Merge tag 'pm-for-3.6-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 enum wb_reason reason; /* why was writeback initiated? */
50
51 struct list_head list; /* pending work list */
52 struct completion *done; /* set if the caller waits */
53 };
54
55 /**
56 * writeback_in_progress - determine whether there is writeback in progress
57 * @bdi: the device's backing_dev_info structure.
58 *
59 * Determine whether there is writeback waiting to be handled against a
60 * backing device.
61 */
62 int writeback_in_progress(struct backing_dev_info *bdi)
63 {
64 return test_bit(BDI_writeback_running, &bdi->state);
65 }
66
67 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
68 {
69 struct super_block *sb = inode->i_sb;
70
71 if (strcmp(sb->s_type->name, "bdev") == 0)
72 return inode->i_mapping->backing_dev_info;
73
74 return sb->s_bdi;
75 }
76
77 static inline struct inode *wb_inode(struct list_head *head)
78 {
79 return list_entry(head, struct inode, i_wb_list);
80 }
81
82 /*
83 * Include the creation of the trace points after defining the
84 * wb_writeback_work structure and inline functions so that the definition
85 * remains local to this file.
86 */
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/writeback.h>
89
90 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
91 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
92 {
93 if (bdi->wb.task) {
94 wake_up_process(bdi->wb.task);
95 } else {
96 /*
97 * The bdi thread isn't there, wake up the forker thread which
98 * will create and run it.
99 */
100 wake_up_process(default_backing_dev_info.wb.task);
101 }
102 }
103
104 static void bdi_queue_work(struct backing_dev_info *bdi,
105 struct wb_writeback_work *work)
106 {
107 trace_writeback_queue(bdi, work);
108
109 spin_lock_bh(&bdi->wb_lock);
110 list_add_tail(&work->list, &bdi->work_list);
111 if (!bdi->wb.task)
112 trace_writeback_nothread(bdi, work);
113 bdi_wakeup_flusher(bdi);
114 spin_unlock_bh(&bdi->wb_lock);
115 }
116
117 static void
118 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
119 bool range_cyclic, enum wb_reason reason)
120 {
121 struct wb_writeback_work *work;
122
123 /*
124 * This is WB_SYNC_NONE writeback, so if allocation fails just
125 * wakeup the thread for old dirty data writeback
126 */
127 work = kzalloc(sizeof(*work), GFP_ATOMIC);
128 if (!work) {
129 if (bdi->wb.task) {
130 trace_writeback_nowork(bdi);
131 wake_up_process(bdi->wb.task);
132 }
133 return;
134 }
135
136 work->sync_mode = WB_SYNC_NONE;
137 work->nr_pages = nr_pages;
138 work->range_cyclic = range_cyclic;
139 work->reason = reason;
140
141 bdi_queue_work(bdi, work);
142 }
143
144 /**
145 * bdi_start_writeback - start writeback
146 * @bdi: the backing device to write from
147 * @nr_pages: the number of pages to write
148 * @reason: reason why some writeback work was initiated
149 *
150 * Description:
151 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
152 * started when this function returns, we make no guarantees on
153 * completion. Caller need not hold sb s_umount semaphore.
154 *
155 */
156 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
157 enum wb_reason reason)
158 {
159 __bdi_start_writeback(bdi, nr_pages, true, reason);
160 }
161
162 /**
163 * bdi_start_background_writeback - start background writeback
164 * @bdi: the backing device to write from
165 *
166 * Description:
167 * This makes sure WB_SYNC_NONE background writeback happens. When
168 * this function returns, it is only guaranteed that for given BDI
169 * some IO is happening if we are over background dirty threshold.
170 * Caller need not hold sb s_umount semaphore.
171 */
172 void bdi_start_background_writeback(struct backing_dev_info *bdi)
173 {
174 /*
175 * We just wake up the flusher thread. It will perform background
176 * writeback as soon as there is no other work to do.
177 */
178 trace_writeback_wake_background(bdi);
179 spin_lock_bh(&bdi->wb_lock);
180 bdi_wakeup_flusher(bdi);
181 spin_unlock_bh(&bdi->wb_lock);
182 }
183
184 /*
185 * Remove the inode from the writeback list it is on.
186 */
187 void inode_wb_list_del(struct inode *inode)
188 {
189 struct backing_dev_info *bdi = inode_to_bdi(inode);
190
191 spin_lock(&bdi->wb.list_lock);
192 list_del_init(&inode->i_wb_list);
193 spin_unlock(&bdi->wb.list_lock);
194 }
195
196 /*
197 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
198 * furthest end of its superblock's dirty-inode list.
199 *
200 * Before stamping the inode's ->dirtied_when, we check to see whether it is
201 * already the most-recently-dirtied inode on the b_dirty list. If that is
202 * the case then the inode must have been redirtied while it was being written
203 * out and we don't reset its dirtied_when.
204 */
205 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
206 {
207 assert_spin_locked(&wb->list_lock);
208 if (!list_empty(&wb->b_dirty)) {
209 struct inode *tail;
210
211 tail = wb_inode(wb->b_dirty.next);
212 if (time_before(inode->dirtied_when, tail->dirtied_when))
213 inode->dirtied_when = jiffies;
214 }
215 list_move(&inode->i_wb_list, &wb->b_dirty);
216 }
217
218 /*
219 * requeue inode for re-scanning after bdi->b_io list is exhausted.
220 */
221 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
222 {
223 assert_spin_locked(&wb->list_lock);
224 list_move(&inode->i_wb_list, &wb->b_more_io);
225 }
226
227 static void inode_sync_complete(struct inode *inode)
228 {
229 inode->i_state &= ~I_SYNC;
230 /* Waiters must see I_SYNC cleared before being woken up */
231 smp_mb();
232 wake_up_bit(&inode->i_state, __I_SYNC);
233 }
234
235 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
236 {
237 bool ret = time_after(inode->dirtied_when, t);
238 #ifndef CONFIG_64BIT
239 /*
240 * For inodes being constantly redirtied, dirtied_when can get stuck.
241 * It _appears_ to be in the future, but is actually in distant past.
242 * This test is necessary to prevent such wrapped-around relative times
243 * from permanently stopping the whole bdi writeback.
244 */
245 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
246 #endif
247 return ret;
248 }
249
250 /*
251 * Move expired (dirtied after work->older_than_this) dirty inodes from
252 * @delaying_queue to @dispatch_queue.
253 */
254 static int move_expired_inodes(struct list_head *delaying_queue,
255 struct list_head *dispatch_queue,
256 struct wb_writeback_work *work)
257 {
258 LIST_HEAD(tmp);
259 struct list_head *pos, *node;
260 struct super_block *sb = NULL;
261 struct inode *inode;
262 int do_sb_sort = 0;
263 int moved = 0;
264
265 while (!list_empty(delaying_queue)) {
266 inode = wb_inode(delaying_queue->prev);
267 if (work->older_than_this &&
268 inode_dirtied_after(inode, *work->older_than_this))
269 break;
270 if (sb && sb != inode->i_sb)
271 do_sb_sort = 1;
272 sb = inode->i_sb;
273 list_move(&inode->i_wb_list, &tmp);
274 moved++;
275 }
276
277 /* just one sb in list, splice to dispatch_queue and we're done */
278 if (!do_sb_sort) {
279 list_splice(&tmp, dispatch_queue);
280 goto out;
281 }
282
283 /* Move inodes from one superblock together */
284 while (!list_empty(&tmp)) {
285 sb = wb_inode(tmp.prev)->i_sb;
286 list_for_each_prev_safe(pos, node, &tmp) {
287 inode = wb_inode(pos);
288 if (inode->i_sb == sb)
289 list_move(&inode->i_wb_list, dispatch_queue);
290 }
291 }
292 out:
293 return moved;
294 }
295
296 /*
297 * Queue all expired dirty inodes for io, eldest first.
298 * Before
299 * newly dirtied b_dirty b_io b_more_io
300 * =============> gf edc BA
301 * After
302 * newly dirtied b_dirty b_io b_more_io
303 * =============> g fBAedc
304 * |
305 * +--> dequeue for IO
306 */
307 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
308 {
309 int moved;
310 assert_spin_locked(&wb->list_lock);
311 list_splice_init(&wb->b_more_io, &wb->b_io);
312 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
313 trace_writeback_queue_io(wb, work, moved);
314 }
315
316 static int write_inode(struct inode *inode, struct writeback_control *wbc)
317 {
318 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
319 return inode->i_sb->s_op->write_inode(inode, wbc);
320 return 0;
321 }
322
323 /*
324 * Wait for writeback on an inode to complete. Called with i_lock held.
325 * Caller must make sure inode cannot go away when we drop i_lock.
326 */
327 static void __inode_wait_for_writeback(struct inode *inode)
328 __releases(inode->i_lock)
329 __acquires(inode->i_lock)
330 {
331 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
332 wait_queue_head_t *wqh;
333
334 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
335 while (inode->i_state & I_SYNC) {
336 spin_unlock(&inode->i_lock);
337 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
338 spin_lock(&inode->i_lock);
339 }
340 }
341
342 /*
343 * Wait for writeback on an inode to complete. Caller must have inode pinned.
344 */
345 void inode_wait_for_writeback(struct inode *inode)
346 {
347 spin_lock(&inode->i_lock);
348 __inode_wait_for_writeback(inode);
349 spin_unlock(&inode->i_lock);
350 }
351
352 /*
353 * Sleep until I_SYNC is cleared. This function must be called with i_lock
354 * held and drops it. It is aimed for callers not holding any inode reference
355 * so once i_lock is dropped, inode can go away.
356 */
357 static void inode_sleep_on_writeback(struct inode *inode)
358 __releases(inode->i_lock)
359 {
360 DEFINE_WAIT(wait);
361 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
362 int sleep;
363
364 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
365 sleep = inode->i_state & I_SYNC;
366 spin_unlock(&inode->i_lock);
367 if (sleep)
368 schedule();
369 finish_wait(wqh, &wait);
370 }
371
372 /*
373 * Find proper writeback list for the inode depending on its current state and
374 * possibly also change of its state while we were doing writeback. Here we
375 * handle things such as livelock prevention or fairness of writeback among
376 * inodes. This function can be called only by flusher thread - noone else
377 * processes all inodes in writeback lists and requeueing inodes behind flusher
378 * thread's back can have unexpected consequences.
379 */
380 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
381 struct writeback_control *wbc)
382 {
383 if (inode->i_state & I_FREEING)
384 return;
385
386 /*
387 * Sync livelock prevention. Each inode is tagged and synced in one
388 * shot. If still dirty, it will be redirty_tail()'ed below. Update
389 * the dirty time to prevent enqueue and sync it again.
390 */
391 if ((inode->i_state & I_DIRTY) &&
392 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
393 inode->dirtied_when = jiffies;
394
395 if (wbc->pages_skipped) {
396 /*
397 * writeback is not making progress due to locked
398 * buffers. Skip this inode for now.
399 */
400 redirty_tail(inode, wb);
401 return;
402 }
403
404 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
405 /*
406 * We didn't write back all the pages. nfs_writepages()
407 * sometimes bales out without doing anything.
408 */
409 if (wbc->nr_to_write <= 0) {
410 /* Slice used up. Queue for next turn. */
411 requeue_io(inode, wb);
412 } else {
413 /*
414 * Writeback blocked by something other than
415 * congestion. Delay the inode for some time to
416 * avoid spinning on the CPU (100% iowait)
417 * retrying writeback of the dirty page/inode
418 * that cannot be performed immediately.
419 */
420 redirty_tail(inode, wb);
421 }
422 } else if (inode->i_state & I_DIRTY) {
423 /*
424 * Filesystems can dirty the inode during writeback operations,
425 * such as delayed allocation during submission or metadata
426 * updates after data IO completion.
427 */
428 redirty_tail(inode, wb);
429 } else {
430 /* The inode is clean. Remove from writeback lists. */
431 list_del_init(&inode->i_wb_list);
432 }
433 }
434
435 /*
436 * Write out an inode and its dirty pages. Do not update the writeback list
437 * linkage. That is left to the caller. The caller is also responsible for
438 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
439 */
440 static int
441 __writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
442 struct writeback_control *wbc)
443 {
444 struct address_space *mapping = inode->i_mapping;
445 long nr_to_write = wbc->nr_to_write;
446 unsigned dirty;
447 int ret;
448
449 WARN_ON(!(inode->i_state & I_SYNC));
450
451 ret = do_writepages(mapping, wbc);
452
453 /*
454 * Make sure to wait on the data before writing out the metadata.
455 * This is important for filesystems that modify metadata on data
456 * I/O completion.
457 */
458 if (wbc->sync_mode == WB_SYNC_ALL) {
459 int err = filemap_fdatawait(mapping);
460 if (ret == 0)
461 ret = err;
462 }
463
464 /*
465 * Some filesystems may redirty the inode during the writeback
466 * due to delalloc, clear dirty metadata flags right before
467 * write_inode()
468 */
469 spin_lock(&inode->i_lock);
470 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
471 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
472 inode->i_state &= ~I_DIRTY_PAGES;
473 dirty = inode->i_state & I_DIRTY;
474 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
475 spin_unlock(&inode->i_lock);
476 /* Don't write the inode if only I_DIRTY_PAGES was set */
477 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
478 int err = write_inode(inode, wbc);
479 if (ret == 0)
480 ret = err;
481 }
482 trace_writeback_single_inode(inode, wbc, nr_to_write);
483 return ret;
484 }
485
486 /*
487 * Write out an inode's dirty pages. Either the caller has an active reference
488 * on the inode or the inode has I_WILL_FREE set.
489 *
490 * This function is designed to be called for writing back one inode which
491 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
492 * and does more profound writeback list handling in writeback_sb_inodes().
493 */
494 static int
495 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
496 struct writeback_control *wbc)
497 {
498 int ret = 0;
499
500 spin_lock(&inode->i_lock);
501 if (!atomic_read(&inode->i_count))
502 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
503 else
504 WARN_ON(inode->i_state & I_WILL_FREE);
505
506 if (inode->i_state & I_SYNC) {
507 if (wbc->sync_mode != WB_SYNC_ALL)
508 goto out;
509 /*
510 * It's a data-integrity sync. We must wait. Since callers hold
511 * inode reference or inode has I_WILL_FREE set, it cannot go
512 * away under us.
513 */
514 __inode_wait_for_writeback(inode);
515 }
516 WARN_ON(inode->i_state & I_SYNC);
517 /*
518 * Skip inode if it is clean. We don't want to mess with writeback
519 * lists in this function since flusher thread may be doing for example
520 * sync in parallel and if we move the inode, it could get skipped. So
521 * here we make sure inode is on some writeback list and leave it there
522 * unless we have completely cleaned the inode.
523 */
524 if (!(inode->i_state & I_DIRTY))
525 goto out;
526 inode->i_state |= I_SYNC;
527 spin_unlock(&inode->i_lock);
528
529 ret = __writeback_single_inode(inode, wb, wbc);
530
531 spin_lock(&wb->list_lock);
532 spin_lock(&inode->i_lock);
533 /*
534 * If inode is clean, remove it from writeback lists. Otherwise don't
535 * touch it. See comment above for explanation.
536 */
537 if (!(inode->i_state & I_DIRTY))
538 list_del_init(&inode->i_wb_list);
539 spin_unlock(&wb->list_lock);
540 inode_sync_complete(inode);
541 out:
542 spin_unlock(&inode->i_lock);
543 return ret;
544 }
545
546 static long writeback_chunk_size(struct backing_dev_info *bdi,
547 struct wb_writeback_work *work)
548 {
549 long pages;
550
551 /*
552 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
553 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
554 * here avoids calling into writeback_inodes_wb() more than once.
555 *
556 * The intended call sequence for WB_SYNC_ALL writeback is:
557 *
558 * wb_writeback()
559 * writeback_sb_inodes() <== called only once
560 * write_cache_pages() <== called once for each inode
561 * (quickly) tag currently dirty pages
562 * (maybe slowly) sync all tagged pages
563 */
564 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
565 pages = LONG_MAX;
566 else {
567 pages = min(bdi->avg_write_bandwidth / 2,
568 global_dirty_limit / DIRTY_SCOPE);
569 pages = min(pages, work->nr_pages);
570 pages = round_down(pages + MIN_WRITEBACK_PAGES,
571 MIN_WRITEBACK_PAGES);
572 }
573
574 return pages;
575 }
576
577 /*
578 * Write a portion of b_io inodes which belong to @sb.
579 *
580 * If @only_this_sb is true, then find and write all such
581 * inodes. Otherwise write only ones which go sequentially
582 * in reverse order.
583 *
584 * Return the number of pages and/or inodes written.
585 */
586 static long writeback_sb_inodes(struct super_block *sb,
587 struct bdi_writeback *wb,
588 struct wb_writeback_work *work)
589 {
590 struct writeback_control wbc = {
591 .sync_mode = work->sync_mode,
592 .tagged_writepages = work->tagged_writepages,
593 .for_kupdate = work->for_kupdate,
594 .for_background = work->for_background,
595 .range_cyclic = work->range_cyclic,
596 .range_start = 0,
597 .range_end = LLONG_MAX,
598 };
599 unsigned long start_time = jiffies;
600 long write_chunk;
601 long wrote = 0; /* count both pages and inodes */
602
603 while (!list_empty(&wb->b_io)) {
604 struct inode *inode = wb_inode(wb->b_io.prev);
605
606 if (inode->i_sb != sb) {
607 if (work->sb) {
608 /*
609 * We only want to write back data for this
610 * superblock, move all inodes not belonging
611 * to it back onto the dirty list.
612 */
613 redirty_tail(inode, wb);
614 continue;
615 }
616
617 /*
618 * The inode belongs to a different superblock.
619 * Bounce back to the caller to unpin this and
620 * pin the next superblock.
621 */
622 break;
623 }
624
625 /*
626 * Don't bother with new inodes or inodes being freed, first
627 * kind does not need periodic writeout yet, and for the latter
628 * kind writeout is handled by the freer.
629 */
630 spin_lock(&inode->i_lock);
631 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
632 spin_unlock(&inode->i_lock);
633 redirty_tail(inode, wb);
634 continue;
635 }
636 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
637 /*
638 * If this inode is locked for writeback and we are not
639 * doing writeback-for-data-integrity, move it to
640 * b_more_io so that writeback can proceed with the
641 * other inodes on s_io.
642 *
643 * We'll have another go at writing back this inode
644 * when we completed a full scan of b_io.
645 */
646 spin_unlock(&inode->i_lock);
647 requeue_io(inode, wb);
648 trace_writeback_sb_inodes_requeue(inode);
649 continue;
650 }
651 spin_unlock(&wb->list_lock);
652
653 /*
654 * We already requeued the inode if it had I_SYNC set and we
655 * are doing WB_SYNC_NONE writeback. So this catches only the
656 * WB_SYNC_ALL case.
657 */
658 if (inode->i_state & I_SYNC) {
659 /* Wait for I_SYNC. This function drops i_lock... */
660 inode_sleep_on_writeback(inode);
661 /* Inode may be gone, start again */
662 spin_lock(&wb->list_lock);
663 continue;
664 }
665 inode->i_state |= I_SYNC;
666 spin_unlock(&inode->i_lock);
667
668 write_chunk = writeback_chunk_size(wb->bdi, work);
669 wbc.nr_to_write = write_chunk;
670 wbc.pages_skipped = 0;
671
672 /*
673 * We use I_SYNC to pin the inode in memory. While it is set
674 * evict_inode() will wait so the inode cannot be freed.
675 */
676 __writeback_single_inode(inode, wb, &wbc);
677
678 work->nr_pages -= write_chunk - wbc.nr_to_write;
679 wrote += write_chunk - wbc.nr_to_write;
680 spin_lock(&wb->list_lock);
681 spin_lock(&inode->i_lock);
682 if (!(inode->i_state & I_DIRTY))
683 wrote++;
684 requeue_inode(inode, wb, &wbc);
685 inode_sync_complete(inode);
686 spin_unlock(&inode->i_lock);
687 cond_resched_lock(&wb->list_lock);
688 /*
689 * bail out to wb_writeback() often enough to check
690 * background threshold and other termination conditions.
691 */
692 if (wrote) {
693 if (time_is_before_jiffies(start_time + HZ / 10UL))
694 break;
695 if (work->nr_pages <= 0)
696 break;
697 }
698 }
699 return wrote;
700 }
701
702 static long __writeback_inodes_wb(struct bdi_writeback *wb,
703 struct wb_writeback_work *work)
704 {
705 unsigned long start_time = jiffies;
706 long wrote = 0;
707
708 while (!list_empty(&wb->b_io)) {
709 struct inode *inode = wb_inode(wb->b_io.prev);
710 struct super_block *sb = inode->i_sb;
711
712 if (!grab_super_passive(sb)) {
713 /*
714 * grab_super_passive() may fail consistently due to
715 * s_umount being grabbed by someone else. Don't use
716 * requeue_io() to avoid busy retrying the inode/sb.
717 */
718 redirty_tail(inode, wb);
719 continue;
720 }
721 wrote += writeback_sb_inodes(sb, wb, work);
722 drop_super(sb);
723
724 /* refer to the same tests at the end of writeback_sb_inodes */
725 if (wrote) {
726 if (time_is_before_jiffies(start_time + HZ / 10UL))
727 break;
728 if (work->nr_pages <= 0)
729 break;
730 }
731 }
732 /* Leave any unwritten inodes on b_io */
733 return wrote;
734 }
735
736 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
737 enum wb_reason reason)
738 {
739 struct wb_writeback_work work = {
740 .nr_pages = nr_pages,
741 .sync_mode = WB_SYNC_NONE,
742 .range_cyclic = 1,
743 .reason = reason,
744 };
745
746 spin_lock(&wb->list_lock);
747 if (list_empty(&wb->b_io))
748 queue_io(wb, &work);
749 __writeback_inodes_wb(wb, &work);
750 spin_unlock(&wb->list_lock);
751
752 return nr_pages - work.nr_pages;
753 }
754
755 static bool over_bground_thresh(struct backing_dev_info *bdi)
756 {
757 unsigned long background_thresh, dirty_thresh;
758
759 global_dirty_limits(&background_thresh, &dirty_thresh);
760
761 if (global_page_state(NR_FILE_DIRTY) +
762 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
763 return true;
764
765 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
766 bdi_dirty_limit(bdi, background_thresh))
767 return true;
768
769 return false;
770 }
771
772 /*
773 * Called under wb->list_lock. If there are multiple wb per bdi,
774 * only the flusher working on the first wb should do it.
775 */
776 static void wb_update_bandwidth(struct bdi_writeback *wb,
777 unsigned long start_time)
778 {
779 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
780 }
781
782 /*
783 * Explicit flushing or periodic writeback of "old" data.
784 *
785 * Define "old": the first time one of an inode's pages is dirtied, we mark the
786 * dirtying-time in the inode's address_space. So this periodic writeback code
787 * just walks the superblock inode list, writing back any inodes which are
788 * older than a specific point in time.
789 *
790 * Try to run once per dirty_writeback_interval. But if a writeback event
791 * takes longer than a dirty_writeback_interval interval, then leave a
792 * one-second gap.
793 *
794 * older_than_this takes precedence over nr_to_write. So we'll only write back
795 * all dirty pages if they are all attached to "old" mappings.
796 */
797 static long wb_writeback(struct bdi_writeback *wb,
798 struct wb_writeback_work *work)
799 {
800 unsigned long wb_start = jiffies;
801 long nr_pages = work->nr_pages;
802 unsigned long oldest_jif;
803 struct inode *inode;
804 long progress;
805
806 oldest_jif = jiffies;
807 work->older_than_this = &oldest_jif;
808
809 spin_lock(&wb->list_lock);
810 for (;;) {
811 /*
812 * Stop writeback when nr_pages has been consumed
813 */
814 if (work->nr_pages <= 0)
815 break;
816
817 /*
818 * Background writeout and kupdate-style writeback may
819 * run forever. Stop them if there is other work to do
820 * so that e.g. sync can proceed. They'll be restarted
821 * after the other works are all done.
822 */
823 if ((work->for_background || work->for_kupdate) &&
824 !list_empty(&wb->bdi->work_list))
825 break;
826
827 /*
828 * For background writeout, stop when we are below the
829 * background dirty threshold
830 */
831 if (work->for_background && !over_bground_thresh(wb->bdi))
832 break;
833
834 /*
835 * Kupdate and background works are special and we want to
836 * include all inodes that need writing. Livelock avoidance is
837 * handled by these works yielding to any other work so we are
838 * safe.
839 */
840 if (work->for_kupdate) {
841 oldest_jif = jiffies -
842 msecs_to_jiffies(dirty_expire_interval * 10);
843 } else if (work->for_background)
844 oldest_jif = jiffies;
845
846 trace_writeback_start(wb->bdi, work);
847 if (list_empty(&wb->b_io))
848 queue_io(wb, work);
849 if (work->sb)
850 progress = writeback_sb_inodes(work->sb, wb, work);
851 else
852 progress = __writeback_inodes_wb(wb, work);
853 trace_writeback_written(wb->bdi, work);
854
855 wb_update_bandwidth(wb, wb_start);
856
857 /*
858 * Did we write something? Try for more
859 *
860 * Dirty inodes are moved to b_io for writeback in batches.
861 * The completion of the current batch does not necessarily
862 * mean the overall work is done. So we keep looping as long
863 * as made some progress on cleaning pages or inodes.
864 */
865 if (progress)
866 continue;
867 /*
868 * No more inodes for IO, bail
869 */
870 if (list_empty(&wb->b_more_io))
871 break;
872 /*
873 * Nothing written. Wait for some inode to
874 * become available for writeback. Otherwise
875 * we'll just busyloop.
876 */
877 if (!list_empty(&wb->b_more_io)) {
878 trace_writeback_wait(wb->bdi, work);
879 inode = wb_inode(wb->b_more_io.prev);
880 spin_lock(&inode->i_lock);
881 spin_unlock(&wb->list_lock);
882 /* This function drops i_lock... */
883 inode_sleep_on_writeback(inode);
884 spin_lock(&wb->list_lock);
885 }
886 }
887 spin_unlock(&wb->list_lock);
888
889 return nr_pages - work->nr_pages;
890 }
891
892 /*
893 * Return the next wb_writeback_work struct that hasn't been processed yet.
894 */
895 static struct wb_writeback_work *
896 get_next_work_item(struct backing_dev_info *bdi)
897 {
898 struct wb_writeback_work *work = NULL;
899
900 spin_lock_bh(&bdi->wb_lock);
901 if (!list_empty(&bdi->work_list)) {
902 work = list_entry(bdi->work_list.next,
903 struct wb_writeback_work, list);
904 list_del_init(&work->list);
905 }
906 spin_unlock_bh(&bdi->wb_lock);
907 return work;
908 }
909
910 /*
911 * Add in the number of potentially dirty inodes, because each inode
912 * write can dirty pagecache in the underlying blockdev.
913 */
914 static unsigned long get_nr_dirty_pages(void)
915 {
916 return global_page_state(NR_FILE_DIRTY) +
917 global_page_state(NR_UNSTABLE_NFS) +
918 get_nr_dirty_inodes();
919 }
920
921 static long wb_check_background_flush(struct bdi_writeback *wb)
922 {
923 if (over_bground_thresh(wb->bdi)) {
924
925 struct wb_writeback_work work = {
926 .nr_pages = LONG_MAX,
927 .sync_mode = WB_SYNC_NONE,
928 .for_background = 1,
929 .range_cyclic = 1,
930 .reason = WB_REASON_BACKGROUND,
931 };
932
933 return wb_writeback(wb, &work);
934 }
935
936 return 0;
937 }
938
939 static long wb_check_old_data_flush(struct bdi_writeback *wb)
940 {
941 unsigned long expired;
942 long nr_pages;
943
944 /*
945 * When set to zero, disable periodic writeback
946 */
947 if (!dirty_writeback_interval)
948 return 0;
949
950 expired = wb->last_old_flush +
951 msecs_to_jiffies(dirty_writeback_interval * 10);
952 if (time_before(jiffies, expired))
953 return 0;
954
955 wb->last_old_flush = jiffies;
956 nr_pages = get_nr_dirty_pages();
957
958 if (nr_pages) {
959 struct wb_writeback_work work = {
960 .nr_pages = nr_pages,
961 .sync_mode = WB_SYNC_NONE,
962 .for_kupdate = 1,
963 .range_cyclic = 1,
964 .reason = WB_REASON_PERIODIC,
965 };
966
967 return wb_writeback(wb, &work);
968 }
969
970 return 0;
971 }
972
973 /*
974 * Retrieve work items and do the writeback they describe
975 */
976 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
977 {
978 struct backing_dev_info *bdi = wb->bdi;
979 struct wb_writeback_work *work;
980 long wrote = 0;
981
982 set_bit(BDI_writeback_running, &wb->bdi->state);
983 while ((work = get_next_work_item(bdi)) != NULL) {
984 /*
985 * Override sync mode, in case we must wait for completion
986 * because this thread is exiting now.
987 */
988 if (force_wait)
989 work->sync_mode = WB_SYNC_ALL;
990
991 trace_writeback_exec(bdi, work);
992
993 wrote += wb_writeback(wb, work);
994
995 /*
996 * Notify the caller of completion if this is a synchronous
997 * work item, otherwise just free it.
998 */
999 if (work->done)
1000 complete(work->done);
1001 else
1002 kfree(work);
1003 }
1004
1005 /*
1006 * Check for periodic writeback, kupdated() style
1007 */
1008 wrote += wb_check_old_data_flush(wb);
1009 wrote += wb_check_background_flush(wb);
1010 clear_bit(BDI_writeback_running, &wb->bdi->state);
1011
1012 return wrote;
1013 }
1014
1015 /*
1016 * Handle writeback of dirty data for the device backed by this bdi. Also
1017 * wakes up periodically and does kupdated style flushing.
1018 */
1019 int bdi_writeback_thread(void *data)
1020 {
1021 struct bdi_writeback *wb = data;
1022 struct backing_dev_info *bdi = wb->bdi;
1023 long pages_written;
1024
1025 current->flags |= PF_SWAPWRITE;
1026 set_freezable();
1027 wb->last_active = jiffies;
1028
1029 /*
1030 * Our parent may run at a different priority, just set us to normal
1031 */
1032 set_user_nice(current, 0);
1033
1034 trace_writeback_thread_start(bdi);
1035
1036 while (!kthread_freezable_should_stop(NULL)) {
1037 /*
1038 * Remove own delayed wake-up timer, since we are already awake
1039 * and we'll take care of the preriodic write-back.
1040 */
1041 del_timer(&wb->wakeup_timer);
1042
1043 pages_written = wb_do_writeback(wb, 0);
1044
1045 trace_writeback_pages_written(pages_written);
1046
1047 if (pages_written)
1048 wb->last_active = jiffies;
1049
1050 set_current_state(TASK_INTERRUPTIBLE);
1051 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
1052 __set_current_state(TASK_RUNNING);
1053 continue;
1054 }
1055
1056 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1057 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
1058 else {
1059 /*
1060 * We have nothing to do, so can go sleep without any
1061 * timeout and save power. When a work is queued or
1062 * something is made dirty - we will be woken up.
1063 */
1064 schedule();
1065 }
1066 }
1067
1068 /* Flush any work that raced with us exiting */
1069 if (!list_empty(&bdi->work_list))
1070 wb_do_writeback(wb, 1);
1071
1072 trace_writeback_thread_stop(bdi);
1073 return 0;
1074 }
1075
1076
1077 /*
1078 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1079 * the whole world.
1080 */
1081 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1082 {
1083 struct backing_dev_info *bdi;
1084
1085 if (!nr_pages) {
1086 nr_pages = global_page_state(NR_FILE_DIRTY) +
1087 global_page_state(NR_UNSTABLE_NFS);
1088 }
1089
1090 rcu_read_lock();
1091 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1092 if (!bdi_has_dirty_io(bdi))
1093 continue;
1094 __bdi_start_writeback(bdi, nr_pages, false, reason);
1095 }
1096 rcu_read_unlock();
1097 }
1098
1099 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1100 {
1101 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1102 struct dentry *dentry;
1103 const char *name = "?";
1104
1105 dentry = d_find_alias(inode);
1106 if (dentry) {
1107 spin_lock(&dentry->d_lock);
1108 name = (const char *) dentry->d_name.name;
1109 }
1110 printk(KERN_DEBUG
1111 "%s(%d): dirtied inode %lu (%s) on %s\n",
1112 current->comm, task_pid_nr(current), inode->i_ino,
1113 name, inode->i_sb->s_id);
1114 if (dentry) {
1115 spin_unlock(&dentry->d_lock);
1116 dput(dentry);
1117 }
1118 }
1119 }
1120
1121 /**
1122 * __mark_inode_dirty - internal function
1123 * @inode: inode to mark
1124 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1125 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1126 * mark_inode_dirty_sync.
1127 *
1128 * Put the inode on the super block's dirty list.
1129 *
1130 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1131 * dirty list only if it is hashed or if it refers to a blockdev.
1132 * If it was not hashed, it will never be added to the dirty list
1133 * even if it is later hashed, as it will have been marked dirty already.
1134 *
1135 * In short, make sure you hash any inodes _before_ you start marking
1136 * them dirty.
1137 *
1138 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1139 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1140 * the kernel-internal blockdev inode represents the dirtying time of the
1141 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1142 * page->mapping->host, so the page-dirtying time is recorded in the internal
1143 * blockdev inode.
1144 */
1145 void __mark_inode_dirty(struct inode *inode, int flags)
1146 {
1147 struct super_block *sb = inode->i_sb;
1148 struct backing_dev_info *bdi = NULL;
1149
1150 /*
1151 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1152 * dirty the inode itself
1153 */
1154 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1155 if (sb->s_op->dirty_inode)
1156 sb->s_op->dirty_inode(inode, flags);
1157 }
1158
1159 /*
1160 * make sure that changes are seen by all cpus before we test i_state
1161 * -- mikulas
1162 */
1163 smp_mb();
1164
1165 /* avoid the locking if we can */
1166 if ((inode->i_state & flags) == flags)
1167 return;
1168
1169 if (unlikely(block_dump))
1170 block_dump___mark_inode_dirty(inode);
1171
1172 spin_lock(&inode->i_lock);
1173 if ((inode->i_state & flags) != flags) {
1174 const int was_dirty = inode->i_state & I_DIRTY;
1175
1176 inode->i_state |= flags;
1177
1178 /*
1179 * If the inode is being synced, just update its dirty state.
1180 * The unlocker will place the inode on the appropriate
1181 * superblock list, based upon its state.
1182 */
1183 if (inode->i_state & I_SYNC)
1184 goto out_unlock_inode;
1185
1186 /*
1187 * Only add valid (hashed) inodes to the superblock's
1188 * dirty list. Add blockdev inodes as well.
1189 */
1190 if (!S_ISBLK(inode->i_mode)) {
1191 if (inode_unhashed(inode))
1192 goto out_unlock_inode;
1193 }
1194 if (inode->i_state & I_FREEING)
1195 goto out_unlock_inode;
1196
1197 /*
1198 * If the inode was already on b_dirty/b_io/b_more_io, don't
1199 * reposition it (that would break b_dirty time-ordering).
1200 */
1201 if (!was_dirty) {
1202 bool wakeup_bdi = false;
1203 bdi = inode_to_bdi(inode);
1204
1205 if (bdi_cap_writeback_dirty(bdi)) {
1206 WARN(!test_bit(BDI_registered, &bdi->state),
1207 "bdi-%s not registered\n", bdi->name);
1208
1209 /*
1210 * If this is the first dirty inode for this
1211 * bdi, we have to wake-up the corresponding
1212 * bdi thread to make sure background
1213 * write-back happens later.
1214 */
1215 if (!wb_has_dirty_io(&bdi->wb))
1216 wakeup_bdi = true;
1217 }
1218
1219 spin_unlock(&inode->i_lock);
1220 spin_lock(&bdi->wb.list_lock);
1221 inode->dirtied_when = jiffies;
1222 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1223 spin_unlock(&bdi->wb.list_lock);
1224
1225 if (wakeup_bdi)
1226 bdi_wakeup_thread_delayed(bdi);
1227 return;
1228 }
1229 }
1230 out_unlock_inode:
1231 spin_unlock(&inode->i_lock);
1232
1233 }
1234 EXPORT_SYMBOL(__mark_inode_dirty);
1235
1236 static void wait_sb_inodes(struct super_block *sb)
1237 {
1238 struct inode *inode, *old_inode = NULL;
1239
1240 /*
1241 * We need to be protected against the filesystem going from
1242 * r/o to r/w or vice versa.
1243 */
1244 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1245
1246 spin_lock(&inode_sb_list_lock);
1247
1248 /*
1249 * Data integrity sync. Must wait for all pages under writeback,
1250 * because there may have been pages dirtied before our sync
1251 * call, but which had writeout started before we write it out.
1252 * In which case, the inode may not be on the dirty list, but
1253 * we still have to wait for that writeout.
1254 */
1255 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1256 struct address_space *mapping = inode->i_mapping;
1257
1258 spin_lock(&inode->i_lock);
1259 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1260 (mapping->nrpages == 0)) {
1261 spin_unlock(&inode->i_lock);
1262 continue;
1263 }
1264 __iget(inode);
1265 spin_unlock(&inode->i_lock);
1266 spin_unlock(&inode_sb_list_lock);
1267
1268 /*
1269 * We hold a reference to 'inode' so it couldn't have been
1270 * removed from s_inodes list while we dropped the
1271 * inode_sb_list_lock. We cannot iput the inode now as we can
1272 * be holding the last reference and we cannot iput it under
1273 * inode_sb_list_lock. So we keep the reference and iput it
1274 * later.
1275 */
1276 iput(old_inode);
1277 old_inode = inode;
1278
1279 filemap_fdatawait(mapping);
1280
1281 cond_resched();
1282
1283 spin_lock(&inode_sb_list_lock);
1284 }
1285 spin_unlock(&inode_sb_list_lock);
1286 iput(old_inode);
1287 }
1288
1289 /**
1290 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1291 * @sb: the superblock
1292 * @nr: the number of pages to write
1293 * @reason: reason why some writeback work initiated
1294 *
1295 * Start writeback on some inodes on this super_block. No guarantees are made
1296 * on how many (if any) will be written, and this function does not wait
1297 * for IO completion of submitted IO.
1298 */
1299 void writeback_inodes_sb_nr(struct super_block *sb,
1300 unsigned long nr,
1301 enum wb_reason reason)
1302 {
1303 DECLARE_COMPLETION_ONSTACK(done);
1304 struct wb_writeback_work work = {
1305 .sb = sb,
1306 .sync_mode = WB_SYNC_NONE,
1307 .tagged_writepages = 1,
1308 .done = &done,
1309 .nr_pages = nr,
1310 .reason = reason,
1311 };
1312
1313 if (sb->s_bdi == &noop_backing_dev_info)
1314 return;
1315 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1316 bdi_queue_work(sb->s_bdi, &work);
1317 wait_for_completion(&done);
1318 }
1319 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1320
1321 /**
1322 * writeback_inodes_sb - writeback dirty inodes from given super_block
1323 * @sb: the superblock
1324 * @reason: reason why some writeback work was initiated
1325 *
1326 * Start writeback on some inodes on this super_block. No guarantees are made
1327 * on how many (if any) will be written, and this function does not wait
1328 * for IO completion of submitted IO.
1329 */
1330 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1331 {
1332 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1333 }
1334 EXPORT_SYMBOL(writeback_inodes_sb);
1335
1336 /**
1337 * writeback_inodes_sb_if_idle - start writeback if none underway
1338 * @sb: the superblock
1339 * @reason: reason why some writeback work was initiated
1340 *
1341 * Invoke writeback_inodes_sb if no writeback is currently underway.
1342 * Returns 1 if writeback was started, 0 if not.
1343 */
1344 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1345 {
1346 if (!writeback_in_progress(sb->s_bdi)) {
1347 down_read(&sb->s_umount);
1348 writeback_inodes_sb(sb, reason);
1349 up_read(&sb->s_umount);
1350 return 1;
1351 } else
1352 return 0;
1353 }
1354 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1355
1356 /**
1357 * writeback_inodes_sb_nr_if_idle - start writeback if none underway
1358 * @sb: the superblock
1359 * @nr: the number of pages to write
1360 * @reason: reason why some writeback work was initiated
1361 *
1362 * Invoke writeback_inodes_sb if no writeback is currently underway.
1363 * Returns 1 if writeback was started, 0 if not.
1364 */
1365 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1366 unsigned long nr,
1367 enum wb_reason reason)
1368 {
1369 if (!writeback_in_progress(sb->s_bdi)) {
1370 down_read(&sb->s_umount);
1371 writeback_inodes_sb_nr(sb, nr, reason);
1372 up_read(&sb->s_umount);
1373 return 1;
1374 } else
1375 return 0;
1376 }
1377 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1378
1379 /**
1380 * sync_inodes_sb - sync sb inode pages
1381 * @sb: the superblock
1382 *
1383 * This function writes and waits on any dirty inode belonging to this
1384 * super_block.
1385 */
1386 void sync_inodes_sb(struct super_block *sb)
1387 {
1388 DECLARE_COMPLETION_ONSTACK(done);
1389 struct wb_writeback_work work = {
1390 .sb = sb,
1391 .sync_mode = WB_SYNC_ALL,
1392 .nr_pages = LONG_MAX,
1393 .range_cyclic = 0,
1394 .done = &done,
1395 .reason = WB_REASON_SYNC,
1396 };
1397
1398 /* Nothing to do? */
1399 if (sb->s_bdi == &noop_backing_dev_info)
1400 return;
1401 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1402
1403 bdi_queue_work(sb->s_bdi, &work);
1404 wait_for_completion(&done);
1405
1406 wait_sb_inodes(sb);
1407 }
1408 EXPORT_SYMBOL(sync_inodes_sb);
1409
1410 /**
1411 * write_inode_now - write an inode to disk
1412 * @inode: inode to write to disk
1413 * @sync: whether the write should be synchronous or not
1414 *
1415 * This function commits an inode to disk immediately if it is dirty. This is
1416 * primarily needed by knfsd.
1417 *
1418 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1419 */
1420 int write_inode_now(struct inode *inode, int sync)
1421 {
1422 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1423 struct writeback_control wbc = {
1424 .nr_to_write = LONG_MAX,
1425 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1426 .range_start = 0,
1427 .range_end = LLONG_MAX,
1428 };
1429
1430 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1431 wbc.nr_to_write = 0;
1432
1433 might_sleep();
1434 return writeback_single_inode(inode, wb, &wbc);
1435 }
1436 EXPORT_SYMBOL(write_inode_now);
1437
1438 /**
1439 * sync_inode - write an inode and its pages to disk.
1440 * @inode: the inode to sync
1441 * @wbc: controls the writeback mode
1442 *
1443 * sync_inode() will write an inode and its pages to disk. It will also
1444 * correctly update the inode on its superblock's dirty inode lists and will
1445 * update inode->i_state.
1446 *
1447 * The caller must have a ref on the inode.
1448 */
1449 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1450 {
1451 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1452 }
1453 EXPORT_SYMBOL(sync_inode);
1454
1455 /**
1456 * sync_inode_metadata - write an inode to disk
1457 * @inode: the inode to sync
1458 * @wait: wait for I/O to complete.
1459 *
1460 * Write an inode to disk and adjust its dirty state after completion.
1461 *
1462 * Note: only writes the actual inode, no associated data or other metadata.
1463 */
1464 int sync_inode_metadata(struct inode *inode, int wait)
1465 {
1466 struct writeback_control wbc = {
1467 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1468 .nr_to_write = 0, /* metadata-only */
1469 };
1470
1471 return sync_inode(inode, &wbc);
1472 }
1473 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.070213 seconds and 5 git commands to generate.