Merge branch 'arm/defconfig/reduced-v2.6.35-rc1' of git://git.pengutronix.de/git...
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include "internal.h"
30
31 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
32
33 /*
34 * We don't actually have pdflush, but this one is exported though /proc...
35 */
36 int nr_pdflush_threads;
37
38 /*
39 * Passed into wb_writeback(), essentially a subset of writeback_control
40 */
41 struct wb_writeback_work {
42 long nr_pages;
43 struct super_block *sb;
44 enum writeback_sync_modes sync_mode;
45 unsigned int for_kupdate:1;
46 unsigned int range_cyclic:1;
47 unsigned int for_background:1;
48
49 struct list_head list; /* pending work list */
50 struct completion *done; /* set if the caller waits */
51 };
52
53 /**
54 * writeback_in_progress - determine whether there is writeback in progress
55 * @bdi: the device's backing_dev_info structure.
56 *
57 * Determine whether there is writeback waiting to be handled against a
58 * backing device.
59 */
60 int writeback_in_progress(struct backing_dev_info *bdi)
61 {
62 return !list_empty(&bdi->work_list);
63 }
64
65 static void bdi_queue_work(struct backing_dev_info *bdi,
66 struct wb_writeback_work *work)
67 {
68 spin_lock(&bdi->wb_lock);
69 list_add_tail(&work->list, &bdi->work_list);
70 spin_unlock(&bdi->wb_lock);
71
72 /*
73 * If the default thread isn't there, make sure we add it. When
74 * it gets created and wakes up, we'll run this work.
75 */
76 if (unlikely(list_empty_careful(&bdi->wb_list)))
77 wake_up_process(default_backing_dev_info.wb.task);
78 else {
79 struct bdi_writeback *wb = &bdi->wb;
80
81 if (wb->task)
82 wake_up_process(wb->task);
83 }
84 }
85
86 static void
87 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
88 bool range_cyclic, bool for_background)
89 {
90 struct wb_writeback_work *work;
91
92 /*
93 * This is WB_SYNC_NONE writeback, so if allocation fails just
94 * wakeup the thread for old dirty data writeback
95 */
96 work = kzalloc(sizeof(*work), GFP_ATOMIC);
97 if (!work) {
98 if (bdi->wb.task)
99 wake_up_process(bdi->wb.task);
100 return;
101 }
102
103 work->sync_mode = WB_SYNC_NONE;
104 work->nr_pages = nr_pages;
105 work->range_cyclic = range_cyclic;
106 work->for_background = for_background;
107
108 bdi_queue_work(bdi, work);
109 }
110
111 /**
112 * bdi_start_writeback - start writeback
113 * @bdi: the backing device to write from
114 * @nr_pages: the number of pages to write
115 *
116 * Description:
117 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
118 * started when this function returns, we make no guarentees on
119 * completion. Caller need not hold sb s_umount semaphore.
120 *
121 */
122 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
123 {
124 __bdi_start_writeback(bdi, nr_pages, true, false);
125 }
126
127 /**
128 * bdi_start_background_writeback - start background writeback
129 * @bdi: the backing device to write from
130 *
131 * Description:
132 * This does WB_SYNC_NONE background writeback. The IO is only
133 * started when this function returns, we make no guarentees on
134 * completion. Caller need not hold sb s_umount semaphore.
135 */
136 void bdi_start_background_writeback(struct backing_dev_info *bdi)
137 {
138 __bdi_start_writeback(bdi, LONG_MAX, true, true);
139 }
140
141 /*
142 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
143 * furthest end of its superblock's dirty-inode list.
144 *
145 * Before stamping the inode's ->dirtied_when, we check to see whether it is
146 * already the most-recently-dirtied inode on the b_dirty list. If that is
147 * the case then the inode must have been redirtied while it was being written
148 * out and we don't reset its dirtied_when.
149 */
150 static void redirty_tail(struct inode *inode)
151 {
152 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
153
154 if (!list_empty(&wb->b_dirty)) {
155 struct inode *tail;
156
157 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
158 if (time_before(inode->dirtied_when, tail->dirtied_when))
159 inode->dirtied_when = jiffies;
160 }
161 list_move(&inode->i_list, &wb->b_dirty);
162 }
163
164 /*
165 * requeue inode for re-scanning after bdi->b_io list is exhausted.
166 */
167 static void requeue_io(struct inode *inode)
168 {
169 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
170
171 list_move(&inode->i_list, &wb->b_more_io);
172 }
173
174 static void inode_sync_complete(struct inode *inode)
175 {
176 /*
177 * Prevent speculative execution through spin_unlock(&inode_lock);
178 */
179 smp_mb();
180 wake_up_bit(&inode->i_state, __I_SYNC);
181 }
182
183 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
184 {
185 bool ret = time_after(inode->dirtied_when, t);
186 #ifndef CONFIG_64BIT
187 /*
188 * For inodes being constantly redirtied, dirtied_when can get stuck.
189 * It _appears_ to be in the future, but is actually in distant past.
190 * This test is necessary to prevent such wrapped-around relative times
191 * from permanently stopping the whole bdi writeback.
192 */
193 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
194 #endif
195 return ret;
196 }
197
198 /*
199 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
200 */
201 static void move_expired_inodes(struct list_head *delaying_queue,
202 struct list_head *dispatch_queue,
203 unsigned long *older_than_this)
204 {
205 LIST_HEAD(tmp);
206 struct list_head *pos, *node;
207 struct super_block *sb = NULL;
208 struct inode *inode;
209 int do_sb_sort = 0;
210
211 while (!list_empty(delaying_queue)) {
212 inode = list_entry(delaying_queue->prev, struct inode, i_list);
213 if (older_than_this &&
214 inode_dirtied_after(inode, *older_than_this))
215 break;
216 if (sb && sb != inode->i_sb)
217 do_sb_sort = 1;
218 sb = inode->i_sb;
219 list_move(&inode->i_list, &tmp);
220 }
221
222 /* just one sb in list, splice to dispatch_queue and we're done */
223 if (!do_sb_sort) {
224 list_splice(&tmp, dispatch_queue);
225 return;
226 }
227
228 /* Move inodes from one superblock together */
229 while (!list_empty(&tmp)) {
230 inode = list_entry(tmp.prev, struct inode, i_list);
231 sb = inode->i_sb;
232 list_for_each_prev_safe(pos, node, &tmp) {
233 inode = list_entry(pos, struct inode, i_list);
234 if (inode->i_sb == sb)
235 list_move(&inode->i_list, dispatch_queue);
236 }
237 }
238 }
239
240 /*
241 * Queue all expired dirty inodes for io, eldest first.
242 */
243 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
244 {
245 list_splice_init(&wb->b_more_io, wb->b_io.prev);
246 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
247 }
248
249 static int write_inode(struct inode *inode, struct writeback_control *wbc)
250 {
251 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
252 return inode->i_sb->s_op->write_inode(inode, wbc);
253 return 0;
254 }
255
256 /*
257 * Wait for writeback on an inode to complete.
258 */
259 static void inode_wait_for_writeback(struct inode *inode)
260 {
261 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
262 wait_queue_head_t *wqh;
263
264 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
265 while (inode->i_state & I_SYNC) {
266 spin_unlock(&inode_lock);
267 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
268 spin_lock(&inode_lock);
269 }
270 }
271
272 /*
273 * Write out an inode's dirty pages. Called under inode_lock. Either the
274 * caller has ref on the inode (either via __iget or via syscall against an fd)
275 * or the inode has I_WILL_FREE set (via generic_forget_inode)
276 *
277 * If `wait' is set, wait on the writeout.
278 *
279 * The whole writeout design is quite complex and fragile. We want to avoid
280 * starvation of particular inodes when others are being redirtied, prevent
281 * livelocks, etc.
282 *
283 * Called under inode_lock.
284 */
285 static int
286 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
287 {
288 struct address_space *mapping = inode->i_mapping;
289 unsigned dirty;
290 int ret;
291
292 if (!atomic_read(&inode->i_count))
293 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
294 else
295 WARN_ON(inode->i_state & I_WILL_FREE);
296
297 if (inode->i_state & I_SYNC) {
298 /*
299 * If this inode is locked for writeback and we are not doing
300 * writeback-for-data-integrity, move it to b_more_io so that
301 * writeback can proceed with the other inodes on s_io.
302 *
303 * We'll have another go at writing back this inode when we
304 * completed a full scan of b_io.
305 */
306 if (wbc->sync_mode != WB_SYNC_ALL) {
307 requeue_io(inode);
308 return 0;
309 }
310
311 /*
312 * It's a data-integrity sync. We must wait.
313 */
314 inode_wait_for_writeback(inode);
315 }
316
317 BUG_ON(inode->i_state & I_SYNC);
318
319 /* Set I_SYNC, reset I_DIRTY_PAGES */
320 inode->i_state |= I_SYNC;
321 inode->i_state &= ~I_DIRTY_PAGES;
322 spin_unlock(&inode_lock);
323
324 ret = do_writepages(mapping, wbc);
325
326 /*
327 * Make sure to wait on the data before writing out the metadata.
328 * This is important for filesystems that modify metadata on data
329 * I/O completion.
330 */
331 if (wbc->sync_mode == WB_SYNC_ALL) {
332 int err = filemap_fdatawait(mapping);
333 if (ret == 0)
334 ret = err;
335 }
336
337 /*
338 * Some filesystems may redirty the inode during the writeback
339 * due to delalloc, clear dirty metadata flags right before
340 * write_inode()
341 */
342 spin_lock(&inode_lock);
343 dirty = inode->i_state & I_DIRTY;
344 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
345 spin_unlock(&inode_lock);
346 /* Don't write the inode if only I_DIRTY_PAGES was set */
347 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
348 int err = write_inode(inode, wbc);
349 if (ret == 0)
350 ret = err;
351 }
352
353 spin_lock(&inode_lock);
354 inode->i_state &= ~I_SYNC;
355 if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
356 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
357 /*
358 * More pages get dirtied by a fast dirtier.
359 */
360 goto select_queue;
361 } else if (inode->i_state & I_DIRTY) {
362 /*
363 * At least XFS will redirty the inode during the
364 * writeback (delalloc) and on io completion (isize).
365 */
366 redirty_tail(inode);
367 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
368 /*
369 * We didn't write back all the pages. nfs_writepages()
370 * sometimes bales out without doing anything. Redirty
371 * the inode; Move it from b_io onto b_more_io/b_dirty.
372 */
373 /*
374 * akpm: if the caller was the kupdate function we put
375 * this inode at the head of b_dirty so it gets first
376 * consideration. Otherwise, move it to the tail, for
377 * the reasons described there. I'm not really sure
378 * how much sense this makes. Presumably I had a good
379 * reasons for doing it this way, and I'd rather not
380 * muck with it at present.
381 */
382 if (wbc->for_kupdate) {
383 /*
384 * For the kupdate function we move the inode
385 * to b_more_io so it will get more writeout as
386 * soon as the queue becomes uncongested.
387 */
388 inode->i_state |= I_DIRTY_PAGES;
389 select_queue:
390 if (wbc->nr_to_write <= 0) {
391 /*
392 * slice used up: queue for next turn
393 */
394 requeue_io(inode);
395 } else {
396 /*
397 * somehow blocked: retry later
398 */
399 redirty_tail(inode);
400 }
401 } else {
402 /*
403 * Otherwise fully redirty the inode so that
404 * other inodes on this superblock will get some
405 * writeout. Otherwise heavy writing to one
406 * file would indefinitely suspend writeout of
407 * all the other files.
408 */
409 inode->i_state |= I_DIRTY_PAGES;
410 redirty_tail(inode);
411 }
412 } else if (atomic_read(&inode->i_count)) {
413 /*
414 * The inode is clean, inuse
415 */
416 list_move(&inode->i_list, &inode_in_use);
417 } else {
418 /*
419 * The inode is clean, unused
420 */
421 list_move(&inode->i_list, &inode_unused);
422 }
423 }
424 inode_sync_complete(inode);
425 return ret;
426 }
427
428 /*
429 * For background writeback the caller does not have the sb pinned
430 * before calling writeback. So make sure that we do pin it, so it doesn't
431 * go away while we are writing inodes from it.
432 */
433 static bool pin_sb_for_writeback(struct super_block *sb)
434 {
435 spin_lock(&sb_lock);
436 if (list_empty(&sb->s_instances)) {
437 spin_unlock(&sb_lock);
438 return false;
439 }
440
441 sb->s_count++;
442 spin_unlock(&sb_lock);
443
444 if (down_read_trylock(&sb->s_umount)) {
445 if (sb->s_root)
446 return true;
447 up_read(&sb->s_umount);
448 }
449
450 put_super(sb);
451 return false;
452 }
453
454 /*
455 * Write a portion of b_io inodes which belong to @sb.
456 *
457 * If @only_this_sb is true, then find and write all such
458 * inodes. Otherwise write only ones which go sequentially
459 * in reverse order.
460 *
461 * Return 1, if the caller writeback routine should be
462 * interrupted. Otherwise return 0.
463 */
464 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
465 struct writeback_control *wbc, bool only_this_sb)
466 {
467 while (!list_empty(&wb->b_io)) {
468 long pages_skipped;
469 struct inode *inode = list_entry(wb->b_io.prev,
470 struct inode, i_list);
471
472 if (inode->i_sb != sb) {
473 if (only_this_sb) {
474 /*
475 * We only want to write back data for this
476 * superblock, move all inodes not belonging
477 * to it back onto the dirty list.
478 */
479 redirty_tail(inode);
480 continue;
481 }
482
483 /*
484 * The inode belongs to a different superblock.
485 * Bounce back to the caller to unpin this and
486 * pin the next superblock.
487 */
488 return 0;
489 }
490
491 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
492 requeue_io(inode);
493 continue;
494 }
495 /*
496 * Was this inode dirtied after sync_sb_inodes was called?
497 * This keeps sync from extra jobs and livelock.
498 */
499 if (inode_dirtied_after(inode, wbc->wb_start))
500 return 1;
501
502 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
503 __iget(inode);
504 pages_skipped = wbc->pages_skipped;
505 writeback_single_inode(inode, wbc);
506 if (wbc->pages_skipped != pages_skipped) {
507 /*
508 * writeback is not making progress due to locked
509 * buffers. Skip this inode for now.
510 */
511 redirty_tail(inode);
512 }
513 spin_unlock(&inode_lock);
514 iput(inode);
515 cond_resched();
516 spin_lock(&inode_lock);
517 if (wbc->nr_to_write <= 0) {
518 wbc->more_io = 1;
519 return 1;
520 }
521 if (!list_empty(&wb->b_more_io))
522 wbc->more_io = 1;
523 }
524 /* b_io is empty */
525 return 1;
526 }
527
528 void writeback_inodes_wb(struct bdi_writeback *wb,
529 struct writeback_control *wbc)
530 {
531 int ret = 0;
532
533 wbc->wb_start = jiffies; /* livelock avoidance */
534 spin_lock(&inode_lock);
535 if (!wbc->for_kupdate || list_empty(&wb->b_io))
536 queue_io(wb, wbc->older_than_this);
537
538 while (!list_empty(&wb->b_io)) {
539 struct inode *inode = list_entry(wb->b_io.prev,
540 struct inode, i_list);
541 struct super_block *sb = inode->i_sb;
542
543 if (!pin_sb_for_writeback(sb)) {
544 requeue_io(inode);
545 continue;
546 }
547 ret = writeback_sb_inodes(sb, wb, wbc, false);
548 drop_super(sb);
549
550 if (ret)
551 break;
552 }
553 spin_unlock(&inode_lock);
554 /* Leave any unwritten inodes on b_io */
555 }
556
557 static void __writeback_inodes_sb(struct super_block *sb,
558 struct bdi_writeback *wb, struct writeback_control *wbc)
559 {
560 WARN_ON(!rwsem_is_locked(&sb->s_umount));
561
562 wbc->wb_start = jiffies; /* livelock avoidance */
563 spin_lock(&inode_lock);
564 if (!wbc->for_kupdate || list_empty(&wb->b_io))
565 queue_io(wb, wbc->older_than_this);
566 writeback_sb_inodes(sb, wb, wbc, true);
567 spin_unlock(&inode_lock);
568 }
569
570 /*
571 * The maximum number of pages to writeout in a single bdi flush/kupdate
572 * operation. We do this so we don't hold I_SYNC against an inode for
573 * enormous amounts of time, which would block a userspace task which has
574 * been forced to throttle against that inode. Also, the code reevaluates
575 * the dirty each time it has written this many pages.
576 */
577 #define MAX_WRITEBACK_PAGES 1024
578
579 static inline bool over_bground_thresh(void)
580 {
581 unsigned long background_thresh, dirty_thresh;
582
583 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
584
585 return (global_page_state(NR_FILE_DIRTY) +
586 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
587 }
588
589 /*
590 * Explicit flushing or periodic writeback of "old" data.
591 *
592 * Define "old": the first time one of an inode's pages is dirtied, we mark the
593 * dirtying-time in the inode's address_space. So this periodic writeback code
594 * just walks the superblock inode list, writing back any inodes which are
595 * older than a specific point in time.
596 *
597 * Try to run once per dirty_writeback_interval. But if a writeback event
598 * takes longer than a dirty_writeback_interval interval, then leave a
599 * one-second gap.
600 *
601 * older_than_this takes precedence over nr_to_write. So we'll only write back
602 * all dirty pages if they are all attached to "old" mappings.
603 */
604 static long wb_writeback(struct bdi_writeback *wb,
605 struct wb_writeback_work *work)
606 {
607 struct writeback_control wbc = {
608 .sync_mode = work->sync_mode,
609 .older_than_this = NULL,
610 .for_kupdate = work->for_kupdate,
611 .for_background = work->for_background,
612 .range_cyclic = work->range_cyclic,
613 };
614 unsigned long oldest_jif;
615 long wrote = 0;
616 struct inode *inode;
617
618 if (wbc.for_kupdate) {
619 wbc.older_than_this = &oldest_jif;
620 oldest_jif = jiffies -
621 msecs_to_jiffies(dirty_expire_interval * 10);
622 }
623 if (!wbc.range_cyclic) {
624 wbc.range_start = 0;
625 wbc.range_end = LLONG_MAX;
626 }
627
628 for (;;) {
629 /*
630 * Stop writeback when nr_pages has been consumed
631 */
632 if (work->nr_pages <= 0)
633 break;
634
635 /*
636 * For background writeout, stop when we are below the
637 * background dirty threshold
638 */
639 if (work->for_background && !over_bground_thresh())
640 break;
641
642 wbc.more_io = 0;
643 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
644 wbc.pages_skipped = 0;
645 if (work->sb)
646 __writeback_inodes_sb(work->sb, wb, &wbc);
647 else
648 writeback_inodes_wb(wb, &wbc);
649 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
650 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
651
652 /*
653 * If we consumed everything, see if we have more
654 */
655 if (wbc.nr_to_write <= 0)
656 continue;
657 /*
658 * Didn't write everything and we don't have more IO, bail
659 */
660 if (!wbc.more_io)
661 break;
662 /*
663 * Did we write something? Try for more
664 */
665 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
666 continue;
667 /*
668 * Nothing written. Wait for some inode to
669 * become available for writeback. Otherwise
670 * we'll just busyloop.
671 */
672 spin_lock(&inode_lock);
673 if (!list_empty(&wb->b_more_io)) {
674 inode = list_entry(wb->b_more_io.prev,
675 struct inode, i_list);
676 inode_wait_for_writeback(inode);
677 }
678 spin_unlock(&inode_lock);
679 }
680
681 return wrote;
682 }
683
684 /*
685 * Return the next wb_writeback_work struct that hasn't been processed yet.
686 */
687 static struct wb_writeback_work *
688 get_next_work_item(struct backing_dev_info *bdi, struct bdi_writeback *wb)
689 {
690 struct wb_writeback_work *work = NULL;
691
692 spin_lock(&bdi->wb_lock);
693 if (!list_empty(&bdi->work_list)) {
694 work = list_entry(bdi->work_list.next,
695 struct wb_writeback_work, list);
696 list_del_init(&work->list);
697 }
698 spin_unlock(&bdi->wb_lock);
699 return work;
700 }
701
702 static long wb_check_old_data_flush(struct bdi_writeback *wb)
703 {
704 unsigned long expired;
705 long nr_pages;
706
707 /*
708 * When set to zero, disable periodic writeback
709 */
710 if (!dirty_writeback_interval)
711 return 0;
712
713 expired = wb->last_old_flush +
714 msecs_to_jiffies(dirty_writeback_interval * 10);
715 if (time_before(jiffies, expired))
716 return 0;
717
718 wb->last_old_flush = jiffies;
719 nr_pages = global_page_state(NR_FILE_DIRTY) +
720 global_page_state(NR_UNSTABLE_NFS) +
721 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
722
723 if (nr_pages) {
724 struct wb_writeback_work work = {
725 .nr_pages = nr_pages,
726 .sync_mode = WB_SYNC_NONE,
727 .for_kupdate = 1,
728 .range_cyclic = 1,
729 };
730
731 return wb_writeback(wb, &work);
732 }
733
734 return 0;
735 }
736
737 /*
738 * Retrieve work items and do the writeback they describe
739 */
740 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
741 {
742 struct backing_dev_info *bdi = wb->bdi;
743 struct wb_writeback_work *work;
744 long wrote = 0;
745
746 while ((work = get_next_work_item(bdi, wb)) != NULL) {
747 /*
748 * Override sync mode, in case we must wait for completion
749 * because this thread is exiting now.
750 */
751 if (force_wait)
752 work->sync_mode = WB_SYNC_ALL;
753
754 wrote += wb_writeback(wb, work);
755
756 /*
757 * Notify the caller of completion if this is a synchronous
758 * work item, otherwise just free it.
759 */
760 if (work->done)
761 complete(work->done);
762 else
763 kfree(work);
764 }
765
766 /*
767 * Check for periodic writeback, kupdated() style
768 */
769 wrote += wb_check_old_data_flush(wb);
770
771 return wrote;
772 }
773
774 /*
775 * Handle writeback of dirty data for the device backed by this bdi. Also
776 * wakes up periodically and does kupdated style flushing.
777 */
778 int bdi_writeback_task(struct bdi_writeback *wb)
779 {
780 unsigned long last_active = jiffies;
781 unsigned long wait_jiffies = -1UL;
782 long pages_written;
783
784 while (!kthread_should_stop()) {
785 pages_written = wb_do_writeback(wb, 0);
786
787 if (pages_written)
788 last_active = jiffies;
789 else if (wait_jiffies != -1UL) {
790 unsigned long max_idle;
791
792 /*
793 * Longest period of inactivity that we tolerate. If we
794 * see dirty data again later, the task will get
795 * recreated automatically.
796 */
797 max_idle = max(5UL * 60 * HZ, wait_jiffies);
798 if (time_after(jiffies, max_idle + last_active))
799 break;
800 }
801
802 if (dirty_writeback_interval) {
803 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
804 schedule_timeout_interruptible(wait_jiffies);
805 } else {
806 set_current_state(TASK_INTERRUPTIBLE);
807 if (list_empty_careful(&wb->bdi->work_list) &&
808 !kthread_should_stop())
809 schedule();
810 __set_current_state(TASK_RUNNING);
811 }
812
813 try_to_freeze();
814 }
815
816 return 0;
817 }
818
819 /*
820 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
821 * the whole world.
822 */
823 void wakeup_flusher_threads(long nr_pages)
824 {
825 struct backing_dev_info *bdi;
826
827 if (!nr_pages) {
828 nr_pages = global_page_state(NR_FILE_DIRTY) +
829 global_page_state(NR_UNSTABLE_NFS);
830 }
831
832 rcu_read_lock();
833 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
834 if (!bdi_has_dirty_io(bdi))
835 continue;
836 __bdi_start_writeback(bdi, nr_pages, false, false);
837 }
838 rcu_read_unlock();
839 }
840
841 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
842 {
843 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
844 struct dentry *dentry;
845 const char *name = "?";
846
847 dentry = d_find_alias(inode);
848 if (dentry) {
849 spin_lock(&dentry->d_lock);
850 name = (const char *) dentry->d_name.name;
851 }
852 printk(KERN_DEBUG
853 "%s(%d): dirtied inode %lu (%s) on %s\n",
854 current->comm, task_pid_nr(current), inode->i_ino,
855 name, inode->i_sb->s_id);
856 if (dentry) {
857 spin_unlock(&dentry->d_lock);
858 dput(dentry);
859 }
860 }
861 }
862
863 /**
864 * __mark_inode_dirty - internal function
865 * @inode: inode to mark
866 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
867 * Mark an inode as dirty. Callers should use mark_inode_dirty or
868 * mark_inode_dirty_sync.
869 *
870 * Put the inode on the super block's dirty list.
871 *
872 * CAREFUL! We mark it dirty unconditionally, but move it onto the
873 * dirty list only if it is hashed or if it refers to a blockdev.
874 * If it was not hashed, it will never be added to the dirty list
875 * even if it is later hashed, as it will have been marked dirty already.
876 *
877 * In short, make sure you hash any inodes _before_ you start marking
878 * them dirty.
879 *
880 * This function *must* be atomic for the I_DIRTY_PAGES case -
881 * set_page_dirty() is called under spinlock in several places.
882 *
883 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
884 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
885 * the kernel-internal blockdev inode represents the dirtying time of the
886 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
887 * page->mapping->host, so the page-dirtying time is recorded in the internal
888 * blockdev inode.
889 */
890 void __mark_inode_dirty(struct inode *inode, int flags)
891 {
892 struct super_block *sb = inode->i_sb;
893
894 /*
895 * Don't do this for I_DIRTY_PAGES - that doesn't actually
896 * dirty the inode itself
897 */
898 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
899 if (sb->s_op->dirty_inode)
900 sb->s_op->dirty_inode(inode);
901 }
902
903 /*
904 * make sure that changes are seen by all cpus before we test i_state
905 * -- mikulas
906 */
907 smp_mb();
908
909 /* avoid the locking if we can */
910 if ((inode->i_state & flags) == flags)
911 return;
912
913 if (unlikely(block_dump))
914 block_dump___mark_inode_dirty(inode);
915
916 spin_lock(&inode_lock);
917 if ((inode->i_state & flags) != flags) {
918 const int was_dirty = inode->i_state & I_DIRTY;
919
920 inode->i_state |= flags;
921
922 /*
923 * If the inode is being synced, just update its dirty state.
924 * The unlocker will place the inode on the appropriate
925 * superblock list, based upon its state.
926 */
927 if (inode->i_state & I_SYNC)
928 goto out;
929
930 /*
931 * Only add valid (hashed) inodes to the superblock's
932 * dirty list. Add blockdev inodes as well.
933 */
934 if (!S_ISBLK(inode->i_mode)) {
935 if (hlist_unhashed(&inode->i_hash))
936 goto out;
937 }
938 if (inode->i_state & (I_FREEING|I_CLEAR))
939 goto out;
940
941 /*
942 * If the inode was already on b_dirty/b_io/b_more_io, don't
943 * reposition it (that would break b_dirty time-ordering).
944 */
945 if (!was_dirty) {
946 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
947 struct backing_dev_info *bdi = wb->bdi;
948
949 if (bdi_cap_writeback_dirty(bdi) &&
950 !test_bit(BDI_registered, &bdi->state)) {
951 WARN_ON(1);
952 printk(KERN_ERR "bdi-%s not registered\n",
953 bdi->name);
954 }
955
956 inode->dirtied_when = jiffies;
957 list_move(&inode->i_list, &wb->b_dirty);
958 }
959 }
960 out:
961 spin_unlock(&inode_lock);
962 }
963 EXPORT_SYMBOL(__mark_inode_dirty);
964
965 /*
966 * Write out a superblock's list of dirty inodes. A wait will be performed
967 * upon no inodes, all inodes or the final one, depending upon sync_mode.
968 *
969 * If older_than_this is non-NULL, then only write out inodes which
970 * had their first dirtying at a time earlier than *older_than_this.
971 *
972 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
973 * This function assumes that the blockdev superblock's inodes are backed by
974 * a variety of queues, so all inodes are searched. For other superblocks,
975 * assume that all inodes are backed by the same queue.
976 *
977 * The inodes to be written are parked on bdi->b_io. They are moved back onto
978 * bdi->b_dirty as they are selected for writing. This way, none can be missed
979 * on the writer throttling path, and we get decent balancing between many
980 * throttled threads: we don't want them all piling up on inode_sync_wait.
981 */
982 static void wait_sb_inodes(struct super_block *sb)
983 {
984 struct inode *inode, *old_inode = NULL;
985
986 /*
987 * We need to be protected against the filesystem going from
988 * r/o to r/w or vice versa.
989 */
990 WARN_ON(!rwsem_is_locked(&sb->s_umount));
991
992 spin_lock(&inode_lock);
993
994 /*
995 * Data integrity sync. Must wait for all pages under writeback,
996 * because there may have been pages dirtied before our sync
997 * call, but which had writeout started before we write it out.
998 * In which case, the inode may not be on the dirty list, but
999 * we still have to wait for that writeout.
1000 */
1001 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1002 struct address_space *mapping;
1003
1004 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1005 continue;
1006 mapping = inode->i_mapping;
1007 if (mapping->nrpages == 0)
1008 continue;
1009 __iget(inode);
1010 spin_unlock(&inode_lock);
1011 /*
1012 * We hold a reference to 'inode' so it couldn't have
1013 * been removed from s_inodes list while we dropped the
1014 * inode_lock. We cannot iput the inode now as we can
1015 * be holding the last reference and we cannot iput it
1016 * under inode_lock. So we keep the reference and iput
1017 * it later.
1018 */
1019 iput(old_inode);
1020 old_inode = inode;
1021
1022 filemap_fdatawait(mapping);
1023
1024 cond_resched();
1025
1026 spin_lock(&inode_lock);
1027 }
1028 spin_unlock(&inode_lock);
1029 iput(old_inode);
1030 }
1031
1032 /**
1033 * writeback_inodes_sb - writeback dirty inodes from given super_block
1034 * @sb: the superblock
1035 *
1036 * Start writeback on some inodes on this super_block. No guarantees are made
1037 * on how many (if any) will be written, and this function does not wait
1038 * for IO completion of submitted IO. The number of pages submitted is
1039 * returned.
1040 */
1041 void writeback_inodes_sb(struct super_block *sb)
1042 {
1043 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1044 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1045 DECLARE_COMPLETION_ONSTACK(done);
1046 struct wb_writeback_work work = {
1047 .sb = sb,
1048 .sync_mode = WB_SYNC_NONE,
1049 .done = &done,
1050 };
1051
1052 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1053
1054 work.nr_pages = nr_dirty + nr_unstable +
1055 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1056
1057 bdi_queue_work(sb->s_bdi, &work);
1058 wait_for_completion(&done);
1059 }
1060 EXPORT_SYMBOL(writeback_inodes_sb);
1061
1062 /**
1063 * writeback_inodes_sb_if_idle - start writeback if none underway
1064 * @sb: the superblock
1065 *
1066 * Invoke writeback_inodes_sb if no writeback is currently underway.
1067 * Returns 1 if writeback was started, 0 if not.
1068 */
1069 int writeback_inodes_sb_if_idle(struct super_block *sb)
1070 {
1071 if (!writeback_in_progress(sb->s_bdi)) {
1072 down_read(&sb->s_umount);
1073 writeback_inodes_sb(sb);
1074 up_read(&sb->s_umount);
1075 return 1;
1076 } else
1077 return 0;
1078 }
1079 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1080
1081 /**
1082 * sync_inodes_sb - sync sb inode pages
1083 * @sb: the superblock
1084 *
1085 * This function writes and waits on any dirty inode belonging to this
1086 * super_block. The number of pages synced is returned.
1087 */
1088 void sync_inodes_sb(struct super_block *sb)
1089 {
1090 DECLARE_COMPLETION_ONSTACK(done);
1091 struct wb_writeback_work work = {
1092 .sb = sb,
1093 .sync_mode = WB_SYNC_ALL,
1094 .nr_pages = LONG_MAX,
1095 .range_cyclic = 0,
1096 .done = &done,
1097 };
1098
1099 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1100
1101 bdi_queue_work(sb->s_bdi, &work);
1102 wait_for_completion(&done);
1103
1104 wait_sb_inodes(sb);
1105 }
1106 EXPORT_SYMBOL(sync_inodes_sb);
1107
1108 /**
1109 * write_inode_now - write an inode to disk
1110 * @inode: inode to write to disk
1111 * @sync: whether the write should be synchronous or not
1112 *
1113 * This function commits an inode to disk immediately if it is dirty. This is
1114 * primarily needed by knfsd.
1115 *
1116 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1117 */
1118 int write_inode_now(struct inode *inode, int sync)
1119 {
1120 int ret;
1121 struct writeback_control wbc = {
1122 .nr_to_write = LONG_MAX,
1123 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1124 .range_start = 0,
1125 .range_end = LLONG_MAX,
1126 };
1127
1128 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1129 wbc.nr_to_write = 0;
1130
1131 might_sleep();
1132 spin_lock(&inode_lock);
1133 ret = writeback_single_inode(inode, &wbc);
1134 spin_unlock(&inode_lock);
1135 if (sync)
1136 inode_sync_wait(inode);
1137 return ret;
1138 }
1139 EXPORT_SYMBOL(write_inode_now);
1140
1141 /**
1142 * sync_inode - write an inode and its pages to disk.
1143 * @inode: the inode to sync
1144 * @wbc: controls the writeback mode
1145 *
1146 * sync_inode() will write an inode and its pages to disk. It will also
1147 * correctly update the inode on its superblock's dirty inode lists and will
1148 * update inode->i_state.
1149 *
1150 * The caller must have a ref on the inode.
1151 */
1152 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1153 {
1154 int ret;
1155
1156 spin_lock(&inode_lock);
1157 ret = writeback_single_inode(inode, wbc);
1158 spin_unlock(&inode_lock);
1159 return ret;
1160 }
1161 EXPORT_SYMBOL(sync_inode);
This page took 0.054993 seconds and 6 git commands to generate.