_BLOCK(sectors) \
103 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
104 #define MAX_BIO_BLOCKS(sbi) \
105 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
106
107 /*
108 * indicate a block allocation direction: RIGHT and LEFT.
109 * RIGHT means allocating new sections towards the end of volume.
110 * LEFT means the opposite direction.
111 */
112 enum {
113 ALLOC_RIGHT = 0,
114 ALLOC_LEFT
115 };
116
117 /*
118 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
119 * LFS writes data sequentially with cleaning operations.
120 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
121 */
122 enum {
123 LFS = 0,
124 SSR
125 };
126
127 /*
128 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
129 * GC_CB is based on cost-benefit algorithm.
130 * GC_GREEDY is based on greedy algorithm.
131 */
132 enum {
133 GC_CB = 0,
134 GC_GREEDY
135 };
136
137 /*
138 * BG_GC means the background cleaning job.
139 * FG_GC means the on-demand cleaning job.
140 * FORCE_FG_GC means on-demand cleaning job in background.
141 */
142 enum {
143 BG_GC = 0,
144 FG_GC,
145 FORCE_FG_GC,
146 };
147
148 /* for a function parameter to select a victim segment */
149 struct victim_sel_policy {
150 int alloc_mode; /* LFS or SSR */
151 int gc_mode; /* GC_CB or GC_GREEDY */
152 unsigned long *dirty_segmap; /* dirty segment bitmap */
153 unsigned int max_search; /* maximum # of segments to search */
154 unsigned int offset; /* last scanned bitmap offset */
155 unsigned int ofs_unit; /* bitmap search unit */
156 unsigned int min_cost; /* minimum cost */
157 unsigned int min_segno; /* segment # having min. cost */
158 };
159
160 struct seg_entry {
161 unsigned short valid_blocks; /* # of valid blocks */
162 unsigned char *cur_valid_map; /* validity bitmap of blocks */
163 /*
164 * # of valid blocks and the validity bitmap stored in the the last
165 * checkpoint pack. This information is used by the SSR mode.
166 */
167 unsigned short ckpt_valid_blocks;
168 unsigned char *ckpt_valid_map;
169 unsigned char *discard_map;
170 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
171 unsigned long long mtime; /* modification time of the segment */
172 };
173
174 struct sec_entry {
175 unsigned int valid_blocks; /* # of valid blocks in a section */
176 };
177
178 struct segment_allocation {
179 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
180 };
181
182 /*
183 * this value is set in page as a private data which indicate that
184 * the page is atomically written, and it is in inmem_pages list.
185 */
186 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
187
188 #define IS_ATOMIC_WRITTEN_PAGE(page) \
189 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
190
191 struct inmem_pages {
192 struct list_head list;
193 struct page *page;
194 block_t old_addr; /* for revoking when fail to commit */
195 };
196
197 struct sit_info {
198 const struct segment_allocation *s_ops;
199
200 block_t sit_base_addr; /* start block address of SIT area */
201 block_t sit_blocks; /* # of blocks used by SIT area */
202 block_t written_valid_blocks; /* # of valid blocks in main area */
203 char *sit_bitmap; /* SIT bitmap pointer */
204 unsigned int bitmap_size; /* SIT bitmap size */
205
206 unsigned long *tmp_map; /* bitmap for temporal use */
207 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
208 unsigned int dirty_sentries; /* # of dirty sentries */
209 unsigned int sents_per_block; /* # of SIT entries per block */
210 struct mutex sentry_lock; /* to protect SIT cache */
211 struct seg_entry *sentries; /* SIT segment-level cache */
212 struct sec_entry *sec_entries; /* SIT section-level cache */
213
214 /* for cost-benefit algorithm in cleaning procedure */
215 unsigned long long elapsed_time; /* elapsed time after mount */
216 unsigned long long mounted_time; /* mount time */
217 unsigned long long min_mtime; /* min. modification time */
218 unsigned long long max_mtime; /* max. modification time */
219 };
220
221 struct free_segmap_info {
222 unsigned int start_segno; /* start segment number logically */
223 unsigned int free_segments; /* # of free segments */
224 unsigned int free_sections; /* # of free sections */
225 spinlock_t segmap_lock; /* free segmap lock */
226 unsigned long *free_segmap; /* free segment bitmap */
227 unsigned long *free_secmap; /* free section bitmap */
228 };
229
230 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
231 enum dirty_type {
232 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
233 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
234 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
235 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
236 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
237 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
238 DIRTY, /* to count # of dirty segments */
239 PRE, /* to count # of entirely obsolete segments */
240 NR_DIRTY_TYPE
241 };
242
243 struct dirty_seglist_info {
244 const struct victim_selection *v_ops; /* victim selction operation */
245 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
246 struct mutex seglist_lock; /* lock for segment bitmaps */
247 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
248 unsigned long *victim_secmap; /* background GC victims */
249 };
250
251 /* victim selection function for cleaning and SSR */
252 struct victim_selection {
253 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
254 int, int, char);
255 };
256
257 /* for active log information */
258 struct curseg_info {
259 struct mutex curseg_mutex; /* lock for consistency */
260 struct f2fs_summary_block *sum_blk; /* cached summary block */
261 struct rw_semaphore journal_rwsem; /* protect journal area */
262 struct f2fs_journal *journal; /* cached journal info */
263 unsigned char alloc_type; /* current allocation type */
264 unsigned int segno; /* current segment number */
265 unsigned short next_blkoff; /* next block offset to write */
266 unsigned int zone; /* current zone number */
267 unsigned int next_segno; /* preallocated segment */
268 };
269
270 struct sit_entry_set {
271 struct list_head set_list; /* link with all sit sets */
272 unsigned int start_segno; /* start segno of sits in set */
273 unsigned int entry_cnt; /* the # of sit entries in set */
274 };
275
276 /*
277 * inline functions
278 */
279 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
280 {
281 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
282 }
283
284 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
285 unsigned int segno)
286 {
287 struct sit_info *sit_i = SIT_I(sbi);
288 return &sit_i->sentries[segno];
289 }
290
291 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
292 unsigned int segno)
293 {
294 struct sit_info *sit_i = SIT_I(sbi);
295 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
296 }
297
298 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
299 unsigned int segno, int section)
300 {
301 /*
302 * In order to get # of valid blocks in a section instantly from many
303 * segments, f2fs manages two counting structures separately.
304 */
305 if (section > 1)
306 return get_sec_entry(sbi, segno)->valid_blocks;
307 else
308 return get_seg_entry(sbi, segno)->valid_blocks;
309 }
310
311 static inline void seg_info_from_raw_sit(struct seg_entry *se,
312 struct f2fs_sit_entry *rs)
313 {
314 se->valid_blocks = GET_SIT_VBLOCKS(rs);
315 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
316 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
317 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
318 se->type = GET_SIT_TYPE(rs);
319 se->mtime = le64_to_cpu(rs->mtime);
320 }
321
322 static inline void seg_info_to_raw_sit(struct seg_entry *se,
323 struct f2fs_sit_entry *rs)
324 {
325 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
326 se->valid_blocks;
327 rs->vblocks = cpu_to_le16(raw_vblocks);
328 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
329 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
330 se->ckpt_valid_blocks = se->valid_blocks;
331 rs->mtime = cpu_to_le64(se->mtime);
332 }
333
334 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
335 unsigned int max, unsigned int segno)
336 {
337 unsigned int ret;
338 spin_lock(&free_i->segmap_lock);
339 ret = find_next_bit(free_i->free_segmap, max, segno);
340 spin_unlock(&free_i->segmap_lock);
341 return ret;
342 }
343
344 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
345 {
346 struct free_segmap_info *free_i = FREE_I(sbi);
347 unsigned int secno = segno / sbi->segs_per_sec;
348 unsigned int start_segno = secno * sbi->segs_per_sec;
349 unsigned int next;
350
351 spin_lock(&free_i->segmap_lock);
352 clear_bit(segno, free_i->free_segmap);
353 free_i->free_segments++;
354
355 next = find_next_bit(free_i->free_segmap,
356 start_segno + sbi->segs_per_sec, start_segno);
357 if (next >= start_segno + sbi->segs_per_sec) {
358 clear_bit(secno, free_i->free_secmap);
359 free_i->free_sections++;
360 }
361 spin_unlock(&free_i->segmap_lock);
362 }
363
364 static inline void __set_inuse(struct f2fs_sb_info *sbi,
365 unsigned int segno)
366 {
367 struct free_segmap_info *free_i = FREE_I(sbi);
368 unsigned int secno = segno / sbi->segs_per_sec;
369 set_bit(segno, free_i->free_segmap);
370 free_i->free_segments--;
371 if (!test_and_set_bit(secno, free_i->free_secmap))
372 free_i->free_sections--;
373 }
374
375 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
376 unsigned int segno)
377 {
378 struct free_segmap_info *free_i = FREE_I(sbi);
379 unsigned int secno = segno / sbi->segs_per_sec;
380 unsigned int start_segno = secno * sbi->segs_per_sec;
381 unsigned int next;
382
383 spin_lock(&free_i->segmap_lock);
384 if (test_and_clear_bit(segno, free_i->free_segmap)) {
385 free_i->free_segments++;
386
387 next = find_next_bit(free_i->free_segmap,
388 start_segno + sbi->segs_per_sec, start_segno);
389 if (next >= start_segno + sbi->segs_per_sec) {
390 if (test_and_clear_bit(secno, free_i->free_secmap))
391 free_i->free_sections++;
392 }
393 }
394 spin_unlock(&free_i->segmap_lock);
395 }
396
397 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
398 unsigned int segno)
399 {
400 struct free_segmap_info *free_i = FREE_I(sbi);
401 unsigned int secno = segno / sbi->segs_per_sec;
402 spin_lock(&free_i->segmap_lock);
403 if (!test_and_set_bit(segno, free_i->free_segmap)) {
404 free_i->free_segments--;
405 if (!test_and_set_bit(secno, free_i->free_secmap))
406 free_i->free_sections--;
407 }
408 spin_unlock(&free_i->segmap_lock);
409 }
410
411 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
412 void *dst_addr)
413 {
414 struct sit_info *sit_i = SIT_I(sbi);
415 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
416 }
417
418 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
419 {
420 return SIT_I(sbi)->written_valid_blocks;
421 }
422
423 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
424 {
425 return FREE_I(sbi)->free_segments;
426 }
427
428 static inline int reserved_segments(struct f2fs_sb_info *sbi)
429 {
430 return SM_I(sbi)->reserved_segments;
431 }
432
433 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
434 {
435 return FREE_I(sbi)->free_sections;
436 }
437
438 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
439 {
440 return DIRTY_I(sbi)->nr_dirty[PRE];
441 }
442
443 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
444 {
445 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
446 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
447 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
448 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
449 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
450 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
451 }
452
453 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
454 {
455 return SM_I(sbi)->ovp_segments;
456 }
457
458 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
459 {
460 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
461 }
462
463 static inline int reserved_sections(struct f2fs_sb_info *sbi)
464 {
465 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
466 }
467
468 static inline bool need_SSR(struct f2fs_sb_info *sbi)
469 {
470 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
471 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
472 return free_sections(sbi) <= (node_secs + 2 * dent_secs +
473 reserved_sections(sbi) + 1);
474 }
475
476 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
477 {
478 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
479 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
480
481 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
482 return false;
483
484 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
485 reserved_sections(sbi));
486 }
487
488 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
489 {
490 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
491 }
492
493 static inline int utilization(struct f2fs_sb_info *sbi)
494 {
495 return div_u64((u64)valid_user_blocks(sbi) * 100,
496 sbi->user_block_count);
497 }
498
499 /*
500 * Sometimes f2fs may be better to drop out-of-place update policy.
501 * And, users can control the policy through sysfs entries.
502 * There are five policies with triggering conditions as follows.
503 * F2FS_IPU_FORCE - all the time,
504 * F2FS_IPU_SSR - if SSR mode is activated,
505 * F2FS_IPU_UTIL - if FS utilization is over threashold,
506 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
507 * threashold,
508 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
509 * storages. IPU will be triggered only if the # of dirty
510 * pages over min_fsync_blocks.
511 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
512 */
513 #define DEF_MIN_IPU_UTIL 70
514 #define DEF_MIN_FSYNC_BLOCKS 8
515
516 enum {
517 F2FS_IPU_FORCE,
518 F2FS_IPU_SSR,
519 F2FS_IPU_UTIL,
520 F2FS_IPU_SSR_UTIL,
521 F2FS_IPU_FSYNC,
522 };
523
524 static inline bool need_inplace_update(struct inode *inode)
525 {
526 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
527 unsigned int policy = SM_I(sbi)->ipu_policy;
528
529 /* IPU can be done only for the user data */
530 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
531 return false;
532
533 if (policy & (0x1 << F2FS_IPU_FORCE))
534 return true;
535 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
536 return true;
537 if (policy & (0x1 << F2FS_IPU_UTIL) &&
538 utilization(sbi) > SM_I(sbi)->min_ipu_util)
539 return true;
540 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
541 utilization(sbi) > SM_I(sbi)->min_ipu_util)
542 return true;
543
544 /* this is only set during fdatasync */
545 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
546 is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
547 return true;
548
549 return false;
550 }
551
552 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
553 int type)
554 {
555 struct curseg_info *curseg = CURSEG_I(sbi, type);
556 return curseg->segno;
557 }
558
559 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
560 int type)
561 {
562 struct curseg_info *curseg = CURSEG_I(sbi, type);
563 return curseg->alloc_type;
564 }
565
566 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
567 {
568 struct curseg_info *curseg = CURSEG_I(sbi, type);
569 return curseg->next_blkoff;
570 }
571
572 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
573 {
574 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
575 }
576
577 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
578 {
579 f2fs_bug_on(sbi, blk_addr < SEG0_BLKADDR(sbi)
580 || blk_addr >= MAX_BLKADDR(sbi));
581 }
582
583 /*
584 * Summary block is always treated as an invalid block
585 */
586 static inline void check_block_count(struct f2fs_sb_info *sbi,
587 int segno, struct f2fs_sit_entry *raw_sit)
588 {
589 #ifdef CONFIG_F2FS_CHECK_FS
590 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
591 int valid_blocks = 0;
592 int cur_pos = 0, next_pos;
593
594 /* check bitmap with valid block count */
595 do {
596 if (is_valid) {
597 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
598 sbi->blocks_per_seg,
599 cur_pos);
600 valid_blocks += next_pos - cur_pos;
601 } else
602 next_pos = find_next_bit_le(&raw_sit->valid_map,
603 sbi->blocks_per_seg,
604 cur_pos);
605 cur_pos = next_pos;
606 is_valid = !is_valid;
607 } while (cur_pos < sbi->blocks_per_seg);
608 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
609 #endif
610 /* check segment usage, and check boundary of a given segment number */
611 f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
612 || segno > TOTAL_SEGS(sbi) - 1);
613 }
614
615 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
616 unsigned int start)
617 {
618 struct sit_info *sit_i = SIT_I(sbi);
619 unsigned int offset = SIT_BLOCK_OFFSET(start);
620 block_t blk_addr = sit_i->sit_base_addr + offset;
621
622 check_seg_range(sbi, start);
623
624 /* calculate sit block address */
625 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
626 blk_addr += sit_i->sit_blocks;
627
628 return blk_addr;
629 }
630
631 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
632 pgoff_t block_addr)
633 {
634 struct sit_info *sit_i = SIT_I(sbi);
635 block_addr -= sit_i->sit_base_addr;
636 if (block_addr < sit_i->sit_blocks)
637 block_addr += sit_i->sit_blocks;
638 else
639 block_addr -= sit_i->sit_blocks;
640
641 return block_addr + sit_i->sit_base_addr;
642 }
643
644 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
645 {
646 unsigned int block_off = SIT_BLOCK_OFFSET(start);
647
648 f2fs_change_bit(block_off, sit_i->sit_bitmap);
649 }
650
651 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
652 {
653 struct sit_info *sit_i = SIT_I(sbi);
654 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
655 sit_i->mounted_time;
656 }
657
658 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
659 unsigned int ofs_in_node, unsigned char version)
660 {
661 sum->nid = cpu_to_le32(nid);
662 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
663 sum->version = version;
664 }
665
666 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
667 {
668 return __start_cp_addr(sbi) +
669 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
670 }
671
672 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
673 {
674 return __start_cp_addr(sbi) +
675 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
676 - (base + 1) + type;
677 }
678
679 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
680 {
681 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
682 return true;
683 return false;
684 }
685
686 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
687 {
688 struct block_device *bdev = sbi->sb->s_bdev;
689 struct request_queue *q = bdev_get_queue(bdev);
690 return SECTOR_TO_BLOCK(queue_max_sectors(q));
691 }
692
693 /*
694 * It is very important to gather dirty pages and write at once, so that we can
695 * submit a big bio without interfering other data writes.
696 * By default, 512 pages for directory data,
697 * 512 pages (2MB) * 3 for three types of nodes, and
698 * max_bio_blocks for meta are set.
699 */
700 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
701 {
702 if (sbi->sb->s_bdi->wb.dirty_exceeded)
703 return 0;
704
705 if (type == DATA)
706 return sbi->blocks_per_seg;
707 else if (type == NODE)
708 return 3 * sbi->blocks_per_seg;
709 else if (type == META)
710 return MAX_BIO_BLOCKS(sbi);
711 else
712 return 0;
713 }
714
715 /*
716 * When writing pages, it'd better align nr_to_write for segment size.
717 */
718 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
719 struct writeback_control *wbc)
720 {
721 long nr_to_write, desired;
722
723 if (wbc->sync_mode != WB_SYNC_NONE)
724 return 0;
725
726 nr_to_write = wbc->nr_to_write;
727
728 if (type == DATA)
729 desired = 4096;
730 else if (type == NODE)
731 desired = 3 * max_hw_blocks(sbi);
732 else
733 desired = MAX_BIO_BLOCKS(sbi);
734
735 wbc->nr_to_write = desired;
736 return desired - nr_to_write;
737 }
This page took 0.062112 seconds and 5 git commands to generate.