Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/f2fs.h>
36
37 static struct proc_dir_entry *f2fs_proc_root;
38 static struct kmem_cache *f2fs_inode_cachep;
39 static struct kset *f2fs_kset;
40
41 enum {
42 Opt_gc_background,
43 Opt_disable_roll_forward,
44 Opt_discard,
45 Opt_noheap,
46 Opt_user_xattr,
47 Opt_nouser_xattr,
48 Opt_acl,
49 Opt_noacl,
50 Opt_active_logs,
51 Opt_disable_ext_identify,
52 Opt_inline_xattr,
53 Opt_inline_data,
54 Opt_inline_dentry,
55 Opt_flush_merge,
56 Opt_nobarrier,
57 Opt_fastboot,
58 Opt_err,
59 };
60
61 static match_table_t f2fs_tokens = {
62 {Opt_gc_background, "background_gc=%s"},
63 {Opt_disable_roll_forward, "disable_roll_forward"},
64 {Opt_discard, "discard"},
65 {Opt_noheap, "no_heap"},
66 {Opt_user_xattr, "user_xattr"},
67 {Opt_nouser_xattr, "nouser_xattr"},
68 {Opt_acl, "acl"},
69 {Opt_noacl, "noacl"},
70 {Opt_active_logs, "active_logs=%u"},
71 {Opt_disable_ext_identify, "disable_ext_identify"},
72 {Opt_inline_xattr, "inline_xattr"},
73 {Opt_inline_data, "inline_data"},
74 {Opt_inline_dentry, "inline_dentry"},
75 {Opt_flush_merge, "flush_merge"},
76 {Opt_nobarrier, "nobarrier"},
77 {Opt_fastboot, "fastboot"},
78 {Opt_err, NULL},
79 };
80
81 /* Sysfs support for f2fs */
82 enum {
83 GC_THREAD, /* struct f2fs_gc_thread */
84 SM_INFO, /* struct f2fs_sm_info */
85 NM_INFO, /* struct f2fs_nm_info */
86 F2FS_SBI, /* struct f2fs_sb_info */
87 };
88
89 struct f2fs_attr {
90 struct attribute attr;
91 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
92 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
93 const char *, size_t);
94 int struct_type;
95 int offset;
96 };
97
98 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
99 {
100 if (struct_type == GC_THREAD)
101 return (unsigned char *)sbi->gc_thread;
102 else if (struct_type == SM_INFO)
103 return (unsigned char *)SM_I(sbi);
104 else if (struct_type == NM_INFO)
105 return (unsigned char *)NM_I(sbi);
106 else if (struct_type == F2FS_SBI)
107 return (unsigned char *)sbi;
108 return NULL;
109 }
110
111 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
112 struct f2fs_sb_info *sbi, char *buf)
113 {
114 unsigned char *ptr = NULL;
115 unsigned int *ui;
116
117 ptr = __struct_ptr(sbi, a->struct_type);
118 if (!ptr)
119 return -EINVAL;
120
121 ui = (unsigned int *)(ptr + a->offset);
122
123 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
124 }
125
126 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
127 struct f2fs_sb_info *sbi,
128 const char *buf, size_t count)
129 {
130 unsigned char *ptr;
131 unsigned long t;
132 unsigned int *ui;
133 ssize_t ret;
134
135 ptr = __struct_ptr(sbi, a->struct_type);
136 if (!ptr)
137 return -EINVAL;
138
139 ui = (unsigned int *)(ptr + a->offset);
140
141 ret = kstrtoul(skip_spaces(buf), 0, &t);
142 if (ret < 0)
143 return ret;
144 *ui = t;
145 return count;
146 }
147
148 static ssize_t f2fs_attr_show(struct kobject *kobj,
149 struct attribute *attr, char *buf)
150 {
151 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
152 s_kobj);
153 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
154
155 return a->show ? a->show(a, sbi, buf) : 0;
156 }
157
158 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
159 const char *buf, size_t len)
160 {
161 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
162 s_kobj);
163 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
164
165 return a->store ? a->store(a, sbi, buf, len) : 0;
166 }
167
168 static void f2fs_sb_release(struct kobject *kobj)
169 {
170 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
171 s_kobj);
172 complete(&sbi->s_kobj_unregister);
173 }
174
175 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
176 static struct f2fs_attr f2fs_attr_##_name = { \
177 .attr = {.name = __stringify(_name), .mode = _mode }, \
178 .show = _show, \
179 .store = _store, \
180 .struct_type = _struct_type, \
181 .offset = _offset \
182 }
183
184 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
185 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
186 f2fs_sbi_show, f2fs_sbi_store, \
187 offsetof(struct struct_name, elname))
188
189 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
190 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
191 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
192 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
193 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
194 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
195 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
196 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
197 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
198 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
199 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
200 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
201
202 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
203 static struct attribute *f2fs_attrs[] = {
204 ATTR_LIST(gc_min_sleep_time),
205 ATTR_LIST(gc_max_sleep_time),
206 ATTR_LIST(gc_no_gc_sleep_time),
207 ATTR_LIST(gc_idle),
208 ATTR_LIST(reclaim_segments),
209 ATTR_LIST(max_small_discards),
210 ATTR_LIST(ipu_policy),
211 ATTR_LIST(min_ipu_util),
212 ATTR_LIST(min_fsync_blocks),
213 ATTR_LIST(max_victim_search),
214 ATTR_LIST(dir_level),
215 ATTR_LIST(ram_thresh),
216 NULL,
217 };
218
219 static const struct sysfs_ops f2fs_attr_ops = {
220 .show = f2fs_attr_show,
221 .store = f2fs_attr_store,
222 };
223
224 static struct kobj_type f2fs_ktype = {
225 .default_attrs = f2fs_attrs,
226 .sysfs_ops = &f2fs_attr_ops,
227 .release = f2fs_sb_release,
228 };
229
230 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
231 {
232 struct va_format vaf;
233 va_list args;
234
235 va_start(args, fmt);
236 vaf.fmt = fmt;
237 vaf.va = &args;
238 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
239 va_end(args);
240 }
241
242 static void init_once(void *foo)
243 {
244 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
245
246 inode_init_once(&fi->vfs_inode);
247 }
248
249 static int parse_options(struct super_block *sb, char *options)
250 {
251 struct f2fs_sb_info *sbi = F2FS_SB(sb);
252 substring_t args[MAX_OPT_ARGS];
253 char *p, *name;
254 int arg = 0;
255
256 if (!options)
257 return 0;
258
259 while ((p = strsep(&options, ",")) != NULL) {
260 int token;
261 if (!*p)
262 continue;
263 /*
264 * Initialize args struct so we know whether arg was
265 * found; some options take optional arguments.
266 */
267 args[0].to = args[0].from = NULL;
268 token = match_token(p, f2fs_tokens, args);
269
270 switch (token) {
271 case Opt_gc_background:
272 name = match_strdup(&args[0]);
273
274 if (!name)
275 return -ENOMEM;
276 if (strlen(name) == 2 && !strncmp(name, "on", 2))
277 set_opt(sbi, BG_GC);
278 else if (strlen(name) == 3 && !strncmp(name, "off", 3))
279 clear_opt(sbi, BG_GC);
280 else {
281 kfree(name);
282 return -EINVAL;
283 }
284 kfree(name);
285 break;
286 case Opt_disable_roll_forward:
287 set_opt(sbi, DISABLE_ROLL_FORWARD);
288 break;
289 case Opt_discard:
290 set_opt(sbi, DISCARD);
291 break;
292 case Opt_noheap:
293 set_opt(sbi, NOHEAP);
294 break;
295 #ifdef CONFIG_F2FS_FS_XATTR
296 case Opt_user_xattr:
297 set_opt(sbi, XATTR_USER);
298 break;
299 case Opt_nouser_xattr:
300 clear_opt(sbi, XATTR_USER);
301 break;
302 case Opt_inline_xattr:
303 set_opt(sbi, INLINE_XATTR);
304 break;
305 #else
306 case Opt_user_xattr:
307 f2fs_msg(sb, KERN_INFO,
308 "user_xattr options not supported");
309 break;
310 case Opt_nouser_xattr:
311 f2fs_msg(sb, KERN_INFO,
312 "nouser_xattr options not supported");
313 break;
314 case Opt_inline_xattr:
315 f2fs_msg(sb, KERN_INFO,
316 "inline_xattr options not supported");
317 break;
318 #endif
319 #ifdef CONFIG_F2FS_FS_POSIX_ACL
320 case Opt_acl:
321 set_opt(sbi, POSIX_ACL);
322 break;
323 case Opt_noacl:
324 clear_opt(sbi, POSIX_ACL);
325 break;
326 #else
327 case Opt_acl:
328 f2fs_msg(sb, KERN_INFO, "acl options not supported");
329 break;
330 case Opt_noacl:
331 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
332 break;
333 #endif
334 case Opt_active_logs:
335 if (args->from && match_int(args, &arg))
336 return -EINVAL;
337 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
338 return -EINVAL;
339 sbi->active_logs = arg;
340 break;
341 case Opt_disable_ext_identify:
342 set_opt(sbi, DISABLE_EXT_IDENTIFY);
343 break;
344 case Opt_inline_data:
345 set_opt(sbi, INLINE_DATA);
346 break;
347 case Opt_inline_dentry:
348 set_opt(sbi, INLINE_DENTRY);
349 break;
350 case Opt_flush_merge:
351 set_opt(sbi, FLUSH_MERGE);
352 break;
353 case Opt_nobarrier:
354 set_opt(sbi, NOBARRIER);
355 break;
356 case Opt_fastboot:
357 set_opt(sbi, FASTBOOT);
358 break;
359 default:
360 f2fs_msg(sb, KERN_ERR,
361 "Unrecognized mount option \"%s\" or missing value",
362 p);
363 return -EINVAL;
364 }
365 }
366 return 0;
367 }
368
369 static struct inode *f2fs_alloc_inode(struct super_block *sb)
370 {
371 struct f2fs_inode_info *fi;
372
373 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
374 if (!fi)
375 return NULL;
376
377 init_once((void *) fi);
378
379 /* Initialize f2fs-specific inode info */
380 fi->vfs_inode.i_version = 1;
381 atomic_set(&fi->dirty_pages, 0);
382 fi->i_current_depth = 1;
383 fi->i_advise = 0;
384 rwlock_init(&fi->ext.ext_lock);
385 init_rwsem(&fi->i_sem);
386 INIT_RADIX_TREE(&fi->inmem_root, GFP_NOFS);
387 INIT_LIST_HEAD(&fi->inmem_pages);
388 mutex_init(&fi->inmem_lock);
389
390 set_inode_flag(fi, FI_NEW_INODE);
391
392 if (test_opt(F2FS_SB(sb), INLINE_XATTR))
393 set_inode_flag(fi, FI_INLINE_XATTR);
394
395 /* Will be used by directory only */
396 fi->i_dir_level = F2FS_SB(sb)->dir_level;
397
398 return &fi->vfs_inode;
399 }
400
401 static int f2fs_drop_inode(struct inode *inode)
402 {
403 /*
404 * This is to avoid a deadlock condition like below.
405 * writeback_single_inode(inode)
406 * - f2fs_write_data_page
407 * - f2fs_gc -> iput -> evict
408 * - inode_wait_for_writeback(inode)
409 */
410 if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
411 return 0;
412 return generic_drop_inode(inode);
413 }
414
415 /*
416 * f2fs_dirty_inode() is called from __mark_inode_dirty()
417 *
418 * We should call set_dirty_inode to write the dirty inode through write_inode.
419 */
420 static void f2fs_dirty_inode(struct inode *inode, int flags)
421 {
422 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
423 }
424
425 static void f2fs_i_callback(struct rcu_head *head)
426 {
427 struct inode *inode = container_of(head, struct inode, i_rcu);
428 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
429 }
430
431 static void f2fs_destroy_inode(struct inode *inode)
432 {
433 call_rcu(&inode->i_rcu, f2fs_i_callback);
434 }
435
436 static void f2fs_put_super(struct super_block *sb)
437 {
438 struct f2fs_sb_info *sbi = F2FS_SB(sb);
439
440 if (sbi->s_proc) {
441 remove_proc_entry("segment_info", sbi->s_proc);
442 remove_proc_entry(sb->s_id, f2fs_proc_root);
443 }
444 kobject_del(&sbi->s_kobj);
445
446 f2fs_destroy_stats(sbi);
447 stop_gc_thread(sbi);
448
449 /* We don't need to do checkpoint when it's clean */
450 if (sbi->s_dirty) {
451 struct cp_control cpc = {
452 .reason = CP_UMOUNT,
453 };
454 write_checkpoint(sbi, &cpc);
455 }
456
457 /*
458 * normally superblock is clean, so we need to release this.
459 * In addition, EIO will skip do checkpoint, we need this as well.
460 */
461 release_dirty_inode(sbi);
462 release_discard_addrs(sbi);
463
464 iput(sbi->node_inode);
465 iput(sbi->meta_inode);
466
467 /* destroy f2fs internal modules */
468 destroy_node_manager(sbi);
469 destroy_segment_manager(sbi);
470
471 kfree(sbi->ckpt);
472 kobject_put(&sbi->s_kobj);
473 wait_for_completion(&sbi->s_kobj_unregister);
474
475 sb->s_fs_info = NULL;
476 brelse(sbi->raw_super_buf);
477 kfree(sbi);
478 }
479
480 int f2fs_sync_fs(struct super_block *sb, int sync)
481 {
482 struct f2fs_sb_info *sbi = F2FS_SB(sb);
483
484 trace_f2fs_sync_fs(sb, sync);
485
486 if (sync) {
487 struct cp_control cpc;
488
489 cpc.reason = test_opt(sbi, FASTBOOT) ? CP_UMOUNT : CP_SYNC;
490 mutex_lock(&sbi->gc_mutex);
491 write_checkpoint(sbi, &cpc);
492 mutex_unlock(&sbi->gc_mutex);
493 } else {
494 f2fs_balance_fs(sbi);
495 }
496
497 return 0;
498 }
499
500 static int f2fs_freeze(struct super_block *sb)
501 {
502 int err;
503
504 if (f2fs_readonly(sb))
505 return 0;
506
507 err = f2fs_sync_fs(sb, 1);
508 return err;
509 }
510
511 static int f2fs_unfreeze(struct super_block *sb)
512 {
513 return 0;
514 }
515
516 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
517 {
518 struct super_block *sb = dentry->d_sb;
519 struct f2fs_sb_info *sbi = F2FS_SB(sb);
520 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
521 block_t total_count, user_block_count, start_count, ovp_count;
522
523 total_count = le64_to_cpu(sbi->raw_super->block_count);
524 user_block_count = sbi->user_block_count;
525 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
526 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
527 buf->f_type = F2FS_SUPER_MAGIC;
528 buf->f_bsize = sbi->blocksize;
529
530 buf->f_blocks = total_count - start_count;
531 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
532 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
533
534 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
535 buf->f_ffree = buf->f_files - valid_inode_count(sbi);
536
537 buf->f_namelen = F2FS_NAME_LEN;
538 buf->f_fsid.val[0] = (u32)id;
539 buf->f_fsid.val[1] = (u32)(id >> 32);
540
541 return 0;
542 }
543
544 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
545 {
546 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
547
548 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC))
549 seq_printf(seq, ",background_gc=%s", "on");
550 else
551 seq_printf(seq, ",background_gc=%s", "off");
552 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
553 seq_puts(seq, ",disable_roll_forward");
554 if (test_opt(sbi, DISCARD))
555 seq_puts(seq, ",discard");
556 if (test_opt(sbi, NOHEAP))
557 seq_puts(seq, ",no_heap_alloc");
558 #ifdef CONFIG_F2FS_FS_XATTR
559 if (test_opt(sbi, XATTR_USER))
560 seq_puts(seq, ",user_xattr");
561 else
562 seq_puts(seq, ",nouser_xattr");
563 if (test_opt(sbi, INLINE_XATTR))
564 seq_puts(seq, ",inline_xattr");
565 #endif
566 #ifdef CONFIG_F2FS_FS_POSIX_ACL
567 if (test_opt(sbi, POSIX_ACL))
568 seq_puts(seq, ",acl");
569 else
570 seq_puts(seq, ",noacl");
571 #endif
572 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
573 seq_puts(seq, ",disable_ext_identify");
574 if (test_opt(sbi, INLINE_DATA))
575 seq_puts(seq, ",inline_data");
576 if (test_opt(sbi, INLINE_DENTRY))
577 seq_puts(seq, ",inline_dentry");
578 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
579 seq_puts(seq, ",flush_merge");
580 if (test_opt(sbi, NOBARRIER))
581 seq_puts(seq, ",nobarrier");
582 if (test_opt(sbi, FASTBOOT))
583 seq_puts(seq, ",fastboot");
584 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
585
586 return 0;
587 }
588
589 static int segment_info_seq_show(struct seq_file *seq, void *offset)
590 {
591 struct super_block *sb = seq->private;
592 struct f2fs_sb_info *sbi = F2FS_SB(sb);
593 unsigned int total_segs =
594 le32_to_cpu(sbi->raw_super->segment_count_main);
595 int i;
596
597 seq_puts(seq, "format: segment_type|valid_blocks\n"
598 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
599
600 for (i = 0; i < total_segs; i++) {
601 struct seg_entry *se = get_seg_entry(sbi, i);
602
603 if ((i % 10) == 0)
604 seq_printf(seq, "%-5d", i);
605 seq_printf(seq, "%d|%-3u", se->type,
606 get_valid_blocks(sbi, i, 1));
607 if ((i % 10) == 9 || i == (total_segs - 1))
608 seq_putc(seq, '\n');
609 else
610 seq_putc(seq, ' ');
611 }
612
613 return 0;
614 }
615
616 static int segment_info_open_fs(struct inode *inode, struct file *file)
617 {
618 return single_open(file, segment_info_seq_show, PDE_DATA(inode));
619 }
620
621 static const struct file_operations f2fs_seq_segment_info_fops = {
622 .owner = THIS_MODULE,
623 .open = segment_info_open_fs,
624 .read = seq_read,
625 .llseek = seq_lseek,
626 .release = single_release,
627 };
628
629 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
630 {
631 struct f2fs_sb_info *sbi = F2FS_SB(sb);
632 struct f2fs_mount_info org_mount_opt;
633 int err, active_logs;
634 bool need_restart_gc = false;
635 bool need_stop_gc = false;
636
637 sync_filesystem(sb);
638
639 /*
640 * Save the old mount options in case we
641 * need to restore them.
642 */
643 org_mount_opt = sbi->mount_opt;
644 active_logs = sbi->active_logs;
645
646 sbi->mount_opt.opt = 0;
647 sbi->active_logs = NR_CURSEG_TYPE;
648
649 /* parse mount options */
650 err = parse_options(sb, data);
651 if (err)
652 goto restore_opts;
653
654 /*
655 * Previous and new state of filesystem is RO,
656 * so skip checking GC and FLUSH_MERGE conditions.
657 */
658 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
659 goto skip;
660
661 /*
662 * We stop the GC thread if FS is mounted as RO
663 * or if background_gc = off is passed in mount
664 * option. Also sync the filesystem.
665 */
666 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
667 if (sbi->gc_thread) {
668 stop_gc_thread(sbi);
669 f2fs_sync_fs(sb, 1);
670 need_restart_gc = true;
671 }
672 } else if (!sbi->gc_thread) {
673 err = start_gc_thread(sbi);
674 if (err)
675 goto restore_opts;
676 need_stop_gc = true;
677 }
678
679 /*
680 * We stop issue flush thread if FS is mounted as RO
681 * or if flush_merge is not passed in mount option.
682 */
683 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
684 destroy_flush_cmd_control(sbi);
685 } else if (!SM_I(sbi)->cmd_control_info) {
686 err = create_flush_cmd_control(sbi);
687 if (err)
688 goto restore_gc;
689 }
690 skip:
691 /* Update the POSIXACL Flag */
692 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
693 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
694 return 0;
695 restore_gc:
696 if (need_restart_gc) {
697 if (start_gc_thread(sbi))
698 f2fs_msg(sbi->sb, KERN_WARNING,
699 "background gc thread has stopped");
700 } else if (need_stop_gc) {
701 stop_gc_thread(sbi);
702 }
703 restore_opts:
704 sbi->mount_opt = org_mount_opt;
705 sbi->active_logs = active_logs;
706 return err;
707 }
708
709 static struct super_operations f2fs_sops = {
710 .alloc_inode = f2fs_alloc_inode,
711 .drop_inode = f2fs_drop_inode,
712 .destroy_inode = f2fs_destroy_inode,
713 .write_inode = f2fs_write_inode,
714 .dirty_inode = f2fs_dirty_inode,
715 .show_options = f2fs_show_options,
716 .evict_inode = f2fs_evict_inode,
717 .put_super = f2fs_put_super,
718 .sync_fs = f2fs_sync_fs,
719 .freeze_fs = f2fs_freeze,
720 .unfreeze_fs = f2fs_unfreeze,
721 .statfs = f2fs_statfs,
722 .remount_fs = f2fs_remount,
723 };
724
725 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
726 u64 ino, u32 generation)
727 {
728 struct f2fs_sb_info *sbi = F2FS_SB(sb);
729 struct inode *inode;
730
731 if (check_nid_range(sbi, ino))
732 return ERR_PTR(-ESTALE);
733
734 /*
735 * f2fs_iget isn't quite right if the inode is currently unallocated!
736 * However f2fs_iget currently does appropriate checks to handle stale
737 * inodes so everything is OK.
738 */
739 inode = f2fs_iget(sb, ino);
740 if (IS_ERR(inode))
741 return ERR_CAST(inode);
742 if (unlikely(generation && inode->i_generation != generation)) {
743 /* we didn't find the right inode.. */
744 iput(inode);
745 return ERR_PTR(-ESTALE);
746 }
747 return inode;
748 }
749
750 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
751 int fh_len, int fh_type)
752 {
753 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
754 f2fs_nfs_get_inode);
755 }
756
757 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
758 int fh_len, int fh_type)
759 {
760 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
761 f2fs_nfs_get_inode);
762 }
763
764 static const struct export_operations f2fs_export_ops = {
765 .fh_to_dentry = f2fs_fh_to_dentry,
766 .fh_to_parent = f2fs_fh_to_parent,
767 .get_parent = f2fs_get_parent,
768 };
769
770 static loff_t max_file_size(unsigned bits)
771 {
772 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
773 loff_t leaf_count = ADDRS_PER_BLOCK;
774
775 /* two direct node blocks */
776 result += (leaf_count * 2);
777
778 /* two indirect node blocks */
779 leaf_count *= NIDS_PER_BLOCK;
780 result += (leaf_count * 2);
781
782 /* one double indirect node block */
783 leaf_count *= NIDS_PER_BLOCK;
784 result += leaf_count;
785
786 result <<= bits;
787 return result;
788 }
789
790 static int sanity_check_raw_super(struct super_block *sb,
791 struct f2fs_super_block *raw_super)
792 {
793 unsigned int blocksize;
794
795 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
796 f2fs_msg(sb, KERN_INFO,
797 "Magic Mismatch, valid(0x%x) - read(0x%x)",
798 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
799 return 1;
800 }
801
802 /* Currently, support only 4KB page cache size */
803 if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
804 f2fs_msg(sb, KERN_INFO,
805 "Invalid page_cache_size (%lu), supports only 4KB\n",
806 PAGE_CACHE_SIZE);
807 return 1;
808 }
809
810 /* Currently, support only 4KB block size */
811 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
812 if (blocksize != F2FS_BLKSIZE) {
813 f2fs_msg(sb, KERN_INFO,
814 "Invalid blocksize (%u), supports only 4KB\n",
815 blocksize);
816 return 1;
817 }
818
819 /* Currently, support 512/1024/2048/4096 bytes sector size */
820 if (le32_to_cpu(raw_super->log_sectorsize) >
821 F2FS_MAX_LOG_SECTOR_SIZE ||
822 le32_to_cpu(raw_super->log_sectorsize) <
823 F2FS_MIN_LOG_SECTOR_SIZE) {
824 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
825 le32_to_cpu(raw_super->log_sectorsize));
826 return 1;
827 }
828 if (le32_to_cpu(raw_super->log_sectors_per_block) +
829 le32_to_cpu(raw_super->log_sectorsize) !=
830 F2FS_MAX_LOG_SECTOR_SIZE) {
831 f2fs_msg(sb, KERN_INFO,
832 "Invalid log sectors per block(%u) log sectorsize(%u)",
833 le32_to_cpu(raw_super->log_sectors_per_block),
834 le32_to_cpu(raw_super->log_sectorsize));
835 return 1;
836 }
837 return 0;
838 }
839
840 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
841 {
842 unsigned int total, fsmeta;
843 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
844 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
845
846 total = le32_to_cpu(raw_super->segment_count);
847 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
848 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
849 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
850 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
851 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
852
853 if (unlikely(fsmeta >= total))
854 return 1;
855
856 if (unlikely(f2fs_cp_error(sbi))) {
857 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
858 return 1;
859 }
860 return 0;
861 }
862
863 static void init_sb_info(struct f2fs_sb_info *sbi)
864 {
865 struct f2fs_super_block *raw_super = sbi->raw_super;
866 int i;
867
868 sbi->log_sectors_per_block =
869 le32_to_cpu(raw_super->log_sectors_per_block);
870 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
871 sbi->blocksize = 1 << sbi->log_blocksize;
872 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
873 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
874 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
875 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
876 sbi->total_sections = le32_to_cpu(raw_super->section_count);
877 sbi->total_node_count =
878 (le32_to_cpu(raw_super->segment_count_nat) / 2)
879 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
880 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
881 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
882 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
883 sbi->cur_victim_sec = NULL_SECNO;
884 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
885
886 for (i = 0; i < NR_COUNT_TYPE; i++)
887 atomic_set(&sbi->nr_pages[i], 0);
888
889 sbi->dir_level = DEF_DIR_LEVEL;
890 sbi->need_fsck = false;
891 }
892
893 /*
894 * Read f2fs raw super block.
895 * Because we have two copies of super block, so read the first one at first,
896 * if the first one is invalid, move to read the second one.
897 */
898 static int read_raw_super_block(struct super_block *sb,
899 struct f2fs_super_block **raw_super,
900 struct buffer_head **raw_super_buf)
901 {
902 int block = 0;
903
904 retry:
905 *raw_super_buf = sb_bread(sb, block);
906 if (!*raw_super_buf) {
907 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
908 block + 1);
909 if (block == 0) {
910 block++;
911 goto retry;
912 } else {
913 return -EIO;
914 }
915 }
916
917 *raw_super = (struct f2fs_super_block *)
918 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
919
920 /* sanity checking of raw super */
921 if (sanity_check_raw_super(sb, *raw_super)) {
922 brelse(*raw_super_buf);
923 f2fs_msg(sb, KERN_ERR,
924 "Can't find valid F2FS filesystem in %dth superblock",
925 block + 1);
926 if (block == 0) {
927 block++;
928 goto retry;
929 } else {
930 return -EINVAL;
931 }
932 }
933
934 return 0;
935 }
936
937 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
938 {
939 struct f2fs_sb_info *sbi;
940 struct f2fs_super_block *raw_super = NULL;
941 struct buffer_head *raw_super_buf;
942 struct inode *root;
943 long err = -EINVAL;
944 bool retry = true;
945 int i;
946
947 try_onemore:
948 /* allocate memory for f2fs-specific super block info */
949 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
950 if (!sbi)
951 return -ENOMEM;
952
953 /* set a block size */
954 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
955 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
956 goto free_sbi;
957 }
958
959 err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
960 if (err)
961 goto free_sbi;
962
963 sb->s_fs_info = sbi;
964 /* init some FS parameters */
965 sbi->active_logs = NR_CURSEG_TYPE;
966
967 set_opt(sbi, BG_GC);
968
969 #ifdef CONFIG_F2FS_FS_XATTR
970 set_opt(sbi, XATTR_USER);
971 #endif
972 #ifdef CONFIG_F2FS_FS_POSIX_ACL
973 set_opt(sbi, POSIX_ACL);
974 #endif
975 /* parse mount options */
976 err = parse_options(sb, (char *)data);
977 if (err)
978 goto free_sb_buf;
979
980 sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
981 sb->s_max_links = F2FS_LINK_MAX;
982 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
983
984 sb->s_op = &f2fs_sops;
985 sb->s_xattr = f2fs_xattr_handlers;
986 sb->s_export_op = &f2fs_export_ops;
987 sb->s_magic = F2FS_SUPER_MAGIC;
988 sb->s_time_gran = 1;
989 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
990 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
991 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
992
993 /* init f2fs-specific super block info */
994 sbi->sb = sb;
995 sbi->raw_super = raw_super;
996 sbi->raw_super_buf = raw_super_buf;
997 mutex_init(&sbi->gc_mutex);
998 mutex_init(&sbi->writepages);
999 mutex_init(&sbi->cp_mutex);
1000 init_rwsem(&sbi->node_write);
1001 sbi->por_doing = false;
1002 spin_lock_init(&sbi->stat_lock);
1003
1004 init_rwsem(&sbi->read_io.io_rwsem);
1005 sbi->read_io.sbi = sbi;
1006 sbi->read_io.bio = NULL;
1007 for (i = 0; i < NR_PAGE_TYPE; i++) {
1008 init_rwsem(&sbi->write_io[i].io_rwsem);
1009 sbi->write_io[i].sbi = sbi;
1010 sbi->write_io[i].bio = NULL;
1011 }
1012
1013 init_rwsem(&sbi->cp_rwsem);
1014 init_waitqueue_head(&sbi->cp_wait);
1015 init_sb_info(sbi);
1016
1017 /* get an inode for meta space */
1018 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1019 if (IS_ERR(sbi->meta_inode)) {
1020 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1021 err = PTR_ERR(sbi->meta_inode);
1022 goto free_sb_buf;
1023 }
1024
1025 err = get_valid_checkpoint(sbi);
1026 if (err) {
1027 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1028 goto free_meta_inode;
1029 }
1030
1031 /* sanity checking of checkpoint */
1032 err = -EINVAL;
1033 if (sanity_check_ckpt(sbi)) {
1034 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
1035 goto free_cp;
1036 }
1037
1038 sbi->total_valid_node_count =
1039 le32_to_cpu(sbi->ckpt->valid_node_count);
1040 sbi->total_valid_inode_count =
1041 le32_to_cpu(sbi->ckpt->valid_inode_count);
1042 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1043 sbi->total_valid_block_count =
1044 le64_to_cpu(sbi->ckpt->valid_block_count);
1045 sbi->last_valid_block_count = sbi->total_valid_block_count;
1046 sbi->alloc_valid_block_count = 0;
1047 INIT_LIST_HEAD(&sbi->dir_inode_list);
1048 spin_lock_init(&sbi->dir_inode_lock);
1049
1050 init_ino_entry_info(sbi);
1051
1052 /* setup f2fs internal modules */
1053 err = build_segment_manager(sbi);
1054 if (err) {
1055 f2fs_msg(sb, KERN_ERR,
1056 "Failed to initialize F2FS segment manager");
1057 goto free_sm;
1058 }
1059 err = build_node_manager(sbi);
1060 if (err) {
1061 f2fs_msg(sb, KERN_ERR,
1062 "Failed to initialize F2FS node manager");
1063 goto free_nm;
1064 }
1065
1066 build_gc_manager(sbi);
1067
1068 /* get an inode for node space */
1069 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1070 if (IS_ERR(sbi->node_inode)) {
1071 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1072 err = PTR_ERR(sbi->node_inode);
1073 goto free_nm;
1074 }
1075
1076 /* if there are nt orphan nodes free them */
1077 recover_orphan_inodes(sbi);
1078
1079 /* read root inode and dentry */
1080 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1081 if (IS_ERR(root)) {
1082 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1083 err = PTR_ERR(root);
1084 goto free_node_inode;
1085 }
1086 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1087 iput(root);
1088 err = -EINVAL;
1089 goto free_node_inode;
1090 }
1091
1092 sb->s_root = d_make_root(root); /* allocate root dentry */
1093 if (!sb->s_root) {
1094 err = -ENOMEM;
1095 goto free_root_inode;
1096 }
1097
1098 err = f2fs_build_stats(sbi);
1099 if (err)
1100 goto free_root_inode;
1101
1102 if (f2fs_proc_root)
1103 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1104
1105 if (sbi->s_proc)
1106 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1107 &f2fs_seq_segment_info_fops, sb);
1108
1109 if (test_opt(sbi, DISCARD)) {
1110 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1111 if (!blk_queue_discard(q))
1112 f2fs_msg(sb, KERN_WARNING,
1113 "mounting with \"discard\" option, but "
1114 "the device does not support discard");
1115 }
1116
1117 sbi->s_kobj.kset = f2fs_kset;
1118 init_completion(&sbi->s_kobj_unregister);
1119 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1120 "%s", sb->s_id);
1121 if (err)
1122 goto free_proc;
1123
1124 if (!retry)
1125 sbi->need_fsck = true;
1126
1127 /* recover fsynced data */
1128 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1129 err = recover_fsync_data(sbi);
1130 if (err) {
1131 f2fs_msg(sb, KERN_ERR,
1132 "Cannot recover all fsync data errno=%ld", err);
1133 goto free_kobj;
1134 }
1135 }
1136
1137 /*
1138 * If filesystem is not mounted as read-only then
1139 * do start the gc_thread.
1140 */
1141 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1142 /* After POR, we can run background GC thread.*/
1143 err = start_gc_thread(sbi);
1144 if (err)
1145 goto free_kobj;
1146 }
1147 return 0;
1148
1149 free_kobj:
1150 kobject_del(&sbi->s_kobj);
1151 free_proc:
1152 if (sbi->s_proc) {
1153 remove_proc_entry("segment_info", sbi->s_proc);
1154 remove_proc_entry(sb->s_id, f2fs_proc_root);
1155 }
1156 f2fs_destroy_stats(sbi);
1157 free_root_inode:
1158 dput(sb->s_root);
1159 sb->s_root = NULL;
1160 free_node_inode:
1161 iput(sbi->node_inode);
1162 free_nm:
1163 destroy_node_manager(sbi);
1164 free_sm:
1165 destroy_segment_manager(sbi);
1166 free_cp:
1167 kfree(sbi->ckpt);
1168 free_meta_inode:
1169 make_bad_inode(sbi->meta_inode);
1170 iput(sbi->meta_inode);
1171 free_sb_buf:
1172 brelse(raw_super_buf);
1173 free_sbi:
1174 kfree(sbi);
1175
1176 /* give only one another chance */
1177 if (retry) {
1178 retry = 0;
1179 shrink_dcache_sb(sb);
1180 goto try_onemore;
1181 }
1182 return err;
1183 }
1184
1185 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1186 const char *dev_name, void *data)
1187 {
1188 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1189 }
1190
1191 static struct file_system_type f2fs_fs_type = {
1192 .owner = THIS_MODULE,
1193 .name = "f2fs",
1194 .mount = f2fs_mount,
1195 .kill_sb = kill_block_super,
1196 .fs_flags = FS_REQUIRES_DEV,
1197 };
1198 MODULE_ALIAS_FS("f2fs");
1199
1200 static int __init init_inodecache(void)
1201 {
1202 f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1203 sizeof(struct f2fs_inode_info));
1204 if (!f2fs_inode_cachep)
1205 return -ENOMEM;
1206 return 0;
1207 }
1208
1209 static void destroy_inodecache(void)
1210 {
1211 /*
1212 * Make sure all delayed rcu free inodes are flushed before we
1213 * destroy cache.
1214 */
1215 rcu_barrier();
1216 kmem_cache_destroy(f2fs_inode_cachep);
1217 }
1218
1219 static int __init init_f2fs_fs(void)
1220 {
1221 int err;
1222
1223 err = init_inodecache();
1224 if (err)
1225 goto fail;
1226 err = create_node_manager_caches();
1227 if (err)
1228 goto free_inodecache;
1229 err = create_segment_manager_caches();
1230 if (err)
1231 goto free_node_manager_caches;
1232 err = create_gc_caches();
1233 if (err)
1234 goto free_segment_manager_caches;
1235 err = create_checkpoint_caches();
1236 if (err)
1237 goto free_gc_caches;
1238 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1239 if (!f2fs_kset) {
1240 err = -ENOMEM;
1241 goto free_checkpoint_caches;
1242 }
1243 err = register_filesystem(&f2fs_fs_type);
1244 if (err)
1245 goto free_kset;
1246 f2fs_create_root_stats();
1247 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1248 return 0;
1249
1250 free_kset:
1251 kset_unregister(f2fs_kset);
1252 free_checkpoint_caches:
1253 destroy_checkpoint_caches();
1254 free_gc_caches:
1255 destroy_gc_caches();
1256 free_segment_manager_caches:
1257 destroy_segment_manager_caches();
1258 free_node_manager_caches:
1259 destroy_node_manager_caches();
1260 free_inodecache:
1261 destroy_inodecache();
1262 fail:
1263 return err;
1264 }
1265
1266 static void __exit exit_f2fs_fs(void)
1267 {
1268 remove_proc_entry("fs/f2fs", NULL);
1269 f2fs_destroy_root_stats();
1270 unregister_filesystem(&f2fs_fs_type);
1271 destroy_checkpoint_caches();
1272 destroy_gc_caches();
1273 destroy_segment_manager_caches();
1274 destroy_node_manager_caches();
1275 destroy_inodecache();
1276 kset_unregister(f2fs_kset);
1277 }
1278
1279 module_init(init_f2fs_fs)
1280 module_exit(exit_f2fs_fs)
1281
1282 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1283 MODULE_DESCRIPTION("Flash Friendly File System");
1284 MODULE_LICENSE("GPL");
This page took 0.17271 seconds and 6 git commands to generate.