Merge tag 'armsoc-arm64' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 /* f2fs-wide shrinker description */
43 static struct shrinker f2fs_shrinker_info = {
44 .scan_objects = f2fs_shrink_scan,
45 .count_objects = f2fs_shrink_count,
46 .seeks = DEFAULT_SEEKS,
47 };
48
49 enum {
50 Opt_gc_background,
51 Opt_disable_roll_forward,
52 Opt_norecovery,
53 Opt_discard,
54 Opt_noheap,
55 Opt_user_xattr,
56 Opt_nouser_xattr,
57 Opt_acl,
58 Opt_noacl,
59 Opt_active_logs,
60 Opt_disable_ext_identify,
61 Opt_inline_xattr,
62 Opt_inline_data,
63 Opt_inline_dentry,
64 Opt_flush_merge,
65 Opt_nobarrier,
66 Opt_fastboot,
67 Opt_extent_cache,
68 Opt_noextent_cache,
69 Opt_noinline_data,
70 Opt_data_flush,
71 Opt_err,
72 };
73
74 static match_table_t f2fs_tokens = {
75 {Opt_gc_background, "background_gc=%s"},
76 {Opt_disable_roll_forward, "disable_roll_forward"},
77 {Opt_norecovery, "norecovery"},
78 {Opt_discard, "discard"},
79 {Opt_noheap, "no_heap"},
80 {Opt_user_xattr, "user_xattr"},
81 {Opt_nouser_xattr, "nouser_xattr"},
82 {Opt_acl, "acl"},
83 {Opt_noacl, "noacl"},
84 {Opt_active_logs, "active_logs=%u"},
85 {Opt_disable_ext_identify, "disable_ext_identify"},
86 {Opt_inline_xattr, "inline_xattr"},
87 {Opt_inline_data, "inline_data"},
88 {Opt_inline_dentry, "inline_dentry"},
89 {Opt_flush_merge, "flush_merge"},
90 {Opt_nobarrier, "nobarrier"},
91 {Opt_fastboot, "fastboot"},
92 {Opt_extent_cache, "extent_cache"},
93 {Opt_noextent_cache, "noextent_cache"},
94 {Opt_noinline_data, "noinline_data"},
95 {Opt_data_flush, "data_flush"},
96 {Opt_err, NULL},
97 };
98
99 /* Sysfs support for f2fs */
100 enum {
101 GC_THREAD, /* struct f2fs_gc_thread */
102 SM_INFO, /* struct f2fs_sm_info */
103 NM_INFO, /* struct f2fs_nm_info */
104 F2FS_SBI, /* struct f2fs_sb_info */
105 };
106
107 struct f2fs_attr {
108 struct attribute attr;
109 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
110 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
111 const char *, size_t);
112 int struct_type;
113 int offset;
114 };
115
116 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
117 {
118 if (struct_type == GC_THREAD)
119 return (unsigned char *)sbi->gc_thread;
120 else if (struct_type == SM_INFO)
121 return (unsigned char *)SM_I(sbi);
122 else if (struct_type == NM_INFO)
123 return (unsigned char *)NM_I(sbi);
124 else if (struct_type == F2FS_SBI)
125 return (unsigned char *)sbi;
126 return NULL;
127 }
128
129 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
130 struct f2fs_sb_info *sbi, char *buf)
131 {
132 unsigned char *ptr = NULL;
133 unsigned int *ui;
134
135 ptr = __struct_ptr(sbi, a->struct_type);
136 if (!ptr)
137 return -EINVAL;
138
139 ui = (unsigned int *)(ptr + a->offset);
140
141 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
142 }
143
144 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
145 struct f2fs_sb_info *sbi,
146 const char *buf, size_t count)
147 {
148 unsigned char *ptr;
149 unsigned long t;
150 unsigned int *ui;
151 ssize_t ret;
152
153 ptr = __struct_ptr(sbi, a->struct_type);
154 if (!ptr)
155 return -EINVAL;
156
157 ui = (unsigned int *)(ptr + a->offset);
158
159 ret = kstrtoul(skip_spaces(buf), 0, &t);
160 if (ret < 0)
161 return ret;
162 *ui = t;
163 return count;
164 }
165
166 static ssize_t f2fs_attr_show(struct kobject *kobj,
167 struct attribute *attr, char *buf)
168 {
169 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
170 s_kobj);
171 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
172
173 return a->show ? a->show(a, sbi, buf) : 0;
174 }
175
176 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
177 const char *buf, size_t len)
178 {
179 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
180 s_kobj);
181 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
182
183 return a->store ? a->store(a, sbi, buf, len) : 0;
184 }
185
186 static void f2fs_sb_release(struct kobject *kobj)
187 {
188 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
189 s_kobj);
190 complete(&sbi->s_kobj_unregister);
191 }
192
193 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
194 static struct f2fs_attr f2fs_attr_##_name = { \
195 .attr = {.name = __stringify(_name), .mode = _mode }, \
196 .show = _show, \
197 .store = _store, \
198 .struct_type = _struct_type, \
199 .offset = _offset \
200 }
201
202 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
203 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
204 f2fs_sbi_show, f2fs_sbi_store, \
205 offsetof(struct struct_name, elname))
206
207 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
208 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
209 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
210 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
211 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
212 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
213 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
214 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
215 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
216 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
217 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
218 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
219 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
220 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
221 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
222 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
223
224 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
225 static struct attribute *f2fs_attrs[] = {
226 ATTR_LIST(gc_min_sleep_time),
227 ATTR_LIST(gc_max_sleep_time),
228 ATTR_LIST(gc_no_gc_sleep_time),
229 ATTR_LIST(gc_idle),
230 ATTR_LIST(reclaim_segments),
231 ATTR_LIST(max_small_discards),
232 ATTR_LIST(batched_trim_sections),
233 ATTR_LIST(ipu_policy),
234 ATTR_LIST(min_ipu_util),
235 ATTR_LIST(min_fsync_blocks),
236 ATTR_LIST(max_victim_search),
237 ATTR_LIST(dir_level),
238 ATTR_LIST(ram_thresh),
239 ATTR_LIST(ra_nid_pages),
240 ATTR_LIST(cp_interval),
241 ATTR_LIST(idle_interval),
242 NULL,
243 };
244
245 static const struct sysfs_ops f2fs_attr_ops = {
246 .show = f2fs_attr_show,
247 .store = f2fs_attr_store,
248 };
249
250 static struct kobj_type f2fs_ktype = {
251 .default_attrs = f2fs_attrs,
252 .sysfs_ops = &f2fs_attr_ops,
253 .release = f2fs_sb_release,
254 };
255
256 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
257 {
258 struct va_format vaf;
259 va_list args;
260
261 va_start(args, fmt);
262 vaf.fmt = fmt;
263 vaf.va = &args;
264 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
265 va_end(args);
266 }
267
268 static void init_once(void *foo)
269 {
270 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
271
272 inode_init_once(&fi->vfs_inode);
273 }
274
275 static int parse_options(struct super_block *sb, char *options)
276 {
277 struct f2fs_sb_info *sbi = F2FS_SB(sb);
278 struct request_queue *q;
279 substring_t args[MAX_OPT_ARGS];
280 char *p, *name;
281 int arg = 0;
282
283 if (!options)
284 return 0;
285
286 while ((p = strsep(&options, ",")) != NULL) {
287 int token;
288 if (!*p)
289 continue;
290 /*
291 * Initialize args struct so we know whether arg was
292 * found; some options take optional arguments.
293 */
294 args[0].to = args[0].from = NULL;
295 token = match_token(p, f2fs_tokens, args);
296
297 switch (token) {
298 case Opt_gc_background:
299 name = match_strdup(&args[0]);
300
301 if (!name)
302 return -ENOMEM;
303 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
304 set_opt(sbi, BG_GC);
305 clear_opt(sbi, FORCE_FG_GC);
306 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
307 clear_opt(sbi, BG_GC);
308 clear_opt(sbi, FORCE_FG_GC);
309 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
310 set_opt(sbi, BG_GC);
311 set_opt(sbi, FORCE_FG_GC);
312 } else {
313 kfree(name);
314 return -EINVAL;
315 }
316 kfree(name);
317 break;
318 case Opt_disable_roll_forward:
319 set_opt(sbi, DISABLE_ROLL_FORWARD);
320 break;
321 case Opt_norecovery:
322 /* this option mounts f2fs with ro */
323 set_opt(sbi, DISABLE_ROLL_FORWARD);
324 if (!f2fs_readonly(sb))
325 return -EINVAL;
326 break;
327 case Opt_discard:
328 q = bdev_get_queue(sb->s_bdev);
329 if (blk_queue_discard(q)) {
330 set_opt(sbi, DISCARD);
331 } else {
332 f2fs_msg(sb, KERN_WARNING,
333 "mounting with \"discard\" option, but "
334 "the device does not support discard");
335 }
336 break;
337 case Opt_noheap:
338 set_opt(sbi, NOHEAP);
339 break;
340 #ifdef CONFIG_F2FS_FS_XATTR
341 case Opt_user_xattr:
342 set_opt(sbi, XATTR_USER);
343 break;
344 case Opt_nouser_xattr:
345 clear_opt(sbi, XATTR_USER);
346 break;
347 case Opt_inline_xattr:
348 set_opt(sbi, INLINE_XATTR);
349 break;
350 #else
351 case Opt_user_xattr:
352 f2fs_msg(sb, KERN_INFO,
353 "user_xattr options not supported");
354 break;
355 case Opt_nouser_xattr:
356 f2fs_msg(sb, KERN_INFO,
357 "nouser_xattr options not supported");
358 break;
359 case Opt_inline_xattr:
360 f2fs_msg(sb, KERN_INFO,
361 "inline_xattr options not supported");
362 break;
363 #endif
364 #ifdef CONFIG_F2FS_FS_POSIX_ACL
365 case Opt_acl:
366 set_opt(sbi, POSIX_ACL);
367 break;
368 case Opt_noacl:
369 clear_opt(sbi, POSIX_ACL);
370 break;
371 #else
372 case Opt_acl:
373 f2fs_msg(sb, KERN_INFO, "acl options not supported");
374 break;
375 case Opt_noacl:
376 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
377 break;
378 #endif
379 case Opt_active_logs:
380 if (args->from && match_int(args, &arg))
381 return -EINVAL;
382 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
383 return -EINVAL;
384 sbi->active_logs = arg;
385 break;
386 case Opt_disable_ext_identify:
387 set_opt(sbi, DISABLE_EXT_IDENTIFY);
388 break;
389 case Opt_inline_data:
390 set_opt(sbi, INLINE_DATA);
391 break;
392 case Opt_inline_dentry:
393 set_opt(sbi, INLINE_DENTRY);
394 break;
395 case Opt_flush_merge:
396 set_opt(sbi, FLUSH_MERGE);
397 break;
398 case Opt_nobarrier:
399 set_opt(sbi, NOBARRIER);
400 break;
401 case Opt_fastboot:
402 set_opt(sbi, FASTBOOT);
403 break;
404 case Opt_extent_cache:
405 set_opt(sbi, EXTENT_CACHE);
406 break;
407 case Opt_noextent_cache:
408 clear_opt(sbi, EXTENT_CACHE);
409 break;
410 case Opt_noinline_data:
411 clear_opt(sbi, INLINE_DATA);
412 break;
413 case Opt_data_flush:
414 set_opt(sbi, DATA_FLUSH);
415 break;
416 default:
417 f2fs_msg(sb, KERN_ERR,
418 "Unrecognized mount option \"%s\" or missing value",
419 p);
420 return -EINVAL;
421 }
422 }
423 return 0;
424 }
425
426 static struct inode *f2fs_alloc_inode(struct super_block *sb)
427 {
428 struct f2fs_inode_info *fi;
429
430 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
431 if (!fi)
432 return NULL;
433
434 init_once((void *) fi);
435
436 /* Initialize f2fs-specific inode info */
437 fi->vfs_inode.i_version = 1;
438 atomic_set(&fi->dirty_pages, 0);
439 fi->i_current_depth = 1;
440 fi->i_advise = 0;
441 init_rwsem(&fi->i_sem);
442 INIT_LIST_HEAD(&fi->dirty_list);
443 INIT_LIST_HEAD(&fi->inmem_pages);
444 mutex_init(&fi->inmem_lock);
445
446 set_inode_flag(fi, FI_NEW_INODE);
447
448 if (test_opt(F2FS_SB(sb), INLINE_XATTR))
449 set_inode_flag(fi, FI_INLINE_XATTR);
450
451 /* Will be used by directory only */
452 fi->i_dir_level = F2FS_SB(sb)->dir_level;
453
454 #ifdef CONFIG_F2FS_FS_ENCRYPTION
455 fi->i_crypt_info = NULL;
456 #endif
457 return &fi->vfs_inode;
458 }
459
460 static int f2fs_drop_inode(struct inode *inode)
461 {
462 /*
463 * This is to avoid a deadlock condition like below.
464 * writeback_single_inode(inode)
465 * - f2fs_write_data_page
466 * - f2fs_gc -> iput -> evict
467 * - inode_wait_for_writeback(inode)
468 */
469 if (!inode_unhashed(inode) && inode->i_state & I_SYNC) {
470 if (!inode->i_nlink && !is_bad_inode(inode)) {
471 /* to avoid evict_inode call simultaneously */
472 atomic_inc(&inode->i_count);
473 spin_unlock(&inode->i_lock);
474
475 /* some remained atomic pages should discarded */
476 if (f2fs_is_atomic_file(inode))
477 commit_inmem_pages(inode, true);
478
479 /* should remain fi->extent_tree for writepage */
480 f2fs_destroy_extent_node(inode);
481
482 sb_start_intwrite(inode->i_sb);
483 i_size_write(inode, 0);
484
485 if (F2FS_HAS_BLOCKS(inode))
486 f2fs_truncate(inode, true);
487
488 sb_end_intwrite(inode->i_sb);
489
490 #ifdef CONFIG_F2FS_FS_ENCRYPTION
491 if (F2FS_I(inode)->i_crypt_info)
492 f2fs_free_encryption_info(inode,
493 F2FS_I(inode)->i_crypt_info);
494 #endif
495 spin_lock(&inode->i_lock);
496 atomic_dec(&inode->i_count);
497 }
498 return 0;
499 }
500 return generic_drop_inode(inode);
501 }
502
503 /*
504 * f2fs_dirty_inode() is called from __mark_inode_dirty()
505 *
506 * We should call set_dirty_inode to write the dirty inode through write_inode.
507 */
508 static void f2fs_dirty_inode(struct inode *inode, int flags)
509 {
510 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
511 }
512
513 static void f2fs_i_callback(struct rcu_head *head)
514 {
515 struct inode *inode = container_of(head, struct inode, i_rcu);
516 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
517 }
518
519 static void f2fs_destroy_inode(struct inode *inode)
520 {
521 call_rcu(&inode->i_rcu, f2fs_i_callback);
522 }
523
524 static void f2fs_put_super(struct super_block *sb)
525 {
526 struct f2fs_sb_info *sbi = F2FS_SB(sb);
527
528 if (sbi->s_proc) {
529 remove_proc_entry("segment_info", sbi->s_proc);
530 remove_proc_entry(sb->s_id, f2fs_proc_root);
531 }
532 kobject_del(&sbi->s_kobj);
533
534 stop_gc_thread(sbi);
535
536 /* prevent remaining shrinker jobs */
537 mutex_lock(&sbi->umount_mutex);
538
539 /*
540 * We don't need to do checkpoint when superblock is clean.
541 * But, the previous checkpoint was not done by umount, it needs to do
542 * clean checkpoint again.
543 */
544 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
545 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
546 struct cp_control cpc = {
547 .reason = CP_UMOUNT,
548 };
549 write_checkpoint(sbi, &cpc);
550 }
551
552 /* write_checkpoint can update stat informaion */
553 f2fs_destroy_stats(sbi);
554
555 /*
556 * normally superblock is clean, so we need to release this.
557 * In addition, EIO will skip do checkpoint, we need this as well.
558 */
559 release_ino_entry(sbi);
560 release_discard_addrs(sbi);
561
562 f2fs_leave_shrinker(sbi);
563 mutex_unlock(&sbi->umount_mutex);
564
565 iput(sbi->node_inode);
566 iput(sbi->meta_inode);
567
568 /* destroy f2fs internal modules */
569 destroy_node_manager(sbi);
570 destroy_segment_manager(sbi);
571
572 kfree(sbi->ckpt);
573 kobject_put(&sbi->s_kobj);
574 wait_for_completion(&sbi->s_kobj_unregister);
575
576 sb->s_fs_info = NULL;
577 kfree(sbi->raw_super);
578 kfree(sbi);
579 }
580
581 int f2fs_sync_fs(struct super_block *sb, int sync)
582 {
583 struct f2fs_sb_info *sbi = F2FS_SB(sb);
584 int err = 0;
585
586 trace_f2fs_sync_fs(sb, sync);
587
588 if (sync) {
589 struct cp_control cpc;
590
591 cpc.reason = __get_cp_reason(sbi);
592
593 mutex_lock(&sbi->gc_mutex);
594 err = write_checkpoint(sbi, &cpc);
595 mutex_unlock(&sbi->gc_mutex);
596 }
597 f2fs_trace_ios(NULL, 1);
598
599 return err;
600 }
601
602 static int f2fs_freeze(struct super_block *sb)
603 {
604 int err;
605
606 if (f2fs_readonly(sb))
607 return 0;
608
609 err = f2fs_sync_fs(sb, 1);
610 return err;
611 }
612
613 static int f2fs_unfreeze(struct super_block *sb)
614 {
615 return 0;
616 }
617
618 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
619 {
620 struct super_block *sb = dentry->d_sb;
621 struct f2fs_sb_info *sbi = F2FS_SB(sb);
622 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
623 block_t total_count, user_block_count, start_count, ovp_count;
624
625 total_count = le64_to_cpu(sbi->raw_super->block_count);
626 user_block_count = sbi->user_block_count;
627 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
628 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
629 buf->f_type = F2FS_SUPER_MAGIC;
630 buf->f_bsize = sbi->blocksize;
631
632 buf->f_blocks = total_count - start_count;
633 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
634 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
635
636 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
637 buf->f_ffree = buf->f_files - valid_inode_count(sbi);
638
639 buf->f_namelen = F2FS_NAME_LEN;
640 buf->f_fsid.val[0] = (u32)id;
641 buf->f_fsid.val[1] = (u32)(id >> 32);
642
643 return 0;
644 }
645
646 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
647 {
648 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
649
650 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
651 if (test_opt(sbi, FORCE_FG_GC))
652 seq_printf(seq, ",background_gc=%s", "sync");
653 else
654 seq_printf(seq, ",background_gc=%s", "on");
655 } else {
656 seq_printf(seq, ",background_gc=%s", "off");
657 }
658 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
659 seq_puts(seq, ",disable_roll_forward");
660 if (test_opt(sbi, DISCARD))
661 seq_puts(seq, ",discard");
662 if (test_opt(sbi, NOHEAP))
663 seq_puts(seq, ",no_heap_alloc");
664 #ifdef CONFIG_F2FS_FS_XATTR
665 if (test_opt(sbi, XATTR_USER))
666 seq_puts(seq, ",user_xattr");
667 else
668 seq_puts(seq, ",nouser_xattr");
669 if (test_opt(sbi, INLINE_XATTR))
670 seq_puts(seq, ",inline_xattr");
671 #endif
672 #ifdef CONFIG_F2FS_FS_POSIX_ACL
673 if (test_opt(sbi, POSIX_ACL))
674 seq_puts(seq, ",acl");
675 else
676 seq_puts(seq, ",noacl");
677 #endif
678 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
679 seq_puts(seq, ",disable_ext_identify");
680 if (test_opt(sbi, INLINE_DATA))
681 seq_puts(seq, ",inline_data");
682 else
683 seq_puts(seq, ",noinline_data");
684 if (test_opt(sbi, INLINE_DENTRY))
685 seq_puts(seq, ",inline_dentry");
686 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
687 seq_puts(seq, ",flush_merge");
688 if (test_opt(sbi, NOBARRIER))
689 seq_puts(seq, ",nobarrier");
690 if (test_opt(sbi, FASTBOOT))
691 seq_puts(seq, ",fastboot");
692 if (test_opt(sbi, EXTENT_CACHE))
693 seq_puts(seq, ",extent_cache");
694 else
695 seq_puts(seq, ",noextent_cache");
696 if (test_opt(sbi, DATA_FLUSH))
697 seq_puts(seq, ",data_flush");
698 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
699
700 return 0;
701 }
702
703 static int segment_info_seq_show(struct seq_file *seq, void *offset)
704 {
705 struct super_block *sb = seq->private;
706 struct f2fs_sb_info *sbi = F2FS_SB(sb);
707 unsigned int total_segs =
708 le32_to_cpu(sbi->raw_super->segment_count_main);
709 int i;
710
711 seq_puts(seq, "format: segment_type|valid_blocks\n"
712 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
713
714 for (i = 0; i < total_segs; i++) {
715 struct seg_entry *se = get_seg_entry(sbi, i);
716
717 if ((i % 10) == 0)
718 seq_printf(seq, "%-10d", i);
719 seq_printf(seq, "%d|%-3u", se->type,
720 get_valid_blocks(sbi, i, 1));
721 if ((i % 10) == 9 || i == (total_segs - 1))
722 seq_putc(seq, '\n');
723 else
724 seq_putc(seq, ' ');
725 }
726
727 return 0;
728 }
729
730 static int segment_info_open_fs(struct inode *inode, struct file *file)
731 {
732 return single_open(file, segment_info_seq_show, PDE_DATA(inode));
733 }
734
735 static const struct file_operations f2fs_seq_segment_info_fops = {
736 .owner = THIS_MODULE,
737 .open = segment_info_open_fs,
738 .read = seq_read,
739 .llseek = seq_lseek,
740 .release = single_release,
741 };
742
743 static void default_options(struct f2fs_sb_info *sbi)
744 {
745 /* init some FS parameters */
746 sbi->active_logs = NR_CURSEG_TYPE;
747
748 set_opt(sbi, BG_GC);
749 set_opt(sbi, INLINE_DATA);
750 set_opt(sbi, EXTENT_CACHE);
751
752 #ifdef CONFIG_F2FS_FS_XATTR
753 set_opt(sbi, XATTR_USER);
754 #endif
755 #ifdef CONFIG_F2FS_FS_POSIX_ACL
756 set_opt(sbi, POSIX_ACL);
757 #endif
758 }
759
760 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
761 {
762 struct f2fs_sb_info *sbi = F2FS_SB(sb);
763 struct f2fs_mount_info org_mount_opt;
764 int err, active_logs;
765 bool need_restart_gc = false;
766 bool need_stop_gc = false;
767 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
768
769 sync_filesystem(sb);
770
771 /*
772 * Save the old mount options in case we
773 * need to restore them.
774 */
775 org_mount_opt = sbi->mount_opt;
776 active_logs = sbi->active_logs;
777
778 sbi->mount_opt.opt = 0;
779 default_options(sbi);
780
781 /* parse mount options */
782 err = parse_options(sb, data);
783 if (err)
784 goto restore_opts;
785
786 /*
787 * Previous and new state of filesystem is RO,
788 * so skip checking GC and FLUSH_MERGE conditions.
789 */
790 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
791 goto skip;
792
793 /* disallow enable/disable extent_cache dynamically */
794 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
795 err = -EINVAL;
796 f2fs_msg(sbi->sb, KERN_WARNING,
797 "switch extent_cache option is not allowed");
798 goto restore_opts;
799 }
800
801 /*
802 * We stop the GC thread if FS is mounted as RO
803 * or if background_gc = off is passed in mount
804 * option. Also sync the filesystem.
805 */
806 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
807 if (sbi->gc_thread) {
808 stop_gc_thread(sbi);
809 f2fs_sync_fs(sb, 1);
810 need_restart_gc = true;
811 }
812 } else if (!sbi->gc_thread) {
813 err = start_gc_thread(sbi);
814 if (err)
815 goto restore_opts;
816 need_stop_gc = true;
817 }
818
819 /*
820 * We stop issue flush thread if FS is mounted as RO
821 * or if flush_merge is not passed in mount option.
822 */
823 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
824 destroy_flush_cmd_control(sbi);
825 } else if (!SM_I(sbi)->cmd_control_info) {
826 err = create_flush_cmd_control(sbi);
827 if (err)
828 goto restore_gc;
829 }
830 skip:
831 /* Update the POSIXACL Flag */
832 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
833 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
834 return 0;
835 restore_gc:
836 if (need_restart_gc) {
837 if (start_gc_thread(sbi))
838 f2fs_msg(sbi->sb, KERN_WARNING,
839 "background gc thread has stopped");
840 } else if (need_stop_gc) {
841 stop_gc_thread(sbi);
842 }
843 restore_opts:
844 sbi->mount_opt = org_mount_opt;
845 sbi->active_logs = active_logs;
846 return err;
847 }
848
849 static struct super_operations f2fs_sops = {
850 .alloc_inode = f2fs_alloc_inode,
851 .drop_inode = f2fs_drop_inode,
852 .destroy_inode = f2fs_destroy_inode,
853 .write_inode = f2fs_write_inode,
854 .dirty_inode = f2fs_dirty_inode,
855 .show_options = f2fs_show_options,
856 .evict_inode = f2fs_evict_inode,
857 .put_super = f2fs_put_super,
858 .sync_fs = f2fs_sync_fs,
859 .freeze_fs = f2fs_freeze,
860 .unfreeze_fs = f2fs_unfreeze,
861 .statfs = f2fs_statfs,
862 .remount_fs = f2fs_remount,
863 };
864
865 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
866 u64 ino, u32 generation)
867 {
868 struct f2fs_sb_info *sbi = F2FS_SB(sb);
869 struct inode *inode;
870
871 if (check_nid_range(sbi, ino))
872 return ERR_PTR(-ESTALE);
873
874 /*
875 * f2fs_iget isn't quite right if the inode is currently unallocated!
876 * However f2fs_iget currently does appropriate checks to handle stale
877 * inodes so everything is OK.
878 */
879 inode = f2fs_iget(sb, ino);
880 if (IS_ERR(inode))
881 return ERR_CAST(inode);
882 if (unlikely(generation && inode->i_generation != generation)) {
883 /* we didn't find the right inode.. */
884 iput(inode);
885 return ERR_PTR(-ESTALE);
886 }
887 return inode;
888 }
889
890 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
891 int fh_len, int fh_type)
892 {
893 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
894 f2fs_nfs_get_inode);
895 }
896
897 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
898 int fh_len, int fh_type)
899 {
900 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
901 f2fs_nfs_get_inode);
902 }
903
904 static const struct export_operations f2fs_export_ops = {
905 .fh_to_dentry = f2fs_fh_to_dentry,
906 .fh_to_parent = f2fs_fh_to_parent,
907 .get_parent = f2fs_get_parent,
908 };
909
910 static loff_t max_file_blocks(void)
911 {
912 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
913 loff_t leaf_count = ADDRS_PER_BLOCK;
914
915 /* two direct node blocks */
916 result += (leaf_count * 2);
917
918 /* two indirect node blocks */
919 leaf_count *= NIDS_PER_BLOCK;
920 result += (leaf_count * 2);
921
922 /* one double indirect node block */
923 leaf_count *= NIDS_PER_BLOCK;
924 result += leaf_count;
925
926 return result;
927 }
928
929 static inline bool sanity_check_area_boundary(struct super_block *sb,
930 struct f2fs_super_block *raw_super)
931 {
932 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
933 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
934 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
935 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
936 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
937 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
938 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
939 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
940 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
941 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
942 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
943 u32 segment_count = le32_to_cpu(raw_super->segment_count);
944 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
945
946 if (segment0_blkaddr != cp_blkaddr) {
947 f2fs_msg(sb, KERN_INFO,
948 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
949 segment0_blkaddr, cp_blkaddr);
950 return true;
951 }
952
953 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
954 sit_blkaddr) {
955 f2fs_msg(sb, KERN_INFO,
956 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
957 cp_blkaddr, sit_blkaddr,
958 segment_count_ckpt << log_blocks_per_seg);
959 return true;
960 }
961
962 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
963 nat_blkaddr) {
964 f2fs_msg(sb, KERN_INFO,
965 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
966 sit_blkaddr, nat_blkaddr,
967 segment_count_sit << log_blocks_per_seg);
968 return true;
969 }
970
971 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
972 ssa_blkaddr) {
973 f2fs_msg(sb, KERN_INFO,
974 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
975 nat_blkaddr, ssa_blkaddr,
976 segment_count_nat << log_blocks_per_seg);
977 return true;
978 }
979
980 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
981 main_blkaddr) {
982 f2fs_msg(sb, KERN_INFO,
983 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
984 ssa_blkaddr, main_blkaddr,
985 segment_count_ssa << log_blocks_per_seg);
986 return true;
987 }
988
989 if (main_blkaddr + (segment_count_main << log_blocks_per_seg) !=
990 segment0_blkaddr + (segment_count << log_blocks_per_seg)) {
991 f2fs_msg(sb, KERN_INFO,
992 "Wrong MAIN_AREA boundary, start(%u) end(%u) blocks(%u)",
993 main_blkaddr,
994 segment0_blkaddr + (segment_count << log_blocks_per_seg),
995 segment_count_main << log_blocks_per_seg);
996 return true;
997 }
998
999 return false;
1000 }
1001
1002 static int sanity_check_raw_super(struct super_block *sb,
1003 struct f2fs_super_block *raw_super)
1004 {
1005 unsigned int blocksize;
1006
1007 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1008 f2fs_msg(sb, KERN_INFO,
1009 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1010 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1011 return 1;
1012 }
1013
1014 /* Currently, support only 4KB page cache size */
1015 if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
1016 f2fs_msg(sb, KERN_INFO,
1017 "Invalid page_cache_size (%lu), supports only 4KB\n",
1018 PAGE_CACHE_SIZE);
1019 return 1;
1020 }
1021
1022 /* Currently, support only 4KB block size */
1023 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1024 if (blocksize != F2FS_BLKSIZE) {
1025 f2fs_msg(sb, KERN_INFO,
1026 "Invalid blocksize (%u), supports only 4KB\n",
1027 blocksize);
1028 return 1;
1029 }
1030
1031 /* check log blocks per segment */
1032 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1033 f2fs_msg(sb, KERN_INFO,
1034 "Invalid log blocks per segment (%u)\n",
1035 le32_to_cpu(raw_super->log_blocks_per_seg));
1036 return 1;
1037 }
1038
1039 /* Currently, support 512/1024/2048/4096 bytes sector size */
1040 if (le32_to_cpu(raw_super->log_sectorsize) >
1041 F2FS_MAX_LOG_SECTOR_SIZE ||
1042 le32_to_cpu(raw_super->log_sectorsize) <
1043 F2FS_MIN_LOG_SECTOR_SIZE) {
1044 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1045 le32_to_cpu(raw_super->log_sectorsize));
1046 return 1;
1047 }
1048 if (le32_to_cpu(raw_super->log_sectors_per_block) +
1049 le32_to_cpu(raw_super->log_sectorsize) !=
1050 F2FS_MAX_LOG_SECTOR_SIZE) {
1051 f2fs_msg(sb, KERN_INFO,
1052 "Invalid log sectors per block(%u) log sectorsize(%u)",
1053 le32_to_cpu(raw_super->log_sectors_per_block),
1054 le32_to_cpu(raw_super->log_sectorsize));
1055 return 1;
1056 }
1057
1058 /* check reserved ino info */
1059 if (le32_to_cpu(raw_super->node_ino) != 1 ||
1060 le32_to_cpu(raw_super->meta_ino) != 2 ||
1061 le32_to_cpu(raw_super->root_ino) != 3) {
1062 f2fs_msg(sb, KERN_INFO,
1063 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1064 le32_to_cpu(raw_super->node_ino),
1065 le32_to_cpu(raw_super->meta_ino),
1066 le32_to_cpu(raw_super->root_ino));
1067 return 1;
1068 }
1069
1070 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1071 if (sanity_check_area_boundary(sb, raw_super))
1072 return 1;
1073
1074 return 0;
1075 }
1076
1077 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1078 {
1079 unsigned int total, fsmeta;
1080 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1081 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1082
1083 total = le32_to_cpu(raw_super->segment_count);
1084 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1085 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1086 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1087 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1088 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1089
1090 if (unlikely(fsmeta >= total))
1091 return 1;
1092
1093 if (unlikely(f2fs_cp_error(sbi))) {
1094 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1095 return 1;
1096 }
1097 return 0;
1098 }
1099
1100 static void init_sb_info(struct f2fs_sb_info *sbi)
1101 {
1102 struct f2fs_super_block *raw_super = sbi->raw_super;
1103 int i;
1104
1105 sbi->log_sectors_per_block =
1106 le32_to_cpu(raw_super->log_sectors_per_block);
1107 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1108 sbi->blocksize = 1 << sbi->log_blocksize;
1109 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1110 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1111 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1112 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1113 sbi->total_sections = le32_to_cpu(raw_super->section_count);
1114 sbi->total_node_count =
1115 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1116 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1117 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1118 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1119 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1120 sbi->cur_victim_sec = NULL_SECNO;
1121 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1122
1123 for (i = 0; i < NR_COUNT_TYPE; i++)
1124 atomic_set(&sbi->nr_pages[i], 0);
1125
1126 sbi->dir_level = DEF_DIR_LEVEL;
1127 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1128 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1129 clear_sbi_flag(sbi, SBI_NEED_FSCK);
1130
1131 INIT_LIST_HEAD(&sbi->s_list);
1132 mutex_init(&sbi->umount_mutex);
1133 }
1134
1135 /*
1136 * Read f2fs raw super block.
1137 * Because we have two copies of super block, so read the first one at first,
1138 * if the first one is invalid, move to read the second one.
1139 */
1140 static int read_raw_super_block(struct super_block *sb,
1141 struct f2fs_super_block **raw_super,
1142 int *valid_super_block, int *recovery)
1143 {
1144 int block = 0;
1145 struct buffer_head *bh;
1146 struct f2fs_super_block *super, *buf;
1147 int err = 0;
1148
1149 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1150 if (!super)
1151 return -ENOMEM;
1152 retry:
1153 bh = sb_bread(sb, block);
1154 if (!bh) {
1155 *recovery = 1;
1156 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1157 block + 1);
1158 err = -EIO;
1159 goto next;
1160 }
1161
1162 buf = (struct f2fs_super_block *)(bh->b_data + F2FS_SUPER_OFFSET);
1163
1164 /* sanity checking of raw super */
1165 if (sanity_check_raw_super(sb, buf)) {
1166 brelse(bh);
1167 *recovery = 1;
1168 f2fs_msg(sb, KERN_ERR,
1169 "Can't find valid F2FS filesystem in %dth superblock",
1170 block + 1);
1171 err = -EINVAL;
1172 goto next;
1173 }
1174
1175 if (!*raw_super) {
1176 memcpy(super, buf, sizeof(*super));
1177 *valid_super_block = block;
1178 *raw_super = super;
1179 }
1180 brelse(bh);
1181
1182 next:
1183 /* check the validity of the second superblock */
1184 if (block == 0) {
1185 block++;
1186 goto retry;
1187 }
1188
1189 /* No valid superblock */
1190 if (!*raw_super) {
1191 kfree(super);
1192 return err;
1193 }
1194
1195 return 0;
1196 }
1197
1198 static int __f2fs_commit_super(struct f2fs_sb_info *sbi, int block)
1199 {
1200 struct f2fs_super_block *super = F2FS_RAW_SUPER(sbi);
1201 struct buffer_head *bh;
1202 int err;
1203
1204 bh = sb_getblk(sbi->sb, block);
1205 if (!bh)
1206 return -EIO;
1207
1208 lock_buffer(bh);
1209 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1210 set_buffer_uptodate(bh);
1211 set_buffer_dirty(bh);
1212 unlock_buffer(bh);
1213
1214 /* it's rare case, we can do fua all the time */
1215 err = __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1216 brelse(bh);
1217
1218 return err;
1219 }
1220
1221 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1222 {
1223 int err;
1224
1225 /* write back-up superblock first */
1226 err = __f2fs_commit_super(sbi, sbi->valid_super_block ? 0 : 1);
1227
1228 /* if we are in recovery path, skip writing valid superblock */
1229 if (recover || err)
1230 return err;
1231
1232 /* write current valid superblock */
1233 return __f2fs_commit_super(sbi, sbi->valid_super_block);
1234 }
1235
1236 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1237 {
1238 struct f2fs_sb_info *sbi;
1239 struct f2fs_super_block *raw_super;
1240 struct inode *root;
1241 long err;
1242 bool retry = true, need_fsck = false;
1243 char *options = NULL;
1244 int recovery, i, valid_super_block;
1245
1246 try_onemore:
1247 err = -EINVAL;
1248 raw_super = NULL;
1249 valid_super_block = -1;
1250 recovery = 0;
1251
1252 /* allocate memory for f2fs-specific super block info */
1253 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1254 if (!sbi)
1255 return -ENOMEM;
1256
1257 /* set a block size */
1258 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1259 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1260 goto free_sbi;
1261 }
1262
1263 err = read_raw_super_block(sb, &raw_super, &valid_super_block,
1264 &recovery);
1265 if (err)
1266 goto free_sbi;
1267
1268 sb->s_fs_info = sbi;
1269 default_options(sbi);
1270 /* parse mount options */
1271 options = kstrdup((const char *)data, GFP_KERNEL);
1272 if (data && !options) {
1273 err = -ENOMEM;
1274 goto free_sb_buf;
1275 }
1276
1277 err = parse_options(sb, options);
1278 if (err)
1279 goto free_options;
1280
1281 sbi->max_file_blocks = max_file_blocks();
1282 sb->s_maxbytes = sbi->max_file_blocks <<
1283 le32_to_cpu(raw_super->log_blocksize);
1284 sb->s_max_links = F2FS_LINK_MAX;
1285 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1286
1287 sb->s_op = &f2fs_sops;
1288 sb->s_xattr = f2fs_xattr_handlers;
1289 sb->s_export_op = &f2fs_export_ops;
1290 sb->s_magic = F2FS_SUPER_MAGIC;
1291 sb->s_time_gran = 1;
1292 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1293 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1294 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1295
1296 /* init f2fs-specific super block info */
1297 sbi->sb = sb;
1298 sbi->raw_super = raw_super;
1299 sbi->valid_super_block = valid_super_block;
1300 mutex_init(&sbi->gc_mutex);
1301 mutex_init(&sbi->writepages);
1302 mutex_init(&sbi->cp_mutex);
1303 init_rwsem(&sbi->node_write);
1304
1305 /* disallow all the data/node/meta page writes */
1306 set_sbi_flag(sbi, SBI_POR_DOING);
1307 spin_lock_init(&sbi->stat_lock);
1308
1309 init_rwsem(&sbi->read_io.io_rwsem);
1310 sbi->read_io.sbi = sbi;
1311 sbi->read_io.bio = NULL;
1312 for (i = 0; i < NR_PAGE_TYPE; i++) {
1313 init_rwsem(&sbi->write_io[i].io_rwsem);
1314 sbi->write_io[i].sbi = sbi;
1315 sbi->write_io[i].bio = NULL;
1316 }
1317
1318 init_rwsem(&sbi->cp_rwsem);
1319 init_waitqueue_head(&sbi->cp_wait);
1320 init_sb_info(sbi);
1321
1322 /* get an inode for meta space */
1323 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1324 if (IS_ERR(sbi->meta_inode)) {
1325 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1326 err = PTR_ERR(sbi->meta_inode);
1327 goto free_options;
1328 }
1329
1330 err = get_valid_checkpoint(sbi);
1331 if (err) {
1332 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1333 goto free_meta_inode;
1334 }
1335
1336 /* sanity checking of checkpoint */
1337 err = -EINVAL;
1338 if (sanity_check_ckpt(sbi)) {
1339 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
1340 goto free_cp;
1341 }
1342
1343 sbi->total_valid_node_count =
1344 le32_to_cpu(sbi->ckpt->valid_node_count);
1345 sbi->total_valid_inode_count =
1346 le32_to_cpu(sbi->ckpt->valid_inode_count);
1347 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1348 sbi->total_valid_block_count =
1349 le64_to_cpu(sbi->ckpt->valid_block_count);
1350 sbi->last_valid_block_count = sbi->total_valid_block_count;
1351 sbi->alloc_valid_block_count = 0;
1352 for (i = 0; i < NR_INODE_TYPE; i++) {
1353 INIT_LIST_HEAD(&sbi->inode_list[i]);
1354 spin_lock_init(&sbi->inode_lock[i]);
1355 }
1356
1357 init_extent_cache_info(sbi);
1358
1359 init_ino_entry_info(sbi);
1360
1361 /* setup f2fs internal modules */
1362 err = build_segment_manager(sbi);
1363 if (err) {
1364 f2fs_msg(sb, KERN_ERR,
1365 "Failed to initialize F2FS segment manager");
1366 goto free_sm;
1367 }
1368 err = build_node_manager(sbi);
1369 if (err) {
1370 f2fs_msg(sb, KERN_ERR,
1371 "Failed to initialize F2FS node manager");
1372 goto free_nm;
1373 }
1374
1375 build_gc_manager(sbi);
1376
1377 /* get an inode for node space */
1378 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1379 if (IS_ERR(sbi->node_inode)) {
1380 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1381 err = PTR_ERR(sbi->node_inode);
1382 goto free_nm;
1383 }
1384
1385 f2fs_join_shrinker(sbi);
1386
1387 /* if there are nt orphan nodes free them */
1388 err = recover_orphan_inodes(sbi);
1389 if (err)
1390 goto free_node_inode;
1391
1392 /* read root inode and dentry */
1393 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1394 if (IS_ERR(root)) {
1395 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1396 err = PTR_ERR(root);
1397 goto free_node_inode;
1398 }
1399 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1400 iput(root);
1401 err = -EINVAL;
1402 goto free_node_inode;
1403 }
1404
1405 sb->s_root = d_make_root(root); /* allocate root dentry */
1406 if (!sb->s_root) {
1407 err = -ENOMEM;
1408 goto free_root_inode;
1409 }
1410
1411 err = f2fs_build_stats(sbi);
1412 if (err)
1413 goto free_root_inode;
1414
1415 if (f2fs_proc_root)
1416 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1417
1418 if (sbi->s_proc)
1419 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1420 &f2fs_seq_segment_info_fops, sb);
1421
1422 sbi->s_kobj.kset = f2fs_kset;
1423 init_completion(&sbi->s_kobj_unregister);
1424 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1425 "%s", sb->s_id);
1426 if (err)
1427 goto free_proc;
1428
1429 /* recover fsynced data */
1430 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1431 /*
1432 * mount should be failed, when device has readonly mode, and
1433 * previous checkpoint was not done by clean system shutdown.
1434 */
1435 if (bdev_read_only(sb->s_bdev) &&
1436 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1437 err = -EROFS;
1438 goto free_kobj;
1439 }
1440
1441 if (need_fsck)
1442 set_sbi_flag(sbi, SBI_NEED_FSCK);
1443
1444 err = recover_fsync_data(sbi);
1445 if (err) {
1446 need_fsck = true;
1447 f2fs_msg(sb, KERN_ERR,
1448 "Cannot recover all fsync data errno=%ld", err);
1449 goto free_kobj;
1450 }
1451 }
1452 /* recover_fsync_data() cleared this already */
1453 clear_sbi_flag(sbi, SBI_POR_DOING);
1454
1455 /*
1456 * If filesystem is not mounted as read-only then
1457 * do start the gc_thread.
1458 */
1459 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1460 /* After POR, we can run background GC thread.*/
1461 err = start_gc_thread(sbi);
1462 if (err)
1463 goto free_kobj;
1464 }
1465 kfree(options);
1466
1467 /* recover broken superblock */
1468 if (recovery && !f2fs_readonly(sb) && !bdev_read_only(sb->s_bdev)) {
1469 f2fs_msg(sb, KERN_INFO, "Recover invalid superblock");
1470 f2fs_commit_super(sbi, true);
1471 }
1472
1473 f2fs_update_time(sbi, CP_TIME);
1474 f2fs_update_time(sbi, REQ_TIME);
1475 return 0;
1476
1477 free_kobj:
1478 kobject_del(&sbi->s_kobj);
1479 kobject_put(&sbi->s_kobj);
1480 wait_for_completion(&sbi->s_kobj_unregister);
1481 free_proc:
1482 if (sbi->s_proc) {
1483 remove_proc_entry("segment_info", sbi->s_proc);
1484 remove_proc_entry(sb->s_id, f2fs_proc_root);
1485 }
1486 f2fs_destroy_stats(sbi);
1487 free_root_inode:
1488 dput(sb->s_root);
1489 sb->s_root = NULL;
1490 free_node_inode:
1491 mutex_lock(&sbi->umount_mutex);
1492 f2fs_leave_shrinker(sbi);
1493 iput(sbi->node_inode);
1494 mutex_unlock(&sbi->umount_mutex);
1495 free_nm:
1496 destroy_node_manager(sbi);
1497 free_sm:
1498 destroy_segment_manager(sbi);
1499 free_cp:
1500 kfree(sbi->ckpt);
1501 free_meta_inode:
1502 make_bad_inode(sbi->meta_inode);
1503 iput(sbi->meta_inode);
1504 free_options:
1505 kfree(options);
1506 free_sb_buf:
1507 kfree(raw_super);
1508 free_sbi:
1509 kfree(sbi);
1510
1511 /* give only one another chance */
1512 if (retry) {
1513 retry = false;
1514 shrink_dcache_sb(sb);
1515 goto try_onemore;
1516 }
1517 return err;
1518 }
1519
1520 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1521 const char *dev_name, void *data)
1522 {
1523 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1524 }
1525
1526 static void kill_f2fs_super(struct super_block *sb)
1527 {
1528 if (sb->s_root)
1529 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1530 kill_block_super(sb);
1531 }
1532
1533 static struct file_system_type f2fs_fs_type = {
1534 .owner = THIS_MODULE,
1535 .name = "f2fs",
1536 .mount = f2fs_mount,
1537 .kill_sb = kill_f2fs_super,
1538 .fs_flags = FS_REQUIRES_DEV,
1539 };
1540 MODULE_ALIAS_FS("f2fs");
1541
1542 static int __init init_inodecache(void)
1543 {
1544 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1545 sizeof(struct f2fs_inode_info), 0,
1546 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1547 if (!f2fs_inode_cachep)
1548 return -ENOMEM;
1549 return 0;
1550 }
1551
1552 static void destroy_inodecache(void)
1553 {
1554 /*
1555 * Make sure all delayed rcu free inodes are flushed before we
1556 * destroy cache.
1557 */
1558 rcu_barrier();
1559 kmem_cache_destroy(f2fs_inode_cachep);
1560 }
1561
1562 static int __init init_f2fs_fs(void)
1563 {
1564 int err;
1565
1566 f2fs_build_trace_ios();
1567
1568 err = init_inodecache();
1569 if (err)
1570 goto fail;
1571 err = create_node_manager_caches();
1572 if (err)
1573 goto free_inodecache;
1574 err = create_segment_manager_caches();
1575 if (err)
1576 goto free_node_manager_caches;
1577 err = create_checkpoint_caches();
1578 if (err)
1579 goto free_segment_manager_caches;
1580 err = create_extent_cache();
1581 if (err)
1582 goto free_checkpoint_caches;
1583 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1584 if (!f2fs_kset) {
1585 err = -ENOMEM;
1586 goto free_extent_cache;
1587 }
1588 err = f2fs_init_crypto();
1589 if (err)
1590 goto free_kset;
1591
1592 err = register_shrinker(&f2fs_shrinker_info);
1593 if (err)
1594 goto free_crypto;
1595
1596 err = register_filesystem(&f2fs_fs_type);
1597 if (err)
1598 goto free_shrinker;
1599 err = f2fs_create_root_stats();
1600 if (err)
1601 goto free_filesystem;
1602 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1603 return 0;
1604
1605 free_filesystem:
1606 unregister_filesystem(&f2fs_fs_type);
1607 free_shrinker:
1608 unregister_shrinker(&f2fs_shrinker_info);
1609 free_crypto:
1610 f2fs_exit_crypto();
1611 free_kset:
1612 kset_unregister(f2fs_kset);
1613 free_extent_cache:
1614 destroy_extent_cache();
1615 free_checkpoint_caches:
1616 destroy_checkpoint_caches();
1617 free_segment_manager_caches:
1618 destroy_segment_manager_caches();
1619 free_node_manager_caches:
1620 destroy_node_manager_caches();
1621 free_inodecache:
1622 destroy_inodecache();
1623 fail:
1624 return err;
1625 }
1626
1627 static void __exit exit_f2fs_fs(void)
1628 {
1629 remove_proc_entry("fs/f2fs", NULL);
1630 f2fs_destroy_root_stats();
1631 unregister_shrinker(&f2fs_shrinker_info);
1632 unregister_filesystem(&f2fs_fs_type);
1633 f2fs_exit_crypto();
1634 destroy_extent_cache();
1635 destroy_checkpoint_caches();
1636 destroy_segment_manager_caches();
1637 destroy_node_manager_caches();
1638 destroy_inodecache();
1639 kset_unregister(f2fs_kset);
1640 f2fs_destroy_trace_ios();
1641 }
1642
1643 module_init(init_f2fs_fs)
1644 module_exit(exit_f2fs_fs)
1645
1646 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1647 MODULE_DESCRIPTION("Flash Friendly File System");
1648 MODULE_LICENSE("GPL");
This page took 0.0639 seconds and 5 git commands to generate.