Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 /*
44 * Write only inodes dirtied before this time. Don't forget to set
45 * older_than_this_is_set when you set this.
46 */
47 unsigned long older_than_this;
48 enum writeback_sync_modes sync_mode;
49 unsigned int tagged_writepages:1;
50 unsigned int for_kupdate:1;
51 unsigned int range_cyclic:1;
52 unsigned int for_background:1;
53 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
54 unsigned int older_than_this_is_set:1;
55 enum wb_reason reason; /* why was writeback initiated? */
56
57 struct list_head list; /* pending work list */
58 struct completion *done; /* set if the caller waits */
59 };
60
61 /**
62 * writeback_in_progress - determine whether there is writeback in progress
63 * @bdi: the device's backing_dev_info structure.
64 *
65 * Determine whether there is writeback waiting to be handled against a
66 * backing device.
67 */
68 int writeback_in_progress(struct backing_dev_info *bdi)
69 {
70 return test_bit(BDI_writeback_running, &bdi->state);
71 }
72 EXPORT_SYMBOL(writeback_in_progress);
73
74 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
75 {
76 struct super_block *sb = inode->i_sb;
77
78 if (sb_is_blkdev_sb(sb))
79 return inode->i_mapping->backing_dev_info;
80
81 return sb->s_bdi;
82 }
83
84 static inline struct inode *wb_inode(struct list_head *head)
85 {
86 return list_entry(head, struct inode, i_wb_list);
87 }
88
89 /*
90 * Include the creation of the trace points after defining the
91 * wb_writeback_work structure and inline functions so that the definition
92 * remains local to this file.
93 */
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/writeback.h>
96
97 static void bdi_queue_work(struct backing_dev_info *bdi,
98 struct wb_writeback_work *work)
99 {
100 trace_writeback_queue(bdi, work);
101
102 spin_lock_bh(&bdi->wb_lock);
103 list_add_tail(&work->list, &bdi->work_list);
104 spin_unlock_bh(&bdi->wb_lock);
105
106 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
107 }
108
109 static void
110 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
111 bool range_cyclic, enum wb_reason reason)
112 {
113 struct wb_writeback_work *work;
114
115 /*
116 * This is WB_SYNC_NONE writeback, so if allocation fails just
117 * wakeup the thread for old dirty data writeback
118 */
119 work = kzalloc(sizeof(*work), GFP_ATOMIC);
120 if (!work) {
121 trace_writeback_nowork(bdi);
122 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
123 return;
124 }
125
126 work->sync_mode = WB_SYNC_NONE;
127 work->nr_pages = nr_pages;
128 work->range_cyclic = range_cyclic;
129 work->reason = reason;
130
131 bdi_queue_work(bdi, work);
132 }
133
134 /**
135 * bdi_start_writeback - start writeback
136 * @bdi: the backing device to write from
137 * @nr_pages: the number of pages to write
138 * @reason: reason why some writeback work was initiated
139 *
140 * Description:
141 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
142 * started when this function returns, we make no guarantees on
143 * completion. Caller need not hold sb s_umount semaphore.
144 *
145 */
146 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
147 enum wb_reason reason)
148 {
149 __bdi_start_writeback(bdi, nr_pages, true, reason);
150 }
151
152 /**
153 * bdi_start_background_writeback - start background writeback
154 * @bdi: the backing device to write from
155 *
156 * Description:
157 * This makes sure WB_SYNC_NONE background writeback happens. When
158 * this function returns, it is only guaranteed that for given BDI
159 * some IO is happening if we are over background dirty threshold.
160 * Caller need not hold sb s_umount semaphore.
161 */
162 void bdi_start_background_writeback(struct backing_dev_info *bdi)
163 {
164 /*
165 * We just wake up the flusher thread. It will perform background
166 * writeback as soon as there is no other work to do.
167 */
168 trace_writeback_wake_background(bdi);
169 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
170 }
171
172 /*
173 * Remove the inode from the writeback list it is on.
174 */
175 void inode_wb_list_del(struct inode *inode)
176 {
177 struct backing_dev_info *bdi = inode_to_bdi(inode);
178
179 spin_lock(&bdi->wb.list_lock);
180 list_del_init(&inode->i_wb_list);
181 spin_unlock(&bdi->wb.list_lock);
182 }
183
184 /*
185 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
186 * furthest end of its superblock's dirty-inode list.
187 *
188 * Before stamping the inode's ->dirtied_when, we check to see whether it is
189 * already the most-recently-dirtied inode on the b_dirty list. If that is
190 * the case then the inode must have been redirtied while it was being written
191 * out and we don't reset its dirtied_when.
192 */
193 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
194 {
195 assert_spin_locked(&wb->list_lock);
196 if (!list_empty(&wb->b_dirty)) {
197 struct inode *tail;
198
199 tail = wb_inode(wb->b_dirty.next);
200 if (time_before(inode->dirtied_when, tail->dirtied_when))
201 inode->dirtied_when = jiffies;
202 }
203 list_move(&inode->i_wb_list, &wb->b_dirty);
204 }
205
206 /*
207 * requeue inode for re-scanning after bdi->b_io list is exhausted.
208 */
209 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
210 {
211 assert_spin_locked(&wb->list_lock);
212 list_move(&inode->i_wb_list, &wb->b_more_io);
213 }
214
215 static void inode_sync_complete(struct inode *inode)
216 {
217 inode->i_state &= ~I_SYNC;
218 /* If inode is clean an unused, put it into LRU now... */
219 inode_add_lru(inode);
220 /* Waiters must see I_SYNC cleared before being woken up */
221 smp_mb();
222 wake_up_bit(&inode->i_state, __I_SYNC);
223 }
224
225 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
226 {
227 bool ret = time_after(inode->dirtied_when, t);
228 #ifndef CONFIG_64BIT
229 /*
230 * For inodes being constantly redirtied, dirtied_when can get stuck.
231 * It _appears_ to be in the future, but is actually in distant past.
232 * This test is necessary to prevent such wrapped-around relative times
233 * from permanently stopping the whole bdi writeback.
234 */
235 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
236 #endif
237 return ret;
238 }
239
240 /*
241 * Move expired (dirtied before work->older_than_this) dirty inodes from
242 * @delaying_queue to @dispatch_queue.
243 */
244 static int move_expired_inodes(struct list_head *delaying_queue,
245 struct list_head *dispatch_queue,
246 struct wb_writeback_work *work)
247 {
248 LIST_HEAD(tmp);
249 struct list_head *pos, *node;
250 struct super_block *sb = NULL;
251 struct inode *inode;
252 int do_sb_sort = 0;
253 int moved = 0;
254
255 WARN_ON_ONCE(!work->older_than_this_is_set);
256 while (!list_empty(delaying_queue)) {
257 inode = wb_inode(delaying_queue->prev);
258 if (inode_dirtied_after(inode, work->older_than_this))
259 break;
260 list_move(&inode->i_wb_list, &tmp);
261 moved++;
262 if (sb_is_blkdev_sb(inode->i_sb))
263 continue;
264 if (sb && sb != inode->i_sb)
265 do_sb_sort = 1;
266 sb = inode->i_sb;
267 }
268
269 /* just one sb in list, splice to dispatch_queue and we're done */
270 if (!do_sb_sort) {
271 list_splice(&tmp, dispatch_queue);
272 goto out;
273 }
274
275 /* Move inodes from one superblock together */
276 while (!list_empty(&tmp)) {
277 sb = wb_inode(tmp.prev)->i_sb;
278 list_for_each_prev_safe(pos, node, &tmp) {
279 inode = wb_inode(pos);
280 if (inode->i_sb == sb)
281 list_move(&inode->i_wb_list, dispatch_queue);
282 }
283 }
284 out:
285 return moved;
286 }
287
288 /*
289 * Queue all expired dirty inodes for io, eldest first.
290 * Before
291 * newly dirtied b_dirty b_io b_more_io
292 * =============> gf edc BA
293 * After
294 * newly dirtied b_dirty b_io b_more_io
295 * =============> g fBAedc
296 * |
297 * +--> dequeue for IO
298 */
299 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
300 {
301 int moved;
302 assert_spin_locked(&wb->list_lock);
303 list_splice_init(&wb->b_more_io, &wb->b_io);
304 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
305 trace_writeback_queue_io(wb, work, moved);
306 }
307
308 static int write_inode(struct inode *inode, struct writeback_control *wbc)
309 {
310 int ret;
311
312 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
313 trace_writeback_write_inode_start(inode, wbc);
314 ret = inode->i_sb->s_op->write_inode(inode, wbc);
315 trace_writeback_write_inode(inode, wbc);
316 return ret;
317 }
318 return 0;
319 }
320
321 /*
322 * Wait for writeback on an inode to complete. Called with i_lock held.
323 * Caller must make sure inode cannot go away when we drop i_lock.
324 */
325 static void __inode_wait_for_writeback(struct inode *inode)
326 __releases(inode->i_lock)
327 __acquires(inode->i_lock)
328 {
329 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
330 wait_queue_head_t *wqh;
331
332 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
333 while (inode->i_state & I_SYNC) {
334 spin_unlock(&inode->i_lock);
335 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
336 spin_lock(&inode->i_lock);
337 }
338 }
339
340 /*
341 * Wait for writeback on an inode to complete. Caller must have inode pinned.
342 */
343 void inode_wait_for_writeback(struct inode *inode)
344 {
345 spin_lock(&inode->i_lock);
346 __inode_wait_for_writeback(inode);
347 spin_unlock(&inode->i_lock);
348 }
349
350 /*
351 * Sleep until I_SYNC is cleared. This function must be called with i_lock
352 * held and drops it. It is aimed for callers not holding any inode reference
353 * so once i_lock is dropped, inode can go away.
354 */
355 static void inode_sleep_on_writeback(struct inode *inode)
356 __releases(inode->i_lock)
357 {
358 DEFINE_WAIT(wait);
359 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
360 int sleep;
361
362 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
363 sleep = inode->i_state & I_SYNC;
364 spin_unlock(&inode->i_lock);
365 if (sleep)
366 schedule();
367 finish_wait(wqh, &wait);
368 }
369
370 /*
371 * Find proper writeback list for the inode depending on its current state and
372 * possibly also change of its state while we were doing writeback. Here we
373 * handle things such as livelock prevention or fairness of writeback among
374 * inodes. This function can be called only by flusher thread - noone else
375 * processes all inodes in writeback lists and requeueing inodes behind flusher
376 * thread's back can have unexpected consequences.
377 */
378 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
379 struct writeback_control *wbc)
380 {
381 if (inode->i_state & I_FREEING)
382 return;
383
384 /*
385 * Sync livelock prevention. Each inode is tagged and synced in one
386 * shot. If still dirty, it will be redirty_tail()'ed below. Update
387 * the dirty time to prevent enqueue and sync it again.
388 */
389 if ((inode->i_state & I_DIRTY) &&
390 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
391 inode->dirtied_when = jiffies;
392
393 if (wbc->pages_skipped) {
394 /*
395 * writeback is not making progress due to locked
396 * buffers. Skip this inode for now.
397 */
398 redirty_tail(inode, wb);
399 return;
400 }
401
402 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
403 /*
404 * We didn't write back all the pages. nfs_writepages()
405 * sometimes bales out without doing anything.
406 */
407 if (wbc->nr_to_write <= 0) {
408 /* Slice used up. Queue for next turn. */
409 requeue_io(inode, wb);
410 } else {
411 /*
412 * Writeback blocked by something other than
413 * congestion. Delay the inode for some time to
414 * avoid spinning on the CPU (100% iowait)
415 * retrying writeback of the dirty page/inode
416 * that cannot be performed immediately.
417 */
418 redirty_tail(inode, wb);
419 }
420 } else if (inode->i_state & I_DIRTY) {
421 /*
422 * Filesystems can dirty the inode during writeback operations,
423 * such as delayed allocation during submission or metadata
424 * updates after data IO completion.
425 */
426 redirty_tail(inode, wb);
427 } else {
428 /* The inode is clean. Remove from writeback lists. */
429 list_del_init(&inode->i_wb_list);
430 }
431 }
432
433 /*
434 * Write out an inode and its dirty pages. Do not update the writeback list
435 * linkage. That is left to the caller. The caller is also responsible for
436 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
437 */
438 static int
439 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
440 {
441 struct address_space *mapping = inode->i_mapping;
442 long nr_to_write = wbc->nr_to_write;
443 unsigned dirty;
444 int ret;
445
446 WARN_ON(!(inode->i_state & I_SYNC));
447
448 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
449
450 ret = do_writepages(mapping, wbc);
451
452 /*
453 * Make sure to wait on the data before writing out the metadata.
454 * This is important for filesystems that modify metadata on data
455 * I/O completion. We don't do it for sync(2) writeback because it has a
456 * separate, external IO completion path and ->sync_fs for guaranteeing
457 * inode metadata is written back correctly.
458 */
459 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
460 int err = filemap_fdatawait(mapping);
461 if (ret == 0)
462 ret = err;
463 }
464
465 /*
466 * Some filesystems may redirty the inode during the writeback
467 * due to delalloc, clear dirty metadata flags right before
468 * write_inode()
469 */
470 spin_lock(&inode->i_lock);
471 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
472 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
473 inode->i_state &= ~I_DIRTY_PAGES;
474 dirty = inode->i_state & I_DIRTY;
475 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
476 spin_unlock(&inode->i_lock);
477 /* Don't write the inode if only I_DIRTY_PAGES was set */
478 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
479 int err = write_inode(inode, wbc);
480 if (ret == 0)
481 ret = err;
482 }
483 trace_writeback_single_inode(inode, wbc, nr_to_write);
484 return ret;
485 }
486
487 /*
488 * Write out an inode's dirty pages. Either the caller has an active reference
489 * on the inode or the inode has I_WILL_FREE set.
490 *
491 * This function is designed to be called for writing back one inode which
492 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
493 * and does more profound writeback list handling in writeback_sb_inodes().
494 */
495 static int
496 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
497 struct writeback_control *wbc)
498 {
499 int ret = 0;
500
501 spin_lock(&inode->i_lock);
502 if (!atomic_read(&inode->i_count))
503 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
504 else
505 WARN_ON(inode->i_state & I_WILL_FREE);
506
507 if (inode->i_state & I_SYNC) {
508 if (wbc->sync_mode != WB_SYNC_ALL)
509 goto out;
510 /*
511 * It's a data-integrity sync. We must wait. Since callers hold
512 * inode reference or inode has I_WILL_FREE set, it cannot go
513 * away under us.
514 */
515 __inode_wait_for_writeback(inode);
516 }
517 WARN_ON(inode->i_state & I_SYNC);
518 /*
519 * Skip inode if it is clean. We don't want to mess with writeback
520 * lists in this function since flusher thread may be doing for example
521 * sync in parallel and if we move the inode, it could get skipped. So
522 * here we make sure inode is on some writeback list and leave it there
523 * unless we have completely cleaned the inode.
524 */
525 if (!(inode->i_state & I_DIRTY))
526 goto out;
527 inode->i_state |= I_SYNC;
528 spin_unlock(&inode->i_lock);
529
530 ret = __writeback_single_inode(inode, wbc);
531
532 spin_lock(&wb->list_lock);
533 spin_lock(&inode->i_lock);
534 /*
535 * If inode is clean, remove it from writeback lists. Otherwise don't
536 * touch it. See comment above for explanation.
537 */
538 if (!(inode->i_state & I_DIRTY))
539 list_del_init(&inode->i_wb_list);
540 spin_unlock(&wb->list_lock);
541 inode_sync_complete(inode);
542 out:
543 spin_unlock(&inode->i_lock);
544 return ret;
545 }
546
547 static long writeback_chunk_size(struct backing_dev_info *bdi,
548 struct wb_writeback_work *work)
549 {
550 long pages;
551
552 /*
553 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
554 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
555 * here avoids calling into writeback_inodes_wb() more than once.
556 *
557 * The intended call sequence for WB_SYNC_ALL writeback is:
558 *
559 * wb_writeback()
560 * writeback_sb_inodes() <== called only once
561 * write_cache_pages() <== called once for each inode
562 * (quickly) tag currently dirty pages
563 * (maybe slowly) sync all tagged pages
564 */
565 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
566 pages = LONG_MAX;
567 else {
568 pages = min(bdi->avg_write_bandwidth / 2,
569 global_dirty_limit / DIRTY_SCOPE);
570 pages = min(pages, work->nr_pages);
571 pages = round_down(pages + MIN_WRITEBACK_PAGES,
572 MIN_WRITEBACK_PAGES);
573 }
574
575 return pages;
576 }
577
578 /*
579 * Write a portion of b_io inodes which belong to @sb.
580 *
581 * Return the number of pages and/or inodes written.
582 */
583 static long writeback_sb_inodes(struct super_block *sb,
584 struct bdi_writeback *wb,
585 struct wb_writeback_work *work)
586 {
587 struct writeback_control wbc = {
588 .sync_mode = work->sync_mode,
589 .tagged_writepages = work->tagged_writepages,
590 .for_kupdate = work->for_kupdate,
591 .for_background = work->for_background,
592 .for_sync = work->for_sync,
593 .range_cyclic = work->range_cyclic,
594 .range_start = 0,
595 .range_end = LLONG_MAX,
596 };
597 unsigned long start_time = jiffies;
598 long write_chunk;
599 long wrote = 0; /* count both pages and inodes */
600
601 while (!list_empty(&wb->b_io)) {
602 struct inode *inode = wb_inode(wb->b_io.prev);
603
604 if (inode->i_sb != sb) {
605 if (work->sb) {
606 /*
607 * We only want to write back data for this
608 * superblock, move all inodes not belonging
609 * to it back onto the dirty list.
610 */
611 redirty_tail(inode, wb);
612 continue;
613 }
614
615 /*
616 * The inode belongs to a different superblock.
617 * Bounce back to the caller to unpin this and
618 * pin the next superblock.
619 */
620 break;
621 }
622
623 /*
624 * Don't bother with new inodes or inodes being freed, first
625 * kind does not need periodic writeout yet, and for the latter
626 * kind writeout is handled by the freer.
627 */
628 spin_lock(&inode->i_lock);
629 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
630 spin_unlock(&inode->i_lock);
631 redirty_tail(inode, wb);
632 continue;
633 }
634 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
635 /*
636 * If this inode is locked for writeback and we are not
637 * doing writeback-for-data-integrity, move it to
638 * b_more_io so that writeback can proceed with the
639 * other inodes on s_io.
640 *
641 * We'll have another go at writing back this inode
642 * when we completed a full scan of b_io.
643 */
644 spin_unlock(&inode->i_lock);
645 requeue_io(inode, wb);
646 trace_writeback_sb_inodes_requeue(inode);
647 continue;
648 }
649 spin_unlock(&wb->list_lock);
650
651 /*
652 * We already requeued the inode if it had I_SYNC set and we
653 * are doing WB_SYNC_NONE writeback. So this catches only the
654 * WB_SYNC_ALL case.
655 */
656 if (inode->i_state & I_SYNC) {
657 /* Wait for I_SYNC. This function drops i_lock... */
658 inode_sleep_on_writeback(inode);
659 /* Inode may be gone, start again */
660 spin_lock(&wb->list_lock);
661 continue;
662 }
663 inode->i_state |= I_SYNC;
664 spin_unlock(&inode->i_lock);
665
666 write_chunk = writeback_chunk_size(wb->bdi, work);
667 wbc.nr_to_write = write_chunk;
668 wbc.pages_skipped = 0;
669
670 /*
671 * We use I_SYNC to pin the inode in memory. While it is set
672 * evict_inode() will wait so the inode cannot be freed.
673 */
674 __writeback_single_inode(inode, &wbc);
675
676 work->nr_pages -= write_chunk - wbc.nr_to_write;
677 wrote += write_chunk - wbc.nr_to_write;
678 spin_lock(&wb->list_lock);
679 spin_lock(&inode->i_lock);
680 if (!(inode->i_state & I_DIRTY))
681 wrote++;
682 requeue_inode(inode, wb, &wbc);
683 inode_sync_complete(inode);
684 spin_unlock(&inode->i_lock);
685 cond_resched_lock(&wb->list_lock);
686 /*
687 * bail out to wb_writeback() often enough to check
688 * background threshold and other termination conditions.
689 */
690 if (wrote) {
691 if (time_is_before_jiffies(start_time + HZ / 10UL))
692 break;
693 if (work->nr_pages <= 0)
694 break;
695 }
696 }
697 return wrote;
698 }
699
700 static long __writeback_inodes_wb(struct bdi_writeback *wb,
701 struct wb_writeback_work *work)
702 {
703 unsigned long start_time = jiffies;
704 long wrote = 0;
705
706 while (!list_empty(&wb->b_io)) {
707 struct inode *inode = wb_inode(wb->b_io.prev);
708 struct super_block *sb = inode->i_sb;
709
710 if (!grab_super_passive(sb)) {
711 /*
712 * grab_super_passive() may fail consistently due to
713 * s_umount being grabbed by someone else. Don't use
714 * requeue_io() to avoid busy retrying the inode/sb.
715 */
716 redirty_tail(inode, wb);
717 continue;
718 }
719 wrote += writeback_sb_inodes(sb, wb, work);
720 drop_super(sb);
721
722 /* refer to the same tests at the end of writeback_sb_inodes */
723 if (wrote) {
724 if (time_is_before_jiffies(start_time + HZ / 10UL))
725 break;
726 if (work->nr_pages <= 0)
727 break;
728 }
729 }
730 /* Leave any unwritten inodes on b_io */
731 return wrote;
732 }
733
734 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
735 enum wb_reason reason)
736 {
737 struct wb_writeback_work work = {
738 .nr_pages = nr_pages,
739 .sync_mode = WB_SYNC_NONE,
740 .range_cyclic = 1,
741 .reason = reason,
742 .older_than_this = jiffies,
743 .older_than_this_is_set = 1,
744 };
745
746 spin_lock(&wb->list_lock);
747 if (list_empty(&wb->b_io))
748 queue_io(wb, &work);
749 __writeback_inodes_wb(wb, &work);
750 spin_unlock(&wb->list_lock);
751
752 return nr_pages - work.nr_pages;
753 }
754
755 static bool over_bground_thresh(struct backing_dev_info *bdi)
756 {
757 unsigned long background_thresh, dirty_thresh;
758
759 global_dirty_limits(&background_thresh, &dirty_thresh);
760
761 if (global_page_state(NR_FILE_DIRTY) +
762 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
763 return true;
764
765 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
766 bdi_dirty_limit(bdi, background_thresh))
767 return true;
768
769 return false;
770 }
771
772 /*
773 * Called under wb->list_lock. If there are multiple wb per bdi,
774 * only the flusher working on the first wb should do it.
775 */
776 static void wb_update_bandwidth(struct bdi_writeback *wb,
777 unsigned long start_time)
778 {
779 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
780 }
781
782 /*
783 * Explicit flushing or periodic writeback of "old" data.
784 *
785 * Define "old": the first time one of an inode's pages is dirtied, we mark the
786 * dirtying-time in the inode's address_space. So this periodic writeback code
787 * just walks the superblock inode list, writing back any inodes which are
788 * older than a specific point in time.
789 *
790 * Try to run once per dirty_writeback_interval. But if a writeback event
791 * takes longer than a dirty_writeback_interval interval, then leave a
792 * one-second gap.
793 *
794 * older_than_this takes precedence over nr_to_write. So we'll only write back
795 * all dirty pages if they are all attached to "old" mappings.
796 */
797 static long wb_writeback(struct bdi_writeback *wb,
798 struct wb_writeback_work *work)
799 {
800 unsigned long wb_start = jiffies;
801 long nr_pages = work->nr_pages;
802 struct inode *inode;
803 long progress;
804
805 if (!work->older_than_this_is_set) {
806 work->older_than_this = jiffies;
807 work->older_than_this_is_set = 1;
808 }
809
810 spin_lock(&wb->list_lock);
811 for (;;) {
812 /*
813 * Stop writeback when nr_pages has been consumed
814 */
815 if (work->nr_pages <= 0)
816 break;
817
818 /*
819 * Background writeout and kupdate-style writeback may
820 * run forever. Stop them if there is other work to do
821 * so that e.g. sync can proceed. They'll be restarted
822 * after the other works are all done.
823 */
824 if ((work->for_background || work->for_kupdate) &&
825 !list_empty(&wb->bdi->work_list))
826 break;
827
828 /*
829 * For background writeout, stop when we are below the
830 * background dirty threshold
831 */
832 if (work->for_background && !over_bground_thresh(wb->bdi))
833 break;
834
835 /*
836 * Kupdate and background works are special and we want to
837 * include all inodes that need writing. Livelock avoidance is
838 * handled by these works yielding to any other work so we are
839 * safe.
840 */
841 if (work->for_kupdate) {
842 work->older_than_this = jiffies -
843 msecs_to_jiffies(dirty_expire_interval * 10);
844 } else if (work->for_background)
845 work->older_than_this = jiffies;
846
847 trace_writeback_start(wb->bdi, work);
848 if (list_empty(&wb->b_io))
849 queue_io(wb, work);
850 if (work->sb)
851 progress = writeback_sb_inodes(work->sb, wb, work);
852 else
853 progress = __writeback_inodes_wb(wb, work);
854 trace_writeback_written(wb->bdi, work);
855
856 wb_update_bandwidth(wb, wb_start);
857
858 /*
859 * Did we write something? Try for more
860 *
861 * Dirty inodes are moved to b_io for writeback in batches.
862 * The completion of the current batch does not necessarily
863 * mean the overall work is done. So we keep looping as long
864 * as made some progress on cleaning pages or inodes.
865 */
866 if (progress)
867 continue;
868 /*
869 * No more inodes for IO, bail
870 */
871 if (list_empty(&wb->b_more_io))
872 break;
873 /*
874 * Nothing written. Wait for some inode to
875 * become available for writeback. Otherwise
876 * we'll just busyloop.
877 */
878 if (!list_empty(&wb->b_more_io)) {
879 trace_writeback_wait(wb->bdi, work);
880 inode = wb_inode(wb->b_more_io.prev);
881 spin_lock(&inode->i_lock);
882 spin_unlock(&wb->list_lock);
883 /* This function drops i_lock... */
884 inode_sleep_on_writeback(inode);
885 spin_lock(&wb->list_lock);
886 }
887 }
888 spin_unlock(&wb->list_lock);
889
890 return nr_pages - work->nr_pages;
891 }
892
893 /*
894 * Return the next wb_writeback_work struct that hasn't been processed yet.
895 */
896 static struct wb_writeback_work *
897 get_next_work_item(struct backing_dev_info *bdi)
898 {
899 struct wb_writeback_work *work = NULL;
900
901 spin_lock_bh(&bdi->wb_lock);
902 if (!list_empty(&bdi->work_list)) {
903 work = list_entry(bdi->work_list.next,
904 struct wb_writeback_work, list);
905 list_del_init(&work->list);
906 }
907 spin_unlock_bh(&bdi->wb_lock);
908 return work;
909 }
910
911 /*
912 * Add in the number of potentially dirty inodes, because each inode
913 * write can dirty pagecache in the underlying blockdev.
914 */
915 static unsigned long get_nr_dirty_pages(void)
916 {
917 return global_page_state(NR_FILE_DIRTY) +
918 global_page_state(NR_UNSTABLE_NFS) +
919 get_nr_dirty_inodes();
920 }
921
922 static long wb_check_background_flush(struct bdi_writeback *wb)
923 {
924 if (over_bground_thresh(wb->bdi)) {
925
926 struct wb_writeback_work work = {
927 .nr_pages = LONG_MAX,
928 .sync_mode = WB_SYNC_NONE,
929 .for_background = 1,
930 .range_cyclic = 1,
931 .reason = WB_REASON_BACKGROUND,
932 };
933
934 return wb_writeback(wb, &work);
935 }
936
937 return 0;
938 }
939
940 static long wb_check_old_data_flush(struct bdi_writeback *wb)
941 {
942 unsigned long expired;
943 long nr_pages;
944
945 /*
946 * When set to zero, disable periodic writeback
947 */
948 if (!dirty_writeback_interval)
949 return 0;
950
951 expired = wb->last_old_flush +
952 msecs_to_jiffies(dirty_writeback_interval * 10);
953 if (time_before(jiffies, expired))
954 return 0;
955
956 wb->last_old_flush = jiffies;
957 nr_pages = get_nr_dirty_pages();
958
959 if (nr_pages) {
960 struct wb_writeback_work work = {
961 .nr_pages = nr_pages,
962 .sync_mode = WB_SYNC_NONE,
963 .for_kupdate = 1,
964 .range_cyclic = 1,
965 .reason = WB_REASON_PERIODIC,
966 };
967
968 return wb_writeback(wb, &work);
969 }
970
971 return 0;
972 }
973
974 /*
975 * Retrieve work items and do the writeback they describe
976 */
977 static long wb_do_writeback(struct bdi_writeback *wb)
978 {
979 struct backing_dev_info *bdi = wb->bdi;
980 struct wb_writeback_work *work;
981 long wrote = 0;
982
983 set_bit(BDI_writeback_running, &wb->bdi->state);
984 while ((work = get_next_work_item(bdi)) != NULL) {
985
986 trace_writeback_exec(bdi, work);
987
988 wrote += wb_writeback(wb, work);
989
990 /*
991 * Notify the caller of completion if this is a synchronous
992 * work item, otherwise just free it.
993 */
994 if (work->done)
995 complete(work->done);
996 else
997 kfree(work);
998 }
999
1000 /*
1001 * Check for periodic writeback, kupdated() style
1002 */
1003 wrote += wb_check_old_data_flush(wb);
1004 wrote += wb_check_background_flush(wb);
1005 clear_bit(BDI_writeback_running, &wb->bdi->state);
1006
1007 return wrote;
1008 }
1009
1010 /*
1011 * Handle writeback of dirty data for the device backed by this bdi. Also
1012 * reschedules periodically and does kupdated style flushing.
1013 */
1014 void bdi_writeback_workfn(struct work_struct *work)
1015 {
1016 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1017 struct bdi_writeback, dwork);
1018 struct backing_dev_info *bdi = wb->bdi;
1019 long pages_written;
1020
1021 set_worker_desc("flush-%s", dev_name(bdi->dev));
1022 current->flags |= PF_SWAPWRITE;
1023
1024 if (likely(!current_is_workqueue_rescuer() ||
1025 list_empty(&bdi->bdi_list))) {
1026 /*
1027 * The normal path. Keep writing back @bdi until its
1028 * work_list is empty. Note that this path is also taken
1029 * if @bdi is shutting down even when we're running off the
1030 * rescuer as work_list needs to be drained.
1031 */
1032 do {
1033 pages_written = wb_do_writeback(wb);
1034 trace_writeback_pages_written(pages_written);
1035 } while (!list_empty(&bdi->work_list));
1036 } else {
1037 /*
1038 * bdi_wq can't get enough workers and we're running off
1039 * the emergency worker. Don't hog it. Hopefully, 1024 is
1040 * enough for efficient IO.
1041 */
1042 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1043 WB_REASON_FORKER_THREAD);
1044 trace_writeback_pages_written(pages_written);
1045 }
1046
1047 if (!list_empty(&bdi->work_list) ||
1048 (wb_has_dirty_io(wb) && dirty_writeback_interval))
1049 queue_delayed_work(bdi_wq, &wb->dwork,
1050 msecs_to_jiffies(dirty_writeback_interval * 10));
1051
1052 current->flags &= ~PF_SWAPWRITE;
1053 }
1054
1055 /*
1056 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1057 * the whole world.
1058 */
1059 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1060 {
1061 struct backing_dev_info *bdi;
1062
1063 if (!nr_pages)
1064 nr_pages = get_nr_dirty_pages();
1065
1066 rcu_read_lock();
1067 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1068 if (!bdi_has_dirty_io(bdi))
1069 continue;
1070 __bdi_start_writeback(bdi, nr_pages, false, reason);
1071 }
1072 rcu_read_unlock();
1073 }
1074
1075 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1076 {
1077 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1078 struct dentry *dentry;
1079 const char *name = "?";
1080
1081 dentry = d_find_alias(inode);
1082 if (dentry) {
1083 spin_lock(&dentry->d_lock);
1084 name = (const char *) dentry->d_name.name;
1085 }
1086 printk(KERN_DEBUG
1087 "%s(%d): dirtied inode %lu (%s) on %s\n",
1088 current->comm, task_pid_nr(current), inode->i_ino,
1089 name, inode->i_sb->s_id);
1090 if (dentry) {
1091 spin_unlock(&dentry->d_lock);
1092 dput(dentry);
1093 }
1094 }
1095 }
1096
1097 /**
1098 * __mark_inode_dirty - internal function
1099 * @inode: inode to mark
1100 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1101 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1102 * mark_inode_dirty_sync.
1103 *
1104 * Put the inode on the super block's dirty list.
1105 *
1106 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1107 * dirty list only if it is hashed or if it refers to a blockdev.
1108 * If it was not hashed, it will never be added to the dirty list
1109 * even if it is later hashed, as it will have been marked dirty already.
1110 *
1111 * In short, make sure you hash any inodes _before_ you start marking
1112 * them dirty.
1113 *
1114 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1115 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1116 * the kernel-internal blockdev inode represents the dirtying time of the
1117 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1118 * page->mapping->host, so the page-dirtying time is recorded in the internal
1119 * blockdev inode.
1120 */
1121 void __mark_inode_dirty(struct inode *inode, int flags)
1122 {
1123 struct super_block *sb = inode->i_sb;
1124 struct backing_dev_info *bdi = NULL;
1125
1126 /*
1127 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1128 * dirty the inode itself
1129 */
1130 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1131 trace_writeback_dirty_inode_start(inode, flags);
1132
1133 if (sb->s_op->dirty_inode)
1134 sb->s_op->dirty_inode(inode, flags);
1135
1136 trace_writeback_dirty_inode(inode, flags);
1137 }
1138
1139 /*
1140 * make sure that changes are seen by all cpus before we test i_state
1141 * -- mikulas
1142 */
1143 smp_mb();
1144
1145 /* avoid the locking if we can */
1146 if ((inode->i_state & flags) == flags)
1147 return;
1148
1149 if (unlikely(block_dump))
1150 block_dump___mark_inode_dirty(inode);
1151
1152 spin_lock(&inode->i_lock);
1153 if ((inode->i_state & flags) != flags) {
1154 const int was_dirty = inode->i_state & I_DIRTY;
1155
1156 inode->i_state |= flags;
1157
1158 /*
1159 * If the inode is being synced, just update its dirty state.
1160 * The unlocker will place the inode on the appropriate
1161 * superblock list, based upon its state.
1162 */
1163 if (inode->i_state & I_SYNC)
1164 goto out_unlock_inode;
1165
1166 /*
1167 * Only add valid (hashed) inodes to the superblock's
1168 * dirty list. Add blockdev inodes as well.
1169 */
1170 if (!S_ISBLK(inode->i_mode)) {
1171 if (inode_unhashed(inode))
1172 goto out_unlock_inode;
1173 }
1174 if (inode->i_state & I_FREEING)
1175 goto out_unlock_inode;
1176
1177 /*
1178 * If the inode was already on b_dirty/b_io/b_more_io, don't
1179 * reposition it (that would break b_dirty time-ordering).
1180 */
1181 if (!was_dirty) {
1182 bool wakeup_bdi = false;
1183 bdi = inode_to_bdi(inode);
1184
1185 spin_unlock(&inode->i_lock);
1186 spin_lock(&bdi->wb.list_lock);
1187 if (bdi_cap_writeback_dirty(bdi)) {
1188 WARN(!test_bit(BDI_registered, &bdi->state),
1189 "bdi-%s not registered\n", bdi->name);
1190
1191 /*
1192 * If this is the first dirty inode for this
1193 * bdi, we have to wake-up the corresponding
1194 * bdi thread to make sure background
1195 * write-back happens later.
1196 */
1197 if (!wb_has_dirty_io(&bdi->wb))
1198 wakeup_bdi = true;
1199 }
1200
1201 inode->dirtied_when = jiffies;
1202 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1203 spin_unlock(&bdi->wb.list_lock);
1204
1205 if (wakeup_bdi)
1206 bdi_wakeup_thread_delayed(bdi);
1207 return;
1208 }
1209 }
1210 out_unlock_inode:
1211 spin_unlock(&inode->i_lock);
1212
1213 }
1214 EXPORT_SYMBOL(__mark_inode_dirty);
1215
1216 static void wait_sb_inodes(struct super_block *sb)
1217 {
1218 struct inode *inode, *old_inode = NULL;
1219
1220 /*
1221 * We need to be protected against the filesystem going from
1222 * r/o to r/w or vice versa.
1223 */
1224 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1225
1226 spin_lock(&inode_sb_list_lock);
1227
1228 /*
1229 * Data integrity sync. Must wait for all pages under writeback,
1230 * because there may have been pages dirtied before our sync
1231 * call, but which had writeout started before we write it out.
1232 * In which case, the inode may not be on the dirty list, but
1233 * we still have to wait for that writeout.
1234 */
1235 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1236 struct address_space *mapping = inode->i_mapping;
1237
1238 spin_lock(&inode->i_lock);
1239 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1240 (mapping->nrpages == 0)) {
1241 spin_unlock(&inode->i_lock);
1242 continue;
1243 }
1244 __iget(inode);
1245 spin_unlock(&inode->i_lock);
1246 spin_unlock(&inode_sb_list_lock);
1247
1248 /*
1249 * We hold a reference to 'inode' so it couldn't have been
1250 * removed from s_inodes list while we dropped the
1251 * inode_sb_list_lock. We cannot iput the inode now as we can
1252 * be holding the last reference and we cannot iput it under
1253 * inode_sb_list_lock. So we keep the reference and iput it
1254 * later.
1255 */
1256 iput(old_inode);
1257 old_inode = inode;
1258
1259 filemap_fdatawait(mapping);
1260
1261 cond_resched();
1262
1263 spin_lock(&inode_sb_list_lock);
1264 }
1265 spin_unlock(&inode_sb_list_lock);
1266 iput(old_inode);
1267 }
1268
1269 /**
1270 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1271 * @sb: the superblock
1272 * @nr: the number of pages to write
1273 * @reason: reason why some writeback work initiated
1274 *
1275 * Start writeback on some inodes on this super_block. No guarantees are made
1276 * on how many (if any) will be written, and this function does not wait
1277 * for IO completion of submitted IO.
1278 */
1279 void writeback_inodes_sb_nr(struct super_block *sb,
1280 unsigned long nr,
1281 enum wb_reason reason)
1282 {
1283 DECLARE_COMPLETION_ONSTACK(done);
1284 struct wb_writeback_work work = {
1285 .sb = sb,
1286 .sync_mode = WB_SYNC_NONE,
1287 .tagged_writepages = 1,
1288 .done = &done,
1289 .nr_pages = nr,
1290 .reason = reason,
1291 };
1292
1293 if (sb->s_bdi == &noop_backing_dev_info)
1294 return;
1295 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1296 bdi_queue_work(sb->s_bdi, &work);
1297 wait_for_completion(&done);
1298 }
1299 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1300
1301 /**
1302 * writeback_inodes_sb - writeback dirty inodes from given super_block
1303 * @sb: the superblock
1304 * @reason: reason why some writeback work was initiated
1305 *
1306 * Start writeback on some inodes on this super_block. No guarantees are made
1307 * on how many (if any) will be written, and this function does not wait
1308 * for IO completion of submitted IO.
1309 */
1310 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1311 {
1312 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1313 }
1314 EXPORT_SYMBOL(writeback_inodes_sb);
1315
1316 /**
1317 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1318 * @sb: the superblock
1319 * @nr: the number of pages to write
1320 * @reason: the reason of writeback
1321 *
1322 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1323 * Returns 1 if writeback was started, 0 if not.
1324 */
1325 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1326 unsigned long nr,
1327 enum wb_reason reason)
1328 {
1329 if (writeback_in_progress(sb->s_bdi))
1330 return 1;
1331
1332 if (!down_read_trylock(&sb->s_umount))
1333 return 0;
1334
1335 writeback_inodes_sb_nr(sb, nr, reason);
1336 up_read(&sb->s_umount);
1337 return 1;
1338 }
1339 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1340
1341 /**
1342 * try_to_writeback_inodes_sb - try to start writeback if none underway
1343 * @sb: the superblock
1344 * @reason: reason why some writeback work was initiated
1345 *
1346 * Implement by try_to_writeback_inodes_sb_nr()
1347 * Returns 1 if writeback was started, 0 if not.
1348 */
1349 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1350 {
1351 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1352 }
1353 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1354
1355 /**
1356 * sync_inodes_sb - sync sb inode pages
1357 * @sb: the superblock
1358 * @older_than_this: timestamp
1359 *
1360 * This function writes and waits on any dirty inode belonging to this
1361 * superblock that has been dirtied before given timestamp.
1362 */
1363 void sync_inodes_sb(struct super_block *sb, unsigned long older_than_this)
1364 {
1365 DECLARE_COMPLETION_ONSTACK(done);
1366 struct wb_writeback_work work = {
1367 .sb = sb,
1368 .sync_mode = WB_SYNC_ALL,
1369 .nr_pages = LONG_MAX,
1370 .older_than_this = older_than_this,
1371 .older_than_this_is_set = 1,
1372 .range_cyclic = 0,
1373 .done = &done,
1374 .reason = WB_REASON_SYNC,
1375 .for_sync = 1,
1376 };
1377
1378 /* Nothing to do? */
1379 if (sb->s_bdi == &noop_backing_dev_info)
1380 return;
1381 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1382
1383 bdi_queue_work(sb->s_bdi, &work);
1384 wait_for_completion(&done);
1385
1386 wait_sb_inodes(sb);
1387 }
1388 EXPORT_SYMBOL(sync_inodes_sb);
1389
1390 /**
1391 * write_inode_now - write an inode to disk
1392 * @inode: inode to write to disk
1393 * @sync: whether the write should be synchronous or not
1394 *
1395 * This function commits an inode to disk immediately if it is dirty. This is
1396 * primarily needed by knfsd.
1397 *
1398 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1399 */
1400 int write_inode_now(struct inode *inode, int sync)
1401 {
1402 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1403 struct writeback_control wbc = {
1404 .nr_to_write = LONG_MAX,
1405 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1406 .range_start = 0,
1407 .range_end = LLONG_MAX,
1408 };
1409
1410 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1411 wbc.nr_to_write = 0;
1412
1413 might_sleep();
1414 return writeback_single_inode(inode, wb, &wbc);
1415 }
1416 EXPORT_SYMBOL(write_inode_now);
1417
1418 /**
1419 * sync_inode - write an inode and its pages to disk.
1420 * @inode: the inode to sync
1421 * @wbc: controls the writeback mode
1422 *
1423 * sync_inode() will write an inode and its pages to disk. It will also
1424 * correctly update the inode on its superblock's dirty inode lists and will
1425 * update inode->i_state.
1426 *
1427 * The caller must have a ref on the inode.
1428 */
1429 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1430 {
1431 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1432 }
1433 EXPORT_SYMBOL(sync_inode);
1434
1435 /**
1436 * sync_inode_metadata - write an inode to disk
1437 * @inode: the inode to sync
1438 * @wait: wait for I/O to complete.
1439 *
1440 * Write an inode to disk and adjust its dirty state after completion.
1441 *
1442 * Note: only writes the actual inode, no associated data or other metadata.
1443 */
1444 int sync_inode_metadata(struct inode *inode, int wait)
1445 {
1446 struct writeback_control wbc = {
1447 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1448 .nr_to_write = 0, /* metadata-only */
1449 };
1450
1451 return sync_inode(inode, &wbc);
1452 }
1453 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.0587 seconds and 6 git commands to generate.