Merge branch 'next' into for-linus
[deliverable/linux.git] / fs / f2fs / segment.h
1 /*
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
13
14 /* constant macro */
15 #define NULL_SEGNO ((unsigned int)(~0))
16 #define NULL_SECNO ((unsigned int)(~0))
17
18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19
20 /* L: Logical segment # in volume, R: Relative segment # in main area */
21 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
22 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
23
24 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
25 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
26
27 #define IS_CURSEG(sbi, seg) \
28 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
33 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
34
35 #define IS_CURSEC(sbi, secno) \
36 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
37 sbi->segs_per_sec) || \
38 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
39 sbi->segs_per_sec) || \
40 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
41 sbi->segs_per_sec) || \
42 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
43 sbi->segs_per_sec) || \
44 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
45 sbi->segs_per_sec) || \
46 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
47 sbi->segs_per_sec)) \
48
49 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
50 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
51
52 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
53 #define MAIN_SECS(sbi) (sbi->total_sections)
54
55 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
56 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
57
58 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
59 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
60 sbi->log_blocks_per_seg))
61
62 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
63 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
64
65 #define NEXT_FREE_BLKADDR(sbi, curseg) \
66 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
67
68 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
69 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
70 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
71 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
72 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
73
74 #define GET_SEGNO(sbi, blk_addr) \
75 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
76 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
77 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
78 #define GET_SECNO(sbi, segno) \
79 ((segno) / sbi->segs_per_sec)
80 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
81 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
82
83 #define GET_SUM_BLOCK(sbi, segno) \
84 ((sbi->sm_info->ssa_blkaddr) + segno)
85
86 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
87 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
88
89 #define SIT_ENTRY_OFFSET(sit_i, segno) \
90 (segno % sit_i->sents_per_block)
91 #define SIT_BLOCK_OFFSET(segno) \
92 (segno / SIT_ENTRY_PER_BLOCK)
93 #define START_SEGNO(segno) \
94 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
95 #define SIT_BLK_CNT(sbi) \
96 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
97 #define f2fs_bitmap_size(nr) \
98 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
99
100 #define SECTOR_FROM_BLOCK(blk_addr) \
101 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
102 #define SECTOR_TO_BLOCK(sectors) \
103 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
104 #define MAX_BIO_BLOCKS(sbi) \
105 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
106
107 /*
108 * indicate a block allocation direction: RIGHT and LEFT.
109 * RIGHT means allocating new sections towards the end of volume.
110 * LEFT means the opposite direction.
111 */
112 enum {
113 ALLOC_RIGHT = 0,
114 ALLOC_LEFT
115 };
116
117 /*
118 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
119 * LFS writes data sequentially with cleaning operations.
120 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
121 */
122 enum {
123 LFS = 0,
124 SSR
125 };
126
127 /*
128 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
129 * GC_CB is based on cost-benefit algorithm.
130 * GC_GREEDY is based on greedy algorithm.
131 */
132 enum {
133 GC_CB = 0,
134 GC_GREEDY
135 };
136
137 /*
138 * BG_GC means the background cleaning job.
139 * FG_GC means the on-demand cleaning job.
140 * FORCE_FG_GC means on-demand cleaning job in background.
141 */
142 enum {
143 BG_GC = 0,
144 FG_GC,
145 FORCE_FG_GC,
146 };
147
148 /* for a function parameter to select a victim segment */
149 struct victim_sel_policy {
150 int alloc_mode; /* LFS or SSR */
151 int gc_mode; /* GC_CB or GC_GREEDY */
152 unsigned long *dirty_segmap; /* dirty segment bitmap */
153 unsigned int max_search; /* maximum # of segments to search */
154 unsigned int offset; /* last scanned bitmap offset */
155 unsigned int ofs_unit; /* bitmap search unit */
156 unsigned int min_cost; /* minimum cost */
157 unsigned int min_segno; /* segment # having min. cost */
158 };
159
160 struct seg_entry {
161 unsigned short valid_blocks; /* # of valid blocks */
162 unsigned char *cur_valid_map; /* validity bitmap of blocks */
163 /*
164 * # of valid blocks and the validity bitmap stored in the the last
165 * checkpoint pack. This information is used by the SSR mode.
166 */
167 unsigned short ckpt_valid_blocks;
168 unsigned char *ckpt_valid_map;
169 unsigned char *discard_map;
170 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
171 unsigned long long mtime; /* modification time of the segment */
172 };
173
174 struct sec_entry {
175 unsigned int valid_blocks; /* # of valid blocks in a section */
176 };
177
178 struct segment_allocation {
179 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
180 };
181
182 /*
183 * this value is set in page as a private data which indicate that
184 * the page is atomically written, and it is in inmem_pages list.
185 */
186 #define ATOMIC_WRITTEN_PAGE 0x0000ffff
187
188 #define IS_ATOMIC_WRITTEN_PAGE(page) \
189 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
190
191 struct inmem_pages {
192 struct list_head list;
193 struct page *page;
194 };
195
196 struct sit_info {
197 const struct segment_allocation *s_ops;
198
199 block_t sit_base_addr; /* start block address of SIT area */
200 block_t sit_blocks; /* # of blocks used by SIT area */
201 block_t written_valid_blocks; /* # of valid blocks in main area */
202 char *sit_bitmap; /* SIT bitmap pointer */
203 unsigned int bitmap_size; /* SIT bitmap size */
204
205 unsigned long *tmp_map; /* bitmap for temporal use */
206 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
207 unsigned int dirty_sentries; /* # of dirty sentries */
208 unsigned int sents_per_block; /* # of SIT entries per block */
209 struct mutex sentry_lock; /* to protect SIT cache */
210 struct seg_entry *sentries; /* SIT segment-level cache */
211 struct sec_entry *sec_entries; /* SIT section-level cache */
212
213 /* for cost-benefit algorithm in cleaning procedure */
214 unsigned long long elapsed_time; /* elapsed time after mount */
215 unsigned long long mounted_time; /* mount time */
216 unsigned long long min_mtime; /* min. modification time */
217 unsigned long long max_mtime; /* max. modification time */
218 };
219
220 struct free_segmap_info {
221 unsigned int start_segno; /* start segment number logically */
222 unsigned int free_segments; /* # of free segments */
223 unsigned int free_sections; /* # of free sections */
224 spinlock_t segmap_lock; /* free segmap lock */
225 unsigned long *free_segmap; /* free segment bitmap */
226 unsigned long *free_secmap; /* free section bitmap */
227 };
228
229 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
230 enum dirty_type {
231 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
232 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
233 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
234 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
235 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
236 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
237 DIRTY, /* to count # of dirty segments */
238 PRE, /* to count # of entirely obsolete segments */
239 NR_DIRTY_TYPE
240 };
241
242 struct dirty_seglist_info {
243 const struct victim_selection *v_ops; /* victim selction operation */
244 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
245 struct mutex seglist_lock; /* lock for segment bitmaps */
246 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
247 unsigned long *victim_secmap; /* background GC victims */
248 };
249
250 /* victim selection function for cleaning and SSR */
251 struct victim_selection {
252 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
253 int, int, char);
254 };
255
256 /* for active log information */
257 struct curseg_info {
258 struct mutex curseg_mutex; /* lock for consistency */
259 struct f2fs_summary_block *sum_blk; /* cached summary block */
260 unsigned char alloc_type; /* current allocation type */
261 unsigned int segno; /* current segment number */
262 unsigned short next_blkoff; /* next block offset to write */
263 unsigned int zone; /* current zone number */
264 unsigned int next_segno; /* preallocated segment */
265 };
266
267 struct sit_entry_set {
268 struct list_head set_list; /* link with all sit sets */
269 unsigned int start_segno; /* start segno of sits in set */
270 unsigned int entry_cnt; /* the # of sit entries in set */
271 };
272
273 /*
274 * inline functions
275 */
276 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
277 {
278 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
279 }
280
281 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
282 unsigned int segno)
283 {
284 struct sit_info *sit_i = SIT_I(sbi);
285 return &sit_i->sentries[segno];
286 }
287
288 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
289 unsigned int segno)
290 {
291 struct sit_info *sit_i = SIT_I(sbi);
292 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
293 }
294
295 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
296 unsigned int segno, int section)
297 {
298 /*
299 * In order to get # of valid blocks in a section instantly from many
300 * segments, f2fs manages two counting structures separately.
301 */
302 if (section > 1)
303 return get_sec_entry(sbi, segno)->valid_blocks;
304 else
305 return get_seg_entry(sbi, segno)->valid_blocks;
306 }
307
308 static inline void seg_info_from_raw_sit(struct seg_entry *se,
309 struct f2fs_sit_entry *rs)
310 {
311 se->valid_blocks = GET_SIT_VBLOCKS(rs);
312 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
313 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
314 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
315 se->type = GET_SIT_TYPE(rs);
316 se->mtime = le64_to_cpu(rs->mtime);
317 }
318
319 static inline void seg_info_to_raw_sit(struct seg_entry *se,
320 struct f2fs_sit_entry *rs)
321 {
322 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
323 se->valid_blocks;
324 rs->vblocks = cpu_to_le16(raw_vblocks);
325 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
326 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
327 se->ckpt_valid_blocks = se->valid_blocks;
328 rs->mtime = cpu_to_le64(se->mtime);
329 }
330
331 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
332 unsigned int max, unsigned int segno)
333 {
334 unsigned int ret;
335 spin_lock(&free_i->segmap_lock);
336 ret = find_next_bit(free_i->free_segmap, max, segno);
337 spin_unlock(&free_i->segmap_lock);
338 return ret;
339 }
340
341 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
342 {
343 struct free_segmap_info *free_i = FREE_I(sbi);
344 unsigned int secno = segno / sbi->segs_per_sec;
345 unsigned int start_segno = secno * sbi->segs_per_sec;
346 unsigned int next;
347
348 spin_lock(&free_i->segmap_lock);
349 clear_bit(segno, free_i->free_segmap);
350 free_i->free_segments++;
351
352 next = find_next_bit(free_i->free_segmap,
353 start_segno + sbi->segs_per_sec, start_segno);
354 if (next >= start_segno + sbi->segs_per_sec) {
355 clear_bit(secno, free_i->free_secmap);
356 free_i->free_sections++;
357 }
358 spin_unlock(&free_i->segmap_lock);
359 }
360
361 static inline void __set_inuse(struct f2fs_sb_info *sbi,
362 unsigned int segno)
363 {
364 struct free_segmap_info *free_i = FREE_I(sbi);
365 unsigned int secno = segno / sbi->segs_per_sec;
366 set_bit(segno, free_i->free_segmap);
367 free_i->free_segments--;
368 if (!test_and_set_bit(secno, free_i->free_secmap))
369 free_i->free_sections--;
370 }
371
372 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
373 unsigned int segno)
374 {
375 struct free_segmap_info *free_i = FREE_I(sbi);
376 unsigned int secno = segno / sbi->segs_per_sec;
377 unsigned int start_segno = secno * sbi->segs_per_sec;
378 unsigned int next;
379
380 spin_lock(&free_i->segmap_lock);
381 if (test_and_clear_bit(segno, free_i->free_segmap)) {
382 free_i->free_segments++;
383
384 next = find_next_bit(free_i->free_segmap,
385 start_segno + sbi->segs_per_sec, start_segno);
386 if (next >= start_segno + sbi->segs_per_sec) {
387 if (test_and_clear_bit(secno, free_i->free_secmap))
388 free_i->free_sections++;
389 }
390 }
391 spin_unlock(&free_i->segmap_lock);
392 }
393
394 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
395 unsigned int segno)
396 {
397 struct free_segmap_info *free_i = FREE_I(sbi);
398 unsigned int secno = segno / sbi->segs_per_sec;
399 spin_lock(&free_i->segmap_lock);
400 if (!test_and_set_bit(segno, free_i->free_segmap)) {
401 free_i->free_segments--;
402 if (!test_and_set_bit(secno, free_i->free_secmap))
403 free_i->free_sections--;
404 }
405 spin_unlock(&free_i->segmap_lock);
406 }
407
408 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
409 void *dst_addr)
410 {
411 struct sit_info *sit_i = SIT_I(sbi);
412 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
413 }
414
415 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
416 {
417 return SIT_I(sbi)->written_valid_blocks;
418 }
419
420 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
421 {
422 return FREE_I(sbi)->free_segments;
423 }
424
425 static inline int reserved_segments(struct f2fs_sb_info *sbi)
426 {
427 return SM_I(sbi)->reserved_segments;
428 }
429
430 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
431 {
432 return FREE_I(sbi)->free_sections;
433 }
434
435 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
436 {
437 return DIRTY_I(sbi)->nr_dirty[PRE];
438 }
439
440 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
441 {
442 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
443 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
444 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
445 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
446 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
447 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
448 }
449
450 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
451 {
452 return SM_I(sbi)->ovp_segments;
453 }
454
455 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
456 {
457 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
458 }
459
460 static inline int reserved_sections(struct f2fs_sb_info *sbi)
461 {
462 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
463 }
464
465 static inline bool need_SSR(struct f2fs_sb_info *sbi)
466 {
467 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
468 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
469 return free_sections(sbi) <= (node_secs + 2 * dent_secs +
470 reserved_sections(sbi) + 1);
471 }
472
473 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
474 {
475 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
476 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
477
478 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
479 return false;
480
481 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
482 reserved_sections(sbi));
483 }
484
485 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
486 {
487 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
488 }
489
490 static inline int utilization(struct f2fs_sb_info *sbi)
491 {
492 return div_u64((u64)valid_user_blocks(sbi) * 100,
493 sbi->user_block_count);
494 }
495
496 /*
497 * Sometimes f2fs may be better to drop out-of-place update policy.
498 * And, users can control the policy through sysfs entries.
499 * There are five policies with triggering conditions as follows.
500 * F2FS_IPU_FORCE - all the time,
501 * F2FS_IPU_SSR - if SSR mode is activated,
502 * F2FS_IPU_UTIL - if FS utilization is over threashold,
503 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
504 * threashold,
505 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
506 * storages. IPU will be triggered only if the # of dirty
507 * pages over min_fsync_blocks.
508 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
509 */
510 #define DEF_MIN_IPU_UTIL 70
511 #define DEF_MIN_FSYNC_BLOCKS 8
512
513 enum {
514 F2FS_IPU_FORCE,
515 F2FS_IPU_SSR,
516 F2FS_IPU_UTIL,
517 F2FS_IPU_SSR_UTIL,
518 F2FS_IPU_FSYNC,
519 };
520
521 static inline bool need_inplace_update(struct inode *inode)
522 {
523 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
524 unsigned int policy = SM_I(sbi)->ipu_policy;
525
526 /* IPU can be done only for the user data */
527 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
528 return false;
529
530 if (policy & (0x1 << F2FS_IPU_FORCE))
531 return true;
532 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
533 return true;
534 if (policy & (0x1 << F2FS_IPU_UTIL) &&
535 utilization(sbi) > SM_I(sbi)->min_ipu_util)
536 return true;
537 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
538 utilization(sbi) > SM_I(sbi)->min_ipu_util)
539 return true;
540
541 /* this is only set during fdatasync */
542 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
543 is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
544 return true;
545
546 return false;
547 }
548
549 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
550 int type)
551 {
552 struct curseg_info *curseg = CURSEG_I(sbi, type);
553 return curseg->segno;
554 }
555
556 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
557 int type)
558 {
559 struct curseg_info *curseg = CURSEG_I(sbi, type);
560 return curseg->alloc_type;
561 }
562
563 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
564 {
565 struct curseg_info *curseg = CURSEG_I(sbi, type);
566 return curseg->next_blkoff;
567 }
568
569 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
570 {
571 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
572 }
573
574 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
575 {
576 f2fs_bug_on(sbi, blk_addr < SEG0_BLKADDR(sbi)
577 || blk_addr >= MAX_BLKADDR(sbi));
578 }
579
580 /*
581 * Summary block is always treated as an invalid block
582 */
583 static inline void check_block_count(struct f2fs_sb_info *sbi,
584 int segno, struct f2fs_sit_entry *raw_sit)
585 {
586 #ifdef CONFIG_F2FS_CHECK_FS
587 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
588 int valid_blocks = 0;
589 int cur_pos = 0, next_pos;
590
591 /* check bitmap with valid block count */
592 do {
593 if (is_valid) {
594 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
595 sbi->blocks_per_seg,
596 cur_pos);
597 valid_blocks += next_pos - cur_pos;
598 } else
599 next_pos = find_next_bit_le(&raw_sit->valid_map,
600 sbi->blocks_per_seg,
601 cur_pos);
602 cur_pos = next_pos;
603 is_valid = !is_valid;
604 } while (cur_pos < sbi->blocks_per_seg);
605 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
606 #endif
607 /* check segment usage, and check boundary of a given segment number */
608 f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
609 || segno > TOTAL_SEGS(sbi) - 1);
610 }
611
612 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
613 unsigned int start)
614 {
615 struct sit_info *sit_i = SIT_I(sbi);
616 unsigned int offset = SIT_BLOCK_OFFSET(start);
617 block_t blk_addr = sit_i->sit_base_addr + offset;
618
619 check_seg_range(sbi, start);
620
621 /* calculate sit block address */
622 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
623 blk_addr += sit_i->sit_blocks;
624
625 return blk_addr;
626 }
627
628 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
629 pgoff_t block_addr)
630 {
631 struct sit_info *sit_i = SIT_I(sbi);
632 block_addr -= sit_i->sit_base_addr;
633 if (block_addr < sit_i->sit_blocks)
634 block_addr += sit_i->sit_blocks;
635 else
636 block_addr -= sit_i->sit_blocks;
637
638 return block_addr + sit_i->sit_base_addr;
639 }
640
641 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
642 {
643 unsigned int block_off = SIT_BLOCK_OFFSET(start);
644
645 f2fs_change_bit(block_off, sit_i->sit_bitmap);
646 }
647
648 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
649 {
650 struct sit_info *sit_i = SIT_I(sbi);
651 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
652 sit_i->mounted_time;
653 }
654
655 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
656 unsigned int ofs_in_node, unsigned char version)
657 {
658 sum->nid = cpu_to_le32(nid);
659 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
660 sum->version = version;
661 }
662
663 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
664 {
665 return __start_cp_addr(sbi) +
666 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
667 }
668
669 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
670 {
671 return __start_cp_addr(sbi) +
672 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
673 - (base + 1) + type;
674 }
675
676 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
677 {
678 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
679 return true;
680 return false;
681 }
682
683 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
684 {
685 struct block_device *bdev = sbi->sb->s_bdev;
686 struct request_queue *q = bdev_get_queue(bdev);
687 return SECTOR_TO_BLOCK(queue_max_sectors(q));
688 }
689
690 /*
691 * It is very important to gather dirty pages and write at once, so that we can
692 * submit a big bio without interfering other data writes.
693 * By default, 512 pages for directory data,
694 * 512 pages (2MB) * 3 for three types of nodes, and
695 * max_bio_blocks for meta are set.
696 */
697 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
698 {
699 if (sbi->sb->s_bdi->wb.dirty_exceeded)
700 return 0;
701
702 if (type == DATA)
703 return sbi->blocks_per_seg;
704 else if (type == NODE)
705 return 3 * sbi->blocks_per_seg;
706 else if (type == META)
707 return MAX_BIO_BLOCKS(sbi);
708 else
709 return 0;
710 }
711
712 /*
713 * When writing pages, it'd better align nr_to_write for segment size.
714 */
715 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
716 struct writeback_control *wbc)
717 {
718 long nr_to_write, desired;
719
720 if (wbc->sync_mode != WB_SYNC_NONE)
721 return 0;
722
723 nr_to_write = wbc->nr_to_write;
724
725 if (type == DATA)
726 desired = 4096;
727 else if (type == NODE)
728 desired = 3 * max_hw_blocks(sbi);
729 else
730 desired = MAX_BIO_BLOCKS(sbi);
731
732 wbc->nr_to_write = desired;
733 return desired - nr_to_write;
734 }
This page took 0.073232 seconds and 6 git commands to generate.